Hindawi

Wireless Communications and Mobile Computing
Volume 2018, Article ID 7264269, 11 pages
https://doi.org/10.1155/2018/7264269

WILEY

Hindawi

Research Article

ABS-DDoS: An Agent-Based Simulator about Strategies of
Both DDoS Attacks and Their Defenses, to Achieve Efficient
Data Forwarding in Sensor Networks and IoT Devices

Franks Gonzalez-Landero,' Ivan Garcia-Magariiio 23

Raquel Lacuesta (®,>* and Jaime Lloret ®*

!Edison Desarrollos, Teruel 44002, Spain

’Department of Computer Science and Engineering of Systems, University of Zaragoza, Teruel 44003, Spain

3Instituto de Investigacién Sanitaria Aragon, Zaragoza, Spain

*Instituto de Investigacién para la Gestion Integrada de Zonas Costeras, Universitat Politecnica de Valencia, Valencia, Spain

Correspondence should be addressed to Ivian Garcia-Magariio; ivangmg@unizar.es
Received 23 March 2018; Accepted 28 May 2018; Published 24 June 2018
Academic Editor: Wei Wang

Copyright © 2018 Franks Gonzalez-Landero et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Sensor networks and Internet of Things (IoT) are useful for many purposes such as military defense, sensing in smart homes,
precision agriculture, underwater monitoring in aquaculture, and ambient-assisted living for healthcare. Efficient and secure data
forwarding is essential to maintain seamless communications and to provide fast services. However, IoT devices and sensors usually
have low processing capabilities and vulnerabilities. For example, attacks such as the Distributed Denial of Service (DDoS) can
easily hinder sensor networks and IoT devices. In this context, the current approach presents an agent-based simulation solution
for exploring strategies for defending from different DDoS attacks. The current work focuses on obtaining low-consuming defense
strategies in terms of processing capabilities, so that these can be applied in sensor networks and IoT devices. The experimental
results show that the simulator was useful for (a) defining defense and attack strategies, (b) assessing the effectiveness of defense

strategies against attack ones, and (c) defining efficient defense strategies with low response times.

1. Introduction

Sensor networks (SNs) are becoming useful in a large variety
of sensing applications. One of these application is to monitor
crop fields to irrigate and fumigate some specific areas when
necessary [1]. In addition, underwater SNs are useful for
assessing amounts of fish in fish farms [2]. This can be useful
for delivering the right amount of food for properly feeding
fishes in aquaculture without generating unnecessary food
wastage. SNs can also be useful for military tactics [3]. In
addition, Internet of Things (IoT) is useful for improving
lifestyles, automating services, and making more information
available in real-time. For example, IoT can be useful for pro-
viding the appropriate healthcare of patients when sleeping
by means of smart beds [4]. In addition, IoT is also useful for
improving the performance of waste collection considering
risky material, in smart cities [5].

In general, efficient data forwarding is one of the key
features of SNs and IoT devices. However, this efficiency can
be hindered by external attacks. Cyber-crimes can provoke
damage to normal citizen, companies, and even states. Cyber
security measures are necessary to prevent these attacks. A
common attack is the Distributed Denial of Service (DDoS)
[6]. This attack consists in performing a high number of
petitions to a service provider including a sensor or an IoT
device, from machine multiples in order to make the target
overloaded. There are several ways of performing this attack.
The way most common way is to use botnets [7]. Botnets are
infected machines whom owners do not know that they are
part of an attack. Like in other technological aspects, cyber-
attacks are continuously evolving and it is hard to predict
what will be the future trends. IoT may cause an increase of
infected devices numbers [8]. It is only enough to infiltrate a

http://orcid.org/0000-0002-2726-6760
http://orcid.org/0000-0002-4773-4904
http://orcid.org/0000-0002-0862-0533
https://doi.org/10.1155/2018/7264269

harmful agent in a device and without the user knowing. The
device may send information about its owner to other sites or
the device may self-involve in a DDoS attack. The damage that
these attacks can produce are well-known, such as millionaire
losses, making an online service inaccessible, and damaging
corporate image of a company. This damage motivates the
improvement of cyber security techniques. In the context of
SNs and IoT normally the processing capabilities are low, and
consequently these techniques should be efficient.

The literature also includes both (a) works that focus
on specific repercussions of DDoS, and (b) more general
approaches that cover DDoS among other attacks. For exam-
ple, the DDoS attack can be intended to meltdown a data
center. In particular, [9] simulated this kind of attack, in
which DDoS could be combined with problems/attacks in
ventilation or air condition. Hence, this simulator focused
on the specific repercussion on heating from DDoS attacks.
In a more general context, [10] presented a multilayer
approach that defended from multiple kinds of attacks,
including DDoS. It exploited the complementary features
among different filters obtaining a hybrid approach with
low redundancies. However, those works did not provide a
mechanism for defining and simulating strategies of DDoS
attacks based on different mechanisms of coordination, as
the current work does. Those works neither provided the
possibility of determining and assessing defense strategies
from DDoS attacks, while the current approach supported
this possibility.

