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Abstract 16 

It is essential to understand the patterning of biota and environmental influencing factors for proper 17 

rehabilitation and management at the river basin scale. The Hun-Tai River Basin was extensively 18 

sampled four times for macroinvertebrate community and environmental variables during one year. 19 

Self-Organizing Maps (SOMs) were used to reveal the aggregation patterns of the 355 samples. 20 

Three community types (i.e., clusters) were found (at the family level) based on the community 21 

composition, which showed a clearly gradient by combining them with the representative 22 

environmental variables: minimally impacted source area, intermediately anthropogenic impacted 23 

sites, and highly anthropogenic impacted downstream area, respectively. This gradient was 24 

corroborated by the decreasing trends in density and diversity of macroinvertebrates. Distance from 25 

source, total phosphorus and water temperature were identified as the most important variables that 26 

distinguished the delineated communities. In addition, the sampling season, substrate type, pH and 27 

the percentage of grassland were also identified as relevant variables. These results demonstrated that 28 

macroinvertebrates communities are structured in a hierarchical manner where geographic and water 29 

quality prevail over temporal (season) and habitat (substrate type) features at the basin scale. In 30 

addition, it implied that the local-scale environment variables affected macroinvertebrates under the 31 

longitudinal gradient of the geographical and anthropogenic pressure. More than one families were 32 

identified as the indicator for each type of community. Abundance contributed significantly for 33 

distinguishing the indicators, while Baetidae with higher density indicated minimally and 34 

intermediately impacted area and lower density indicated highly impacted area. Therefore, we 35 

suggested the use of abundance data in community patterning and classification, especially in the 36 

identification of the indicator taxa. 37 

Keywords 38 

Macroinvertebrate patterning, indicators, Self-Organizing Map, decision tree, site classification  39 
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1 Introduction 40 

Currently, human activities are greatly influencing the flow rate, water yield, sediment transport and 41 

nutrient releases in freshwater ecosystems at scales that far exceed those of natural phenomena 42 

(Habersack et al., 2014). Accordingly, water resources are currently over-exploited in many regions, 43 

which has resulted in 65% of rivers worldwide being under moderate-to-high threats in terms of 44 

human water security and biodiversity loss (Vörösmarty et al., 2010). 45 

Biotic assemblages in freshwater ecosystems integrate these impacts throughout the drainage basins; 46 

thus, these assemblages can be considered as indicators of ecosystem health (Habersack et al., 2014). 47 

Consequently, the classification and delineation of the ecological statuses of rivers based on the 48 

biotic assemblages is an essential prerequisite for river ecosystem assessment, restoration and 49 

management (Heino et al., 2002; Marchant et al., 2000; Siddig et al., 2016; Tsai et al., 2017). 50 

Macroinvertebrate assemblages have been widely used as indicators of ecosystem changes because 51 

macroinvertebrate communities encompass a diverse group with a wide range of life-history 52 

requirements (O’Brien et al., 2016). Macroinvertebrates vary spatially and temporally and integrate 53 

ecosystem changes as a result of their suite of feeding strategies and lifestyles and their different 54 

sensitivities to changes in physical habitat and water quality (Milošević et al., 2016; Ogbeibu and 55 

Oribhabor, 2002). According to a recent review on indicator species over the last 14 years, nearly 50% 56 

of the taxa used as indicators were animals, and 70% of these were invertebrates (Siddig et al., 2016). 57 

However, data on macroinvertebrate assemblages are highly complex and difficult to analyze 58 

because macroinvertebrate assemblages consist of numerous species that respond in complex 59 

manners to natural and anthropogenic pressures (Kim et al., 2013; Tsai et al., 2017). In this situation, 60 

supervised machine learning approaches, which make use of techniques from mathematical 61 

programming and statistics, have been used to scrutinize and model the environmental requirements 62 
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of relevant macroinvertebrate taxa, and these techniques include decision trees (C4.5 – D’heyere et 63 

al., 2003) or multilayer perceptrons (Edia et al., 2010). 64 

In addition, macroinvertebrate datasets include numerous taxa and a large number of samples, which 65 

can also cause difficulties for community analysis and river regionalization (Kim et al., 2013). In 66 

particular, ordination techniques and unsupervised machine learning approaches have been used to 67 

explore patterns of occurrence and community shifts and their relationships with environmental 68 

factors (Adriaenssens et al., 2007; Giraudel and Lek, 2001; Zhang et al., 2012a). Nevertheless, each 69 

ordination technique may have important limitations and assumptions that are incompatible with the 70 

over-dispersion and nonlinear nature of ecological data (Paliy and Shankar, 2016). Researchers have 71 

advocated for the use of a type of unsupervised artificial neural network called Kohonen 72 

Self-Organizing Maps (SOMs) (Kohonen, 1982), which have been demonstrated to be particularly 73 

competent in analyses such as macroinvertebrate community delineations (Chon, 2011; Park et al., 74 

