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Abstract.  

This thesis considers the impact of failures in terms of the effect they have in the value of the 
system. We begin with a qualitative discussion on the value of failure acceptance or 
reduction. Next, we present a decision framework based on net present value. Then, we 
develop an analytical model of net present value given a stochastic failure process, quantify 
the net present value obtained of the system under certain decisions and define the Value of 
Redesign. To end, we give some guidance to interpret the results and prove the dynamism of 
the optimal decision process with time, and system and market costs. Moreover, we conclude 
that although redesigning the system may or may not be the best solution, it always removes 
uncertainty. 
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1 Introduction 

When failures occur, organizations are faced with a range of choices, the two extremes of 
which are to act to remove a particular failure mode, or to accept the failure and, if necessary, 
replace failed or faulty components. What is the best choice in a given situation? Here, we 
present a decision framework based on net present value to aid in such decisions.  

We begin chapter 2 with a qualitative discussion on the value of failure acceptance or 
reduction. Next, in subsection 2.2, we develop an analytical model of net present value given 
a stochastic failure process, and define the Value of Redesign. Section 2.3 introduces a case 
of study and provides some results that show the strong effect of time and costs in the Value 
of Redesign. Chapter 3 concludes the thesis. 
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2 Theory: A Value Perspective on Failure Reduction 

Figure 1 shows the decision tree that we establish, to show us the methodology followed to 
decide how to act efficiently according to different situations. First, we get a failure reported. 
Once we have that failure, if we have enough information, we make an estimation of the 
parameters that define the process we think these failures will follow. With that estimation 
we predict future failure rates, estimate the Net Present Value when we decide to repair the 
failures reported, and estimate the Net Present Value if we do not only repair but also decide 
to redesign the system so it does not fail again this way. After these predictions, we decide 
to act removing the reported failures, or repair and redesign the system, or just ignore these 
failures and do not repair or redesign anything.  

 

Figure 1: Decision tree 

2.1 The value perspective on failure reduction: a qualitative discussion 

Failures have several associated impacts on profit, including direct costs like the cost of new 
components to replace failed components, downtime associated with the failure and 
subsequent repair, and indirect costs like reduced customer satisfaction. Preventing failures, 
whether by eliminating them completely or through preventive maintenance, also has its 
own costs, such as the labor cost of troubleshooting, downtime associated with 
troubleshooting, the cost of replacing components, and the cost of preventive maintenance. 
If a component (e.g., a lightbulb) is cheap, difficult to inspect, easy to replace, and does not 
have a safety critical function, replacement on failure may be the best option. If a 
component’s failure entails significant downtime and cost (e.g., an aircraft empennage), but 
the root causes (e.g., metal fatigue) of the failure are difficult or impossible to eliminate, 
inspection and preventive maintenance may be the best option. And if a component’s failure 
entails significant and possibly frequent downtime and cost (e.g., a software bug), but it is 
possible that the root causes (e.g., incorrect specification) of the failure can be found, 
eliminating the failure mode may be the best option. 

Further complicating this choice is the stochastic nature of failure—a failure may recur 
frequently, or rarely. When a new failure mode appears, it may not be possible to determine 
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immediately whether it will be a frequent or rare occurrence. This problem is exacerbated 
in the case of NFFs, where it may not even be clear what, if anything, failed. 

Each year, commercial airlines in the United States spend about $185,000 each 
unsuccessfully attempting to replicate reported failures on electronic devices installed on 
airliners [Werner, 2015]. Such events are variously referred to as no fault found (NFF), 
trouble-not-identified (TNI), cannot duplicate (CND), no-trouble-found (NTF), and retest OK 
(RTOK).  

An NFF event implies that a failure (fault) either occurred or was reported to have occurred 
during a system’s use, but upon subsequent investigation there was either no evidence of the 
failure (e.g., a burnt-out circuit), or the failure could not be replicated [Qi. et al., 2008]. Most 
computer users have experienced NFFs in the form of a computer crash or hang, which is 
often easily addressed by rebooting the computer. NFFs are found anywhere electronics are 
used, including the automotive, avionics, telecommunications, computer, and consumer 
industries [Qi et al., 2008]. 

NFFs can be dangerous [e.g., Hockley and Lacey, 2015]. In September 2010, during final 
approach, the crew of a Bombardier Dash 8 Q400 was so distracted by a non-functioning 
flight display, that they inadvertently disabled the autopilot and would likely have hit the 
ground, had the ground proximity warning not been activated [Werner, 2015]. The same 
underlying problem with the input/output processor occurred on several other flights, but 
each time technicians were unable to replicate the problem. 

Even when they do not directly impact safety, NFFs can still have significant costs, both 
tangible (decreased reliability and availability, the costs of attempting to replicate and 
correct the fault, and warranty costs) and intangible (e.g., customer perception of inadequate 
quality). 

Thus, there is also a time dimension to the previous choices—act early with limited 
information, possibly making a poor choice, or, wait for more information, possibly incurring 
frequent costly failures. 

Here we show how a value-based perspective can help address this problem. We follow the 
approach presented in [Marais, 2013]. 

Our argument is based on four main ideas: 

1. We assume that numbers of failures corresponding to different failure modes are 
reported each month, and that each month offers an opportunity to decide whether 
to eliminate the failure, or wait for another month. We specify that each failure count 
is associated with a particular failure and failure mode. 

2. We consider that the system generates a set amount of revenues per unit time. When 
failures occur, the revenue stream is interrupted by downtime, and costs may be 
incurred to replace failed components, as discussed above. Similarly, eliminating a 
failure may also interrupt the revenue stream, and incur costs to replace components. 
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3. At each time step, we calculate the net present value associated with eliminating the 
failure mode, or waiting for the next month. We bring all values into the present using 
discounting. 

4. We formulate a decision tree that can be used to determine the optimal action to carry 
out to obtain maximum NPV. 

In the next section, we set up the analytical framework that corresponds to this qualitative 
discussion.  

2.2 An analytical model of the value of failure resolution decisions 

In developing our value model of failure resolution decision-making, we make some 
assumptions that will help to keep the focus on the main argument of this work. The 
assumptions are the following: 

1. We consider discrete time steps of one month, and we account for downtime as a 
fraction of this time. 

2. The problem time horizon is finite and is set to five year period. 
3. Failures are reported per time step, and our data is collected over a fraction of the 

time horizon, being set to one year. 
4. We assume that failures are evenly distributed over the time step in which they are 

reported. 
5. We reflect downtime associated with a failure as a decrease in system revenues. 
6. We associate a cost with each failure occurrence to account for replacement of 

components. 
7. We also consider a fix operating cost for each time step independent from the failure 

rate, and a specific hardware cost for each type of failure that we are accounting. 
8. We assume a redesign cost independent from the previous costs defined. To simplify 

the problem, this cost will be assumed over one time step.  
9. We consider each month to have 30 days. 
10. We consider to have already paid for the cost of discovering the failures that we are 

interested in, in this case NFFs. 

In the following, we consider that failures happen at each time step, once we have that data 
we estimate, if possible, the distribution parameters. Then we predict the future failure rate 
over the time horizon estimating the NPV of the system and compare it with the NPV of 
removing those failures. Finally, according to these results, we decide not to act (if the cost 
of these failures is so small that it does not even worth to repair them), or act by repairing 
them, or redesign the system so it does not fail that way again. Figure 2 shows a detailed 
decision tree with these three possible actions at each time, being the “New System” the 
system we obtain once we repair and remove a type of failure. This “New System” it is not 
perfect, it has other type of failures that have not been considered to study before yet.  
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Figure 2: Detailed decision tree 

Figure 2 shows an initial system and the three main decisions we can take once a failure has 
been reported. First, we can decide to redesign the system (for example, if the failure rate 
reported during the first month is so big that we need to get rid of these failures to make 
profit). If we decide to redesign, we will get a “New system” right away. 

We can also choose to repair the reported failures, and after another month of data, make 
the same decision again, repair or redesign. 

2.2.1 Input failures 

We consider our failures to follow an exponential process. Let us denote that any other 
failure process could have been addressed as this model can be used for any failure type but, 
because of its simplicity and its good approximation to failures of type NFFs the exponential 
process has been chosen. 

NFFs occur continuously and independently at a constant average rate. Considering the 
exponential process, allow us to describe the time between events in a Poisson process that 
perfectly address that problem. 

2.2.2 Parameter Estimation 

This subsection focus on the parameters’ estimation, but before deepening in this idea we 
must take into consideration the uncertainty factor. 

System

Redesign New 
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The uncertainty factor is the fact that we never know for sure if the distribution that we 
assume to have for the existent data is really followed by that data. Even if it happens that 
we assume the proper distribution, it may not be well estimated if we do not have enough 
input data. Both uncertainties can lead to erroneous parameter estimation. 

In practice, we can rarely, if ever, be certain that an observed quantity is drawn from a 
specific distribution. The most we can say is that our observations are consistent with the 
hypothesis that x is drawn from a distribution of that form. 

Being said that, in this section we show how to estimate the distribution parameters 
associated to the exponential process and how to calculate the confidence intervals to define 
the variation bounds of our results. 

Parameter estimation for a Homogeneous Poisson Process. 

This model comes about when the inter-arrival times between failures are independent and 
identically distributed. The cumulative distribution function for Homogeneous Poisson 
Process is given by 

𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒−λ∙t (1) 

Where λ is the failure rate per unit time (month), being constant for this distribution. 

Thus, the failure rate distribution over time is: 

ℎ(𝑡𝑡) = λ ∙ t (2) 

The mean time to fail following an exponential distribution is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
λ

 (3) 

For our predicted data, we estimate a failure rate𝜆̂𝜆 that is equal to the average of failures 
reported during the months of data considered (n). 

λ� =
1
n
�λ𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 
(4) 

Where λ𝑖𝑖 is the number of failures reported each month. 

The table below (Table 1) shows and example of how the failure rate estimation varies each 
month according to the failures reported. 