DDoS attacks can be prevented by defining lightweight
algorithms that determine whether a request is real or
faked. For example, a lightweight algorithm was defined
for protecting controllers and switches in software-defined
networks (SDNs) from DDoS attacks [11]. This algorithm
was based on the analysis of the packets sent to a SDN and
performed significantly better for SDN ecosystems of mobile
users.

In this context, the current approach addresses the def-
inition and assessment of both cyber-attacks and cyber-
defenses, in order to estimate the cyber-defense’s effectiveness
when a SN node or a IoT device is attacked in different man-
ners. More concretely, the current approach mainly focuses
on the different strategies for performing and defending from
DDoS attacks. In this work, we present the novel agent-
based simulator (ABS) called ABS-DDoS. This simulator
allows engineers to define strategies for performing attacks
in different coordinated ways. It also allows engineers to
define strategies for estimating which are the attackers in
order to deny them the services and consequently being able
to provide services the real requests. The current simulator
assesses these strategies by simulating these together and
providing such as the percentage of real requests that are
successfully attended.

2. Materials and Methods

The main material of the current work is the novel simu-
lator about DDoS attacks in sensors and IoT devices called
ABS-DDoS, which is presented in Section 2.1. In addition,
Section 2.2 describes the strategies that we have defined

Wireless Communications and Mobile Computing

ABS-DDoS
Number of Malware Agents: | 225
Number of Honest Agents: | 75
Duration of simulation | 100

(hours):

Attacker strategy: Coordinated Fixed ~

Defense strategy: Coordinate Defense ~

Run Simulation

FIGURE 1: Main screen of the application.

with ABS-DDoS for the current experiments. Furthermore,
Section 2.3 introduces the procedure that we have followed
to assess the utility of this novel simulator in improving the
security regarding DDoS attacks.

2.1. ABS-DDoS: An ABS of Strategies for Both Performing
and Defending from DDoS Attacks. ABS-DDoS is a simulator
about DDoS attacks. It is implemented as an ABS, in which
sensor and IoT devices are modeled as agents providing ser-
vices. Other agents coordinately perform DDoS attacks. ABS-
DDoS allows users to define and simulate several strategies
about DDoS attacks. It also allows users to define defense
strategies and simulate their results when defending from
certain strategies of DDoS attacks.

Figure 1 presents the main screen of the user interface
(UI) of the simulator. This input screen allows users to set
the input parameters for simulations, which are (1) number
of malware agents, (2) number of honest agents, (3) duration
of simulation, (4) attacker strategy, and (5) defense strategy.
The first parameter is the number of malware agents and
their role is to simulate bots’ attacks against a server. The
second parameter is the number of honest agents, which
simulate requests made by normal users. The third parameter
is duration of simulation in h and represents the number
of iterations in the simulation. Finally, the last parameters
represent attack/defense strategies that users can use in simu-
lations. When a user finalizes setting up all input parameters,
they can press “Run Simulation” button to start a simulation.

Figure 2 depicts the whole app functionality. The tool
has four main agent types. The simulation entails a periodic
execution with several cycles. The number of cycles is
established by the duration parameter in the simulation. For
instance, if a user sets a duration value of 25, it means that
each agent has the possibility of taking autonomous decisions
25 times. Agent subtypes share similar characteristics but

Wireless Communications and Mobile Computing

Attack Strategy

Defense Strategy

Observer Agent

I 1
Honest Agent

FIGURE 2: Overview of the strategy system.

they can have their own behaviors. The simulator creates
all agents then adds them to simulation and finally executes
each agent. The server agent simulates a machine whose
function can be to give services, to response to queries, or
to forward data. Moreover, server agent represents the target
machine that malware agents will attack. The agent server
has a certain strategy defense established by the defense
strategy parameter. The defense strategy indicates how a
server agent defends itself from attacks of malware agents.
The malware agent simulates each machine that may perform
DDoS attacks. Each malware agent subtype has a certain
attack strategy and it describes how to perform attacks against
a server agent. Attacks may be in waves, during an elapsed
time or coordinated.

The third main agent type is honest agents. These
agents represent normal users, SN nodes, or IoT devices
that perform legitimate requests to the server agent. The
decisions of honest agents about whether requesting services
is simulated using a low and configurable value. In particular,
we simulated these nondeterministic decisions using the
principles of TABSAOND (a technique for developing agent-
based simulation apps and online tools with nondetermin-
istic decisions) [12]. A random number is generated in the
[0, 1) interval, and it is compared with the probability. If the
number is lower than the probability, then the honest agent
requests a service to the server agent.

It is worth mentioning that each server agent has a limited
number of requests that can be attended per iteration. If
the limit is reached, this agent will mandatorily deny all the
remaining requests in the corresponding iteration.

The last agent type is observer agent. The main function
of this agent is to collect data about simulations. Specifically,
it gives us information such as percentage of success of honest
agent, percentage of success attackers, and percentage of
success of customers in each of iteration. All this information
is saved into a file, so we were able to further analyze if after
the simulation.