2007; Kim et al., 2013; Sroczyńska et al., 2017). 75 

The freshwater ecosystems of China are a clear example of the abovementioned human-induced 76 

impacts. For instance, more than 40% of the rivers in China are notably polluted, which has led to 77 

poor drinking water quality for approximately 300 million rural residents (Liu and Yang, 2012). The 78 

river ecosystems in the northeast have also degraded due to industrial and agricultural development; 79 

thus, some river restoration work has been conducted in this area (Kong et al., 2013; Zhang et al., 80 

2011; Zhang et al., 2013). The Hun-Tai River Basin is a large river basin with a basin area of 81 

2.73×10
4
 km

2
. It represents the overall status of the water in the Liaohe River Basin in northeast 82 

China and is undergoing degradation. Many field surveys and studies using macroinvertebrates as 83 

important indicators in river health assessments showed the ecosystem were not in good conditions 84 

(Qu et al., 2016; Zhang et al., 2011; Zhang et al., 2013). However, most of these studies have mainly 85 

focused on small rivers or tributaries, and cannot reflect the overall status of the whole watershed, 86 

especially in such a large river basin. Up to now, little is known about the macroinvertebrate 87 
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community and related environmental variables in the entire basin. We hypothesized when data from 88 

a large river basin and temporal span is merged, the geographical features could override the local 89 

environmental variables (e.g. water quality) in structuring the macroinvertebrate community, because 90 

the geographical features (e.g. elevation, distance from the river source) usually determine the 91 

macroinvertebrate structures when communities are studied at broader scales (Dedieu et al., 2014; 92 

Gaston, 2000). 93 

This study analyzed the macroinvertebrate assemblages present in the large Hun-Tai River Basin to 94 

elucidate the existence of different types of communities and determine the indicator families and 95 

main environmental predictors for their occurrence. SOMs were used to reveal the existence of these 96 

macroinvertebrate communities (i.e., clusters) in different areas of the river basin. Then, a genetically 97 

optimized C5.0 algorithm (Quinlan, 1992) (i.e., a type of decision tree) was used to reveal the most 98 

important set of environmental predictors and indicator taxa of each community in the Hun-Tai River 99 

Basin. 100 

 101 

2 Materials and methods 102 

2.1 Study area 103 

The Hun-Tai River is located in Liaoning Province of Northeast China, and it has two main 104 

tributaries, the Taizi and the Hunhe Rivers (Fig. 1). The lengths of the Hunhe and Taizi Rivers are 105 

approximately 415 and 413 km, respectively. The climate in this area is typical continental monsoon, 106 

with the highest temperature (34.3 ºC) in the summer and lowest temperature (-25.2 ºC) in the winter. 107 

The precipitation follows the temperature pattern, with the annual average precipitation 778 mm, 63% 108 

of which occurs in summer (Bu et al. 2014). 109 
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Field surveys were carried out in May 2009 (spring), August 2009 (summer), October 2009 (autumn) 110 

and May 2010 (spring). These surveys encompassed the entire river basin. In total, 287 sites from 111 

May 2009 to May 2010 in the Hun-Tai River Basin, in which 68 of Taizi River Basin were sampled 112 

twice (The number of sampling sites in each river and the codes of each river are located can be 113 

found in Appendix A). Consequently, 355 samples were ultimately collected where the selected 114 

environmental variables were measured in situ or obtained from reference databases. 115 

 116 
Fig. 1. Location of the study area and sampling sites within the Hun-Tai River Basin. Further details 117 

about the codes depicted in this map can be found in Appendix A. 118 

 119 

2.2 Data collection 120 

2.2.1 Environmental variables 121 

All sampling sites were characterized using variables determining the geography, hydrology, climate, 122 

landuse, water quality and habitat, and there were 30 variables and 1 binary control variable 123 

(wadeable or non-wadeable) in total (Table 1). For each site, a handheld global positioning system 124 
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(GPS, Trimble Juno SA) was used to obtain the latitude, altitude and elevation above sea level (m 125 

a.s.l.). Distance from the source was extracted from the digital map of the river basin using ArcGIS 126 

10.2. The river widths and water depths were directly measured with tape. The river width was 127 

measured by randomly selecting three transects per sampling station While the water depth was 128 

measured at the macroinvertebrate sampling sites. Air temperature, water temperature, pH, dissolved 129 

oxygen (DO), electrical conductivity (EC), and total dissolved solids (TDS) were measured by a 130 

multiparameter water quality probe (YSI-Pro Plus
©

, YSI Inc., USA). 131 

One liter of stream water was collected and transported in a portable fridge. Chemical oxygen 132 

demand (COD), total nitrogen (TN), ammonia nitrogen (NH3-N), nitrate-nitrogen (NO3-N), and total 133 

phosphorus (TP) were measured in the laboratory according to the “Environmental quality standards 134 

for surface water” of China (GB3838-2002). COD and NO3-N measurements were not collected in 135 

BeiShahe, NanShahe, TangHe and XiaoTangHe Rivers in spring 2010 (Table 1). Suspended solids 136 

