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ABSTRACT 19 

The use of composite materials in construction has grown considerably in recent years, such as 20 

cementitious matrices and concrete reinforced with fibers. The vegetable fibers have become an 21 

alternative due to its abundance, low cost and low energy consumption for its production, and 22 

appropriate properties mechanical. Curauá fiber is a plant native from Amazonas harvested 23 

manually in commercial farming and it is used in the manufacture of ropes and baskets or as 24 

reinforcement in composite with organic matrix of components for cars, buses and trucks. On 25 

the other hand, the extrusion process can produce composites with high-density matrix with 26 

fibers, low permeability and good interface between fiber and matrix. This process is also 27 

compatible with the use of vegetable fibers as raw materials in the production of cost-effective 28 

construction elements such as ceiling panels and drywalls. The objective of this research was 29 

use the analysis of variance (ANOVA) for evaluating the content and length of curauá fibers on 30 

the mechanical behavior of the extruded cementitious composites. Composites without fibers 31 

and reinforced with 1% and 2% by mass of fibers as well as 6 mm and 10 mm of length these 32 

curauá fibers were evaluated. The composites with fibers of 10 mm have showed better 33 

mechanical results. Besides, the composites with fibers curauá after 200 accelerated aging 34 

cycles were better than one non-aging.  35 

Keywords: Mechanical of fracture; extrusion process; lignocellulosic fiber; Amazonian fiber. 36 
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1. INTRODUCTION 37 

Fiber-cement products had been widely used in the world due to their versatility as corrugated and 38 

flat roofing materials, cladding panels, and water containers presented in large number of building 39 

and agriculture applications [1,2]. 40 

In order to improve the sustainability of construction materials, part of the global strategy is to use 41 

regional, recyclable and renewable materials from agroindustrial resource and environmentally 42 

appropriate technologies for civil construction. Recent years new technologies using lignocellulosic 43 

fiber have arisen enabling the use of composites with less environmental impact, low cost and low 44 

power consumption, allowing replace partially synthetic fibers, such as polypropylene or polyvinyl 45 

alcohol [1,3–5]. 46 

The incorporation of lignocellulosic fibers mostly co-product of agriculture and agro-industries, 47 

allows a valorization of these residues and a limitation of environmental damages [1,6].  48 

The curauá fiber is a plant native from Amazon and a hydrophilus species belongs to 49 

pineapple/bromeliad family. It is a lignocellulosic fiber that has mechanical properties comparable 50 

to synthetic polymeric fiber [7–10]. 51 

As part of the global strategy to produce regional and environmental-friendly materials the 52 

extrusion technology has been successfully as an economical, efficient and processing method for 53 

manufacturing sustainable fiber-reinforced cement based composites [11,12]. Other advantage of 54 

the extrusion process is its capacity of producing not only flat shapes, but also structural and 55 

complex shapes. Besides, this process allows the use of a variety of materials that have been 56 

successfully incorporated such as lignocellulosic fiber, including, sugar cane fiber [4] and sisal fiber 57 

[13].  58 

However, It is known the problem of reduction of lignocellulosic fiber durability caused mainly by 59 

the alkaline (pH around 12) environment of the cement matrix and, consequently causing a 60 

destruction of the macromolecular chains during the partial alkaline hydrolysis, initially the lignin 61 

after that the cellulose, which decrease of the degree of polymerization of the both phases  [14–16]. 62 

Other mechanism is the gradual filling of the inner cores of the lignocellulosic fibers with the 63 

cement hydration products, leading to the embrittlement of the fibers. These mechanisms could 64 

affect some important properties of the reinforced composites, such as toughness mechanisms and 65 

other mechanical properties of the fiber-cement in the long-term. [1,17]. 66 

The degradation of the composite can be studied by accelerated tests, whose advantage is to provide 67 

results in a smaller time interval [18,19]. The durability test (accelerating aging) of the cementitious 68 



 

 

composites shows their performance in the presence of  wet/dry cycling and therefore may be 69 

recommended for both internal and external building applications [16,20]. 70 

In this study was evaluated statically, with analysis of variance (ANOVA), mechanical behavior of 71 

extruded fiber-cement composites reinforced with curauá fiber with different content and lengths, 72 

before and after accelerated aging. 73 

 74 

2. EXPERIMENTAL 75 

2.1. Raw materials 76 

Curauá fibers (CF) (Ananas erectifolius) used in this study was obtained from the Pematec Triangel 77 

Industry in Pará/PA, Brazil. Mechanical and physical properties and chemical composition of the 78 

fiber are listed in Table 1.  79 

 80 

Table 1 – Mechanical, chemical and physical properties of the curauá fiber  81 

 Curauá fiber (CF) 

Ultimate tensile strength (MPa) 550 

Young’s modulus (GPa) 64 

α-Cellulose 1 (% by mass) 68 

Lignin 2 (% by mass) 14 

Hemicellulose 3 (% by mass) 10 

Average length (mm) 6.00 ± 0.88 and 10.00 ± 0.46 

Cross section (mm2) 0.1136 

Thickness (µm) ~75 

Density (g/cm3) 1.42 

Aspect Ratio ~80 and ~133 
1 TAPPI T 204 CM-97 [21]; 2 Zimmermann et al., [22]; 3 TAPPI T 222 OM-02 [23]. 82 

 83 

The results of the chemical composition of the curauá fibers were similar found in the literature. For 84 

example, It was found a range between 73% by mass and 71% by mass of cellulose and 7.5% by 85 

mass to 13% by mass of lignin [24,25]. It is important to consider that there is a natural variation in 86 

the analysis of chemical composition of vegetable fibers by means of quantification methods and 87 

characteristics of the fibers of a specific region and harvested at different times throughout the 88 

season. 89 

Figure 1a shows a surface roughness of the curauá fiber and Figure 1b shows its cross section, 90 

approximately elliptical shape. These characteristics help to anchor better in cementitious matrix. 91 

Besides, in Figure 1b, it is possible to observe unit cells and lumens (cavities) of the fiber cross 92 

section. 93 

 94 



 

 

  

(a) (b) 

Figure 1 – Morphological characteristics of CF observed by scanning electron microscopy. (a) 

Lateral surface and (b) cross-section detaching the irregular lumens [26]. 