ABS-DDoS was developed with Unity 5.6.1fl. Unity
game-based engine is popular and well-known among devel-
opers’ community. Unity is popular because it is multiplat-
form, allowing the deployment of applications in several
operative systems, typing code only once. We used Unity
because it offers a suitable environment in order to work with
the Process for developing Efficient Agent-Based Simulators

(PEABS) [13]. The underlying framework of PEABS was
made for being used with Java, Unity, and Apache Cordova,
and it has several methods to create agents and and their
behaviors. Thanks to Unity and PEABS, we have built a
suitable environment for simulating strategies of attacks and
defenses.

We selected PEABS instead of other agent-oriented
methodologies because it combined short development time,
technological support for software development, and high
performance of the resulting systems in the particular case
of ABSs. For instance, other theoretical methodologies such
as the Gaia agent-oriented methodology lacked technological
support for development, and other practical methodologies
like Ingenias generated less efficient systems. In addition,
we used the framework of PEABS instead of other well-
known agent-oriented frameworks such as the Java Agent
Development Framework (JADE), because PEABS allowed
one to develop more efficient systems in the specific case of
ABSs.

The definition of strategies is different between attack
and defense strategies. For defining an attack strategy, users
must create a new class that inherits from “MalwareAgent”
class. This class must overwrite the Live method. Users can
define fields for storing or analyzing any information. The
Live method can call “AskService” to simulate the requests
of services. The objects of this class should coordinate to ask
services simultaneously in specific simulation iterations to
achieve that the service is denied to honest agents.

To define a new defense strategy, users implement a
new class that inherits from “ServerAgent”. This class should
overwrite the “DecideWhetherToProvideService” method for
defining the reactive behaviors. It can also overwrite the Live
it it needs to take any proactive action per iteration. The
reactive behavior occurs when the strategy must react to
certain event. In this case, the strategy reacts at the moment
when a customer asks for a service. The implementation of
the DecideWhetherToProvideService is normally the core of
the new defense strategy. This method should decide whether
to provide the service to this sender, by only knowing which
is identifier. The strategy can use new class fields to store
and analyze the history of requests of each agent ID. The
implementation of the Live method is useful for performing
any operation that needs to be taken only once per iteration
or is related to the analysis of the collective behavior.

2.2. Strategies Defined with ABS-DDoS. Following the cur-
rent approach with ABS-DDoS, we have defined the attacking
strategies: (a) Coordinated Fixed Interval Attacker Agent, (b)
Half-and-Half Attack, and (c) Substitute Attack. In addition,
we have defined the defense strategies Frequency Defense and
Coordinate Defense Server Agent.

2.2.1. Coordinated Fixed Interval Attack. In the strategy
Coordinated Fixed Interval Attack (CFIA), all the attacker
agents are coordinated to attack together periodically in a
shared fixed interval.

As one can see in the diagram of Figure 3, all malware
agents are waiting for an attack moment. In each step, they
check the iteration number representing the time stamp. If

4 Wireless Communications and Mobile Computing

Wait moment

[Attack marment]

[yes] iteration =10

(na]

[no]
(iteration % interval == Ny bes]

a

FIGURE 3: Coordinated fixed interval strategy.

the iteration is the first one, they will do nothing and keep
waiting. If malware agents are not on their first iteration, they
will check the attack moment. The attack moment is based on
a fixed interval of iterations, and this interval can be set up by
the user. For instance, if the simulation has 25 iterations in
whole and user has set the interval to 5, then malware agents
will attack 5 times during the whole simulation. Finally, the
malware agents calculate this moment by calculating the
remainder of dividing the iteration number and fixed interval.
If the result is 0, malware agents will attack. Otherwise, they
will keep waiting for another attack moment.

fyes)

iteration % interval == 0 ¥ fres]
2.2.2. Half-and-Half Attack. The Half-and-Half (HaH) strat- (/

egy is aimed at making its behavior more difficult to be
detected than CFIA. Half-and-half attack is a natural evo- ﬂquﬁﬁenﬁiteraﬁon”mewa'\
lution of CFIA. In this strategy, only half of the malware
agents perform the requests in a certain iteration, and the
other remaining half perform the requests in the other attack
moments. In the diagram of Figure 4, one can see how HaH
strategy works. Like in CFIA server agent is waiting for the
attack moment and then it checks whether it is not in first
iteration and it is in a suitable iteration (it means the iteration
must match with the fixed interval set up by the user). Then,
the agent decides whether it should attack. For this purpose,
the agent determines whether the current iteration number
is even or odd. Each agent has an integer ID number. In each
even iteration, the strategy provokes that malware agents with
even ID number request services to the target server agent.
In each odd iteration, malware agents with odd ID number
will send requests. Finally, when each malware agent knows
if it is in even or odd iteration, it asks service. For instance,
if our simulation has 25 iterations and 100 malware agents,
in iteration number 5, 50 malware agents will attack server FIGURE 4: Strategy half and half.