Table 1: Example of estimation of lambda 

n Month 1 Month 2 Month 3 
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𝜆𝜆𝑖𝑖  0 1 2 

𝜆̂𝜆 0 0.5 =
0 + 1

2
 1 =

0 + 1 + 2
3

 

 

The predicted failure rate predicted follows this equation 

h�(𝑡𝑡) = λ� ∙ 𝑡𝑡 (5) 

Let us illustrate with the next example given by table 2 and Figure 2. 

Table 2: Example of a case generated following a HPP process with λ=4/3 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

𝛌𝛌𝒊𝒊 1 3 2 2 3 0 1 1 0 0 0 2 

 

Figure 3 shows the example of the estimation of the projected failures over time that the HPP 
applies to the example given by table 2. Each line represents the number of months of data 
available and the projection with that many months of data. The first prediction assumes that 
we only have one month of data reported, the second one assumes we have two months of 
data, and so on.  
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Figure 3: Example of failure estimation following an HPP for the case shown in table 2 

2.2.2.1.1 Confidence intervals calculation 
To define the bounds within which the results may vary in our study we apply confidence 
intervals to our results. 

We calculate the Maximum Likelihood Estimate for a Poisson distribution, considering a 
confidence level of 95% for the two-sided confidence bounds. 

Once we have the failure rate estimated λ�, we calculate the sum of all the failures estimated 
𝑟𝑟𝑛𝑛 for the time considered (n months): 

𝑟𝑟𝑛𝑛 = λ� ∙ 𝑛𝑛 (6) 

For 𝑟𝑟𝑛𝑛 < 100 the  failure bounds are calculated as follows:  

λ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑟𝑟𝑛𝑛� = G−1 �1 − α
2� , 2(𝑟𝑟𝑛𝑛 + 1)� (7) 

λ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑛𝑛� = G−1�α 2� , 2𝑟𝑟𝑛𝑛� (8) 
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Where G(q,v) is the Chi Square distribution function. 

On the contrary, for values 𝑟𝑟𝑛𝑛 > 100 the failure rate bounds are calculated following a 
Normal inverse cumulative distribution function: 

λ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑛𝑛� = N−1�1 − α
2� , 𝑟𝑟𝑛𝑛,�𝑟𝑟𝑛𝑛� (9) 

 

 

2.2.3 NPV Calculation 

For a better approximation of reality, we consider to divide all the failures appearing in our 
system under two types: A and B. Being A the failure type that we are interested in, e.g. NFFs, 
and B all the other existing failures, as the mechanical or structural ones. 

In this section, we explain the differences in NPV calculation depending on if we are just 
repairing the failures reported or if we repair the reported ones but also redesign the system 
so that type of failure does not appear again.  

Table 3 shows the parameters that we consider for calculating the different present values.  

Table 3: Nominal parameters definition 

Parameters Symbol 

Repair Time failure A [-/month] RT𝐴𝐴 

Repair Time  failure B [-/month] RT𝐵𝐵  

Repair Cost failure A [$/month] RC𝐴𝐴 

Repair Cost failure B [$/month] RC𝐵𝐵 

Benefits [$/month] u 

Operating cost [$/month] C𝑜𝑜𝑜𝑜 

Hardware cost failure A [$/failure] Cℎ𝑎𝑎𝑎𝑎𝑎𝑎_𝐴𝐴 

Hardware cost failure B [$/failure] Cℎ𝑎𝑎𝑎𝑎𝑎𝑎_𝐵𝐵 

Monthly discount rate [%] r∆𝑡𝑡 

Redesign cost [$/month] C𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

λ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑛𝑛� = N−1�α 2� , 𝑟𝑟𝑛𝑛,�𝑟𝑟𝑛𝑛� (10) 



A decision framework to repair or eliminate failures in engineering systems according to their Net present 
value Luna Burgos Moreno 05/03/2017 

 15 

2.2.3.1 NPV when just repairing. 

Benefits are defined as the time step revenue that we obtain from a system when no failures 
are reported. If the failure rate reported at a specific time step is different from zero, the 
revenues accounted by the system are equal to the monthly benefits (as if nothing fails) 
minus a variable time step fraction. This fraction varies with the number of failures reported 
and the mean repair time that failure needs to let the system be operative again. 

Saying that, the following equation gives us the benefits over the time step period: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �$ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ� � = 𝑢𝑢 − λ𝑖𝑖𝐴𝐴 ∙ 𝑅𝑅𝑅𝑅𝐴𝐴 ∙
𝑢𝑢

30
− λ𝑖𝑖𝐵𝐵 ∙ 𝑅𝑅𝑅𝑅𝐵𝐵 ∙

𝑢𝑢
30

 (11) 

In terms of costs, we consider not only the only the operating and repairing costs but also a 
hardware cost for each failure reported. Leading to the following equation: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �$ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ� �
= λ𝑖𝑖𝐴𝐴 ∙ 𝑅𝑅𝑅𝑅𝐴𝐴 ∙ 𝑅𝑅𝑅𝑅𝐴𝐴 + λ𝑖𝑖𝐴𝐴 ∙ Cℎ𝑎𝑎𝑎𝑎𝑑𝑑𝐴𝐴 + λ𝑖𝑖𝐵𝐵 ∙ 𝑅𝑅𝑅𝑅𝐵𝐵 ∙ 𝑅𝑅𝑅𝑅𝐵𝐵 + λ𝑖𝑖𝐵𝐵
∙ Cℎ𝑎𝑎𝑎𝑎𝑑𝑑𝐵𝐵 + C𝑜𝑜𝑜𝑜 

(12) 

The Present value then can be obtained from the subtraction of benefits minus costs: 

PV𝑖𝑖 =
�𝑢𝑢−λ𝑖𝑖𝐴𝐴∙𝑅𝑅𝑅𝑅𝐴𝐴∙

𝑢𝑢
30−λ𝑖𝑖𝐵𝐵∙𝑅𝑅𝑅𝑅𝐵𝐵∙

𝑢𝑢
30�−�λ𝑖𝑖𝐴𝐴∙𝑅𝑅𝑅𝑅𝐴𝐴∙𝑅𝑅𝑅𝑅𝐴𝐴+λ𝑖𝑖𝐴𝐴∙Cℎ𝑎𝑎𝑎𝑎𝑑𝑑𝐴𝐴+λ𝑖𝑖𝐵𝐵∙𝑅𝑅𝑅𝑅𝐵𝐵∙𝑅𝑅𝑅𝑅𝐵𝐵+λ𝑖𝑖𝐵𝐵∙Cℎ𝑎𝑎𝑎𝑎𝑑𝑑𝐵𝐵+C𝑜𝑜𝑜𝑜�

(1+r∆𝑡𝑡)𝑡𝑡𝑖𝑖   
(13) 

And thus, the Net Present Value 

NPV = �PV𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 
(14) 

2.2.3.2 NPV when redesigning. 

When we decide to redesign the system there will be two different Present Value 
estimations. These are: 

- The Present Value over the month where we repair failure type A, invest and redesign 
the system. Being the benefits over that time step period calculated as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �$ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ� � = 𝑢𝑢 − λ𝑖𝑖𝐵𝐵 ∙ 𝑅𝑅𝑅𝑅𝐵𝐵 ∙
𝑢𝑢

30
 (15) 

And its costs, considering its redesign cost: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �$ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ� � = λ𝑖𝑖𝐵𝐵 ∙ 𝑅𝑅𝑅𝑅𝐵𝐵 ∙ 𝑅𝑅𝑅𝑅𝐵𝐵 + λ𝑖𝑖𝐵𝐵 ∙ Cℎ𝑎𝑎𝑎𝑎𝑑𝑑𝐵𝐵 + C𝑜𝑜𝑜𝑜 + C𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 
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- The Present Value after the introduction of the new design where only type B of 

failures remains appearing. Being the revenues calculated as in equation 15, and its 
cost calculated as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �$ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ� � = λ𝑖𝑖𝐵𝐵 ∙ 𝑅𝑅𝑅𝑅𝐵𝐵 ∙ 𝑅𝑅𝑅𝑅𝐵𝐵 + λ𝑖𝑖𝐵𝐵 ∙ Cℎ𝑎𝑎𝑎𝑎𝑑𝑑𝐵𝐵 + C𝑜𝑜𝑜𝑜 (17) 

Once both revenues and costs are defined, we calculate the present value as 

PV𝑖𝑖 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

(1 + r∆𝑡𝑡)𝑡𝑡𝑖𝑖
 (18) 

And thus, the Net Present Value is calculated as in (14). 

2.3 Model Assessment 

Here, we use a Monte Carlo approach to generate different failure sequences, estimate the 
corresponding distribution parameters, and then compare the predicted NPVs of resolving 
or eliminating failures.  

We determined the necessary number of runs as follows. 

[Driels and Shin, 2004] define an equation to determine the number of iterations that need 
to be performed in order to obtain a specified accuracy in the result. The following formula 
provides the answer for that question. 

𝑝𝑝 = �
100 ∙ 𝑧𝑧𝑐𝑐 ∙ 𝑆𝑆𝜆𝜆

𝐸𝐸 ∙ 𝜆̅𝜆
�
2

 
(19) 

Where p is the number of iterations we need to perform, 𝑧𝑧𝑐𝑐 is the confidence coefficient, 𝑆𝑆𝜆𝜆 
is the standard deviation of the sample, E is the error assumed, and 𝜆̅𝜆 is the average of the 
sample. 

The value of the confidence coefficient corresponds to the one given by a normal distribution, 
when the sample of data available is bigger than 25 values. 

We set, as a first estimation for our Monte Carlo study, to run 900 different cases. Once 
obtained that data, we apply the previous equation to obtain the real number of runs needed 
to get a sample whose results fall within the confidence interval that we set. Table 4 shows 
the main input parameters that we first estimate. 
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Table 4: Parameters of our first estimation 

Parameter Value 

λinput 4/3 

Confidence interval [%] 95 

𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  900 

𝑧𝑧𝑐𝑐  1.96 

  

Table 5 shows the values obtained from the previous table (Table 4) of the average, the 
standard deviation, and the number of iterations needed to obtain a sample of data that falls 
within the confidence intervals. 