 95 

Unbleached unrefined eucalyptus (Eucalyptus grandis) Kraft pulp was provided by Fibria S/A, 96 

Brazil. The cellulose pulp was collected directly from the mill, prior to drying and pressing. It was 97 

extensively washed with water and centrifuged to remove any residual chemicals from the pulping 98 

processes. 99 

Ordinary Portland cement (OPC) type CP-V-ARI, corresponding to ASTM C 150 [27], Type I was 100 

selected because of its finer particle size and higher reactivity. Additionally, this type of cement 101 

contains higher levels of tricalcium silicate (C3S) and dicalcium silicate (C2S) for the formation of 102 

C–S–H. The cement and limestone filler particles distributions were evaluated by a laser particle 103 

size analyzer (Malvern Mastersizer S long bed, version 2.19). The particle size distributions of the 104 

raw materials are depicted in Figure 2. Figures 2a and 2b show the discrete particle size 105 

distributions and the cumulative percentage finer than (CPFT) of the cement and limestone filler, 106 

respectively. Cement and limestone particles showed 50% of its mass less than 11.89 and 12.38 µm, 107 

respectively. Both raw materials exhibit similar particle distributions. 108 

 109 
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(a) (b) 

Figure 2 – (a) Particle size distribution of ordinary Portland cement and (b) limestone filler. The 

legend indicates the maximum equivalent diameter for each accumulated percentage of particles 

 110 

The quantitative chemical analysis was performed of the OPC and limestone using PANalytical 111 

Axios Advanced X-ray fluorescence equipment. The oxides are listed in Table 2. The specific 112 

surface area (determined using the BET method) and specific density of raw materials were 113 

measured. The OPC presented value of specific density of 3.10 g/cm3 and specific surface area of 114 

1.10 m2g-1 and for limestone 2.80 g/cm3 and 1.14 m2g-1, respectively. The similar values of the 115 

specific surface area may be important to avoid competition of water between the raw materials in 116 

the system. 117 

 118 

Table 2 – Chemical analysis by means of X-ray fluorescence of the particulate raw materials (% by 119 

mass). 120 

Oxides compositions Ordinal Portland cement (OPC) CP-V-ARI Limestone 

SiO2 (%) 14.70 9.40 

CaO (%) 67.20 39.10 

Al2O3 (%) 4.07 2.16 

Fe2O3 (%) 3.50 1.25 

MgO (%) 3.13 8.90 

P2O5 (%) - 0.16 

SO3 (%) 5.23 - 

K2O (%) 0.75 0.41 

MnO (%) - <0.10 

TiO2 (%) - 0.15 

 121 

2.2. Formulation and preparation of composites cementitious 122 

The composite is composed of CP-V-ARI cement and limestone filler. The water-soluble polymers, 123 

high range water reducer (HRWR) provided by Aditex and polyether carboxylic provided by Grace 124 

was used as lubricant, representing 1% of cement mass. Hydroxypropylmethylcellulose (HPMC) 125 

CP V – ARI
D(10) =  4.97 µm
D(50) = 11.89 µm
D(90) = 27.79 µm

Limestone filler
D(10) = 2.75 µm
D(50) = 12.38 µm
D(90) = 22.38 µm



 

 

with an average molecular weight of 86,000 and a viscosity of 5.39 cps (at a concentration of 2% in 126 

water at 20 °C) and carboxylate polyether (surfactant) commercially called ADVA 170, were used 127 

as rheological modifiers to promote pseudo plastic behavior of the composite. As curauá fibers 128 

present higher real density (1.42 g/cm3), the fiber contents were set in relation to polypropylene 129 

fibers (0.92 g/cm3) to maintain the same volume reinforcement. The mix design used in this work is 130 

in Table 3. 131 

 132 

Table 3 – Formulations used in the production of cementitious composite  133 

Raw material 
Content [% by mass] / length  

Ref 1% / 6 mm 2% / 6 mm 1% / 10 mm 2% / 10 mm  

Portland cement [CP-V-ARI]a 69.95 68.87 67.79 68.87 67.79 

Limestone fillerb 27.08 26.66 26.54 26.66 26.54 

Eucalyptus cellulosic pulp 2.98 2.93 2.89 2.93 2.89 

Curauá fiber (CF) - 1.53 3.08 1.53 3.08 

Water/cement ratio 0.33 0.34 0.36 0.34 0.36 

(a) ASTM C-150 [27]; (b) Provided by Infibra Ltda; (c) volume fraction of fibers in study: 3% and 6%, 134 

respectively. 135 

 136 

The sequence of mixing was powder/water [28]. The cement, limestone, curauá fiber (CF) and 137 

HRWR (by dry mass) were mixed and homogenized at low speed (mixture distributive), in a 138 

mechanical Eirich intensive mixer (capacity of 10 L) for 5 min. After this stage, water and 139 

carboxylate polyether was added fractionally for 2 min. All raw materials was mixed at high speed 140 

for another 5 min. to achieve a high shear mixing to break down the agglomeration generated in wet 141 

mixing stage. Before composites production, the composite was re-homogenized in the extruder 142 

itself, feeding it and taking two times the mass. 143 

Composites with 15 mm thick were extruded, according to Figures 3a and 3b. An extrusion helical 144 

screw equipment (Auger type), Verdes, model 051, was used. The equipment contains a motor 145 

speed regulator that was maintained by 4 mm/s during extrusion. Pads with 200 mm x 50 mm x 15 146 

mm were cured at water vapor saturated environment (in sealed plastic bags) at 25 ± 2 ºC for two 147 

days. Subsequently, the specimens were maintained in a water vapor saturated environment (in 148 

sealed plastic bags) and placed in a chamber at 45 ºC for five days (thermal curing) totalizing 7 days 149 

of cure [13]. 150 

 151 



 

 

 

 

(a) (b) 

Figure 3 – (a) Front view of the vacuum extruder machine and (b) side view illustrating the 

composite exiting of the die [29]. 