(ol Vait moment for attack

Attack moment

iteration 1= 0 [nol

[no]

[yes]

fquotient % 2 ==

[yes] [na]

agentid % 2 == agentid & 2 ==

AskSernice

Wireless Communications and Mobile Computing

[no]

|

Wait moment for attack

AN

Aftack moment

(iteratinn = nurmTaotallterations / 2)\

lyes]

[ho])@YES]

< iteration % interval== 0)&(

(o]

e s]

(quotient: iteration finterval)

quotient % 2 ==

agent.id % 2==

agent.id % 2 ==

(nal

\(rnd = Randamil, numAgents})%

[na]
(agents[rnd] == Hnnest&gent}

[res]

< Honestagent.AskService())

AskService

FIGURE 5: Substitute attack strategy.

agent. The next attack it will be in iteration number 10, but
they will be the other remaining 50 malware agents.

2.2.3. Substitute Attack. Substitute Attack (SA) simulates the
interception of encrypted messages and forwarding these.
The purpose is to overload the target server agent, although
these messages of requests may not be necessarily addressed
to the target agents. The advantage of this attack is that the few
successful forwarded messages that can actually be redirected
to the same service use the identifier of a different agent.
Thus, these are more difficult to be tracked. This attack would
use the well-known man-in-the-middle attack [14] to acquire
these message.

This attack follows two phases. The functionality can be
seen in the diagram in Figure 5. In the first phase, this chooses
arandom agent from the ones that have requested the service.
Then, it checks if the agent selected is an honest agent (by
checking whether it is not one of the fellow attacker agents). If
selected agent is not honest agent, the malware agent chooses
other agents randomly until he catches an honest agent.
When an honest agent is selected, a malware agent asks a
service as if it was this honest agent. In this way, malware
agents may saturate a server agent faster and the latter may
deny real service requests in the next iterations.

On the other hand, the second phase of this strategy
occurs in simulation’s second half. In this second phase,
malware agents attack normally; it means that they execute
their own method “AskService”. Moreover, in the second
phase malware agents use HaH strategy in the same way as
it was explained in the previous section.

2.2.4. Frequency Defense. Frequency Defense (FD) has like
a main aim detecting agent’s frequency on asked a service.
If FD detects a high frequency it will not give service a
certain agent. In order to determine whether an agent has
a high frequency, FD measures the percentage of iterations
in which it requests a service. If this agent requests services
over a certain threshold, FD will deny to give a service. The
aforementioned threshold is defined as an internal parameter.
When this agent is created, the FD creates an index about
the number of requests from each requester agent (unknown
either malware or honest agent). In this way, Server Agent can
save the absolute frequency of each agent. Then this frequency
is divided by the number of iterations to obtain a relative
frequency.

The reactive behavior of defense strategies is defined
in “DecideWhetherToProvideService”. In this method, a
defense strategy decides whether to provide service regarding

!

(custc:merFrequency[agent_id] += 1)

3

(ratioFrequencv: customerFrequencylagent_id] f numlteratinn)

<ratinFrequenu:\,r<treshnIdRatinFrequenw>

[deny service 1 [no] [yes] .. [oive semice]

FIGURE 6: Strategy frequency server agent.

its estimation about whether the request was made by a
malware agent.

Figure 6 depicts the process about how FD decides
whether to provide a service or not. Each time a server agent
receives a request, it updates its frequency record about the
sender identified by its ID, including its absolute frequency
and its frequency per time unit. The latter frequency is
calculated as follows:

f(x)
ft (x) (In+ 1) (1)
where f,(x) is the frequency of requests of agent x per
time unity, f(x) determines the absolute frequency of agent
x, and I, +1 determines the number of iteration (representing
the number of hours simulated up to current state of the
simulation).

Finally, if the frequency pert time unit is lower than
a parametric internal threshold, Server Agent will provide
service to this agent. Conversely, if this frequency is greater
than the threshold, Server Agent will not provide service.

2.2.5. Coordinated Defense. The main goal of Coordinate
Defense (CD) is to detect when it has been attacked by
strategies with patterns similar to CFIA. Since this strategy
is more complex than FD, we are going to explain it in
three phases: Constructor Phase, Decide Phase, and Perform
Phase. Constructor Phase occurs when the simulator runs
CD’s constructor. In constructor phase, CD sets up all initial
parameters and initial variables. On the one hand we have
two vectors, one of them will count all requests made by
agents in only one iteration, and the other of them will count
all requests made by agents in whole simulation. A request
threshold is assigned to a product of the maximum amount
of services given in one iteration and the ratio of frequency
threshold. Both variables are established with arbitrary value
given by programmer. The request threshold is defined with
the following equation:

Wireless Communications and Mobile Computing

t =8, * R (2)

where t is request threshold, S, is the max number of
services that can be provided per iteration, and R is the ratio
threshold request.

In addition, it initializes a counter for counting the
number of requests the server agent. In this strategy, if the
number of requests surpasses the requests thresholds, the
server agent will assume that it is being attacked.