Table 5: Average, Standard deviation, and iterations for λinput=4/3 

n 1 2 3 4 5 6 7 8 9 10 11 12 

𝝀𝝀�  1.328 1.330 1.316 1.319 1.304 1.314 1.318 1.321 1.321 1.324 1.326 1.327 

𝑺𝑺𝝀𝝀 1.189 0.827 0.655 0.578 0.505 0.456 0.425 0.393 0.375 0.356 0.346 0.327 

𝒑𝒑 1232 595 381 296 231 186 160 137 124 112 105 94 

 

Table 5 shows the number of iterations estimated according to [Driels and Shin, 2004] when 
the monthly failure rate is 1.33 but, for the purpose of this thesis, we are interested in 
studying the variation in the results when the failure rate increases or decreases. To do so, 
we also ran our Monte Carlo study for different input failure rates, obtaining different 
number of iterations, and we set, as our number of iterations needed, the maximum over all 
the values obtained. 

We observed that for bigger failure rates, the estimated number of iterations was very low. 
That unexpected result gave us the idea to apply another methodology to check the number 
of runs needed to obtain a good approximation to reality. We call it, the cumulative average 
method, and it determines the number of runs as follows. 

First, it takes the estimated parameter of the process, and we calculate the cumulative 
average of its value among all the runs. Meaning that, for 2 months of data, and 8 runs, we 
estimate the cumulative average that those 8 different cases give us for 2 months of data. 

Table 6 illustrates and example: 
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Table 6: Example of the cumulative average calculation of lambda estimated 

Cases considered Case 1 Case 2 Case 3 

𝝀𝝀𝟐𝟐 0 1 2 

𝝀𝝀�  0 0.5 =
0 + 1

2
 1 =

0 + 1 + 2
3

 

 

Once all cumulative averages have been calculated, we graph them in a plot where each 
cumulative average corresponds to a number of runs. Figure 4 shows the result for an input 
failure rate of 1.33. Once each estimation stops oscillating and converges to a constant value, 
we have reached the number of runs needed to obtain a good approximation.  

 

Figure 4: Cumulative average of λ estimated for the exponential distribution, for λinput=4/3 

Comparing the results obtained by both methodologies, the number of runs needed to obtain 
a good sample of data differs from one method to another. Due to this, we chose to stablish 
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as the number of runs, the lowest value obtained by both methodologies, which covers all 
possibilities. Being said this, we stablish that 1300 runs are needed. 

2.3.1 Input failure sequences 

As already specified in 1.2.1, we consider a type of failure process—the exponential process.  
Table 7 shows the values we consider for this distribution. As mentioned before, we model 
both failures to follow an exponential process being then its failure rate constant. 

Table 7: Input distribution parameters 

Exponential distribution (HPP) 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  [-/month] 

Failure type A [0.5,18] 

Failure type B [2,54] 

 

Figure 5 shows examples of exponential failure sequences generated in our Monte Carlo 
study.  

 

Figure 5: Example of sequences generated for 𝝀𝝀𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟓𝟓 
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2.3.2 NPV Calculation and the value of redesign 

Table 8 shows the values assigned to the nominal parameters. 

Table 8: Nominal parameters values 

Parameters Symbol Value Notes 

Repair Time failure A [-/month] RT𝐴𝐴 0.0042 ~3h  

Repair Time  failure B [-/month] RT𝐵𝐵  0.0084 ~6h 

Repair Cost failure A [$/month] RC𝐴𝐴 [10, 4000]  

Repair Cost failure B [$/month] RC𝐵𝐵 50  

Benefits [$/month] u 1500  

Operating cost [$/month] C𝑜𝑜𝑜𝑜 50  

Hardware cost failure A [$/failure] Cℎ𝑎𝑎𝑎𝑎𝑎𝑎_𝐴𝐴 10  

Hardware cost failure B [$/failure] Cℎ𝑎𝑎𝑎𝑎𝑎𝑎_𝐵𝐵 20  

Monthly discount rate [%] r∆𝑡𝑡  0.4167 5% anual 

Redesign cost [$/month] C𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [1000,8000]  

 

We consider a range of repair costs and redesign costs so we can measure the impact in NPV 
when our failures have a low cost to be repaired/redesign or, on the contrary, when their 
cost is high. Figures 6 and 7 give us an example of how these costs affect our decisions.  

While Figure 6 shows an example where each failure incur in a low cost to repair or redesign, 
figure 7 shows the same scenario when those costs are high.  
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Figure 6: NPV estimation for a 5 year period horizon, low cost assumed 

 

Figure 7: NPV estimation for a 5 year period horizon, high cost assumed 
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A better way to see when it is worth to invest in a new system design, is looking at the Value 
of Redesign (VoR). The value of redesign defines when it is worth to investigate the roots of 
our failure and redesign the system so it does not fail this way again. It is expressed as 

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (20) 

Figures 8 and 9 serve as an introduction of what we denominate the value of redesign. These 
figures (8 and 9) consider also the values of table 8. When its value is positive (Figure 8), 
redesigning is the best decision. On the contrary, when its value is negative (Figure 9), 
repairing the detected failures happens to be the best one. 

 

Figure 8: Value of redesign for a 5 year period horizon, low cost assumed 
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Figure 9: Value of redesign for a 5 year period horizon, high cost assumed 

However, the value of redesign is dynamic with time, and it may also happen that there exists 
a decision point at which we must no longer think about redesigning, but we should start 
thinking about repairing the failures detected. Figures 10 and 11 show an example where 
the failure rate considered is the same as previous examples (figures 6 to 7), the time horizon 
is 5 years, but the costs have increased. Due to this cost increment, the decision varies from 
one month to another. For this specific example, there is a decision point at which 
redesigning stops being the best decision that moment occurs between months 4 and 5. 
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Figure 10: NPV estimation for a 5-year period horizon, higher costs 

 

Figure 11: Value of redesign for a 5-year period horizon, higher costs 
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This dynamism of the Value of redesign within time can also be observed when we have 
bigger operating lives. Let’s assume that our system has an operating life longer than 5 years, 
it would make sense to estimate the NPV of our system over its operating life. For the sake 
of this explanation, let us consider a system whose operating life is 15 years, and it has the 
same properties as of the system defined in tables 7 and 8.  

Figure 12 shows the evolution in the NPV when we assume a 15 year time horizon. We can 
recognize that besides being the same system as before, now the NPV of redesigning remains 
almost constant over the time. This result claims that short operating lives tend to define a 
point at which it makes no sense to invest in a new system. It would be cheaper just to repair 
the existing failures that appear each month until the end of the useful life of the system. On 
the contrary, longer operating lives decrease the variation in the NPV of redesign, defining 
decisions that can change completely depending on the time horizon. 

 

Figure 12: NPV estimation for a 15-year period horizon 
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Figure 13 reinforces the previous idea of figure 12 showing the variation of the value of 
redesign, being always positive for this time period. 

 

Figure 13: Value of redesign for a 15-year period horizon 

To summarize this first part of the section, we can say that it gives us an idea of how dynamic 
the decision process is. There is a high effect of time and costs over our decisions. It also 
proves that redesign loses its value, as the system is closer to the end of its operating life. 
Meaning by this, that it may or may not be better to redesign the system at the very beginning 
but the farther we go into the future, the less value the redesign has, as the system is closer 
to the end of its operating life, and investing in a new design may not compensate the 
revenues generated. On the contrary, it has been proved that redesigning the system always 
removes uncertainty as our predictions are based only in past data. 

The next part of this section focuses on making decisions. It also defines the bound failure 
rate values that lead to a straightforward decision. We provide the reader with the tools 
needed to make a decision at each point in time, basing the whole study in the parameters 
defined in table 8. 
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Figure 14 gives an example of how a decision changes depending our conditions (failure rate 
estimated and costs). It shows a graph with two lines, each of them corresponding to a 
different failure rate. The three points represented (A, B, and C) are pair of costs that we may 
have in this hypothetical example. Each line divides the area in twice. The area above the line 
defines those cases where repairing is the best option. On the contrary, the area below, 
defines those cases where redesigning is the more efficient decision. Figure 14 shows how, 
depending on our estimated failure rate, the best decision can vary from one to another. 
Table 9 shows these decisions. 

 

Figure 14: Decision plots 

If it happens that our failure rate is 8 events per month, and our costs correspond to pair A, 
the best solution is repair, while for B and C is redesign, as higher failure rates generate 
greater costs and, the sooner we get rid of them, the better will go in terms of profits. If, on 
the contrary, we have a smaller failure rate, 5 events per month, pairs A and B turn to be 
repairing solutions while C stays as a redesigning one. 

Table 9: Example of decisions 

Cost 𝝀𝝀𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟖𝟖 𝝀𝝀𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟓𝟓 

A Repair Repair 

B Redesign Repair 

C Redesign Redesign 
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Now, we wonder if there exists an upper/ lower limit that makes our decision always to be 
either redesign or repair, and if these limits are invariables over time or if they change 
accordingly. 

After research, we have found the limit failure rates for these conditions (Table 8) to variate 
with time. The values of these limit failure rates are shown in Table 10 and figure 14. Once 
these limits (failure rates) have been surpassed, the solution is always either repair or 
redesign. 

Table 10: Limit failure rates and their decisions 

Month Lower bound Upper bound 

1 2.9 7.3 

2 2.1 9.9 

3 1.8 11.2 

4 1.6 12.1 

5 1.5 12.9 

6 1.4 13.6 

7 1.4 14.5 

8 1.4 15.2 

9 1.3 15.9 

10 1.3 16.5 

11 1.2 17.1 

12 1.2 17.8 
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Figure 15: Limit failure rates and their decisions 

In next figures, from Figure 16 to 27, we represent the dynamism that the decision process 
has with time. In these figures, three main lines appear. One of the lines represented 
corresponds to a generic failure rate chosen to be 5. The two others belong to the previous 
values to the limiting ones that still show that the best decision depends on lambda and the 
costs. 

As previously commented, the blue lines represent the higher failure rate that give us two 
possible solutions, being this one, the previous to the upper bound ( e.g. upper bound 17.1, 
blue line represents 17). On the contrary, the red line represents the lower failure rate that 
give us 2 possible solutions, being this one, the next value to the lower bound ( e.g., lower 
bound 1.3, red line 1.4). As observed in previous figures ( Figure 15-26), the farther we go in 
time, the wider these limits become, meaning that a bigger range of failure rates are within 
bounds, and the decision for them will be either redesign or repair . 