 152 

2.3. Mechanical characterization of the composites 153 

Mechanical characterization tests were adopted the according to Santos et al., [13]. The fiber–154 

cement composites were tested using a servo-hydraulic mechanical testing machine MTS (810 155 

series) controlled by the TestStar IIs system. Prismatic specimens were prepared using a diamond 156 

cut-off wheel before grinding and final polishing of the specimen sides. The specimens had nominal 157 

dimensions of 80 mm x 20 mm x 13 mm for all of the mechanical tests of the fiber-cement 158 

composite. The modulus of rupture (MOR) was calculated by equation 1 and determined using a 159 

three point bending configuration with a span of 64 mm and cross-head speed of 5 mm min-1. 160 

 161 

MOR = (
3 ∗ Pmax ∗ LV

2 ∗ b ∗ h2 ) (1) 

 162 

where Pmax is maximum load, b is width, h is height and Lv is span between inferior supports.  163 

The fracture toughness (KIC) is the critical stress intensity fracture value for crack growth in the 164 

material during mode-I failure, which evaluates the initial crack growth resistance, was also used to 165 

characterize the cement based composites reinforced with curauá fiber. The SENB-type (single-166 

edge notch bend) specimens were prepared to establish the critical defect size and catastrophic 167 

fracture [1]. The test configuration was the three-point bending. Prismatic specimens were prepared 168 

with a centered plan notch with a depth equal to 10 % of the specimen height and notch tip profile 169 

in the shape of a ‘‘V’’ with an angle of approximately 30º using a diamond disk of 0.5 mm 170 

thickness to simulate a sharp crack. A cross-head speed of 15 mm min-1 was used. The values of the 171 

maximum load, Pmax, from the load–displacement curves were applied in the calculation of the 172 

value of KIC using the following equation, according to Santos et al., [13]: 173 

 174 



 

 

𝐾𝐼𝐶 =  
𝑃𝑚𝑎𝑥

𝑏𝑤1/2
 𝑦(𝛼) (2) 

 175 

where y(α) is the geometric factor and accounts for both shape of crack and loading geometry, the 176 

tensile stress at fracture, and a0 the crack size. The ratio α = a0/w of the initial notch length to 177 

specimen height was 0.1 (or 10% as mentioned before). 178 

 179 

𝑦(𝛼) =
𝑆

𝑤
[

3𝛼1/2

2(1 − 𝛼)3/2] 𝑥 [1.99 − 1.33𝛼 − (3.49 − 0.68𝛼 + 1.35𝛼2)
𝛼(1 − 𝛼

(1 + 𝛼)2] (3) 

 180 

where S is the span of 64 mm, and α is the relative length of the notch, which, in turn, is the ratio of 181 

the original length of the notch, a0, and the height of the specimen, w. 182 

The fracture energy (FE) test was performed with the SENB type specimen and three-point bending 183 

configuration, but the centered plan notch was of 30% of the specimen height. The span was of 184 

64 mm. A cross-head speed of 10 µm min-1 was used to guarantee stable growth of the crack and to 185 

measure the energy required for extending this crack over a unit area [30]. 186 

The work performed by the machine to completely propagate the crack along the specimen divided 187 

by two times the projected area of the fracture surface (cross section of the specimen, A) was used 188 

to determine the fracture energy, γWoF. The integration of the force–displacement curve was 189 

performed up to the point where the force decreased to 5% of its maximum value reached during 190 

the test, according to equation 4: 191 

 192 

𝛾𝑊𝑜𝐹 =
1

2𝐴
∫ 𝑃𝑑𝛿           (4) 193 

 194 



 

 

 

Figure 4 – Schematic illustration of a typical load–displacement curve divided into two regions: 

initial work and work of crack propagation [13]. 

 195 

Additionally, a mechanical parameter was obtained the ‘‘relative work of crack-propagation’’ [31]. 196 

This mechanical parameter is obtained by dividing the work of crack propagation by the initial 197 

work (elastic energy stored). The initial work is that performed from zero up to the point of the 198 

maximum load (Figure 4). Although up to this point, some crack propagation could already occur, it 199 

is easy to determine. This ratio considers all of the work performed for the effective crack 200 

propagation related to the elastic energy stored in the system. Therefore, a higher value of this 201 

relative work indicates that the material is more resistant to propagation of a crack [31]. 202 

 203 

2.4. Physical characterization tests 204 

Water absorption (WA) apparent porosity (AP) and bulk density (BD) values were obtained from 205 

the average of five specimens for each formulation, following procedures specified by ASTM C 206 

948 [32], Standards. 207 

 208 

2.5. Scanning electron microscopy (SEM) 209 

Scanning electron microscopy (SEM) was used with secondary electron (SE) detector, operated at 210 

5.0 kV accelerating voltage, for observation of the morphologies on the fractured surface of 211 

composites generated in the mechanical tests. A back- scattered electron (BSE) detector operated at 212 

around 15.0 kV and 20.0 kV was applied for viewing cut and polished surfaces. The BSE image 213 

was used to study the fiber–matrix transition zone. Energy dispersive X-ray spectroscopy (EDS) 214 

analyses were also conducted. These were performed on the same flat surface specimens in an effort 215 
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to obtain semi-quantitative compositional information. The preparation of specimens for BSE and 216 

