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Abstract—The lifetime of wireless sensor networks 

deployments depends strongly on the nodes battery state 
of health. It is important to detect promptly those motes 
whose batteries are affected and degraded by ageing, 
environmental conditions, failures, etc. There are several 
parameters that can provide significant information of the 
battery state of health, such as: the number of 
charge/discharge cycles, the internal resistance, voltage, 
drained current, temperature, etc. The combination of 
these parameters can be used to generate analytical 
models capable of predicting the battery state of health. 
The generation of these models needs a previous process 
to collect dense data traces with sampled values of the 
battery parameters during a large number of discharge 
cycles under different operating conditions. The collected 
data allow the development of mathematical models that 
can predict the battery state of health. These models are 
required to be simple because they must be executed in 
motes with low computational capabilities. The article 
shows the complete process of acquiring the training 
data, the models generation and its experimental 
validation using rechargeable batteries connected to 
Telosb motes. The obtained results provide significant 
insight of the battery state of health at different 
temperatures and charge/discharge cycles. 
 

Index Terms— Wireless sensor networks, battery, 
energy, models, SoH, microcontrollers. 

I. INTRODUCTION 
IRELESS Sensor Networks’ (WSN) motes are equipped 
with low-cost components and they are usually supplied 
by batteries. Due to the strict constraints that the motes 

present in terms of computational capabilities and power 
consumption, WSN applications usually involve simple tasks. 
Typical actions that a mote performs are data sampling from 
integrated sensors and wireless data transmission.  But the 
application of this technology in real deployments is usually 
limited by the mote’s power consumption. The mote’s battery 
normally represents its only source of energy and the 
discharge cycle restricts the mote’s lifetime. In some 
deployments, it is possible to use alternative sources of energy 
to recharge the battery with the help of additional energy-
harvesting elements based on solar panels, wind turbines, 
piezoelectric generators, RF harvesters, etc [1]. However, 
rechargeable batteries are affected by a wide variety of factors 
that can have a strong impact on its performance, such as: 
environmental temperature, depth of discharge, number of 
charge/discharge cycles, ageing process, etc. In this sense, the 
batteries’ state of charge (SoC) and state of health (SoH) 
represent common parameters used to determine the current 
battery state, however the meaning and the information that 

 
 

they provide is different. Battery SoC is a measure of the 
amount of electrical energy stored and indicates the charge 
that is left. In WSNs, a network mote can use the SoC to 
estimate when the battery will be depleted. SoC can be 
expressed as a percentage of some reference, i.e., the capacity 
when the battery was completely charged. It can be estimated 
applying mathematical models generated using a combination 
of different battery parameters [2-4].  
 On the other hand, SoH can be considered as a metric to 
evaluate the battery performance and detect capacity and 
power losses that appear with the pass of time [5]. It is 
employed to evaluate the current state of an aged battery and 
to compare it with the state of a fresh battery. Thus, SoH can 
be defined as the relationship between the nominal capacity at 
present time and the nominal initial capacity of the battery. 
 
𝑆𝑆𝑆𝑆𝑆𝑆 =

𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
∗ 100%            (1) 

 
This parameter provides significant information to predict a 
battery malfunction and it can avoid network failures due to 
unexpected mote deaths. With the aim of detecting batteries 
that are degraded, it should be desirable that every mote could 
periodically monitor the current battery SoH. This information 
would allow the implementation of energy aware applications, 
in which the mote’s operation can change depending on the 
battery state [6]. In addition, the central node of the network 
can collect this information and facilitate the maintenance of 
network, indicating when a battery replacement is required.  

In this context, the selection of appropriate models to 
estimate and predict the current SoH is of primary importance. 
Batteries can be diagnosed measuring variations in some 
intrinsic parameters, such as the capacity or the cell internal 
impedance. In references [7][8], it is shown how the internal 
resistance of the battery can provide a significant insight of its 
state. Thus, an abrupt increase of the internal resistance 
evidences a deterioration of the battery SoH and the 
appearance of ageing effects. In addition to the internal 
resistance, there are other battery parameters, such as: state of 
charge (SoC), the operating temperature, the number of 
charge/discharge cycles, initial voltage, depth of discharge 
(DoD), current drained, etc, which can provide significant 
information about the battery SoH. Thus, the main objective of 
this paper and its principal novelty is the development of 
simple and accurate SoH models to detect the battery 
degradation in WSN motes. The generation of these models is 
based on the combination of different parameters that can be 
directly measured during the mote operation. An additional 
requirement is that these models must be simple, because they 
are executed in WSN motes with very low computational 
capabilities. 