(SS) were measured by filtration through pre-dried cellulose acetate membranes (0.45 μm) according 137 

to the Chinese standard (GB11901-89). The particle sizes of the substrate were measured by using a 138 

series of stainless steel mesh sizes according to the modified Wentworth classification of substrate 139 

and then expressed using a percentage. The substrate sizes were classified as boulder (Ø > 256 mm), 140 

large cobble (128 > Ø ≤ 256 mm), cobble (64 > Ø ≤ 128 mm), large pebble (32 > Ø ≤ 64 mm), 141 

pebble (16 > Ø ≤ 32 mm), large gravel (8 > Ø ≤ 16 mm), gravel (4 > Ø ≤ 8 mm) and small gravel, 142 

sand and silt (Ø < 4 mm) (Cummins, 1962). The substrates in the HaichengHe, LanHe and XiHe 143 

Rivers were not monitored in summer 2009. Finally, the proportion of each landuse type was 144 

extracted over 3 km upstream and 500 m wide buffer zones (Zhang et al., 2013) from a digital 145 

landuse map using ArcGIS 10.2. The landuse map was interpreted from landsat TM data of the year 146 

2010. These variables and the sampling season were used to infer the most determinant 147 

environmental variables of the macroinvertebrate communities of the Hun-Tai River Basin. The 148 

basic statistics and the number of unavailable data for the whole variables’ set are shown in Table 1.  149 
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Table 1. Summary and units of environmental variables collected in the Hun-Tai River Basin 150 

Variable group Variables Min Mean Median Max Number of unavailable data 

Geographic 
Elevation (m a.s.l.) 4.53 205.38 188.00 663.00 0 

Distance from source (km) 0.12 65.55 34.52 380.68 0 

Landuse 

Grassland (%) 0.00 4.47 0.00 54.91 0 

Agricultural land (%) 0.00 48.59 48.11 97.04 0 

Residential land (%) 0.00 14.30 4.60 96.90 0 

Forest (%) 0.00 32.63 31.03 100.00 0 

Hydrologic 

Discharge (m
3
/s) 0.00 3.40 1.04 94.76 0 

River width (m) 0.30 40.41 15.00 420.00 0 

Water depth (cm) 0.80 24.60 22.33 130.00 0 

Velocity (m/s) 0.00 0.40 0.38 1.14 0 

Climatic Air temperature (ºC) 5.20 21.22 21.80 36.80 0 

Water quality 

Water temperature (ºC) 6.80 17.42 18.00 27.80 0 

pH 6.01 8.39 8.40 10.12 0 

DO (mg/l) 0.00 8.93 9.63 15.63 0 

EC (μs/cm) 3.90 317.51 272.00 1431.00 0 

SS (mg/l) 1.00 67.08 19.50 1110.00 0 

TDS (mg/l) 14.95 235.15 192.00 995.00 0 

COD (mg/l) 0.00 22.96 16.00 151.00 62 

TN (mg/l) 0.47 5.19 3.49 22.60 0 

NH3-N (mg/l) 0.00 1.15 0.38 20.60 0 

NO3-N (mg/l) 0.01 2.16 1.60 15.90 70 

TP (mg/l) 0.00 0.19 0.07 3.03 0 

Habitat 

Boulder (%) 0.00 12.74 0.00 90.56 119 

Large cobble (%) 0.00 19.91 18.64 79.70 119 

Cobble (%) 0.00 15.65 16.42 58.38 119 

Large pebble (%) 0.00 11.77 11.26 77.78 119 

Pebble (%) 0.00 8.82 8.18 47.13 119 

Large gravel (%) 0.00 3.64 3.01 20.00 119 

Gravel (%) 0.00 4.34 2.85 29.05 119 

Small gravel, sand and silt (%) 0.00 23.12 4.84 100.00 119 

 151 

2.2.2 Macroinvertebrate sampling 152 

Macroinvertebrates were collected using a Surber net (30×30 cm, 500 μm mesh). At the sites that 153 

could be waded, three replicates were obtained from two riffles and one shallow pool. For the sites 154 

that could not be waded, a Surber net was used to collect three replicates in shallow water along the 155 

riverside. 156 
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The samples were passed through a 500 μm mesh sieve, and organisms retained on the sieve were 157 

fixed and preserved in 10% formaldehyde. Most taxa were identified based on the available 158 

references (Brinkhurst, 1986; Merritt and Cummins, 1996; Morse et al., 1994; Wiggins, 1996). 159 

Finally, 90 families were identified and they were used to cluster the sampling sites (community 160 

delineation) and to obtain the community indicators. The density (individuals/m
2
 – ind./m

2
), richness 161 

(number of species) and the Shannon–Wiener diversity and Pielou evenness indices were calculated 162 

for each sample to characterize the macroinvertebrate communities of the Hun-Tai River Basin. 163 

The wadeable vs non-wadeable nature of each site was used as a control variable during the process 164 

to determine the most relevant environmental variables. Ruling out this variable indicated us that the 165 

sampling protocol had no impact in the delineated communities (i.e., clusters). 166 

 167 

2.3 Statistical analysis 168 

2.3.1 Self-Organizing Maps (SOMs) 169 

Delineating macroinvertebrate communities with Self-Organizing Maps (SOMs) is done in two steps 170 