EDS was accomplished with vacuum (80 kPa gauge) impregnation using cyanoacrylate ester resin. 217 

BSE EDS samples were semi-automatic grinded with silicon carbide abrasive paper with sequential 218 

grit sizes of 320, 600, 1200 and 2000 for 2 min each, using alcohol as lubricant. A final preparation 219 

was carried out using in turn 8–4 , 4–2 and 1–0 µm diamond polishing compound during 4, 2 and 1 220 

min each size respectively. Fractured and polished samples were gold coated in a Bal-Tec Med020 221 

coating system before being analyzed in a Hitachi TM 3000 microscope. 222 

 223 

2.6. Accelerated aging testing  224 

The accelerated aging testing involved a comparative analysis of physical and mechanical 225 

performance of the composites, before and after 200 soak/dry cycles. Specimens were successively 226 

immersed in water at 20 ± 5 °C during 170 min, followed by the interval of 10 min, and then 227 

exposed to temperature of 70 ± 5 °C for 170 min in a ventilated oven and with the final interval of 228 

10 min. This procedure was based on recommendations of the EN 494 [33], Standards. Each 229 

soak/dry set represents one cycle and was performed for 200 cycles (200C) [4]. 230 

 231 

2.7. Statistical analysis  232 

The physical and mechanical properties evaluated were: water absorption (WA), apparent porosity 233 

(AP), apparent density (BD), modulus of rupture (MOR), fracture energy (FE), fracture toughness 234 

(KIC) and relative work of crack propagation (RWP). The factors and levels investigated consisted 235 

of curauá fiber fractions (% F) [1, 2%], fiber length (FL) [6, 10 mm] and curing type (Cr) [7d (0), 236 

200C (1)]. The product of the three factor levels along with the reference conditions [Ref] (0% fiber 237 

and 7 days cure [Tr1], 0% fiber resulted in an experimental design consisting of 9 treatments, as 238 

explained in Table 4. It should be noted that the treatment Tr1 (reference) was used in the 239 

manufacture of materials for the determination of physical and mechanical properties. 240 

 241 

Table 4 – Experimental treatments. 242 

Formulation Treatment (Tr) %F FL Cr 

Ref Tr1 0 0 7 days (0) 

1% / 6 mm Tr2 1% 6 mm 7 days (0) 

1% / 10 mm Tr3 1% 10 mm 7 days (0) 

2% / 6 mm Tr4 2% 6 mm 7 days (0) 

2% / 10 mm Tr5 2% 10 mm 7 days (0) 

1% / 6 mm Tr6 1% 6 mm 200C (1) 

1% / 10 mm Tr7 1% 10 mm 200C (1) 

2% / 6 mm Tr8 2% 6 mm 200C (1) 

2% / 10 mm Tr9 2% 10 mm 200C (1) 



 

 

The methodology of Experimental Planning (DOE), using Minitab® software version 14, was used 243 

to establish the relationship between the properties (physical and mechanical) and the factors 244 

evaluated, to understand the effects and to identify the factors and interactions considered 245 

significant and to identify the treatments that resulted in the extreme values of the properties 246 

estimated by the models. The analysis of variance (ANOVA) of regression models (Equation 5) was 247 

evaluated at the 5% level of significance (α), considering the non-significance (P-value <0.05) of 248 

the models and coefficients as null hypothesis (H0) and significance as an alternative hypothesis 249 

(H1). For the validation of the regression models, the normality of the generated residues was tested 250 

with the aid of the Anderson-Darling normality test, also at the 5% level of significance, and for the 251 

hypotheses formulated, P-value greater than or equal to 0.05 implies in the normality of the waste 252 

distribution, validating the ANOVA model. 253 

 254 

Y=β0+β1∙%F+β2∙FL+β3∙Cr+β4∙%F∙FL+β5∙%F∙Cr+β6∙FL∙Cr+β7∙%F FL∙Cr +ε (5) 

 255 

From Equation 5, Y denotes the estimated physical and mechanical properties, βi are the 256 

coefficients obtained from the least squares method and ε consists of the random error. The 257 

coefficient of determination (R2) was used to measure the quality of the adjustments obtained, and it 258 

should be noted that the reference conditions are not incorporated in the regression models. 259 

In planning involving the 9 treatments after understood the effects of factors and interactions 260 

between them on each property investigated. It can be noted that 6 or more determinations were 261 

obtained by treatment and property investigated, totaling 382 determinations. 262 

 263 

3. RESULTS AND DISCUSSION 264 

3.1. Mechanical properties 265 

Figure 5 shows the mechanical properties (modulus of rupture (MOR), fracture toughness (KIC), 266 

fracture energy (FE), and relative work of crack propagation (RWP)) of extruded cementitious 267 

composite (ECC) cured at 7 days (7d), after accelerated aging (200C), the confidence intervals of 268 

the mean (at the 95% confidence level) and the range of variation of the coefficient of variation 269 

(CV). Table 5 lists the respective average values and standard deviations of the mechanical 270 

properties and physical characteristics. The P-values of the Anderson-Darling normality test of the 271 

ANOVA residues for the four mechanical properties (MOR, KIC, FE and RWP, respectively) 272 

evaluated ranged from 0.265 to 0.781, validating the ANOVA model, and by the results of the 273 

determination coefficients [79.72%; 99.02%], it is verified the good estimation of the properties 274 



 

 

provided by the models, being all considered significant by ANOVA. Equations 6 and 7 expresses 275 

the regression model obtained in the estimation of the MOR and KIC values, respectively, and also 276 

the coefficients of determination (R2) and the numerical intervals of this property are presented. 277 