Predicting the batteries State of Health in 
Wireless Sensor Networks applications 

W 
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The development of the models needs an initial acquisition 

of dense data traces of several battery parameters during a 
complete discharge cycle. The data acquisition has to be 
repeated at different temperatures and within a large interval 
of charge/discharge cycles to guarantee a thorough coverage 
of a wide range of battery operating conditions. It should be 
also noticed that the validity of the training data traces is 
restricted to one specific battery model and may require the 
gathering of a new data set if it is changed. The adoption of 
this method can be enormously facilitated with the 
development of an autonomous system that handles the initial 
data acquisition process. This test-bench allows an easy 
acquisition of long discharge data traces from batteries 
connected to a WSN mote during its normal operation. In this 
paper, a detailed presentation of the test-bench has been 
included and it can be replicated and applied to different 
batteries. 

II. RELATED WORK 
Nowadays, Li-ion batteries have become the preferable type 

of batteries for supplying a vast variety of handheld devices, 
such as mobile phones, laptops, cameras, etc. The main 
advantages of this battery technology are: high energy density, 
great efficiency and long life in terms of number of 
charge/discharge cycles [5]. However, the performance of Li-
ion batteries decreases with the pass of time due to a 
combination of different ageing factors, such as: temperature, 
charge/discharge cycles, current and cut-off voltage, etc. The 
foundations of the battery ageing can be thermal, chemical or 
mechanical and the complete understanding of all the 
mechanisms involved in these processes is not an easy matter 
[9]. Battery management systems can estimate the SoH to 
predict battery failures and determine when its replacement is 
necessary.  However, SoH is a parameter that is very difficult 
to estimate in real systems. Li-ion batteries follow internal 
complicated ageing mechanisms that degrade their capacity 
and modify the internal structure. To this end, there are in the 
literature a great variety of methods proposed to determine the 
battery SoH [5], most of them applied to the case of batteries 
for electric vehicles.  

The first type of methods is based on electrochemical 
impedance spectroscopy, which involves experimental 
measures of the battery parameters [10][11]. They provide 
accurate models to estimate the ageing effects correlating the 
Li-ion battery impedance spectra with the SoH. However, 
their main drawback is the complexity of the measurement 
process, which makes these methods unsuitable for WSNs. 

Other approaches try to describe battery ageing using 
equivalent circuit models [12] and monitoring directly the 
evolution of certain parameters, such as: the internal resistance 
[7][8] or the total available capacity measured using coulomb 
counting [13]. Adaptive methods include parameter 
identification techniques to correlate the battery 
electrochemical properties with the SoH.  The adaptive system 
compares the predicted with the experimentally measured 
values to estimate the cell dynamics.   In some cases, the 
parameter identification can be performed using least squares 
algorithms [14-16]. In this group, we can highlight the work 
presented in reference [14] that is focused on the development 

of SoH models using linear regression to estimate the 
equivalent constant time of the battery. This parameter is 
highly correlated with the normalized capacity that provides 
direct information of the battery SoH. Some other algorithms 
proposed in the literature to develop battery management 
systems for electric vehicles are based on Kalman filters [17-
19], genetic algorithms [20] or particle filters [21][22]. The 
main problem of these adaptive methods is that the 
computational cost may be excessive for WSN motes. There 
are other attempts to achieve battery models using 
electrochemical formulation expressed as partial differential 
equations [23]. In [24] authors propose a combined SoC/SoH 
estimation algorithm via an electromechanical model that only 
uses samples of the battery voltage and current. However, the 
grade of complexity of the mathematical expressions in these 
methods made their implementation prohibitive in low cost 
motes. 

In the literature there are also methods that address SoH 
estimation considering it as a black-box problem. In this case, 
there is no attempt to achieve a full understanding of the 
battery ageing mechanism. Proposed models rely on machine 
learning techniques to predict the battery SoH under different 
operating conditions. Some machine learning algorithms 
employed are support vector machines [25] [26], neural 
networks [27][28], probabilistic neural networks [29], 
recurrent neural networks [30] and fuzzy identification [31]. 
Nevertheless, the accuracy of these methods depends on the 
availability of large data traces of the battery parameters to 
train the estimation models.  

As a result, it can be concluded that there is a large number 
of references in the literature considering the important 
problem of battery management for electric vehicles [5]. 
However, to the best of our knowledge, there is a great lack of 
references in the literature that deal with the design of simple 
models for SoH estimation in WSN’s motes. Thus, most of the 
aforementioned methods are too complex for being executed 
in low-cost microcontrollers. In addition, none of them has 
been generated or validated using parameters sampled during 
the discharge cycle of a battery connected to a mote running a 
typical WSN application. On the other hand, there are very 
few references that include a revision of the whole process, 
that is, how to perform the data acquisition, the battery 
modeling, the implementation in real motes and the final 
validation using battery data traces. Thus, in this work we 
present the methodology that has been followed to generate 
and validate the SoH models. The process implies a first step 
to collect traces of experimental data in a real test-bench, a 
second stage to generate the models and finally the 
assessments performed to validate them.  