The second phase, Decide Phase, occurs when CD has
to decide whether to provide a service. Figure 7 shows the
flow diagram of this phase. In this diagram, one can see all
the process inside the overwritten method “DecideWhether-
ToProvideService”. Each time an agent asks a service, CD
counts it as like as FD and then increases the variable that
represents the number of requests in an iteration. Until this
point is similar to FD, from this point the process changes.
CD checks whether it has been attacked. If it has not been
attacked, it gives service. If CD has been attacked previously,
CD calculates the ratio of requests in attacks. It is calculated
as quotient between (a) the amount of requests that a certain
agent has made in all the requests in iterations identified
as attacks and (b) the number of these iterations identified
as attacks. Finally, ratio request in attack is compared with
threshold frequency in attack. The threshold frequency in
attack is an internal parameter different from the one previ-
ously presented. It represents the barrier for discriminating
the estimation between real requests and fake ones, based
on how frequently an agent performs requests when DDoS
attacks are detected. If the ratio request in attack of an
agent surpasses this threshold, CD denies the service to this
agent.

The final phase, the Perform Phase, occurs when CD
agent has its turn for performing proactive actions. This
is implemented overriding the “Live” method as instructed
by PEABS. When the simulator finishes creating all agents,
then it commands all agents to execute their own inherited
method “Live”. The first agents that execute this method
are malware agents and honest agents. Then, CD executes
this method. In method “Live”. CD compares the amount
of requests that has received only in current iteration with
the threshold of requests. If the amount of requests is greater
than the threshold of requests, it increases the total counter
of attacks (“numAttacksTotal” in the diagram of Figure 7). In
this case, it also updates index about the amount of times that
each agent asks a service in the iterations identified as attacks
(referred as “totalRequestInAttack in the diagram), using the
record about the number of times each agent asked a service
during the current iteration (denoted as “currentRequest”).
Finally, in all the iterations regardless whether an attack was
detected, the currentRequest is reset to zero times for each
agent; the counter of the requests in the current iteration
(referred as “numRequestInAlteration”) is also reset to zero.

2.3. Method of Conducting the Experiments. 'We were alterna-
tively defining attack and defense strategies. Each attack was
aimed at exploiting the vulnerabilities of the previous defense.
Each defense was aimed at protecting from the previous
attack.

Wireless Communications and Mobile Computing
(currentRequestsLid_agent] +=1)
(numRequestlnAIteratiDn++>
numAttacksTotal == 0
[res]
(ratinRequestl nittack = totalRequestindttacklid_agentinumAttacksTota I>
(ratinRequestInAﬂack == tresholdFrequencyInAﬂacks)
i : s -
don't give service el [res] give service
FIGURE 7: Strategy Coordinate Defense Server Agent.
TABLE 1: Simulated combinations of attack and defense strategies. ~ 100 4
X
Defense Strategy Attack Strategy % 801
Frequency Defense Half and Half Attack ?-; 60 4 .y
Frequency Defense Substitute Attack ‘*; 40 4 | —
Frequency Defense Coordinated Fixed Interval Attack 2 20
g i
Coordinated Defense Half and Half Attack (%
. . o- v —_ ————

Coordinated Defense Substitute Attack 0 s 10 15 20 25
Coordinated Defense Coordinated Fixed Interval Attack Time (h)

The first simple attack was a continuous requester. The
first defense was FD. From this point forward, we developed
the strategies that we introduced in Section 2.2.

Then, we analyzed all the possible combinations of
defense and attack strategies from the ones described in
Section 2.2. Table 1 shows the combinations that we tested.

For the observation, we analyzed a short interval of the
simulated time (25 h), to understand the periodic behavior.
We also analyzed long interval to observe the evolution in the
long term (100 h). In all the experiments, we used 100 malware
agents and 30 honest agents.

In order to assess the performance of the most advanced
defense strategy, we executed each with the most advanced
attack strategy (i.e., SA). We performed several tests increas-
ing, respectively, the number of agents performing requests
and the simulated time.

3. Results and Discussion

Figures 8 and 9 show evolution results of simulating CFIA
attacks on an agent defending with FD strategy. FD has

—— Success of customers (%)

Success of customer in each hour (%)
—— Success of attackers (%)

F1GURE 8: FD versus CFIA, simulation evolution of 25 h.

a vulnerability that CFIA can exploit. CFIA can reduce
its frequency of requests by decreasing its frequency of
coordinated attacks. In this way CFIA agents may not be
detected by FD strategy.

The success of attackers is low, probably because the
number of attackers is much higher than the number of
possible services per iterations. Thus, only a few attackers get
the service.

CFIA strategy achieve a successful DDoS, because cus-
tomers only succeeded 50% in average. In addition, the results
of the customer success per hour is the most evident fact that
the DDoS attacks succeeded, since this measure indirectly
revealed the proportion of denials to real service requests. The
customer success per hour decreased to zero or almost zero
in the specific hours where DDoS was executed.

~ 100 1
X
2 80 1
3
% 60 A Y,
o | N NN e L
=40 1
2
S 20
9
3
@ -
0 20 40 60 80 100

Time (h)

—— Success of customers (%)

Success of customer in each hour (%)
—— Success of attackers (%)

F1GURE 9: FD versus CFIA, simulation evolution of 100 h.