Equations 6 and 7, the outliers were excluded from the set of results, and the terms considered non-278 

significant by ANOVA of the regression models were underlined.  279 

 280 

MOR=1.39775+9.30425∙%F+1.55238∙FL+20.7527∙Cr–1.05938∙%F∙FL–14.2959∙%F∙Cr 

1.23217∙FL∙Cr+1.14854∙%F∙FL∙Cr (R2=79.72%); MOR = [12.19; 23.18] 
(6) 

KIC=0.878467–0.0865817∙%F–0.0040055∙FL+0.438194∙Cr+0.0117967∙%F∙FL 

0.332244∙%F∙Cr–0.0522791∙FL∙Cr+0.0312871∙%F FL∙Cr (R2=81.65%); KIC = [0.64; 1.08] 
(7) 

 281 

ECC reinforced with 2% of curauá fiber (CF) at 7d showed a significant increase of MOR values in 282 

relation to the ECC with 1% of CF and reference (Ref), according the ANOVA test shown in 283 

Equation 6 and Figure 5a. However, the results of fiber length did not differ significantly between 284 

the formulations. The MOR is the tensile strength in bending as well as it is influenced by 285 

interaction and distribution of stresses between fiber-matrix and matrix porosity. The inclusion of 286 

fibers increases the toughness and the reinforcement of composites, but also increases the porosity 287 

because the dispersion deficiency of the fibers in cementitious matrix and, consequently, generating 288 

lack of stress transfer between the fibers and matrix. After 200C, Figure 5a, the MOR values of the 289 

ECC increased due to the combined effect better adhesion (increase in chemical bonding) of CF in 290 

the cementitious matrix, the continued hydration process in the fiber-matrix interface and 291 

petrification or mineralization these fibers [34].  292 

According Melo Filho et al., [17], the mineralization occurs under conditions in which the cement 293 

hydration products migrate to the more porous regions within the fibers (surface pores and lumens).  294 

From the interaction between the three statistical factors (fiber fractions (% F) [1, 2%], fiber length 295 

(FL) [6, 10 mm] and curing type (Cr) [7d, 200C]), the highest value occurs from the combination 296 

with 2% of fibers, 10 mm in length and after 200C. 297 

MOR values found in this study are around 16 MPa to 7d and 20 MPa after 200C for the 298 

formulation 1% / 10 mm. These MOR values were higher than those found in previous studies with 299 

ECC reinforced with sisal and sugarcane fibers, with respective content of 1% by mass and 1.5% by 300 

mass and the distribution of lengths between 15 mm to 18 mm and 10 mm to 15 mm that showed, 301 

respectively, MOR values of 8 MPa to 11 MPa for 28 days (28d) and 4 MPa to 15 MPa after 200C 302 

[4,35].  303 



 

 

 

   

Figure 5 – Average values and standard deviation (MOR) modulus of rupture (a) and (KIC) fracture 

toughness (b). 

 304 

The individual statistical interactions as the higher content (%F) and fiber length (FL) decrease KIC 305 

values, i.e., initial crack growth resistance in cement matrix, according to ANOVA, as calculated by 306 

the equation 7 and whose values are shown in Figure 5b. The KIC value of the reference composites 307 

(1.05 MPa.m1/2) suggests that these results may be related to distribution of defects in the matrix 308 

produced by several factors such as the difficulty in packaging fiber in the matrix with particles and 309 

negative interference in cement hydration process caused by absorption of water by CF. However, 310 
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the statistical combination of 2% by mass of fiber with 10 mm length after 200C increases the KIC 311 

values. It indicates that the matrix was improved mainly after 200 cycles of immersion and drying.  312 

The results of fracture toughness of the composites reinforced with CF are similar than the results 313 

obtained by Santos et al., [13]. The authors produced cement composites, reinforced with 3% 314 

eucalyptus pulp and 2% of sisal fibers, produced by the extrusion method and subjected to 315 

accelerated carbonation curing in the supercritical condition. The authors also analyzed the 316 

composite before and after 200 cycles of immersion and drying. The average results obtained was 317 

0.9 MPa.m1/2 and 0.85 MPa.m1/2, for the unaged and aged composites, respectively. 318 



 

 

 

Table 5 – Average values and standard deviations of modulus rupture (MOR), fracture toughness (KIC), fracture energy (FE), relative work of 319 

propagation (RWP), water absorption (WA), bulk density (BD) and apparent porosity (AP) of the extruded cementitious composite (ECC) reinforced 320 

with curauá fiber (CF), 6 mm and 10 mm of length in the conditions at 7 days (7d) of curing and after 200 accelerated aging cycles (200C). 321 

 322 

Formulations Condition MOR (MPa) KIC (MPa.m1/2) FE (J/m2) RWP WA (%) BD (g/cm3) AP (%) 

Reference (Ref) 7d 18.75 ± 0.75 1.05 ± 0.04 187.61 ± 16.07 9.77 ± 4.22 16.14 ± 0.28 1.702 ± 0.013 27.47 ± 0.34 

1% / 6 mm 

7d 

13.82 ± 0.57 0.83 ± 0.02 108.20 ± 13.58 3.21 ± 0.67 16.49 ± 0.20 1.708 ± 0.007 28.16 ± 0.29 

1% / 10 mm 15.85 ± 1.66 0.88 ± 0.03 309.98 ± 15.98 14.65 ± 5.59 17.22 ± 0.15 1.729 ± 0.055 29.78 ± 0.84 

2% / 6 mm 16.01 ± 1.92 0.78 ± 0.08 102.05 ± 9.05 3.66 ± 0.80 18.48 ± 0.72 1.726 ± 0.016 31.90 ± 0.96 

2% / 10 mm 15.21 ± 2.26 0.92 ± 0.10 245.09 ± 89.49 14.04 ± 3.13 17.04 ± 0.24 1.720 ± 0.031 29.31 ± 0.59 