III. SYSTEM DESIGN 
The aim of this section is to provide a detailed description 

of the specific elements included in the test-bench. The 
proposed system monitors and controls the battery 
charge/discharge process and samples some parameters during 
the mote operation. The system applies a prefixed number of 
charge/discharge cycles during the normal functioning of a 
mote connected to the monitored battery. The mote runs a 
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typical WSN application performing common tasks in this sort 
of networks. Thus, the system reproduces the real behavior of 
a mote executing a complete WSN program and monitors the 
battery parameters during a complete discharge cycle. Once 
the mote runs out of battery, the system controller recharges it, 
without having to remove the battery from the test-bench, and 
saves the data traces in independent files. 

 
Fig. 1. Proposed system composed of four main blocks: Telosb 

mote, recharging board, Galileo board, Telosb base station and 
battery. 

Most of the system components are built using open 
hardware elements, since it is intended to be widely accessible 
and easily reproducible. The test-bench is composed of three 
principal blocks: a) Telosb mote connected to a Li-ion battery, 
b) recharging board composed of a Li-ion battery charger and 
additional components for signal conditioning and c) Intel’s 
Galileo board, which controls the system operation and saves 
the data in a flash memory, with a Telosb basestation 
connected. The battery model selected is a rechargeable 3.7 V 
Li-ion Polymer Battery from Xtra-power with a capacity of 40 
mAh [32]. An image of the system is shown in Fig. 1. Next, a 
detailed description of each block is provided. 

A. Mote 
In this work, the selected mote has been the well-known 

Telosb [33]. This mote features different power down modes. 
Thus, in active mode the mote drains 2,3 mA, with the 
microcontroller running at 4 MHz, and 2.6 µA when it is in 
standby [34]. The wireless transceiver increases the 
consumption to 19.7 mA, when it is in reception, 17.4 mA in 
transmission, 426 µA in sleep and 20 µA in power down. The 
LEDs activation rises the current consumption in: a) blue LED 
3.3 mA, b) red LED 3.8 mA and c) green LED 5.3 mA [34]. 
Finally, the Sensirion SHT11 temperature sensor [35] 
consumes 2 µW in sleep mode and 3 mW during its operation. 

The battery parameters are sampled by the mote hardware, 
being the sampling process handled by the running program. 
The battery parameters measured are the internal supply 
voltage of the mote and the voltage at the battery terminals. 
The acquisition of the battery voltage is performed using the 
recharging board and sampling the Telosb_adc_input in Fig. 2. 
Taking into account these two sampled voltages and noticing 
that there is a shunt resistance of 10 Ω, the mote current 
consumption can be determined.  

The program executed during the data collection process 
constitutes a typical WSN application. This program 
periodically wakes up the mote and samples the battery 
voltage, the microcontroller internal voltage and the 
temperature sensor. After that, it turns on the LEDs and the 

wireless transceiver to increase the power consumption. In this 
new power state, the mote acquires again the battery voltage 
and the internal supply voltage. Finally, it sends wirelessly the 
data to the basestation and goes to sleep. The acquisition of 
the battery voltage and the current drained at two different 
power states allows the estimation of the battery internal 
resistance using the equation [2]: 

𝑅𝑅 =
𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙−𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ
𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙−𝐼𝐼ℎ𝑖𝑖𝑖𝑖ℎ

= ∆𝑉𝑉
∆𝐼𝐼

  (2) 

The specific list of states and actions performed with the 
corresponding employed time for this program is: 
1. After the wake-up event the microcontroller resumes the 

program execution and measures the battery voltage, V, 
and the internal Vcc (V_low, Vcc_low). The power mode 
of the mote in this state is active because only the 
microcontroller is active. This state lasts 275 ms and then 
the mote passes to state 2. 

2. The microcontroller measures the ambient temperature 
(Temp) and immediately passes to state 3. 

3. Switches-on the LEDs and the wireless transceiver to 
increase the power consumption. The power mode changes 
to high and mote goes to state 4. 

4. Mote measures the battery voltage, V, and microcontroller 
Vcc (V_high, Vcc_high) in this high power mode. The 
mote stays at this state during 6 seconds and changes to 
state 5 afterwards. 

5. Mote sends the sampled data using the wireless transceiver 
to the basestation mote and passes to state 6. 

6. Mote programs a sleep timer with a period of 700 ms and 
shuts-down everything: LEDs, transceiver and 
microcontroller. After this period, mote returns to state 1. 

 This application has been programmed using TinyOS, which 
allows a rapid implementation of WSN applications.  