100 -
80 4
60 4
40 4 L~

20

Success of requests (%)

Time (h)

—— Success of customers (%)

Success of customer in each hour (%)
—— Success of attackers (%)

F1GURE 10: CD versus CFIA, simulation evolution of 25 h.

The beginning of the global success of customers started
with low a value because of the first attack was conducted
in the first iteration. This value increased when this average
measure was compensated in the in-between iterations with-
out attacks.

The success of attackers is low because there are much
more attackers than services the server agent can provide.
However, the relevant measure of DDoS success is to achieve
the fact that the service is denied to most customers.

Figures 10 and 11 show evolution examples of simulating
CFIA attacks to CD strategy.

In fifth hour (the first attack), the attackers were not
detected because they have not been tracked, and moreover,
it is the first attack. Therefore, someone of them had success
(10%). As the simulation progressed, in the next attacks, the
attackers were well tracked; therefore the percentage success
is going down near 0 after simulating 100 h.

Some of the honest agents were misclassified as attackers,
and therefore at the next iterations they were discriminated.
For this reason, one can see the percentage of customer
success going down. In the second attack (after simulating
10 h), we can see that the relative amount of misclassified
honest agents decreased. It is improbable that two honest
agents asked a service in two different moments of attack.
Specifically, the probability that an agent asks a service is 10%.
Therefore, the probability of the same agent asks a service in

Wireless Communications and Mobile Computing

~ 100 +
X

2 80 A

3

2 60 -

=

5 404 |
2

g 20

Et

& ol

0 20 40 60 80 100

Time (h)

—— Success of customers (%)

Success of customer in each hour (%)
—— Success of attackers (%)

F1GURE 11: CD versus CFIA, simulation evolution of 100 h.

100 -

X
2 80
g
60 W R
= /—
2
- |~
g 40 4 ,~~/—/
2 ~f
g 20
H
» I+~ T+
0 5 10 15 20 25

Time (h)

—— Success of customers (%)

Success of customer in each hour (%)
—— Success of attackers (%)

FIGURE 12: CD versus HaH, simulation evolution of 25 h.

the two first attacks is 0.01 (0.1 x 0.1), and the probability of
asking in the three first attacks is 0.001 (0.1%) and so on.

After simulating 45 h, sometimes the customer success
per hour decreased to zero. The reason is probably that in
these interactions none honest agent performed a request,
and then the measure outputted the zero default value when
avoiding raising the exception of division by zero.

Figures 12 and 13 show the results of performing attacks
following HaH strategy to the defense following CD strategy.
One can observe that HaH is more difficult to be tracked
than CFIA, since in this strategy the attacks are not always
performed by the same agents. The DDoS were successful
since in most attacks, the customer success per hour reduced
to zero. In addition, the global success of attackers was
relatively high (around 20%). Since only the half of the
attackers were used, a lower number of requests were denied
for both honest and malware agents.

Figures 14 and 15 show the simulation of the combination
of HaH attack strategy and FD defense strategy. FD defense
is much more flexible in detecting attacks by frequencies, as
it considers all the iterations and not only the ones suffering
attacks. Hence, all the DDoS attacks successfully achieved
the denials of services to honest agents, as one can observe
in the decreases to zero or near-to-zero values in the attack
iterations.

Figures 16 and 17 show simulation evolution examples of
SA attacks and FD defenses, while Figures 18 and 19 show

Wireless Communications and Mobile Computing

T] 1B

80

60
40
20

Success of requests (%)

(O e e]

0 20 40 60 80 100
Time (h)

—— Success of customers (%)

— Success of customer in each hour (%)
—— Success of attackers (%)

FIGURE 13: CD versus HaH, simulation evolution of 100 h.

100 -
80
60 4
40 A
20

Success of requests (%)

0 5 10 15 20 25
Time (h)

—— Success of customers (%)

—— Success of customer in each hour (%)
—— Success of attackers (%)

FIGURE 14: FD versus HaH, simulation evolution of 25 h.

simulation evolutions of SA attacks and CD defenses. SA
was effective for exploiting the vulnerabilities of both defense
strategies. The reason is that the impersonation of some
honest agents make them look like attackers to both defense
strategies. Thus, the success of customers per hour decreased
not only in the attacked iterations but also in the others.

In Figure 19, in the middle of the simulation (i.e., about
50 h of simulation), one can observe a different behavior in
the success of customers. In the second phase the success of
customers do not depend on the possibility of being able to
apply man-in-the-middle.

Although, SA seems to be the most effective attack
theoretically, it depends on the ability of finding and imper-
sonating other honest agents requesting a specific service.