Moreover, the farther we go in time, the lower the slope becomes. Meaning that there are 
more chances for the decision to be repair. The farther we go in time, the closer we are to the 
end of the operating life, and thus, less cost combinations state “redesign” as the optimal 
solution. 

To end, in the last months (figures from 23 to 27) the boundaries are so close to the limits 
that they become almost horizontal (for the lower bound), and vertical (for the upper 
bound).  
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Figure 16: Decision evolution 1 

 

Figure 17: Decision evolution 2 
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Figure 18: Decision evolution 3 

 

Figure 19: Decision evolution 4 
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Figure 20: Decision evolution 5 

 

Figure 21: Decision evolution 6 
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Figure 22: Decision evolution 7 

 

Figure 23: Decision evolution 8 
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Figure 24: Decision evolution 9 

 

 

Figure 25: Decision evolution 10 
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Figure 26: Decision evolution 11 

 

Figure 27: Decision evolution 12 
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3 Conclusions 

While failure resolution decision-making techniques are common in the literature, most of 
these models focus on minimizing costs or maximizing system availability, but they seldom 
consider the “value” of the system. We considered “value” as the net revenue generated by 
the system over a given planning horizon.  

Our first concern was the study of NFFs as we found difficult to obtain clear information 
about them. We made several simplifying assumptions in order to advance our main 
argument. In future work these assumptions will be validated or relaxed. The work can be 
used as the basis of a failure resolution decision-making process for other types of failure, 
where different distribution processes may appear.  

One important implication of this work is that the decision-making should be tied to the 
expected utility profile (system’s operating life) and the market conditions (costs of repair, 
investigate roots, and redesign the system). In other words, an optimal decision process is 
dynamic.  

Finally, we believe that the framework presented here offers rich possibilities for future 
work in failure resolution decision-making process. 
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APPENDIX I: MATLAB CODE INSTRUCTIONS 

This document explains the procedure to use the matlab code. Let us note that the code itself 
is also explained in each .m file. Next figure (Figure 28) shows the structure we need to follow 
when we want to calculate each study, then figure 29 shows the .m files that correspond to 
each box of figure 28. That way, if we are interested in just a part of the calculus process, we 
can directly go to the .m file we are interested in . 

 

Figure 28 Procedure followed 

ONE LAMBDA STUDY

Run the Monte Carlo

Funtion that generates 
failures

Function to estimate 
future failures

Function to calculate 
the PV  and NPV when 

repairing

Function to calculate 
the PV  and NPV when 

redesigning

We get the coefficients 
that estimate the 
decision line each 

month

Plot the lines

Represent the NPV and 
value of redesign

SEVERAL LAMBDAS 
STUDY

Run the Monte Carlo

Funtion that generates 
failures

Function to estimate 
future failures

Function to calculate 
the PV  and NPV when 

repairing

Function to calculate 
the PV  and NPV when 

redesigning

Lambdalimits Plotlines
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The files corresponding to each box are the following: 

 

Figure 29 Corresponding .m files 

ONE LAMBDA STUDY

MonteCarlowithCI

Failurereportgenerator

ExponentialProjectionCI

PV exponential CI

PVnoNFFmodified

PlotDesLinesEachMonth2 PlotLines

PlotNPVandVoR

SEVERAL LAMBDAS 
STUDY

WholeMonteCarlo

Failurereportgenerator

ExponentialProjectionCI

PV exponential CI

PVnoNFFmodified

Lambdalimits Plotlines
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1 One Lambda Study 

This section is only useful if we want to run a Monte Carlo for a single value of failure rate, if 
that is not your interest and you want to run the Monte Carlo for multiple failure rates, then 
skip this section and go to chapter 2. 

Here there are the 4 basic steps we need to follow in order to run our study properly: 

1. Open the MonteCarlowithCI 
a. Input the data that can be modified ( it says input) with the values we want 

to 
b. Set a name for our study in the end of the document 
c. Run the file 

2. Open the MeanResultsfrom MonteCarlo 
a. Write the name of our study 
b. Set the costs that we want to graph (it says inputs) 
c. Run the file 

3. Open PlotDesLinesEachMonth2 
a. Input the name of our study 
b. Set a name for our coefficient matrix in the end of the document 
c. Run the file 

4. Open PlotLines 
a. Set the number of the month we want to plot 
b. Input the name of the files previously generated in 3. For different lambdas 
c. Run the file 

The next subsections explain what each file does at each moment, in a more detailed way. 
Remember that everything is also explained in the .m files themselves. 

1.1 File: MonteCarlowithCI 

This file runs the Monte Carlo study by running each function a number of times that we 
define as an input of the variable called “iterations”. Once all has been calculated, it is saved 
in a .mat file to be used by the MeanResultsfromMontecarlo.m file. 

Calculation process: 

1. Nomenclature 
2. Input data: These are all the variables we need to define by given them a single value 

or a range of values. 
3. Main code:  

a. First we generate the sequences of failures detected 
b. Failure report generator displays the information needed to represent the 

data reported (failures detected over time). 
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c. Prediction of failures following Exponential distribution (HPP): 
Comments: The failures_exp is the total number of failures accumulated per 
period. lambdas_exp is the counter of failures we have per month 

d. Estimation NPV for Exponential distribution: For each MRC there is a redesign 
cost associated. Here we calculate all those combinations of costs, to get the 
NPV and the PVs. 

e. Cost of eliminating all NFFs (cost of redesign) 
4. Save the data. 

 

%% NOMENCLATURE 
% random_sample  gives us a vector of failures detected following a normal 
distribution with lambda as an input 
% n              MONTHS OF AVAILABLE DATA 
% av             is the mean of the failures detected defined by the 
random_sample 
% t              is a vector that counts the months of data 
% acc_l          is a vector with the accumulated number of failures 
% months         MONTHS OF PROYECTED DATA 
% alpha          confidence coefficient to calculate the confidence intervals 
% t_year         vector that counts all months of projection 
% mrt_nff        MEAN REPAIR TIME OF NFF, (-/MONTH) 
% mrc_nff        MEAN REPAIR COST OF NFF, IN $/MONTH 
% mrt_b          MEAN REPAIR TIME OF FAILURE TYPE B,(-/MONTH) 
% mrc_b          MEAN REPAIR COST OF FAILURE TYPE B,($/MONTH) 
% oper_cost      OPERATING COSTS, IT IS A FIXED QUANTITY, $/MONTH 
% remov_cost     COST OF REDESIGN $/MONTH 
% hard_cost_nff  COST OF HARDWARE WHEN NFFS HAPPEN $/FAILURE 
% hard_cost_b    COST OF HARDWARE WHEN FAILURE TYPE B HAPPEN $/FAILURE 
% u              NET REVENUES OF THE SYSTEM (IF NO FAILURES) PER MONTH 
% r_At           MONTHLY DISCOUNT RATE 
% lambda         FAILURE RATE OF TYPE A (NFFs) 
% lambda_b       FAILURE RATE OF TYPE B,ESTIMATED TRIPLE OF lambda 
% pred_year      YEARS OF PROYECTED DATA 
% iterations     RUNS OF OUR STUDY 
 
 
%% INPUT DATA 
lambda=5;          % INPUT lambda mean per month 
alpha= 0.05;         % COnfident interval of 95% 
n=12;                % INPUT months of data 
pred_year=5;         % years of estimated NPV data 
mrt_nff = 3/(24*30);            % Invented value 3 h to repair a failure 
expressed as a fraction of a month 
values=10; 
mrc_nff = linspace(0,0,values);                   % Invented value $/month 
remov_cost = linspace(1000,8000,values);                   % Invented value 
$/month 
oper_cost = 50;               % I will assume to have a 60$ cost of utilities 
per month 
hard_cost_nff = 10;               % $/failure cost of hardware 
hard_cost_b = 20; 
u = 1500;                     %Benefits that each unit reports per month when 
working 
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r_At = 0.05/12;                    % Discount rate of 5% per year, meaning 
0.05/12 per month 
lambda_b=round(lambda*3); 
%lambda_b=15; 
mrt_b = 6/(24*30);            % Invented value 3 h to repair a failure 
expressed as a fraction of a month 
mrc_b = 50;   
iterations=1; 
  
%% Define Montecarlo Study 
months = pred_year*12;         % months of projected data 
years = months/12;              % years of estimated NPV data  
[p,q] = meshgrid(mrc_nff, remov_cost); 
repair_remove_pairs = [p(:) q(:)]; 
[xcol,ycol]=size(repair_remove_pairs); 
% First define the empty matrixes  
A=[]; 
AU=[]; 
AL=[];   
C=[]; 
CU=[]; 
CL=[]; 
E=[]; 
EU=[]; 
EL=[]; 
G=[]; 
GU=[]; 
GL=[]; 
I=[]; 
J=[]; 
NPVexpbig=[]; 
NPVexpbig_U=[]; 
NPVexpbig_L=[]; 
  
NPV_noNFFbig=[]; 
  
Costexpbig=[]; 
Costexpbig_U=[]; 
Costexpbig_L=[]; 
  
for l=1:iterations 
%% Random scenarios following a Poisson model 
random_sample = poissrnd(lambda,1,n); 
lambda_seq = transpose(random_sample); 
lambda_ci = zeros(2,n); 
t=(1:1:n); 
% We generate the confidence intervals 
    for q = 1:n 
        [le(q), lci(:, q)] = poissfit(lambda_seq(1:q)); 
    end 
lambdas_exp=random_sample; 
lambdas_exp_upper=[lci(2,1),diff(lci(2,:).*t)]; 
lambdas_exp_low=[lci(1,1),diff(lci(1,:).*t)]; 
  
acc_l = cumsum(random_sample); 
av = acc_l./t; 
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av_upper = lci(2, :); 
av_low = lci(1, :); 
  
% Representation of the data reported 
%[l_sample, t_report,l_graph,t_graph] = 
FailureReportGenerator1(t,random_sample); 
  