B. Recharging board 
The recharging board is an intermediate element situated 
between the Telosb mote and the Galileo platform that 
recharges the battery. The board integrates a Li-ion battery 
charger from Microchip, with reference MCP73831 [36]. Fig 
2 depicts the board schematic and the expansion connectors.  

 
Fig.2. Recharging board with inputs/outputs (connectors) for the 

Galileo board, Telosb and the power supply. 
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B.  Galileo Board 

Galileo Board [37] is powerful platform featuring a 32-bit 
microprocessor that presents an extraordinary capacity of data 
storage, basically because it is equipped with a large RAM 
memory and a SD flash memory. The Galileo is connected to 
the Telosb basestation through the USB port and it can receive 
and save data packets using this link.  

C.  Temperature chamber 
The ambient temperature affects significantly the battery 

operation. In order to ensure that the temperature was constant 
during all the charge/discharge cycles, the batteries were put 
inside a temperature chamber. This chamber has an accuracy 
of +/- 0.8ºC in the range [-40, -25] ºC and of +/- 0.5ºC in the 
interval [-25, 70] ° C. Three different temperatures were 
selected: -16ºC, 20ºC and 45ºC. At each temperature, a group 
of different charge/discharge cycles was collected. 

IV. SOH MODELS 

A. Data collection 
Battery parameters that can be sampled directly are: V_high, 
V_low, Vcc_high, Vcc_low, ambient temperature and number 
of charge/discharge cycles. Where, V_high and V_low are the 
sampled battery voltages when the mote is at high power and 
low power consumption states, respectively. Vcc_high and 
Vcc_low correspond to the microcontroller internal supply 
voltage at the two different power levels. Therefore, the saved 
data files are composed of six columns, containing the values 
of these parameters. Each row in these files forms a vector that 
comprises the values of the six parameters taken at the same 
time. 
 After the acquisition of these experimental data samples, 
some other derived parameters can be extracted. For example, 
I_low and I_high, the mote’s currents drained at low and high 
power states, can be calculated using the voltages and the 
shunt resistor. With the currents and voltages, it is also 
possible to estimate the battery internal resistance as it is 
expressed in Eq. 2. Other significant parameters that can 
provide relevant information are the SoC [7] and the initial 
battery voltage at each trace V_ini [5]. The complete list of 
parameters considered is: 
• V_high, V_low, I_high, I_low: Voltages and currents at 

high and low power states. 
• V_ini: Initial battery voltage at each trace. 
• T: Ambient temperature. 
• N_c: Number of charge/discharge cycles. 
• R: Battery internal resistance. 
• SoC: State of Charge. 
• Slope_V, Slope_I and Slope_R: Slopes of the voltage, 

current and resistance traces. 
• V_dif_slope and V_dif_slope_mean: The first parameter is 

the difference in the slope calculated with only 14 
samples or with 70 samples.  The second one is the mean 
of this parameter throughout the same trace. 

• V_max, V_var, V_range: Voltage maximum, variance and 
range for a complete trace. 

During the data gathering process, three batteries of the same 
type were monitored at three different ambient temperatures 

(45ºC, 20ºC and -16ºC). Three test-benches were running in 
parallel in an autonomous way to collect all the programmed 
data traces. Once all the experimental files were collected, the 
rest of indirect parameters were calculated off-line, processing 
the data samples included in the stored files.  
 When the data collection begins, it is important to save 
properly the initial data trace, which contains the samples of 
the first complete discharge cycle of the battery at 20º C. This 
trace represents the maximum autonomy of the battery and it 
is considered as the 100% of its autonomy. Comparing the 
length of the initial trace with the length of subsequent data 
traces, the real SoH of the battery at a given time can be 
calculated. Thus, the real SoH at a certain instant is computed 
off-line comparing the durations of these discharge cycles. 
  Although the data traces duration is affected by 
temperature, number of charge/discharge cycles, depth of 
discharge and other battery parameters, the saved data traces 
comprise several hundred samples per trace. Hence, a random 
selection of samples at each trace was made with the aim of 
reducing the total amount of data and the complexity of its 
processing. In this way, only 250 data samples were selected 
from each data trace. It should be noticed that each sample is a 
vector that comprises the values of all the battery parameters 
sampled at the same instant. One fifth of the samples come 
from the final part of the trace, where the battery voltage drops 
quickly, because an overrepresentation of this non-linear part 
provides useful information to obtain more accurate models. 
B. Preprocessing 
 Initially, a bilinear Butterworth filter is applied to smooth 
the collected data traces and to reduce the effect of the 
dispersion of measurements and noise. Some of the saved 
parameters may not provide relevant information and they can 
be discarded. In this context, the selection of those parameters 
that provide more relevant information is made applying the 
correlation-based algorithm [38] and the greedy hillclimbing 
method based on a local search [39]. The results obtained are:  
• V_high, I_high, V_max and V_range are discarded because 

they are strongly correlated with other parameters and the 
information they provide is redundant.  