1% / 6 mm 

200C 

19.52 ± 1.63 0.82 ± 0.03 45.67 ± 4.28 1.41 ± 0.42 16.73 ± 0.14 1.740 ± 0.009 29.10 ± 0.23 

1% / 10 mm 20.45 ± 2.17 0.77 ± 0.03 56.75 ± 5.83 1.43 ± 0.63 17.41 ± 0.10 1.754 ± 0.044 30.54 ± 0.72 

2% / 6 mm 15.16 ± 1.27 0.70 ± 0.06 20.18 ± 2.51 0.61 ± 0.25 17.77 ± 0.27 1.725 ± 0.008 30.66 ± 0.40 

2% / 10 mm 18.08 ± 2.77 0.78 ± 0.05 41.75 ± 3.89 1.67 ± 1.17 17.59 ± 0.19 1.723 ± 0.027 30.31 ± 0.39 



 

 

Figures 6a to 6d shows the micrographs of ECC with polished surface, Ref and reinforced with CF 323 

at 7d and 200C respectively, that it showed a homogenous microstructure of the cement matrix at 324 

7d and more densified after 200C. The composite reinforced with CF, (Figure 6c and 6d) content 325 

high porosity in the fiber-matrix interface, i.e., it has a low adhesion which do not lead to expressive 326 

values of MOR and KIC in relation to the Ref. In the mixing process, the ECC with CF consumed 327 

more water, which promotes the formation of porosity and interferes strongly in the w/c ratio 328 

(water/cement) and the packaging of the raw materials in the matrix. 329 

Figure 6d indicates that the vegetable fiber suffer a dimensional variation because it tends to lose 330 

water to the system of the cementitious matrix which in turn is submitted to a rehydration process. 331 

This dimensional variation process of the fiber promotes detachment of it in the cementitious 332 

matrix, consequently, it affects the mechanical behavior of the cement composite [19]. 333 

 334 

  

 
 

Figure 6 – SEM of the composites at 7d and after 200C, respectively. (a) and (b) reference 

composite and (c) and (d) composite reinforced with CF. 
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The average values of fracture energy values (FE) and relative working crack propagation (RWP) of 336 

the composite at 7d and after 200C are shown in Figures 7a and 7b, respectively. Equations 8 and 9 337 

expresses the regression analysis obtained in the estimation of the FE and RWP values, and the 338 

coefficients of determination (R2) and the numerical intervals of these properties are also presented, 339 

respectively. A regression analysis generates an equation to attempts to explain the statistical 340 

relationship between one or more predictors and the response variable. 341 

 342 

FE=–314.084+113.851∙%F+70.6381∙FL+384.347∙Cr–19.6163∙%F∙FL–155.064∙%F∙Cr–

70.4887∙FL∙Cr+22.2370∙%F FL∙Cr (R2=99.02%); FE = [16.68; 391.23] 
(8) 

RWP=–21.7027+4.75874∙%F+4.01494∙FL+25.4552∙Cr–0.686908∙%F∙FL–7.11968∙%F∙Cr–

4.27127∙FL∙Cr+0.946910∙%F FL∙Cr (R2=98.21%); RWP = [0.33; 19.23] 
(9) 

 343 

The outliers were excluded from the set of results, and the terms considered non-significant by 344 

ANOVA of the regression models were underlined. 345 

FE is the energy per unit area needed to completely fracture the composite in quasi stable crack 346 

propagation process in order to record the contribution of all toughness mechanisms mainly 347 

promoted by the fibers. The RWP is the ratio of the plastic working and the elastic work i. e. 348 

indicates the degree of pseudoplastic deformation, that is, it shows that capability of the cement 349 

composite to absorb energy. 350 

The ECC reinforced with 2% of fibers presented a significant statistical FE value in relation to ECC 351 

with 1% at 7d and after accelerated aging (200C), based on Equation 8 and Figure 7a. According to 352 

Rodrigues and Montardo [36] and Bentur and Mindess [37], the fiber content provides greater post-353 

cracking energy and smaller size of the cracks, since the fibers help to absorb the elastic energy 354 

necessary to propagate cracks, which occur between fiber fractions. Regarding the fiber length, the 355 

average value of FE of the composite with fiber of 10 mm is higher than one with fibers of 6 mm, 356 

according to the ANOVA, as calculated by Equation 9 and demonstrated in Figure 7b, before 357 

accelerated aged. However, FE values of composites with fibers of 10 mm presented major standard 358 

deviations than ones with fibers of 6 mm. Fiber with length of 6 mm has a higher number of 359 

filaments per mass, but fiber of 10 mm presented more efficiency in relation to pullout mechanism 360 

that increased average values of the FE and RWP. Fiber with 10 mm has a better degree of adhesion 361 

in the cementitious matrix between the different lengths of fibers, i.e. there is a greater probability 362 

of shorter fibers be pulled without an effective frictional energy. For a surface shear stress applied 363 



 

 

to the fiber, this will be more efficient if its length is capable of allowing the shear stress permits the 364 

development of a tensile stress equal to its tensile strength [37,38]. From the individual statistical 365 

factors, increases in fiber content and length promote increases in FE and RWP values and the best 366 

type of cure is 7d, however, the interaction between the three statistical factors (fiber fractions (% 367 

F) [1, 2%], fiber length (FL) [6, 10 mm] and curing type (Cr) [7d, 200C]), the highest value for FE 368 

and RWP occurs from the combination with 2% of fibers, 10 mm in length and after 200C. 369 

 370 

 

 

Figure 7 – Average values and standard deviation (FE) Fracture energy (a) and (RWP) relative 

work of crack propagation (b) in the composite extruded. 
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ECC reinforced with 1% / 10 mm length presented the highest average FE value of 310 J/m2 and 372 