(see e.g., Edia et al., 2010; Kim et al., 2013; Park et al., 2007) (Fig. 2). First, the SOM implements an 171 

ordered dimensionality-reducing mapping of input variables (Kohonen, 1982). Therefore, SOM 172 

provided a projection of the matrix of n = 335 rows and p = 90 families onto a topological structure 173 

(i.e., a XY 2D map of unit neurons nodes) of smaller dimensionality (i.e., X << n and Y << p). The 174 

entire process is carried out preserving the original topology of the input data. In accordance, the 175 

neurons that are located near to each other in the SOM had similar associated input samples (i.e., 176 

macroinvertebrate communities). Then, these neuron nodes are clustered, usually employing the 177 

Ward’s linkage method (Murtagh and Legendre, 2014), allowing exclusively the aggregation of 178 

contiguous neuron nodes. Finally, the samples (i.e., macroinvertebrate communities) assigned to the 179 

neuron nodes aggregated in a given cluster are grouped (i.e. clustered) together, and upon these 180 
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communities or clusters, further analyses were performed (see e.g., Edia et al., 2010; Kim et al., 181 

2013; Park et al., 2007). 182 

The training and visualization of the SOM was performed using the functionalities implemented 183 

within the R package kohonen (Wehrens and Buydens, 2007). SOMs were trained for all possible 184 

combinations from 2 to 20 neuron nodes for the X and Y axes and the quality of these alternative 185 

topologies was evaluated using the quantization error (QE), which evaluates the resolution of the 186 

map, and the topographic error (TE), which indicates the accuracy of the topology preservation of 187 

the map (Kim et al., 2013; Tsai et al., 2017). The learning rate ( ) varied linearly from 0.05 and 0.01, 188 

and the neighborhood function was Gaussian. Conversely, the initial radius varied in accordance 189 

with the SOM dimensions (i.e., X and Y) after the         
 

 
   

 

 
  . In terms of densities (ind./m

2
), 190 

the macroinvertebrate data depicted large numerical differences. Therefore, data were transformed 191 

(log+1) prior to training the SOMs (Adriaenssens et al., 2007; Kim et al., 2013; Tsai et al., 2017). 192 

Finally, the input sample data were presented to each SOM 500 times and the selected distance 193 

measure was the Euclidean distance (See Appendix B for further details about the optimization of 194 

SOMs). 195 

Once the optimal dimensions of the SOM were determined based on the QE and TE, the Ward’s 196 

linkage method was applied to the SOM to cluster the unit neurons and, consequently, the 197 

macroinvertebrate samples (Chon, 2011; Park et al., 2007; Tsai et al., 2017). The function NbClust 198 

included in the homonymous R package (Charrad et al., 2014) was used to determine the optimal 199 

number of clusters. The latter function calculates 30 quality indices, from ball (Ball and Hall, 1965) 200 

to gap (Tibshirani et al., 2001), and the optimal number of clusters is determined using the majority 201 

rule. In this case, the optimal number of cluster between 2 and 15 was sought. Once the optimal 202 

number of clusters was determined, the distribution of the categorical variables (season) was 203 
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visualized with the SOM, and the family density, richness and the diversity indices of the samples 204 

assigned to each cluster were scrutinized with violin plots. 205 

 206 

2.3.2 C5.0 algorithm 207 

The most relevant indicator families and environmental predictors of the macroinvertebrate 208 

communities that were delineated by the SOM (i.e., clusters) were identified with a genetically 209 

optimized C5.0 algorithm (Quinlan, 1992) (Fig. 2). The C5.0 algorithm was selected because it is a 210 

kind of decision tree that is able to handle missing or unavailable data. In addition, C5.0 is able to 211 

collapse the former tree-like structure into a compact list of IF-THEN rules. The missing data was 212 

down-weighted when the entropy gain is calculated. The proportion of missing data do not 213 

necessarily reduces the predictive capacity of a variable. 214 

To prevent overfitting, a wrapper approach involving cross-validation and the Genetic Algorithm 215 

(GA) (Holland, 1992) implemented within the R package rgenoud (Mebane Jr & Sekhon, 2011) was 216 

used to find the optimal variable set and C5.0 hyperparameters (Muñoz-Mas et al., 2016). The 217 

parameters of the GA were selected to avoid premature convergence (Muñoz-Mas et al., 2016) 218 

whereas, compared to previous studies (D’heygere et al., 2003; Gobeyn et al., 2017), the population 219 

size and number of generations were set very large (i.e. to 1000), and the optimization halted after 220 

250 generations without improvement (See Appendix B for further detail about the optimization with 221 

the GA). The optimization took place by maximizing the product of the individual sensitivities (Sn) 222 

for each class (i.e., cluster), as described in Equation 4 (Caballero et al., 2010; Pérez-Ortiz et al., 223 

2015). It was performed following a threefold cross-validation (                    ) scheme 224 

(Muñoz-Mas et al., 2016), with every fold presenting a similar proportion of samples per community 225 

(i.e., samples per cluster) and favoring the use of each variable in every of the nine decision trees 226 

(Equation 4). 227 
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 228 

        
 

 
      

 
  

                

                    
  