• Parameters that are not highly correlated with the real SoH 
are also excluded. This group includes: SoC, Slope_V, 
Slope_I, Slope_R, V_dif_slope and V_dif_slope_mean. 

• As a result, the final list of selected parameters is: V_low, 
I_low, R, T, N_c, V_ini and V_var. 

C. Model generation 
Models have been developed using the data mining 

software Weka [40]. Two families of models have been 
considered: regressions and neural networks. In this process, 
only data coming from two batteries were used and 10% of the 
data samples were kept for cross-validating the models 
generated. This means that in Weka 10 folds were selected to 
verify the models. The traces from the third battery were 
reserved to validate the models. 
1) Regressions 

In this category two different algorithms for generating the 
models have been used: least squares and linear regression.  A 
first approach based on the well-known least squares 
algorithm makes use of the Weka least squared regression 
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method. This procedure provides different regression 
functions using random subsamples of the data. After that, the 
method selects the least squared regression function with 
lowest median squared error. Applying the Weka software 
with this method to input data traces, the resulting function is: 
𝑆𝑆𝑆𝑆𝑆𝑆 = −0.0065 ∙ 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 + 0.3608 ∙ 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 − 0.0001 ∙ 𝑇𝑇

− 0.0028 ∙ 𝑅𝑅 − 0.0004 ∙ 𝑁𝑁𝑐𝑐      
+ 0.0307 ∙ 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 − 16.3266 ∙  𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
+  1.4583 

 (3) 

 A second linear model with the same parameters can be 
generated considering the common linear regression. The 
implementation of this method in the Weka software uses the 
Akaike information criterion to estimate the relative quality of 
the models for a certain data set. The obtained function 
applying Weka with this method is: 
𝑆𝑆𝑆𝑆𝑆𝑆 = −0.0027 ∙ 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 + 2.1815 ∙ 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 − 0.0007 ∙ 𝑇𝑇 

− 0.0163 ∙ 𝑅𝑅 − 0.0009 ∙ 𝑁𝑁𝑐𝑐 + 0.2882
∙ 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖  − 11.0923 ∙  𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
+  0.1596 

 (4) 

2)  Neural Networks 
As a second approach, models based on the multilayer 

perceptron (MLP) [41] have been also considered. These 
models have already been successfully applied to the 
development of battery models for electric vehicles [27][28]. 
Although, neural networks are more complex than linear 
regressions, it should be noticed that the main complexity 
appears during the model generation in the training step. Thus, 
these models can be trained on a personal computer using the 
experimental data traces, and then, once the MLP coefficients 
are obtained, it can be programmed and executed on WSN 
motes. During the training step in the Weka software 500 
epochs and the sigmoid activation function were used. The 
expression of the five-neurons network obtained is: 

𝑛𝑛1 =
1

1 + 𝑒𝑒−(𝑘𝑘11·𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙+𝑘𝑘12·𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙+𝑘𝑘13·𝑇𝑇+𝑘𝑘14·𝑅𝑅+𝑘𝑘15·Nc+𝑘𝑘16∙𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘17∙𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣+𝑡𝑡ℎ1) 

𝑛𝑛2 =
1

1 + 𝑒𝑒−(𝑘𝑘21·𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙+𝑘𝑘22·𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙+𝑘𝑘23·𝑇𝑇+𝑘𝑘24·𝑅𝑅+𝑘𝑘25·Nc+𝑘𝑘26∙𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘27∙𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣+𝑡𝑡ℎ2) 

𝑛𝑛3 =
1

1 + 𝑒𝑒−(𝑘𝑘31·𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙+𝑘𝑘32·𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙+𝑘𝑘33·𝑇𝑇+𝑘𝑘34·𝑅𝑅+𝑘𝑘35·Nc+𝑘𝑘36∙𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘37∙𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣+𝑡𝑡ℎ3) 

𝑛𝑛4 =
1

1 + 𝑒𝑒−(𝑘𝑘41·𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙+𝑘𝑘42·𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙+𝑘𝑘43·𝑇𝑇+𝑘𝑘44·𝑅𝑅+𝑘𝑘45·Nc+𝑘𝑘46∙𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘47∙𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣+𝑡𝑡ℎ4) 

 
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡ℎ5 + 𝑘𝑘51 · 𝑛𝑛1 + 𝑘𝑘52 · 𝑛𝑛2 + 𝑘𝑘53 · 𝑛𝑛3 + 𝑘𝑘54 · 𝑛𝑛4         (5) 