57 J/m2, at 7d and after 200C, respectively. The value of FE at 7d was higher than one determined 373 

by Santos et al. (2015), which produced extruded composite reinforced with 2% by mass of 374 

eucalyptus cellulosic pulp and 3% by mass of sisal fibers with a length distribution between 1 mm 375 

and 14 mm, 7 days cure and exposed to supercritical carbonation. It presented average value of FE 376 

approximately 230 J/m2. Correia et al., [39] worked with extruded composites reinforced with 377 

hybrid cellulosic fibers (8% cellulosic fibers + 1% bamboo nanofibers) that presented FE value 378 

around 430 J/m2 at 28 days of cure, but it decreased for 271 J/m2 after accelerated aging of 200C. 379 

The reduction of the FE value after accelerated aging indicates that degradation of the fibers in the 380 

ECC caused debonding and breakage of fibers as illustrated in Figures 8a and 8b. 381 

 382 

  

(a) (b) 

Figure 8 - SEM micrographs of composite extruded at 7d (a) the arrow shows deboning fiber from  

cement matrix after 200 cycles (b) breaked fiber 

 383 

3.2. Physical Characterization 384 

In Figure 9 are shown the graphs with the average values of the physical parameters: water 385 

absorption (WA), bulk density (BD) and apparent porosity (AP) of the composites at 7 days and 386 

after 200C between level fiber fraction and lengths of curauá fiber (CF). The confidence intervals of 387 

the mean (at the 95% confidence level) and the range of variation of the coefficient of variation 388 

(CV). The P-values of the Anderson-Darling normality test of the ANOVA residues for the three 389 

physical properties (WA, BD and AP) evaluated ranged from 0.109 to 0.918, validating the 390 

ANOVA model. Although the coefficient of determination obtained for the estimation of apparent 391 

porosity (AP) was 33.22%, all regression models were considered significant by ANOVA. 392 
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Equations 10, 11 and 12 expresses the regression analysis obtained in the estimation of the WA, BD 393 

and AP values, and also the coefficients of determination (R2) and the numerical intervals of this 394 

property are presented, respectively. 395 

 396 

WA=10.0648+5.32864∙%F+0.743583∙FL+3.14206∙Cr–0.560438∙%F∙FL–2.83893∙%F∙Cr–

0.341080∙FL∙Cr+0.329509∙%F FL∙Cr (R2=92.09%); WA = [16.24; 18.47] 
(10) 

BD=17.5215+8.65426∙%F+1.21420∙FL+5.76981∙Cr–0.883184∙%F∙FL–4.71053∙%F∙Cr–

0.506878∙FL∙Cr+0.486204∙%F FL∙Cr (R2=84.44%); BD = [27.86; 31.98] 
(11) 

AP=1.61519+0.0700806∙%F+0.0122749∙FL+0.160396∙Cr–0.00855097∙%F∙FL 

0.0935377∙%F∙Cr–0.0158791∙FL∙Cr+0.0100770∙%F FL∙Cr (R2=33.22%); AP = [1.67; 1.82] 
(12) 

Equations 10 to 12, the outliers were excluded from the set of results, and the terms considered non-397 

significant by ANOVA of the regression analysis were underlined. 398 

ECC reinforced with 2% of curauá fiber (CF) presented higher values of WA in relation to the 399 

formulation with 1% by mass showed in Equation 10 and Figure 9a, possibly due to the greater 400 

number of fibers per unit volume conducting to inefficient packaging of the matrix, aspect ratios of 401 

the fibers, CF (80 and 133, respectively for lengths of 6 mm and 10 mm) and, consequently more 402 

defects appears in the interface fiber and matrix [40,41]. The results of fiber length and type of cure 403 

did not differ significantly between the formulations according the ANOVA. The interaction 404 

between the three statistical factors (fiber fractions (% F) [1, 2%], fiber length (FL) [6, 10 mm] and 405 

curing type (Cr) [7d, 200C]), the highest value occurs from the combination with 2% of fibers, 6 406 

mm or 10 mm in length at 7d or after 200C. 407 

Composites with 2% by mass of fibers after 200C presented an increase significant of the BD 408 

values showed in Equation 11 and Figure 9b, which can be attributed the filling of the matrix pores 409 

by the continued hydration process during accelerated aging cycles in formation of calcium 410 

hydroxide (Ca(OH)2), calcium silicate hydrate (CSH) and calcium carbonate (CaCO3) [13]. These 411 

phenomena were found in several studies that have been applied accelerated aging cycles in 412 

composites cementitious, such as Soto et al., [35]; Dias et al., [42] and Teixeira [4]. The only 413 

individual factor statistical that did not affect the bulk density (BD) values was the fiber length. 414 

Thus, the interaction between the three statistical factors (fiber fractions (% F) [1, 2%], fiber length 415 

(FL) [6, 10 mm] and curing type (Cr) [7d, 200C]), the highest value occurs from the combination 416 

with 2% of fibers, 6 mm or 10 mm in length and after 200C. 417 
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Figure 9 - Results of the physical properties: (WA) water absorption (a); (BD) bulk density (b) and 

(AP) Apparent porosity (c). 