%% Projection following Exponential distribution (HPP) 
[data_t,failures_exp,lambdas_exp] = 
ExponentialProjectionCI(av,t,months,random_sample); 
[data_t,failures_exp_upper,lambdas_exp_upper] = 
ExponentialProjectionCI(av_upper,t,months,lambdas_exp_upper); 
[data_t,failures_exp_low,lambdas_exp_low] = 
ExponentialProjectionCI(av_low,t,months,lambdas_exp_low); 
%Comments 
% The failures_exp is the total number of failures accumulated per period 
% lambdas_exp is the counter of failures we have per month 
  
%% Estimation NPV for Exponential distribution 
for p=1:xcol 
    f_cost=repair_remove_pairs(p,1); %Cost of repair 
    f_redesign=repair_remove_pairs(p,2); % Cost of redesign 
    %% NPV when just repairing 
    [NPV_year,t_year,PV] = 
PVexponentialCI(mrt_nff,f_cost,mrt_b,mrc_b,oper_cost,hard_cost_nff,hard_cost_
b,u,r_At,lambdas_exp,lambda_b,months,n,pred_year); 
    [NPV_year_L,t_year,PV] = 
PVexponentialCI(mrt_nff,f_cost,mrt_b,mrc_b,oper_cost,hard_cost_nff,hard_cost_
b,u,r_At,lambdas_exp_low,lambda_b,months,n,pred_year); 
    [NPV_year_U,t_year,PV] = 
PVexponentialCI(mrt_nff,f_cost,mrt_b,mrc_b,oper_cost,hard_cost_nff,hard_cost_
b,u,r_At,lambdas_exp_upper,lambda_b,months,n,pred_year); 
   
    %% Cost of eliminating all NFFs 
    [NPV_noNFF_year,counter_l2] = 
PVnoNFFmodified(mrt_nff,f_cost,mrt_b,mrc_b,f_redesign,oper_cost,hard_cost_nff
,hard_cost_b,u,r_At,lambda_b,random_sample,months,n,pred_year); 
    %[NPV_noNFF_year_L,counter_l2_L] = 
PVnoNFFmodified(mrt_nff,f_cost,mrt_b,mrc_b,f_redesign,oper_cost,hard_cost_nff
,hard_cost_b,u,r_At,lambda_b,lambdas_exp_low,months,n,pred_year); 
    %[NPV_noNFF_year_U,counter_l2_U] = 
PVnoNFFmodified(mrt_nff,f_cost,mrt_b,mrc_b,f_redesign,oper_cost,hard_cost_nff
,hard_cost_b,u,r_At,lambda_b,lambdas_exp_upper,months,n,pred_year); 
    
    % Cost if assumed a HPP model 
    Costexp=NPV_noNFF_year-NPV_year; 
    Costexp_U=NPV_noNFF_year-NPV_year_U; 
    Costexp_L=NPV_noNFF_year-NPV_year_L; 
  
    %% Matrixes for each cost 3D 
    NPVexpbig(l,:,p)=NPV_year; 
    NPVexpbig_U(l,:,p)=NPV_year_U; 
    NPVexpbig_L(l,:,p)=NPV_year_L; 
     
    NPV_noNFFbig(l,:,p)=NPV_noNFF_year; 
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    %NPV_noNFFbig_U(l,:,p)=NPV_noNFF_year_U; 
    %NPV_noNFFbig_L(l,:,p)=NPV_noNFF_year_L; 
     
    Costexpbig(l,:,p)=Costexp; 
    Costexpbig_U(l,:,p)=Costexp_U; 
    Costexpbig_L(l,:,p)=Costexp_L; 
  
    %%Comments:  
    %x axis: number of cases 
    % y axis: # months of data available 
    % z axis: diff costs studied 
end 
  
%% Saving each test 
% NPV of all the cases 
% Matrixes of the exponential distribution: 
% A=[A;NPVexp]; 
% AU=[AU;NPVexp_U]; 
% AL=[AL;NPVexp_L];  
% Failures estimation with exponential distribution: 
C(:,:,l)=lambdas_exp; 
CU(:,:,l)=lambdas_exp_upper; 
CL(:,:,l)=lambdas_exp_low; 
% % PV estimation with exponential distribution: 
% % E(:,:,l)=PVexp; 
% % EU(:,:,l)=PVexp_U; 
% % EL(:,:,l)=PVexp_L; 
% %Cost estimation with exponential distribution: 
% G=[G;Costexp]; 
% GU=[GU;Costexp_U]; 
% GL=[GL;Costexp_L]; 
% Average of failures 
I=[I;av]; 
% random sample 
J=[J;random_sample]; 
  
end 
% m= num2str(n); 
% p= num2str(iterations); 
Time=data_t; 
  
save('lamb5_0cost5yrs.mat') 
toc 
1.1.1 Function FailureReportGenerator1 

This function is just useful in terms of representing a specific scenario where l_graph, t_graph 
show over time the failures detected at each month. As we run a Monte Carlo this data is not 
saved but the function is still here in case we want to apply it to represent a specific case. 

 

function [l_sample, t_report,l_graph,t_graph,random_sample,l_samp] = 
FailureReportGenerator1(t,random_sample) 
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%% SPECIFIC ASSUMPTION: 
% FOR THE SAKE OF THIS PROJECT WE ASSUME THAT IF , FOR EXAMPLE, 3 FAILURES 
% ARE FOUND IN A MONTH, WE ASSUME TO HAVE OCCURED EQUALLY DISTRIBUTED OVER 
% TIME, BEING CALCULATED THE frec to estimate the time at which they were 
% reported ( e.g. 0.33,0.66,1) 
  
t_report=[]; 
l_samp=[]; 
l_sample=[]; 
  
for i=1:length(t) 
    if random_sample(i)==0 
        t_reported=t(i); 
        l_sample1 = 0; 
    elseif random_sample(i)==1 
        t_reported=t(i); 
        l_sample1 = 1; 
    else 
        frec= 1/random_sample(i); 
        l_sample1 = ones(1,random_sample(i)); 
        multiplier = (1:1:random_sample(i)); 
        if i==1 
            t_reported = frec*multiplier; 
        else 
            t_reported = t(i-1)+frec*multiplier; 
        end 
    end 
    l_samp=[l_samp,l_sample1]; 
    t_report=[t_report, t_reported]; 
end 
l_sample=transpose(cumsum(transpose(l_samp))); 
l_graph=l_sample; 
t_graph=t_report; 
l_graph(l_samp == 0 ) = []; 
t_graph(l_samp == 0 ) = []; 
       
end 
 

1.1.2 Function ExponentialProjectionCI 

This function generates the matrix will all the failures (detected and predicted) according to 
the months of data available, and puts them all together in a matrix, so we can use it for NPV 
calculation. In case we would like to represent the data, we should use matrixes data_t and 
failures_exp (accumulated failures over time). 

function [data_t,failures_exp,lambdas_exp] = 
ExponentialProjectionCI(av,t,months,random_sample) 
  
%% NOMENCLATURE %% 
% random_sample gives us a vector of failures detected following a normal 
distribution with lambda as an input 
% n            ·months of data available  
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% av            is the mean of the failures detected defined by the 
random_sample 
% t             is a vector that counts the months of data 
% acc_l         is a vector with the accumulated number of failures 
% months        # of months that we want to proyect our results, eg.24 months 
% alpha         confidence coefficient to calculate the confidence intervals 
% t_year        vector that counts all months of projection 
% lambdas_exp   matrix with n rows and months columns. each row's position 
% defines how many data we have , and it continues with the predicted value 
  
t_year = linspace(1,months,months); 
data_t =[]; 
% Matrix of failures reported 
for i=1:length(t) 
    lambdas_exp(i,1:i)=random_sample(1:i); 
    lambdas_exp(i,(i+1):months)=av(i); 
    data_t =[data_t;t_year]; 
end 
% Matrix for graphs ( it is just the accumulated value of failures over 
% time) so we can graph the points if wanted 
failures_exp=transpose(cumsum(transpose(lambdas_exp))); 
end 
 

1.1.3 Function PVExponentialCI 

This function estimates the NPV when we just repair the failures detected each month. 

function [NPV_year,t_year,PV] = 
PVexponentialCI(mrt_nff,mrc_nff,mrt_b,mrc_b,oper_cost,hard_cost_nff,hard_cost
_b,u,r_At,lambdas_exp,lambda_b,months,n,pred_year) 
  
%% NOMENCLATURE: 
% mrt_nff        MEAN REPAIR TIME OF NFF, IS A FRACTION OF A MONTH 
% mrc_nff        MEAN REPAIR COST OF NFF, IN $/MONTH 
% mrt_b          MEAN REPAIR TIME OF FAILURE TYPE B, IS A FRACTION OF A MONTH 
% mrc_b          MEAN REPAIR COST OF FAILURE TYPE B, IS A FRACTION OF A MONTH 
% oper_cost      OPERATING COSTS, IT IS A FIXED QUANTITY, $/MONTH 
% hard_cost_nff  COST OF HARDWARE WHEN NFFS HAPPEN $/FAILURE 
% hard_cost_b    COST OF HARDWARE WHEN FAILURE TYPE B HAPPEN $/FAILURE 
% u              NET REVENUES OF THE SYSTEM (IF NO FAILURES) PER MONTH 
% r_At           MONTHLY DISCOUNT RATE 
% lambdas_exp    MATRIX WITH FAILURES OF TYPE A (NFFs) 
% lambda_b       FAILURE RATE OF TYPE B 
% months         MONTHS OF PROYECTED DATA 
% n              MONTHS OF AVAILABLE DATA 
% pred_year      YEARS OF PROYECTED DATA 
  
t_year = linspace(1,months,months); 
PV_all=[]; 
NPV_all=[]; 
for i=1:n 
    PV(i,:)=((u-lambdas_exp(i,:).*mrt_nff*u/30-lambda_b*mrt_b*u/30)-
(mrt_nff*mrc_nff.*lambdas_exp(i,:)+mrt_b*mrc_b.*lambda_b+oper_cost+hard_cost_
nff.*lambdas_exp(i,:)+hard_cost_b*lambda_b))./((1+r_At).^t_year); 
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end 
NPV=transpose(cumsum(transpose(PV))); 
NPV_year=transpose(NPV(:,pred_year*12)); 
  
end 
 

1.1.4 Function PVnoNFFmodified 

This function estimates the NPV when we repair the existing failures and we invest in a new 
design solving future failures of the type that we are interested in (Type A /NFFs). 