Figures 20 and 21 show the response times in deciding
whether to provide service for each request of the CD defense
strategy when trying to defend from SA attack. One can
observe that the average response time does not increase
when augmenting the simulation duration. Thus, this defense
strategy could probably run continuously without losing
defense. By contrast, the time response for deciding whether
to provide service increases when increasing the number
of agents performing requests to a given service. However,
the response times had a low absolute value. In addition,
both FD and CD have a constant computational costs since
the records and indexes can be accessed and updated in
constant computational cost. Therefore, the current approach

100 -
s TR Ta A Ta A n I ThTtaTalata
2 801 LA
§ 60
o 7 ~
g v
S 404)
¢
o 20 A
00
O =T AT AT T T
0 20 40 60 80 100
Time (h)
—— Success of customers (%)
—— Success of customer in each hour (%)
—— Success of attackers (%)
F1GURE 15: FD versus HaH, simulation evolution of 100 h.
& 100
2 80
L
2 60
&
= 40
2 20
]
ool T 1 TV TV VY
& 0 5 10 15 20 25
Time (h)
—— Success of customers (%)
—— Success of customers in each iteration (%)
—— Success of attackers (%)
FIGURE 16: FD versus SA, simulation evolution of 25 h.
& 100 i
280 - MJ
L
2 60 | L I
g
< 40 A 1
- 1}
@ 20 -
g | ALl
3 0 Hfrr PP PP A AP PP AP PP (7 (PP e e
& 0 20 40 60 80 100

Time (h)

—— Success of customers (%)

—— Success of customers in each iteration (%)
—— Success of attackers (%)

FIGURE 17: FD versus SA, simulation evolution of 100 h.

80
60
40
20

—_
(=3
(=}

VVVVVV

Time (h)

Success of requests (%)

— Success of customers (%)

—— Success of customers in each iteration (%)
—— Success of attackers (%)

FIGURE 18: CD versus SA, simulation evolution of 25 h.

—
o

3100-1

2 80 - U N U

3

= - L

T

S 40 |

w

3 20

8 |

Q' AT A ISE RIS W1 S S N S ¥ A 8 N | D S 1 At
0 20 40 60 80 100

Time (h)

—— Success of customers (%)

—— Success of customers in each iteration (%)
—— Success of attackers (%)

FIGURE 19: CD versus SA, simulation evolution of 100 h.

0.10 -

0.08

0.06

0.04 1

0.02 1

Average time per petition (s)

0.00 -
100 200 300 400 500 600 700 800 900 1000

Number of agents

FIGURE 20: CD versus SA, response times when increasing the
number of agents.

is eflicient enough to be applied in SN sensors and IoT devices
for performing efficient data forwarding or other services.

4. Conclusion and Future Work

The current work has presented a mechanism for improving
security concerning DDoS attacks, by allowing developers to
easily define and assess both attack and defense strategies
in this context. The current approach also allows detecting
DDoS security challenges by defining DDoS attack strategies
that are usually to track for being counteracted. The current
approach is based on the novel ABS called ABS-DDoS. We
have defined and assessed two defense strategies and three
attack strategies with ABS-DDoS. This ABS helped us to
understand the results of all the possible combinations. In
addition, we defined defense strategies that were efficient in
terms of time response for deciding whether to provide ser-
vices. In this way, these strategies can be used for maintaining
security in SN sensors and IoT devices with low processing
capabilities from DDoS attacks.

The proposed ABS is planned to be extended in order to
simulate other types of attacks such a man-in-the-middle and
zero-day attack. This may require define new agent types that
will allow defining defense and attack strategies for attacks
like man-in-the-middle attack or zero-day attack. These agent
types would need to incorporate and manage the necessary

Wireless Communications and Mobile Computing
0.04 -
0.03 -
0.02 -

0.01

Average time per petition (s)

0.00 +

50 100 150 200 250 300 350 400 450 500

Time (h)

FIGURE 2I: CD versus SA, response times when increasing the
number of simulated hours.

information for measuring the effectiveness of defense and
attack strategies in the context of each security attack. For
example, in the case of the man-in-the-middle, a metric
could be the percentage of messages that have successfully
intercepted and forwarded.

Moreover, we plan to deploy advanced defense and attack
strategies in real scenarios. We plan to test some attack strate-
gies in SNs and IoT devices to exploit their vulnerabilities.
Then, we will install defense strategies in SN sensors and IoT
devices to protect from these attacks, in order to measure
response times and effectiveness of the defense strategies in
these devices with low processing capabilities. We also plan
to test defense and attack in cloud services, which are one of
the most frequent target nowadays, according to [15]. If we
have the chance, we can test in important websites such as
the ones from any government or big company. Finally, we
could organize security contexts in which participants define
defense and attack strategies with ABS-DDoS and compete
against each other by means of the simulator.

Data Availability

All the relevant data of the current work are mentioned in the
article or shown in its graphs.

Conflicts of Interest

The authors declare that there are not any conflicts of interest
about the current work.