  

 
where the coefficients are: 
k11 = 0.19118;  k12 =-0.54735;  k13 = 0.55937;  
k14 = -0.04410;  k15 = 0.47650;  k16 = -0.56882; 
k17 = 2.32554; th1 = 0.53997; 
k21 = 0.09869;  k22 =-0.23333;  k23 = -0.32485;  
k24 = 0.03691;  k25 = -0.29316;  k26 = 0.00815; 
k27 = -3.72451; th2 = -5.09052; 
k31 = 0.17222;  k32 =-0.36228;  k33 = -1.49284;  
k34 = 0.09042;  k35 = -0.60896; k36 = -0.18619;  
k37 = 1.03222; th3 = 0.17275; 
k41 = -0.48555;  k42 =1.26417;  k43 = 1.66614;  
k44 = -0.00248;  k45 = -0.33934; k36 = -0.83581;  
k37 = 2.48200; th4 = -0.76316; 

k51 =-0.97639;  k52 = 2.00500;  k53 = -0.75240;  
k54 = -0.50034; th5 = 0.89178; 

V. RESULTS AND DISCUSSIONS 

A. Model validation 
Initially, the models have been evaluated using a subset of 

the data traces, which have not been used during the models 
generation. This subset is taken from the initial data traces and 
comprises a 10% of these traces. Table I summarizes the 
cross-validation of the models using these reserved samples.  

TABLE I 
MEAN RESULTS OF THE PROPOSED MODELS ON THE ORIGINAL MEASURES 
Model Correlation Absolute 

error  
(SoH) 

Squared 
error 
(SoH) 

Relative 
abs 
error(%) 

Relative 
squared 
error(%) 

Least 
squares 

0.98 0.01 0.03 11.21   19.47 

Linear 
regression 

0.99 0.01 0.01 7.99   9.51 

Multilayer 
perceptron 

1 0.001 0.001 0.70   0.82 

 
In Fig. 3 and Fig. 4 it is shown the evolution of the real SoH 

against the number of charge/discharge cycles for the two 
batteries at different temperatures. These graphs compare the 
SoH estimated using the three models considered. The results 
obtained, shown in Table I, demonstrate the suitability of the 
proposed models and reveal that the model that best fits on 
average the real SoH is the MLP. On the other hand, results in 
Table II breaks down the performance of each model 
considering in every case only the cycles taken at one 
particular temperature. Comparing these results, the first 
conclusion that can be drawn is that the MLP behaves 
significantly better at -16º, mainly due to the nonlinear fall of 
the SoH at this temperature. At the rest of temperatures MLP 
continues performing better but the difference is not as 
pronounced, since the shape of these graphs is more linear.  

TABLE II. 
MEAN RESULTS OF THE PROPOSED MODELS ON THE ORIGINAL MEASURES AT 

DIFFERENT TEMPERATURES. 
Model Temp. Corre-

lation 
Absolute 
error  
(SoH) 

Squared 
error 
(SoH) 

Relative 
abs 
error 
(%) 

Relative 
squared 
error 
(%) 

Least                                
squares 45º 0.99 0.003 0.01 2.57 8.54 

Linear    
regression  45º 0.99 0.003 0.005   2.75   3.60 

Multilayer   
perceptron  45º 0.99 0.001 0.001   0.89   1.10 

Least                               
squares  20º 0.99 0.001  0.002 4.49   5.91 

Linear    
regression  20º 0.99 0.002 0.004 5.56   6.06 

Multilayer   
perceptron  20º 0.99 0.001 0.001 2.60   3.00 

Least                                   
squares -16º 0.98  0.01 0.017 12.74   18.99 

Linear     
regression -16º 0.99  0.008  0.01 10.17   11.27 

Multilayer   
perceptron -16º 1 0.0007 0.001  0.84    0.92 
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a)  

b)  

c)  
Fig. 3. First battery SoH estimation using the three models 

generated: LS (least squares), LR (linear regression) and MLP 
(multilayer perceptron). The data traces were taken at a constant 
temperature of: a) 45ºC, b) 20ºC and c) -16ºC. 

 
 It should be noticed that in Fig. 4 a) an unusual effect in the 
performance of the second battery occurs. As it can be seen, in 
this graph the battery SoH increases with the number of 
cycles, being its evolution opposite to the expected behavior. 
This effect is due to the sequence of applied temperatures. For 
the second battery, the operating temperatures during each 
range of charge/discharge cycles were:  
1º. In the interval from 1 to 40 cycles, shown in Fig. 4 b), 

cycles were taken at 20ºC.  
2º. In the interval from 40 to 80 cycles, shown in Fig. 4 c), 

cycles were taken at -16ºC.  
3º. In the interval from 80 to 100 cycles, shown in Fig. 4 a), 

cycles were taken at 45ºC.  
 It is known that extremely low temperatures strongly affect 
the battery performance [42]. In fact, this is something that is 