  (Equation 4) 229 

 230 

Where k corresponds to the ultimate number of communities delineated by the SOM (i.e., the 231 

ultimate number of different clusters). To avoid redundancy in the optimal variables’ set (community 232 

indicators or environmental predictors), the number of variables was restricted by preventing 233 

correlated variable combinations (i.e., r
2
 > 66%) (Additional information about data correlation can 234 

be found in Appendix B). 235 

To allow comparison with previous studies, other performance criteria were calculated, namely, 236 

accuracy or correctly classified instances, Cohen’s kappa, sensitivity, specificity, and balanced 237 

accuracy (i.e. the number of correctly predicted cases weighted by the rarity of the community) (see 238 

Mouton et al., 2010 for additional details about performance criteria). 239 

Once the optimal hyperparameters and the most relevant environmental variables or 240 

macroinvertebrate families were obtained, a single C5.0 decision tree was trained using the entire 241 

dataset (i.e. without cross-validation) (Fukuda et al., 2013; Muñoz-Mas et al., 2016). The resulting 242 

models were used to calculate the variable importance based on usage, which measures the 243 

percentage of training set samples that fall into all the terminal nodes after the split, and splits, which 244 

measures the percentage of splits associated with each variable (Fig. 2). Finally, the relationship 245 

between the environmental variables or macroinvertebrate families and the probability of occurrence 246 

of each community or cluster was scrutinized with partial dependence plots (Friedman, 2001) to 247 

accommodate the tree-like or rule-based structure of the optimal C5.0s (Fig. 2). This was done 248 

adapting the code implemented in the randomForests package (Liaw and Wiener, 2002). 249 

 250 
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 251 
Fig. 2. Flowchart depicting the process followed to delineate the macroinvertebrate communities and 252 

to identify the family indicators and most relevant environmental drivers. 253 

 254 

3 Results 255 

3.1 Macroinvertebrate patterning with Self-Organizing Maps (SOMs) 256 

The SOMs that simultaneously minimized the quantization and topographic errors (4.24 and 0.31, 257 

respectively) had a lattice of 17 x 19 neurons. This SOM presented 32.8% of empty neurons, and 258 

Ward’s approach distinguished three clusters (hereafter clusters I, II and III) (Fig. 3). 259 

Cluster I encompassed the largest number of samples (n = 178) and mainly included samples from 260 

both spring and summer. Within this cluster, there were many samples in some neurons from the 261 

LanHe River (LH), HunHe River (H) and Taizi River mainstream (T), and these neurons are located 262 

in the upper part of the SOM. Some downstream sites in the XiHe (XH), HaiChengHe (HCH) and 263 

TangHe (TH) Rivers were also located in this cluster. 264 

Cluster II mainly contained samples from all seasons (n = 51) from sites in the Taizi Nan River (TN) 265 

and Taizi Bei River (TB), and it included most sites in the XiaoTangHe (XTH) river and some 266 

upstream sites of LanHe, XiHe Rivers. 267 

Cluster III included many sites in the autumn and spring and some sites in the summer (n = 106). 268 

However, within this cluster, the spring sites exhibited higher similarity between each other, which 269 



14 

 

was determined based on the information shown by the neurons in the upper part of the SOM. The 270 

sites were relatively dissimilar in the summer and autumn and were further from the sites in the 271 

spring. Spatially, the sites in cluster III were mainly composed of sites in the XH, TH, XTH and 272 

HCH Rivers (especially the downstream sites), which were located in the lower reach of the Taizi 273 

River mainstream. 274 

 275 

 276 
Fig. 3. a) Classification of the samples collected in Self-Organizing Map (SOM), b) dendrogram 277 

clustering of the SOM and c) mapping of the samples collected in each season (spring, summer and 278 

autumn). The darker the cell the larger the number of samples mapped in the corresponding neuron 279 

node. 280 

 281 
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3.2 Relevant Macroinvertebrate community characteristics 282 

In the three clusters, cluster I had the lowest macroinvertebrate density and family richness whereas 283 

cluster II had the highest (Fig. 4). Shannon-Weiner diversity and Pielou evenness showed similar 284 

patterns. The most abundant families were Chironomidae, Baetidae, Hydropsychidae, 285 

Ephemerellidae and Tipulidae, while the least abundant ones were Peltoperlidae, Neoschoenobia, 286 

Corixidae, Hemiptera sp., and Cordullidae. The most abundant families reproduced the general 287 

patterns on abundance (Fig. 4). Therefore, cluster II encompassed the samples with higher densities 288 

and cluster I those with the lower. 289 

 290 

 291 
Fig. 4. Total density (log (ind./m

2
+1)) and richness (families) and diversity indices (Shannon-Wiener 292 

diversity and Pielou evenness index) of the samples included in each cluster (upper sequence). The 293 

density of the most and least abundant families per cluster is depicted in the lower sequence. 294 

 295 

3.3 Identification of the indicators and environmental predictors 296 

The genetically optimized C5.0 model to infer the most relevant macroinvertebrate families 297 

outperformed the model to discover the main environmental predictors. However, both models 298 
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achieved high values for each performance criteria. In both cases, cluster II presented higher 299 

performance criteria, and cluster III presented lower performance (Table 2). 300 

 301 

Table 2. Summary of the accuracy or correctly classified instances Cohen’s kappa, sensitivity, 302 

specificity and balanced accuracy calculated during the                      (nine models). 303 