Calculation process: 

1. PV of repairing for the past months of data 
2. PV of eliminating future failures and repairing the previous failures 
3. PV Once we have paid for the new system and we only have failures of type B 

function [NPV_noNFF_year,counter_l2] = 
PVnoNFFmodified(mrt_nff,mrc_nff,mrt_b,mrc_b,remov_cost,oper_cost,hard_cost_nf
f,hard_cost_b,u,r_At,lambda_b,random_sample,months,n,pred_year) 
  
%% NOMENCLATURE: 
% mrt_nff        MEAN REPAIR TIME OF NFF, IS A FRACTION OF A MONTH 
% mrc_nff        MEAN REPAIR COST OF NFF, IN $/MONTH 
% mrt_b          MEAN REPAIR TIME OF FAILURE TYPE B, IS A FRACTION OF A MONTH 
% mrc_b          MEAN REPAIR COST OF FAILURE TYPE B, IS A FRACTION OF A MONTH 
% oper_cost      OPERATING COSTS, IT IS A FIXED QUANTITY, $/MONTH 
% hard_cost_nff  COST OF HARDWARE WHEN NFFS HAPPEN $/FAILURE 
% hard_cost_b    COST OF HARDWARE WHEN FAILURE TYPE B HAPPEN $/FAILURE 
% u              NET REVENUES OF THE SYSTEM (IF NO FAILURES) PER MONTH 
% r_At           MONTHLY DISCOUNT RATE 
% lambdas_exp    MATRIX WITH FAILURES OF TYPE A (NFFs) 
% lambda_b       FAILURE RATE OF TYPE B 
% months         MONTHS OF PROYECTED DATA 
% n              MONTHS OF AVAILABLE DATA 
% pred_year      YEARS OF PROYECTED DATA 
% counter_l      GENERATES A NEW VECTOR WHERE FUTURE FAILURES ( COUNTING 
% FROM THE MOMENT WHERE WE ARE, HAVE BEEN REMOVED, BEING THEIR VALUE 0 ) 
t_year = linspace(1,months,months); 
counter_l2=[]; 
for i=1:n 
    counter_l=[random_sample(1:i),zeros(1,(months-i))]; 
    %PV of repairing 
    PV1(i,1:i)=((u-lambda_b*mrt_b*u/30-mrt_nff*u/30.*counter_l(1:i))-
(mrt_nff*mrc_nff.*counter_l(1:i)+mrt_b*mrc_b*lambda_b+oper_cost+hard_cost_nff
.*counter_l(1:i)+hard_cost_b*lambda_b))./((1+r_At).^t_year(1:i)); 
    % PV of eliminating future failures and repairing the previous failures 
        if (i+1)==months 
            PV1(i,(i+1))= (((u-lambda_b*mrt_b*u/30)-
(remov_cost+mrt_b*mrc_b*lambda_b+oper_cost+hard_cost_b*lambda_b))./((1+r_At).
^t_year(i+1))); 
        elseif (i+2)<=months 
            % When we have to pay for the new system 
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            PV1(i,(i+1))= (((u-lambda_b*mrt_b*u/30)-
(remov_cost+mrt_b*mrc_b*lambda_b+oper_cost+hard_cost_b*lambda_b))./((1+r_At).
^t_year(i+1))); 
            % once we have paid for the new system and we only have 
            % failures of type B 
            PV1(i,(i+2):months)= ((u-lambda_b*mrt_b*u/30)-
(mrt_b*mrc_b*lambda_b+oper_cost+hard_cost_b*lambda_b))./((1+r_At).^t_year((i+
2):months)); 
        end 
    counter_l2=[counter_l2;counter_l]; 
end 
NPVallvalues=transpose((cumsum(transpose(PV1)))); 
NPV_noNFF_year=transpose(NPVallvalues(:,pred_year*12)); 
end 
 
 
1.2 File: PlotDesLinesEachMonth2 

It gets and saves the coefficients of the linear polynomial that defines the limit line between 
repair and redesign, according to the months of data available. 

clc;clear all; 
  
load('lamb10_5yrs.mat') 
  
for i=1:xcol 
    % We evaluate the mean over all cases, with the same cost 
    Mean_NPV(1,:,i)=mean( NPVexpbig(:,:,i)); 
    Mean_NPV(2,:,i)=mean( NPVexpbig_U(:,:,i)); 
    Mean_NPV(3,:,i)=mean( NPVexpbig_L(:,:,i)); 
    Mean_Cost(1,:,i)=mean(Costexpbig(:,:,i)); 
    Mean_Cost(2,:,i)=mean(Costexpbig_U(:,:,i)); 
    Mean_Cost(3,:,i)=mean(Costexpbig_L(:,:,i)); 
    Mean_noNFF(1,:,i)=mean(NPV_noNFFbig(:,:,i)); 
end 
% TO GET THE BIG MATRIXES: 
% MATRIX DECISION = 1 REDESIGN  0 REPAIR 
% MATRIX MONTH = SAYS EVERY POSITION 
Mean_Cost(Mean_Cost(:,:,:)>0)=1; 
Mean_Cost(Mean_Cost(:,:,:)<=0)=0; 
Coef_Matrix=[]; 
decision=[]; 
for j=1:n 
    % FOr each month 
      
    for i=1:values 
        %Matrix_Month(i,:)=Month((values*(i-1)+1):(values*i)); 
        Matrix_Decison1(i,:)=Mean_Cost(1,j,(values*(i-1)+1):(values*i)); 
        Matrix_Decison2(i,:)=Mean_Cost(2,j,(values*(i-1)+1):(values*i)); 
        Matrix_Decison3(i,:)=Mean_Cost(3,j,(values*(i-1)+1):(values*i)); 
    end 
BIG_matrix(:,:,j)=Matrix_Decison1(:,:); 
BIG_matrix_U(:,:,j)=Matrix_Decison2(:,:); 
BIG_matrix_L(:,:,j)=Matrix_Decison3(:,:); 
% TO GET THE LINES EACH MONTH: 
% Unique give us the different numbers that we have in the matrix in a 
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% column vector 
nonzero1 = nnz(BIG_matrix(:,:,j)); 
nonzero2 = nnz(BIG_matrix_U(:,:,j)); 
nonzero3 = nnz(BIG_matrix_L(:,:,j)); 
    if (nonzero1==0)||(nonzero2==0)||(nonzero3==0) 
        coeff1=[0,0]; 
        coeff2=[0,0]; 
        coeff3=[0,0]; 
    elseif (nonzero1==values^2)||(nonzero2==values^2)||(nonzero3==values^2) 
        coeff1=[9999999999,0]; 
        coeff2=[9999999999,0]; 
        coeff3=[9999999999,0]; 
    else 
        coeff1= GetLineCoef(BIG_matrix(:,:,j),mrc_nff,remov_cost); 
        coeff2= GetLineCoef(BIG_matrix_U(:,:,j),mrc_nff,remov_cost);         
        coeff3= GetLineCoef(BIG_matrix_L(:,:,j),mrc_nff,remov_cost); 
%     elseif (nonzero==0)||(nonzero==values^2) 
%         coeff=[0,0,0]; 
    end 
    Coef_Matrix=[Coef_Matrix;coeff1,coeff2,coeff3]; 
      
end 
  
save('coeff_lines2_lamb10_5yrs.mat','Coef_Matrix','BIG_matrix','BIG_matrix_L'
,'BIG_matrix_U') 
 

1.2.1 Function: GetLineCoef 

It generates the coefficients for the decision lines, according to the approximation we choose. 
We can change the function we want our data to be approximated to modifying this line of 
code:c=fit(Xcoord,Ycoord,'poly1'); 

function coeff= GetLineCoef(matrix,mrc_nff,remov_cost) 
[size1,size2]=size(matrix); 
X_line=[]; 
Y_line=[]; 
x_point=0; 
y_point=0; 
for i=1:size1 
    for j=1:(size2-1) 
        if matrix(i,j+1)~=matrix(i,j) 
            x_point=mrc_nff(i); 
            y_point=remov_cost(j); 
        end 
        X_line=[X_line,x_point]; 
        Y_line=[Y_line,y_point]; 
    end 
end 
Xcoord=transpose( X_line( X_line(:)~=0)); 
Ycoord=transpose( Y_line( Y_line(:)~=0)); 
c=fit(Xcoord,Ycoord,'poly1'); 
coeff=coeffvalues(c); 
end 
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1.3 File: PlotLines 

It plots the decision lines for: 

1. A generic failure rate that we can change if we want to( Lambda) 
2. The two others belong to the previous values to the limiting ones that still show that 

the best decision depends on lambda and the costs. ( Lambda_U, Lambda_L) 

We need to input the month of data that we want to represent in the variable plotMonth. 

NOTE: the represented values must have been calculated previously. If the value of Lambda 
chosen is not included in the Coefficients.mat file, then, load the proper file generated in 
section 1.2. 