reflected in Fig. 4 c), where the battery performance declines 
enormously in a short interval of cycles. The rapid degradation 
suffered is in the order of the 40% of the initial SoH, which is 
in accordance with some previous references [43]. Then, when 
the temperature changes to 45ºC in Fig. 4 a), again there is an 
abrupt variation of the battery performance that increases in 
more than a 10%. However, the battery does not fully recover 
the initial performance and there is tendency to increase the 
SoH slowly that accounts for the slight SoH improvement in 
this graph. In contrast, this effect does not appear in the first 
battery due to the different sequence of temperatures applied:  
1º. In the interval from 1 to 40 cycles, shown in Fig. 3 a), 

cycles were taken at 45ºC.  
2º. In the interval from 40 to 76 cycles, shown in Fig. 3 b), 

cycles were taken at 20ºC.  
3º. In the interval from 77 to 110 cycles, shown in Fig. 3 c), 

cycles were taken at -16ºC. 

a)  

b)  

c)  
Fig. 4. Second battery SoH estimation using the three models 

generated: LS (least squares), LR (linear regression) and MLP 
(multilayer perceptron).  The data traces were taken at a constant 
temperature of: a) 45ºC, b) 20ºC and c) -16ºC. 
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Apart from the results obtained with the data cross-

validation using traces from the two first batteries, another 
experiment has been conducted to determine the correctness of 
the models. In this second test, the models were applied to 
data traces coming from a third battery of the same type. 
Results showing the SoH estimation for the third battery are 
presented in Fig. 5.  

a)  

b)  

c)  
Fig. 5. Third battery SoH estimation of the three models generated 

using LS (least squares), LR (linear regression) and MLP (multilayer 
perceptron). The data traces were taken at a constant temperature of: 
a) 45ºC, b) 20ºC and c) -16 ºC. 

 
As it can be seen, in general the models accurately fit the 

real SoH and they can predict its evolution. It can be also 
concluded that the model that best fits the SoH line regardless 
of the temperature is again the MLP. In this case, the same 
effect observed in the second battery occurs due to the 
selected sequence of temperatures:  
1º. In the interval from 1 to 40 cycles, shown in Fig. 5 c), 

cycles were taken at -16ºC.  

2º. In the interval from 55 to 80 cycles, shown in Fig. 5 a), 
cycles were taken at 45ºC.  

3º. In the interval from 110 to 130 cycles, shown in Fig. 5 b), 
cycles were taken at 20ºC. 

Thus, in Fig. 5 c) there is a rapid initial degradation of the 
battery performance and a slow improvement during the 
cycles in Fig. 5 a) and b). 

Finally, the last experiment that has been conducted 
involves a fourth battery, tested at 25ºC, and some variations 
in the program executed in the mote. In this case, we continue 
applying the same mathematical models but the program that 
the mote runs has been changed varying the duty cycle. The 
program is composed of the same states that the one presented 
in section III, but the six seconds delay in state 4 is removed. 
Thus, the mote is approximately 300 ms awake in a high 
power mode and 700 ms asleep in a power down state. Results 
of the predicted SoH for this battery are depicted in Fig. 6 and 
the numerical results are provided in Table III. As it can be 
seen, the precision of the estimated SoH in these cases remains 
practically the same and we can conclude that the program 
duty cycle is not a critical factor for the SoH estimation. 

 
Fig. 6. Fourth battery SoH estimation at 25ºC using the three 

proposed models. 
TABLE III. 

MEAN RESULTS OF THE PROPOSED MODELS FOR A DIFFERENT PROGRAM. 
Model Correlation Absolute 

error  
(SoH) 

Squared 
error 
(SoH) 

Relative 
abs error 
(%) 

Relative 
squared 
error (%) 

Least 
squares 1 0.037 0.03 11.09 9.61 

Linear 
regression 1 0.095 0.09 8.29 10.51 

Multilayer 
perceptron 1 0.005 0.006 1.58 1.54 

 