Classification 

based on 
Cluster Accuracy/CCI Cohen’s kappa Sensitivity Specificity 

Balanced 

accuracy 

Environmental 

variables 

I 

0.77±0.08 0.61±0.12 

0.82±0.04 0.85±0.11 0.83±0.06 

II 0.88±0.19 0.94±0.03 0.91±0.09 

III 0.70±0.16 0.85±0.05 0.78±0.10 

Indicator 

families 

I 

0.80±0.08 0.65±0.14 

0.81±0.07 0.88±0.1 0.85±0.07 

II 0.88±0.16 0.93±0.03 0.91±0.08 

III 0.74±0.12 0.87±0.06 0.81±0.09 

 304 

3.3.1 Environmental predictors of the macroinvertebrate communities 305 

Based on the metrics splits and usage, the most relevant environmental predictors for the three 306 

macroinvertebrate communities (i.e., clusters) were distance from source followed by total 307 

phosphorous (Fig. 5). The lesser important factors were pH and grassland whereas water 308 

temperature, season, boulder and gravel occupied intermediate positions. Nevertheless, there were 309 

differences in the ranges of the variables that characterized each cluster. 310 

Cluster I, which principally encompassed samples that were collected in the spring and summer, was 311 

characterized by high values of total phosphorous, long distance from source and intermediate water 312 

temperature. The samples delineated in this community were collected in areas with low percentage 313 

of boulder, high percentage of gravel and lower pH whereas the percentage of grassland had almost 314 

no influence in its probability of presence. 315 

Cluster II included samples collected in summer and especially in autumn. This community was 316 

characteristic of river segments with low total phosphorous, distance from source and water 317 

temperature. It occurred in segments with coarse substrate, high percentage of boulder and low of 318 

gravel and higher pH. Finally, low percentage of grassland had a positive effect on its presence. 319 
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Cluster III included samples collected in spring and autumn and the partial dependence plots for the 320 

most relevant variables resembled those for cluster II. Therefore, this community was characteristic 321 

of river segments with low total phosphorous and distance from source. However, its presence was 322 

favored by relatively higher water temperatures. It occurred in intermediate substrate granulometries 323 

(i.e., low percentage of boulder and relatively low percentage of gravel) and higher pH whereas the 324 

percentage of grassland had a positive effect on its presence. 325 

 326 

 327 
Fig. 5. Partial dependence plots relating the probabilities of the presence of each cluster and the 328 

selected environmental variables. The variable importance based on usage/splits is tagged above 329 

each panel. The tick marks near the x-axis depict the collected data. 330 

 331 
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3.3.2 Relevant indicators of the macroinvertebrate communities 332 

The genetically optimized C5.0 algorithm found eight representative indicator families for this study 333 

area, namely, Baetidae, Stenopsychidae, Tipulidae, Dytiscidae, Tabanidae, Perlodidae 334 

Psychomyiidae, and Athericidae, (Fig. 6. ). Among these families, Baetidae was the most 335 

characteristic family of the entire river basin. Cluster I was characterized by low densities of 336 

Baetidae, Stenopsychidae, Tipulidae, and Dytiscidae. For cluster II, higher densities of 337 

Stenopsychidae, Perlodidae and Athericidae were the most prominent mark. Cluster III was 338 

characterized by high densities of Baetidae, Tipulidae and Psychomyiidae, and low densities of 339 

Stenopsychidae, Perlodidae and Athericidae. 340 

 341 

 342 
Fig. 6. Partial dependence plots relating the probabilities of the presence of each cluster and the 343 

selected community indicator families. The variable importance based on usage/splits is tagged 344 

above each panel. The tick marks near the x-axis depict the collected data. 345 
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 346 

4 Discussion 347 

4.1 Community patterning and the environmental predictors 348 

All study sites were aggregated into three different clusters. This number of clusters is significantly 349 

inferior when compared to previous studies (Kim et al., 2013; Park et al., 2007) but in line with the 350 

spatial and temporal extension of the study (they do not encompass multiple river basins and long 351 

periods). Given that our working dataset was fivefold larger than the datasets in previous studies, the 352 

resulting number of clusters may highlight the robustness of the analysis. 353 

Macroinvertebrate community patterns have been usually linked to anthropogenic stress gradients 354 

(Álvarez-Cabria et al., 2011). In this study, the delineated communities (i.e., clusters) portrayed a 355 

very clear spatial gradient that can be observed by comparing the sites in the three clusters. By 356 

combining the representative environmental variables, the three clusters could be defined as: 357 

minimally impacted source area, intermediately anthropogenic impacted area, and highly 358 

anthropogenic impacted downstream area, respectively. This classification was in concordance with 359 

some previous assessments in this area (Li et al., 2013; Qu et al., 2016; Zhang et al., 2013). The sites 360 

sampled in the TaiziNan and TaiziBei rivers, which were mostly encompassed in cluster II, are 361 

located in a protected area, and, in these studies, they exhibited good ecological conditions. Most of 362 

the sites in Hunhe River and the area in the tributaries and downstream of Taizi River, which were 363 

encompassed in cluster I, were determined to be in a poor ecological status (Li et al., 2013), while 364 

there were also some studies showing very low macroinvertebrate diversities in this area (Kong et al., 365 