NOTE2: This code is also valid for our multiple lambda study, as it gets the coefficients from 
the .mat generated from all the lambdas run. 

clc;clear all; 
 
%% Plots lines 
plotMonth=12;                                     %% CHOOSE THE MONTH TO PLOT 
  
load('Coefficients.mat','Lambda_redesign','Lambda_repair') 
Lambda_U=Lambda_redesign(plotMonth)-0.1; 
Lambda_L=Lambda_repair(plotMonth)+0.1; 
  
Lambda=5; 
%Lambda2=5; 
values=10; 
mrc_nff = linspace(0,4000,values);                 % Invented value $/month 
remov_cost = linspace(0,8000,values);           % Invented value $/month 
%% Lambda upper LimiT 
filenameU=['A_' num2str(Lambda_U*10)]; 
load(filenameU) 
p1=Coef_Matrix(plotMonth,1); 
p2=Coef_Matrix(plotMonth,2); 
% p1U=Coef_Matrix(plotMonth,3); 
% p2U=Coef_Matrix(plotMonth,4); 
% p1L=Coef_Matrix(plotMonth,5); 
% p2L=Coef_Matrix(plotMonth,6); 
function1 = @(x) (p1*x + p2 ); 
% function1U = @(x) (p1U*x + p2U); 
% function1L = @(x) (p1L*x + p2L ); 
%% Lambda lower limit 
filenameL=['A_' num2str(Lambda_L*10)]; 
load(filenameL) 
p1=Coef_Matrix(plotMonth,1); 
p2=Coef_Matrix(plotMonth,2); 
% p1U=Coef_Matrix(plotMonth,3); 
% p2U=Coef_Matrix(plotMonth,4); 
% p1L=Coef_Matrix(plotMonth,5); 
% p2L=Coef_Matrix(plotMonth,6); 
function2 = @(x) (p1*x + p2 ); 
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% function2U = @(x) (p1U*x + p2U ); 
% function2L = @(x) (p1L*x + p2L ); 
%% Lambda value 1 
filename=['A_' num2str(Lambda*10)]; 
load(filename) 
p1=Coef_Matrix(plotMonth,1); 
p2=Coef_Matrix(plotMonth,2); 
p1U=Coef_Matrix(plotMonth,3); 
p2U=Coef_Matrix(plotMonth,4); 
p1L=Coef_Matrix(plotMonth,5); 
p2L=Coef_Matrix(plotMonth,6); 
function3 = @(x) (p1*x + p2 ); 
function3U = @(x) (p1U*x + p2U ); 
function3L = @(x) (p1L*x + p2L ); 
  
%% Lambda value 2 
% filename=['A_' num2str(Lambda2*10)]; 
% load(filename) 
% p1=Coef_Matrix(plotMonth,1); 
% p2=Coef_Matrix(plotMonth,2); 
% p1U=Coef_Matrix(plotMonth,3); 
% p2U=Coef_Matrix(plotMonth,4); 
% p1L=Coef_Matrix(plotMonth,5); 
% p2L=Coef_Matrix(plotMonth,6); 
% function4 = @(x) (p1*x + p2 ); 
% function4U = @(x) (p1U*x + p2U ); 
% function4L = @(x) (p1L*x + p2L ); 
  
%% plot 
str1 = sprintf('Upper bound: %.1f',Lambda_U); 
str2 = sprintf('Lower bound: %.1f',Lambda_L); 
%str3 = sprintf('= %f',Lambda); 
  
% plot(mrc_nff,function1(mrc_nff),'-ob',mrc_nff,function2(mrc_nff),'-
*r',mrc_nff,function3(mrc_nff),'-+g',mrc_nff,function3U(mrc_nff),'--
g',mrc_nff,function3L(mrc_nff),'--g') 
% % hold on 
% % fplot(function2 (mrc_nff),'--or') 
% xlabel('Repair cost [$]') 
% ylabel('Redesign cost [$]') 
% legend({str1,str2,'{\lambda}_{input}=5'},'Location','best') 
% axis([0,4000,0,8000]) 
% str4 = sprintf('Month %.0f',plotMonth); 
% title(str4); 
  
plot(mrc_nff,function3(mrc_nff),'-^k',mrc_nff,function1(mrc_nff),'-
*b',mrc_nff,function2(mrc_nff),'-+r',mrc_nff,function3U(mrc_nff),'-
k',mrc_nff,function3L(mrc_nff),'-k') 
% hold on 
% fplot(function2 (mrc_nff),'--or') 
xlabel('Repair cost [$]','FontSize',15) 
ylabel('Redesign cost [$]','FontSize',15) 
legend({'{\lambda}_{input}=5',str1,str2},'Location','best','FontSize',12) 
axis([0,4000,0,8000]) 
str4 = sprintf('Month %.0f',plotMonth); 
title(str4,'FontSize',15); 
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% plot(1:12,Lambda_repair,'-or',1:12,Lambda_redesign,'-^b') 
% xlabel('Months') 
% ylabel('{\lambda}') 
% legend({'Always repair for smaller lambdas','Always redesign for greater 
lambdas'},'Location','best') 
% set(gca,'XTick',[0:1:12]) 
 

  
1.4 File: PlotNPVandVOR 

We evaluate the NPV when we have different costs and different months of data available, 
and we plot the NPV and the Value of Redesign at each month, during a year period 

clc;clear all; 
 
load('lamb5_0cost5yrs.mat') 
  
%% INPUT DATA: 
% We will evaluate the NPV when we have different costs and different 
% months of data available. The costs of the main code are: 
% mrc_nff = linspace(10,4000,values);                   % Invented value 
$/month 
% remov_cost = linspace(1000,8000,values);                   % Invented value 
$/month 
  
pair_costs_eval=10;    % INPUT the ROW position of the pair of costs that we  
%want to evaluate of the repair_remove_pairs 
  
for i=1:xcol 
    % We evaluate the mean over all cases, with the same cost 
    Mean_NPV(1,:,i)=mean( NPVexpbig(:,:,i)); 
    Mean_NPV(2,:,i)=mean( NPVexpbig_U(:,:,i)); 
    Mean_NPV(3,:,i)=mean( NPVexpbig_L(:,:,i)); 
    Mean_Cost(1,:,i)=mean(Costexpbig(:,:,i)); 
    Mean_Cost(2,:,i)=mean(Costexpbig_U(:,:,i)); 
    Mean_Cost(3,:,i)=mean(Costexpbig_L(:,:,i)); 
    Mean_noNFF(1,:,i)=mean(NPV_noNFFbig(:,:,i)); 
    
end 
  
% This code looks for the position of those costs in the cost vector, their 
% value has to be an existent value in the vector, otherwise it won't work 
  
Mean_NPV_plot=Mean_NPV(:,:,pair_costs_eval); 
Mean_noNFF_plot=Mean_noNFF(:,:,pair_costs_eval); 
Mean_cost_plot=Mean_Cost(:,:,pair_costs_eval); 
  
%% PLOTS 
FigWidth = 6;    %INPUT 
FigHeight = 6;   %INPUT 
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% FIRST GRAPH TO REPRESENT THE MEAN NPV FOR DIFFERENT MONTHS OF DATA, AT A 
% SPECIFIC COST THAT WE DEFINED BEFORE 
hFig1 = figure('Units','Inches','Position',[2 2 FigWidth FigHeight]); 
set(hFig1,'Name','1'); 
plot(t,Mean_NPV_plot(1,:,:),'-xr',t,Mean_noNFF_plot(1,:,:),'-
ob',t,Mean_NPV_plot(2,:,:),'-r',t,Mean_NPV_plot(3,:,:),'-r') 
xlabel('# Months of data') 
ylabel('Net Present Value 5 yrs [$]') 
legend({'{NPV}_{repair}','{NPV}_{redesign}'},'Location','best') 
title('{\lambda}_{input}=5, {RC}_{A}=10, {C}_{design_A}=1000') 
set(gca,'XTick',[0:1:12]) 
  
% GRAPH THAT SHOWS THE VALUE OF REDESIGN 
hFig2 = figure('Units','Inches','Position',[2 2 FigWidth FigHeight]); 
set(hFig2,'Name','2'); 
t2=0:1:n; 
worthit=zeros(1,n+1); 
plot(t,Mean_cost_plot(1,:,:),'k--o',t,Mean_cost_plot(2,:,:),'--
k',t,Mean_cost_plot(3,:,:),'--k',t2,worthit,'--r') 
xlabel('# Months of data') 
ylabel('Value of redesign [$]') 
%legend({'{NPV}_{repair}, {MRC}_{A}=100, 
{C}_{design_A}=2500','{NPV}_{repair}, {MRC}_{A}=1000, 
{C}_{design_A}=3500'},'Location','best') 
set(gca,'XTick',[0:1:12]) 
title('{\lambda}_{input}=5, {RC}_{A}=10, {C}_{design_A}=1000') 
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2 Multiple Lambdas study 

 
This section is only useful if we want to run the Monte Carlo for multiple failure rates. 

Here there are the 3 basic steps we need to follow in order to run our study properly: 

1. Open the WholeMonteCarlo 
a. Input the data that can be modified ( it says input) with the values we want 

to 
b. Set a name for our study in the end of the document 
c. Run the file 

2. Open the LambdaLimits 
a. Write the name of our study 
b. Set the costs that we want to graph (it says inputs) 
c. Run the file 

3. Open PlotLines 
a. Set the number of the month we want to plot 
b. Input the name of the files previously generated in 3. For different lambdas 
c. Run the file 

The next subsections explain what each file does at each moment, in a more detailed way. 
Remember that everything is also explained in the .m files themselves.File: 
WholeMonteCarlo 

This file runs for multiple failure rates, sections 1.1 and 1.2, saving each test with a specific 
name.  