 418 

According to the ANOVA, considering the individual statistical factors and the interaction, only the 419 

accelerated aging (200C) promoted significant differences in the values of the apparent porosity 420 

(AP) of the composites shown in Equation 12 and Figure 9c. It is believed that the immersion and 421 

drying cycles caused higher incidence of pores as result of microcracks caused by the aging cycles 422 

[39]. At the initial period of the immersion cycles, lignocellulosic fiber could absorb the water from 423 

the cementitious microstructure since the surrounding water concentration is greater than within the 424 

fibers. At a later stage of drying cycles, the moisture content within the fibers dry out and thus, 425 

fibers shrink to a smaller size. The shrinkage of the fiber generates microcracks between the fiber 426 

and cement matrix, creating voids that explain the low results of FE and RWP in the transition zone 427 

[29,39]. From the interaction between the three statistical factors (fiber fractions (% F) [1, 2%], 428 

fiber length (FL) [6, 10 mm] and curing type (Cr) [7d, 200C]), the highest value occurs from the 429 

combination with 1% or 2% of fibers, 6 mm or 10 mm in length at 7d. 430 

 431 

3.3. Micrographic electronic scanning SEM 432 

Figure 10 shows the micrographs (SEM) with EDS in the composites reinforced with CF detaching 433 

the points of chemical elements in cementitious structures. The dark areas in the image (associated 434 

with low atomic number of the predominant chemical elements) correspond to the longitudinal 435 

sections of the fibers. 436 

In point 1, identifies the grain with a high calcium index from the formulation used about 27% of 437 
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limestone in the mix. In point 2, detaching the anhydrous grain that was not completely hydrated, 438 

predominantly Si and Ca elements. 439 

Point 3 clearly shows a grain formed cement constituents. In point 4, the cellulose pulp with a high 440 

calcium content and silicon are shown, indicating that the fiber absorbed cement hydration water, 441 

which was similar to that presented by Tonoli et al., [43] and Teixeira et al., [29], who studied 442 

eucalyptus cellulosic pulp. 443 

 444 
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Figure 10 – (a) Image Scanning electron microscopy (SEM-BSE) polished surfaces of composites 

reinforced with CF and points of EDS analyzes that are marked on the images (1 to 4): (1) 

limestone; (2) anhydrous grain; (3) cementitious matrix and (4) cellulosic pulp 

 445 

In Figure 11a, it is observed a resulted of the dimensional variation of fiber according to its 446 

humidity content. Resulting pores lead to higher water absorption, greater porosity and low 447 

resistance. 448 

Savastano and Agopyan [44], explain that the best performance is achieved by better adhesion of 449 

the fiber-matrix. The improved adherence is achieved by reducing the porosity and the lowest 450 

concentration of Portlandite (calcium hydroxide crystals) approximately the fiber. 451 

 452 
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Figure 11 – Micrograph of scanning electron microscopy (SEM-BSE) polished surfaces of 

composites reinforced with CF: (a) CF (arrow indicates adhesion fiber-cement) and (b) CF after 

200C with points of EDS analysis that is signaled the image (point 1 and 2). 

 453 

In Figure 11b, after 200 cycles, there is better adhesion of the fiber in the matrix. Point 1 shows that, 454 

in the central part of the fiber were not found cement hydration products as indicated by the EDS, the 455 

large presence of C. However, at point 2, the border of the fiber presents the main chemical elements 456 

of cement, silicon and calcium [19,45]. 457 

They can also be observed by EDS, chemical elements, such as, Al, S, and Mg. This phenomenon can 458 

be associated with mineralization fibers as indicated by Bentur and Akers [46]. On immersion in 459 

water, free ions formed by the dissolution of the cementitious phases of Portland cement penetrated 460 

into the lumen of the fibers, leading to the formation of ettringite/monosulfates and calcium hydroxide 461 

Ca(OH) [29,45]. Batic et al., [47] showed that the re-precipitation of ettringite in microcracks and 462 

pores of the cementitious composite may occur under normal conditions (ambient temperature) 463 

curing. Such training has previously been suggested as one of the degradation mechanisms of the 464 

fibers within the concrete matrix [14,15].  465 

 466 

4. CONCLUSIONS 467 

The curauá fiber suffered mineralization process during curing (water absorption of the cement 468 

hydration products) which consequently carried the fiber to decreased its properties. The fiber 469 

content directly influenced the mechanical performance and fibers with lengths greater showed 470 

better mechanical results for modulus of rupture (MOR) and fracture energy (FE) according to 471 

ANOVA. Cementitious composites reinforced with fibers curauá showed superior mechanical 472 

performance compared to available research literature. The modulus of rupture (MOR), fracture 473 

energy (FE) and relative working crack propagation (RWP) results of the composites reinforced 474 

1 2



 

 

with fibers curauá after 200 accelerated aging cycles were better in relation of the composites at 7 475 

days, because of the cement hydration, which filled the pores, densified its structure, which 476 

improved the transition zone fiber matrix. On the other hand, the aging promoted mineralization of 477 

the fiber, which reduced the mechanical performance of composites with curauá compared with 478 

literature researches. Thus, the best results were obtained for composites reinforced with 2% of 479 

curauá fiber with 10 mm of length after 200C. 480 

In the physical results, the composite with 2% of fiber increased by water absorption and bulk 481 

density due to the greater number of fibers per unit volume and the filling of the matrix pores by the 482 

continued hydration process during accelerated aging cycles (200C) in formation of calcium 483 

hydroxide (Ca(OH)2), calcium silicate hydrate (CSH) and calcium carbonate (CaCO3) respectively.  484 

Considering the individual statistical factors and the interaction, only the accelerated aging (200C) 485 

promoted significant differences in the values of the apparent porosity (AP). It is believed that the 486 

immersion and drying cycles caused higher incidence of pores as result of microcracks caused by 487 

the aging cycles. According to the ANOVA, the only individual factor statistical that did not affect 488 

the physical values was the fiber length. Thus, the interaction between the three statistical factors, 489 

the highest value occurs from the combination with 2% of curauá fibers, 6 mm or 10 mm in length 490 

after 200C. 491 

Scanning electron microscopy of the fracture surface of curauá fibers showed chemical elements 492 

from the cement inside the fiber. Also showed detachment of the fibers from the cement matrix 493 

indicating low mechanical performance. 494 

These results encourage us to use composites reinforced with curauá fiber in constructions in indoor 495 

environments as ceiling and partitions. New tests should be used to optimize results. 496 

 497 
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