2013). 366 

This gradient in community structure likely reflected the longitudinal changes in natural (gradient, 367 

temperature) and anthropogenic (water quality always deteriorated from source to downstream areas) 368 

factors that influenced the study river basin, as previous studies have shown (Álvarez-Cabria et al., 369 
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2011; Traversetti and Scalici, 2014). The macroinvertebrate density and diversity both showed a 370 

decreasing trend with the pollution increase. This result is typical because reductions in 371 

macroinvertebrate density and diversity have been observed in many studies as a response of the 372 

benthic communities to pollution and habitat alterations (Boehme et al., 2016; Ogbeibu and 373 

Oribhabor, 2002), which is in agreement with the predicted effects first of distance from source, total 374 

phosphorous and water temperature and then on habitat quality (i.e., substrate) (D’heyere et al., 375 

2003). 376 

In our study, distance from source and total phosphorous had arguably almost equal importance to 377 

the community classification, and to a lesser extent, water temperature, although the former one was 378 

a little more important. In the original hypothesis, we expected the geographical variables to override 379 

the local environment (e.g. water quality), because over larger scales, geographical gradient and 380 

variability appear to have stronger influence (Allan, 2004; Mykrä et al., 2007), and spatial structuring 381 

may mask the effect of the local environment on the macroinvertebrate community structures 382 

(Tonkin et al., 2017). Our results support the hypothesis to some degree. The difference is the local 383 

environment variables (e.g. water quality) were also a determinant factor for classifying the 384 

macroinvertebrate communities. Interestingly, the landuse type (a larger scale variable) just showed, 385 

apparently, minor influence to the community structure. In general terms, local habitat and biological 386 

diversity of streams and rivers are strongly influenced by landuse type within the surrounding valley 387 

at multiple scales (Allan, 2004). The percentage of the landuse type correlated well with distance 388 

from source (See Appendix B). Human settlements, and hence anthropogenic impacts (e.g., diffuse 389 

pollution, landuse changes), are negatively correlated with elevation (Kummu et al., 2016), which is 390 

a general pattern also observed in the Taizi River Basin. Therefore, it is plausible to consider 391 

distance from source a proxy of these large scale processes. Then, we could conclude that the 392 

influence of local scale variables on macroinvertebrate depended on larger-scale longitudinal 393 
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gradient under anthropogenic pressure, which is similar with what other studies have shown 394 

(Manfrin et al., 2016). 395 

In addition, within each cluster, the distribution patterns of some sites showed high relevance with 396 

the seasonality. The sites subjected to seasonality had higher similarities and were grouped into 397 

specific neurons (Fig. 3a). In the relatively clean areas (cluster II and III), sites in different seasons 398 

were grouped into different neurons. This seasonal pattern overlapped with the spatial zonation 399 

pattern, which was consistent with Sroczyńska et al. (2017) for a temporary Mediterranean river. 400 

Conversely, in cluster I which occupied the upper part of the SOM, the sites in the spring and 401 

summer and even some sites in the autumn were concentrated in nearby neurons, indicating the high 402 

similarity of the community structure at different sites and in different seasons. Kim et al. (2013) 403 

showed that the variability of the macroinvertebrate density (mainly tolerant species) was very small 404 

in different seasons at severely polluted sites. This result may indicate that seasonality played an 405 

important role in the community patterning or sites classification in clean areas with little or 406 

intermediate anthropogenic influence, while this seasonality effect was minimized by other factors in 407 

severely anthropogenic influenced areas, as the case in our study area. 408 

Substrate is very important to macroinvertebrates (Connolly and Pearson, 2007; Sroczyńska et al., 409 

2017). However, in this case it showed intermediate influence for the community classification. This 410 

might be caused by the taxonomic level employed to delineate the communities. Thus, low-level or 411 

trait-based analyses may have rendered different variable rankings (Soininen et al., 2016; Wu et al., 412 

2014). Communities are product of the environmental variables that act at multiple spatial scales 413 

(Boyero and Bailey, 2001; Liu et al., 2016). Therefore, the links between the environmental variables 414 

and species may be masked at this level because different species adapt to changes in the 415 

environment differently by a multitude of strategies (Lamouroux et al., 2004; Resh et al., 1994). 416 

However, community incorporates all of the species information and reflects all environmental 417 

changes at multiple scales (Heino et al., 2002; Marchant et al., 2000; Zhang et al., 2012b), and could 418 
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provide a comprehensive reflection of the ecosystem to indicate more relevant ecoregions for river 419 

management and restoration plans. 420 

 421 

4.2 Family indicators and the relationships with the environmental variables 422 

As mentioned above, family level was used to identify the indicators. It was considered satisfactory 423 

to characterize the ecological status because investigations at the species level at large spatial scales 424 

are particularly costly (Heino et al., 2002; Rosenberg and Resh, 1993; Sroczyńska et al., 2017). In 425 

this regard, some researcher compared the taxonomic resolution’s influence to macroinvertebrate 426 

community patterning and found that only little information (<6%) was lost using family level, as 427 

opposed to species level. And they concluded that family level abundance was a better resolution for 428 

patterning the macroinvertebrate community (Marshall et al., 2006). This also in agreement with the 429 

standard taxonomic level employed in a number classic and new rapid bioassessment protocols (e.g., 430 