 
%% INPUT DATA 
iterations=1300; 
values=10; 
alpha= 0.05;         % COnfident interval of 95% 
n=12;                % INPUT months of data 
pred_year=5;         % years of estimated NPV data 
mrt_nff = 3/(24*30);            % Invented value 3 h to repair a failure 
expressed as a fraction of a month 
mrc_nff = linspace(10,4000,values);                   % Invented value 
$/month 
remov_cost = linspace(1000,8000,values);                   % Invented value 
$/month 
oper_cost = 50;               % I will assume to have a 60$ cost of utilities 
per month 
hard_cost_nff = 10;               % $/failure cost of hardware 
hard_cost_b = 20; 
u = 1500;                     %Benefits that each unit reports per month when 
working 
r_At = 0.05/12;                    % Discount rate of 5% per year, meaning 
0.05/12 per month 
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mrt_b = 6/(24*30);            % Invented value 3 h to repair a failure 
expressed as a fraction of a month 
mrc_b = 50;   
  
  
for lambda=17.1:0.1:18   
    % INPUT lambda mean per month 
 
%% Define Montecarlo Study 
lambda_b=round(lambda*3); 
months = pred_year*12;         % months of projected data 
years = months/12;              % years of estimated NPV data  
[p,q] = meshgrid(mrc_nff, remov_cost); 
repair_remove_pairs = [p(:) q(:)]; 
[xcol,ycol]=size(repair_remove_pairs); 
% First define the empty matrixes  
A=[]; 
AU=[]; 
AL=[];   
C=[]; 
CU=[]; 
CL=[]; 
E=[]; 
EU=[]; 
EL=[]; 
G=[]; 
GU=[]; 
GL=[]; 
I=[]; 
J=[]; 
NPVexpbig=[]; 
NPVexpbig_U=[]; 
NPVexpbig_L=[]; 
  
NPV_noNFFbig=[]; 
  
Costexpbig=[]; 
Costexpbig_U=[]; 
Costexpbig_L=[]; 
  
for l=1:iterations 
%% Random scenarios following a Poisson model 
random_sample = poissrnd(lambda,1,n); 
lambda_seq = transpose(random_sample); 
lambda_ci = zeros(2,n); 
t=(1:1:n); 
% We generate the confidence intervals 
        for q = 1:n 
            [le(q), lci(:, q)] = poissfit(lambda_seq(1:q)); 
        end 
lambdas_exp=random_sample; 
lambdas_exp_upper=[lci(2,1),diff(lci(2,:).*t)]; 
lambdas_exp_low=[lci(1,1),diff(lci(1,:).*t)]; 
  
acc_l = cumsum(random_sample); 
av = acc_l./t; 
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av_upper = lci(2, :); 
av_low = lci(1, :); 
  
% Representation of the data reported 
%[l_sample, t_report,l_graph,t_graph] = 
FailureReportGenerator1(t,random_sample); 
  
%% Projection following Exponential distribution (HPP) 
[data_t,failures_exp,lambdas_exp] = 
ExponentialProjectionCI(av,t,months,random_sample); 
[data_t,failures_exp_upper,lambdas_exp_upper] = 
ExponentialProjectionCI(av_upper,t,months,lambdas_exp_upper); 
[data_t,failures_exp_low,lambdas_exp_low] = 
ExponentialProjectionCI(av_low,t,months,lambdas_exp_low); 
%Comments 
% The failures_exp is the total number of failures accumulated per period 
% lambdas_exp is the counter of failures we have per month 
  
%% Estimation NPV for Exponential distribution 
    for p=1:xcol 
        f_cost=repair_remove_pairs(p,1); %Cost of repair 
        f_redesign=repair_remove_pairs(p,2); % Cost of redesign 
        %% NPV when just repairing 
        [NPV_year,t_year,PV] = 
PVexponentialCI(mrt_nff,f_cost,mrt_b,mrc_b,oper_cost,hard_cost_nff,hard_cost_
b,u,r_At,lambdas_exp,lambda_b,months,n,pred_year); 
        [NPV_year_L,t_year,PV] = 
PVexponentialCI(mrt_nff,f_cost,mrt_b,mrc_b,oper_cost,hard_cost_nff,hard_cost_
b,u,r_At,lambdas_exp_low,lambda_b,months,n,pred_year); 
        [NPV_year_U,t_year,PV] = 
PVexponentialCI(mrt_nff,f_cost,mrt_b,mrc_b,oper_cost,hard_cost_nff,hard_cost_
b,u,r_At,lambdas_exp_upper,lambda_b,months,n,pred_year); 
  
        %% Cost of eliminating all NFFs 
        [NPV_noNFF_year,counter_l2] = 
PVnoNFFmodified(mrt_nff,f_cost,mrt_b,mrc_b,f_redesign,oper_cost,hard_cost_nff
,hard_cost_b,u,r_At,lambda_b,random_sample,months,n,pred_year); 
        [NPV_noNFF_year_L,counter_l2_L] = 
PVnoNFFmodified(mrt_nff,f_cost,mrt_b,mrc_b,f_redesign,oper_cost,hard_cost_nff
,hard_cost_b,u,r_At,lambda_b,lambdas_exp_low,months,n,pred_year); 
        [NPV_noNFF_year_U,counter_l2_U] = 
PVnoNFFmodified(mrt_nff,f_cost,mrt_b,mrc_b,f_redesign,oper_cost,hard_cost_nff
,hard_cost_b,u,r_At,lambda_b,lambdas_exp_upper,months,n,pred_year); 
  
        % Cost if assumed a HPP model 
        Costexp=NPV_noNFF_year-NPV_year; 
        Costexp_U=NPV_noNFF_year_U-NPV_year_U; 
        Costexp_L=NPV_noNFF_year_L-NPV_year_L; 
  
        %% Matrixes for each cost 3D 
        NPVexpbig(l,:,p)=NPV_year; 
        NPVexpbig_U(l,:,p)=NPV_year_U; 
        NPVexpbig_L(l,:,p)=NPV_year_L; 
  
        NPV_noNFFbig(l,:,p)=NPV_noNFF_year; 
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        NPV_noNFFbig_U(l,:,p)=NPV_noNFF_year_U; 
        NPV_noNFFbig_L(l,:,p)=NPV_noNFF_year_L; 
  
        Costexpbig(l,:,p)=Costexp; 
        Costexpbig_U(l,:,p)=Costexp_U; 
        Costexpbig_L(l,:,p)=Costexp_L; 
  
        %%Comments:  
        %x axis: number of cases 
        % y axis: # months of data available 
        % z axis: diff costs studied 
    end 
  
%% Saving each test 
C(:,:,l)=lambdas_exp; 
CU(:,:,l)=lambdas_exp_upper; 
CL(:,:,l)=lambdas_exp_low; 
I=[I;av]; 
% random sample 
J=[J;random_sample]; 
end 
  
    for i=1:xcol 
        % We evaluate the mean over all cases, with the same cost 
        Mean_NPV(1,:,i)=mean( NPVexpbig(:,:,i)); 
        Mean_NPV(2,:,i)=mean( NPVexpbig_U(:,:,i)); 
        Mean_NPV(3,:,i)=mean( NPVexpbig_L(:,:,i)); 
        Mean_Cost(1,:,i)=mean(Costexpbig(:,:,i)); 
        Mean_Cost(2,:,i)=mean(Costexpbig_U(:,:,i)); 
        Mean_Cost(3,:,i)=mean(Costexpbig_L(:,:,i)); 
        Mean_noNFF(1,:,i)=mean(NPV_noNFFbig(:,:,i)); 
    end 
% TO GET THE BIG MATRIXES: 
% MATRIX DECISION = 1 REDESIGN  0 REPAIR 
% MATRIX MONTH = SAYS EVERY POSITION 
Mean_Cost(Mean_Cost(:,:,:)>0)=1; 
Mean_Cost(Mean_Cost(:,:,:)<=0)=0; 
Coef_Matrix=[]; 
decision=[]; 
    for j=1:n 
        % FOr each month 
  
        for i=1:values 
            %Matrix_Month(i,:)=Month((values*(i-1)+1):(values*i)); 
            Matrix_Decison1(i,:)=Mean_Cost(1,j,(values*(i-1)+1):(values*i)); 
            Matrix_Decison2(i,:)=Mean_Cost(2,j,(values*(i-1)+1):(values*i)); 
            Matrix_Decison3(i,:)=Mean_Cost(3,j,(values*(i-1)+1):(values*i)); 
        end 
    BIG_matrix(:,:,j)=Matrix_Decison1(:,:); 
    BIG_matrix_U(:,:,j)=Matrix_Decison2(:,:); 
    BIG_matrix_L(:,:,j)=Matrix_Decison3(:,:); 
    % TO GET THE LINES EACH MONTH: 
    % Unique give us the different numbers that we have in the matrix in a 
    % column vector 
    nonzero1 = nnz(BIG_matrix(:,:,j)); 
    nonzero2 = nnz(BIG_matrix_U(:,:,j)); 
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    nonzero3 = nnz(BIG_matrix_L(:,:,j)); 
        if (nonzero1==0)||(nonzero2==0)||(nonzero3==0) 
            coeff1=[0,0]; 
            coeff2=[0,0]; 
            coeff3=[0,0]; 
        elseif 
(nonzero1==values^2)||(nonzero2==values^2)||(nonzero3==values^2) 
            coeff1=[9999999999,0]; 
            coeff2=[9999999999,0]; 
            coeff3=[9999999999,0]; 
        else 
            coeff1= GetLineCoef(BIG_matrix(:,:,j),mrc_nff,remov_cost); 
            coeff2= GetLineCoef(BIG_matrix_U(:,:,j),mrc_nff,remov_cost);         
            coeff3= GetLineCoef(BIG_matrix_L(:,:,j),mrc_nff,remov_cost); 
    %     elseif (nonzero==0)||(nonzero==values^2) 
    %         coeff=[0,0,0]; 
        end 
        Coef_Matrix=[Coef_Matrix;coeff1,coeff2,coeff3]; 
  
    end 
  
filename=['A_' num2str(lambda*10)]; 
save(filename,'Coef_Matrix','BIG_matrix','BIG_matrix_L','BIG_matrix_U'); 
  
end 
toc 
 

2.1.1 File: LambdaLimits 

It gets the the upper and lower bounds for the failure rates at each month according to the 
data generated in the tests generated in section 2.1. 

clc;clear all; 
n=12;                        % DO NOT CHANGE THIS VALUE 
lambda=0.5:0.1:18;           %Range of lambdas that we are studying 
for i=1:n 
    for j=1:length(lambda) 
        filename=['A_' num2str(lambda(j)*10)]; 
        load(filename) 
        B(j,:)=Coef_Matrix(i,1:2); 
    end 
    Coefficient(:,:,i)=B(:,:); 
     
    Repair=[0,0]; 
    Redesign=[9999999999,0]; 
     
    if strmatch(Repair,B(:,:))~=0 
       % The last repair pair will be the lower limit 
        Pos_repair=strmatch(Repair,B(:,:)); 
        Lambda_repair(i)=lambda(Pos_repair(length(Pos_repair))); 
    else 
        Lambda_repair(i)=0; 
    end 
    if strmatch(Redesign,B(:,:))~=0 
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        % The first redesign pair will be the upper limit 
        Pos_redesign=strmatch(Redesign,B(:,:)); 
        Lambda_redesign(i)=lambda(Pos_redesign(1)); 
    else 
        Lambda_redesign(i)=0; 
    end 
end 
  
  
save('Coefficients') 
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