B. Comparison with other methods 
 In this subsection we compare the previous models with an 
additional model obtained using the method proposed in 
reference [14]. The application of this method starts with the 
acquisition of battery parameters during the charging stage at 
constant voltage. With these data traces, it can be obtained an 
experimental estimation of the equivalent time constant of the 
battery, which is highly correlated with the SoH, as it is 
demonstrated in [14]. In our case, we have determined these 
values from the experimental battery data traces, using the 
charging time of every charge/discharge cycle and 
approximating the equivalent time constant to the 63% of this 
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time. We have implemented the model applying the least 
squares regression, as it is proposed in [14], to the data cycles 
of the second battery taken at 20ºC. With this model, we have 
estimated the error of predicting the SoH using the data 
coming from the first battery at 20ºC and 40ºC. Fig. 7 shows 
that the cycles of the first battery taken at 20ºC fit the linear 
model and are mostly concentrated within an error bound of 
±1.5%, as it was expected from results presented in [14]. 
However, the cycles taken at 45ºC do not match the same 
linear model because the temperature affects the charging time 
and this parameter is not considered in the model generation, 
according the authors, it is a future work. In reference [14], the 
generalization of the model to other temperatures is 
contemplated as future work. Table IV summarizes the 
obtained results using the data from the first battery at three 
temperatures: 20ºC, 45ºC and -16ºC. As it can be observed, 
this method provides only precise predictions when the 
temperature does not change (20ºC). However, results get 
worse at other temperatures. Thus, this comparison has 
demonstrated the suitability of the method presented in [14] to 
provide accurate models for predicting the SoH but only at 
constant temperature. In any case, the results obtained at 20ºC 
are comparable to the results of the linear models that we have 
proposed, however the MLP model outperforms these results 
regardless the temperature considered. 

 
Fig. 7. Linear model that correlates SoH and the equivalent time 
constant obtained using the method in [14] with data coming from the 
first and the second batteries. 

TABLE IV. 
MEAN RESULTS OF THE MODEL IN [14] GENERATED AT 20ºC FOR DATA 

COMING FROM THE FIRST BATTERY AT TWO DIFFERENT TEMPERATURES. 
Temperature Correlation Absolute 

error  
(SoH) 

Squared 
error 
(SoH) 

Relative 
abs 
error 
(%) 

Relative 
squared 
error 
(%) 

20ºC 1 0.013 0.015 3.00 2.88 
45ºC 1 0.09 0.092 9.91 9.20 
-16ºC 0.45 0.781 0.791 82.6 61.7 

 

C. Models implementation 
The proposed models have been implemented on Telosb 

motes using TinyOS and the C language floating-point library 
math.h to evaluate the computational cost. In the case of the 
MLP model, the input data normalization is added to the 
global cost. On the other hand, the data acquisition process, 
the filters application or de-normalization of the MLP output 

is not considered because the assessment is only focused on 
the computational cost of the models. Measurements in terms 
of internal clock cycles were performed with the TinyOS 
Counter32khz32C component, which implements a 32 kHz 
counter that relies on an internal microcontroller's timer.  

The obtained result for both linear models is the same and it 
is equal to 138 cycles, measured with the 32 kHz timer. In the 
case of MLP the number of cycles is 885 cycles, which 
represents a significant increase with respect to the linear case, 
due to the higher complexity of its mathematical expression. 
The energy consumption can be calculated considering the 
mote operating conditions and the number of cycles. It is 
assumed that the Telosb mote has a current consumption of 
2.3 mA (MSP430 @ 4 MHz) during the execution of the 
models. Taking into account the current consumption, the 
supply voltage and the time required during the models 
execution, the energy consumed can be calculated. Table V 
shows the cost of calculating the SoH in Telosb motes in terms 
of time and energy. We can compare the energy consumed in 
the calculation of the models with other typical actions that a 
mote carries out during its operation. For example, a packet 
transmission using the maximum power level with 18 Bytes in 
the payload consumes 2.16 mJ, the reception of a packet is 
2.13 mJ and writing 1 Byte in the flash memory represents 
0.0349 mJ [44]. As a result, we can conclude that the energy 
consumption of calculating the SoH with the proposed models 
is much lower than transmitting or receiving a wireless packet. 

TABLE V. 
COMPUTATIONAL AND ENERGY COST OF THE MODELS. 

Model Time (ms) Energy (mJ) 
linear 4.211 0.031 
MLP 27 0.204 

 

VI. CONCLUSIONS 
In this work we have proposed a methodology for the 

generation of simple models that can estimate the SoH of 
rechargeable batteries in WSN applications. As a first step, the 
method requires the collection of data traces of the battery 
parameters under different operating conditions and during the 
execution of a typical WSN application with different power 
consumption states. During the generation of the SoH models 
a specific group of relevant battery parameters was 
determined. With this group of parameters and the initial data 
traces the models can be obtained. These models have been 
validated with a new fresh data coming from other batteries. 
The conducted tests have proved the validity of the models 
and the adequacy of the method to provide accurate SoH 
models. As it is demonstrated in the results section, the MLP 
model outperforms the rest of models and accurately fits the 
SoH evolution but at the expense of increasing the program 
computational cost. This cost has been evaluated in terms of 
time and energy consumption during its execution in a Telosb 
mote. Results show the suitability of the models for being 
executed in simple motes and their relatively low consumption 
compared to other typical actions that the mote commonly 
executes. As a result, we consider that the proposed models 
can accurately predict the SoH with a reasonable increase of 
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energy and computational cost. This work can be extended in 
the future considering different batteries and the inclusion of 
energy harvesting systems. 
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