Kaaya et al., 2015). 431 

Four out of the eight families that were considered as the most characteristic families (Fig. 9) in the 432 

Hun-Tai River Basin belong to the orders Ephemeroptera, Plecoptera or Trichoptera (EPT), which 433 

are widely accepted as sensitive indicators of habitat conditions (Boehme et al., 2016). Other 434 

families had also lower tolerance except Tabanidae, which is considered a family slightly tolerant to 435 

pollution (Mandaville, 2002; Qin et al., 2014). 436 

Baetidae was the most characteristic family in our study area. A higher density of Baetidae 437 

accompanied its higher probability of presence of the minimally impacted source area (cluster II) and 438 

the intermediate impacted area (cluster III), which is in agree with other studies that performed 439 

variable selection with GA which also found Baetidae intended to live in the conditions characterized 440 

by no pollution (Gobeyn et al., 2017). In addition, this is a phenomenon observed in numerous 441 

streams (Kasangaki et al., 2006; Törnblom et al., 2011). 442 
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The evenness in the three clusters were all very high, implying that there might be more than one 443 

representative families as indicators. This has been proven by our indicator analysis results (Fig. 6). 444 

The combination of three families with low tolerance values (Mandaville, 2002; Qin et al., 2014) 445 

appearing at the same time with higher density was regarded as the indicators of the clean river 446 

source areas (cluster II), while lower density of four sensitive families were identified as the 447 

indicators of the most anthropogenic impacted area (cluster I). 448 

Usually, the presence/absence of taxa is used to delineate the community patterning or for 449 

identification of the indicator species (Paini et al., 2010; Tonkin et al., 2017). Some researchers also 450 

demonstrated that species assemblage patterns were adequately reproduced at the resolution of 451 

family using presence/absence data (Wright et al., 1989; Rutt et al., 1990). However, our indicator 452 

analysis results showed that density (or abundance) could be better in community patterning For 453 

instance, Baetidae appeared in many sites of both cluster I and III, but lower abundance indicated 454 

cluster I while higher abundance indicated cluster III. Additionally, some species with broad niche 455 

could live under different environmental condition, e.g. Limnodrilus hoffmeisteri, which could live in 456 

many environment (Kim et al., 2013; Song et al., 2006; Zhang et al., 2012a), but only the very high 457 

abundance could indicate an organic pollution (Chapman et al., 1982). In accordance, we concluded 458 

that abundance could give more biological information than presence/absence data, which is in 459 

agreement with other studies that highlighted the benefits of abundance data over presence/absence 460 

data (Fukuda et al., 2011; Marshall et al., 2006). Therefore, we suggest the use of abundance rather 461 

than presence/absence data in patterning the macroinvertebrate assemblages, especially to identify 462 

the most indicative taxa. 463 

 464 
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5 Conclusions 465 

In this study, the combination of SOMs and decision trees was demonstrated to be a proficient tool 466 

for community patterning and identification of the most relevant environmental predictors and 467 

indicator taxa (i.e., families). A gradient of three types of sites (communities) were distinguished: 468 

minimally impacted source area, intermediately anthropogenic impacted area, and highly 469 

anthropogenic impacted downstream area. Distance from source and total phosphorus were 470 

considered to be the most important environmental factors determining the presence of each 471 

community (i.e., cluster), which indicated that local environmental factors affect macroinvertebrate 472 

community composition under the geographical gradient. At the same time, water temperature, 473 

season, substrate, pH and the percentage of grassland were also identified as distinguishing factor. 474 

These results support the hypothesis that the importance of environmental predictors are spatial-scale 475 

dependent because macroinvertebrates’ presence was primarily regulated by processes operating at 476 

larger spatial scales (i.e., summarized in the variable distance from source), while they responded, 477 

only subsequently, to the water quality and habitat structure. 478 

Eight families were identified as the indicators of the community in the study area with families of 479 

the order Ephemeroptera, Plecoptera or Trichoptera (EPT) leading the ranking. Particularly, the 480 

abundance of Baetidae, a sensitive family to pollution, was the most relevant indicator for the three 481 

delineated communities. Baetidae was particularly abundant in less impacted sites, although 482 

combinations of more than one family were identified as indicators for each community (i.e., cluster) 483 

in such an ecosystem with high species evenness. Abundance contributed a lot for distinguishing the 484 

indicators in different areas, so that the indicators identified in our study were the families with their 485 

density data. Therefore, we suggested to use the abundance rather than the presence/absence data in 486 

community patterning or specific zonation of an ecosystem, especially in the identification of the 487 

indicators. These results should help to improve Hun-Tai River management plans and to refine 488 

future bio-monitoring programs in the region and the similar bioclimatic river regions. 489 
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