Acknowledgments

The authors acknowledge the research project “Construccién
de un Framework para Agilizar el Desarrollo de Aplicaciones
Mbéviles en el Ambito de la Salud” funded by University
of Zaragoza and Foundation Ibercaja with Grant Reference
JIUZ-2017-TEC-03. This work has been supported by the
program “Estancias de Movilidad en el Extranjero José
Castillejo para Jovenes Doctores” funded by the Spanish
Ministry of Education, Culture and Sport with Reference
CAS17/00005. The authors also acknowledge support from

Wireless Communications and Mobile Computing

“Universidad de Zaragoza”, “Fundacién Bancaria Ibercaja”,
and “Fundaciéon CAI” in the “Programa Ibercaja-CAI de
Estancias de Investigacion” with Reference IT1/18. This work
acknowledges the research project “Desarrollo Colaborativo
de Soluciones AAL” with reference TIN2014-57028-R funded
by the Spanish Ministry of Economy and Competitiveness.
It has also been supported by “Organismo Auténomo Pro-
gramas Educativos Europeos” with Reference 2013-1-CZI-
GRUO06-14277. Furthermore, they acknowledge the “Fondo
Social Europeo” and the “Departamento de Tecnologia y
Universidad del Gobierno de Aragén” for their joint support
with Grant no. Ref-T8l.

References

[1] H. M. Jawad, R. Nordin, S. K. Gharghan, A. M. Jawad, and M.
Ismail, “Energy-efficient wireless sensor networks for precision
agriculture: A review;” Sensors, vol. 17, no. 8, 2017.

[2] 1. Garcia-Magarifio, R. Lacuesta, and J. Lloret, “ABS-FishCount:
An Agent-Based Simulator of Underwater Sensors for Measur-
ing the Amount of Fish,” Sensors, vol. 17, no. 11, p. 2606, 2017.

[3] S. H. Lee, S. Lee, H. Song, and H. S. Lee, “Wireless sensor
network design for tactical military applications : Remote large-
scale environments,” in Proceedings of the MILCOM 2009 - 2009
IEEE Military Communications Conference, pp. 1-7, Boston,
MA, USA, October 2009.

[4] 1. Garcia-Magarifo, R. Lacuesta, and J. Lloret, “Agent-Based
Simulation of Smart Beds With Internet-of-Things for Explor-
ing Big Data Analytics,” IEEE Access, vol. 6, pp. 366-379, 2018.

[5] T. Anagnostopoulos, K. Kolomvatsos, C. Anagnostopoulos, A.
Zaslavsky, and S. Hadjiefthymiades, “Assessing dynamic models
for high priority waste collection in smart cities,” The Journal of
Systems and Software, vol. 110, pp. 178-192, 2015.

[6] X.Yang,S.Zhou, G. Ren, and Y. Liu, “Computer network attack
and defense technology,” Information and Computer Security,
vol. 1, no. 1, pp. 35-41, 2018.

[7] E. Alomari, S. Manickam, B. B. Gupta, S. Karuppayah, and
R. Alfaris, “Botnet-based distributed denial of service (DDoS)
attacks on web servers: classification and art,” International
Journal of Computer Applications, vol. 49, no. 7, pp. 24-32, 2012.

[8] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama,
and C. Rossow, “IoTPOT: analysing the rise of IoT compro-
mises,” EMU, vol. 9, pp. 1-9, 2015.

[9] Z. Anwar and A. W. Malik, “Can a DDoS attack meltdown my
data center? A simulation study and defense strategies,” IEEE
Communications Letters, vol. 18, no. 7, pp. 1175-1178, 2014.

[10] S. Huda, R. Islam, J. Abawajy, J. Yearwood, M. M. Hassan,
and G. Fortino, “A hybrid-multi filter-wrapper framework to
identify run-time behaviour for fast malware detection,” Future
Generation Computer Systems, vol. 83, pp. 193-207, 2018.

[11] C. Gkountis, M. Taha, J. Lloret, and G. Kambourakis, “Light-
weight algorithm for protecting SDN controller against DDoS
attacks,” in Proceedings of the 2017 10th IFIP Wireless and Mobile
Networking Conference (WMNC), pp. 1-6, Valencia, September
2017.

[12] I. Garcia-Magarino, G. Palacios-Navarro, and R. Lacuesta,
“TABSAOND: A technique for developing agent-based simu-
lation apps and online tools with nondeterministic decisions,”
Simulation Modelling Practice and Theory, vol. 77, pp. 84-107,
2017.

1

[13] I. Garcia-Magarifio, A. Gémez-Rodriguez, J. C. Gonzalez-
Moreno, and G. Palacios-Navarro, “PEABS: a process for de-
veloping efficient agent-based simulators,” Engineering Applica-
tions of Artificial Intelligence, vol. 46, pp. 104-112, 2015.

[14] A. Akhunzada, M. Sookhak, N. B. Anuar et al., “Man-At-The-
End attacks: Analysis, taxonomy, human aspects, motivation
and future directions,” Journal of Network and Computer Appli-
cations, vol. 48, pp. 44-57, 2015.

[15] Q Yan, E R. Yu, Q. X. Gong, and J. Q. Li, “Software-defined
networking (SDN) and distributed denial of service (DDoS)
attacks in cloud computing environments: a survey, some
research issues, and challenges,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 1, pp. 602-622, 2016.

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

