
Academic year:

1

Abstract

In this dissertation a path planning algorithm for mobile robots is implemented using Artificial

Potential Fields (APF) to avoid different types of dynamic and static obstacles and its performance

is proven in simulation using MatLab.

Mobile robotics is a very popular area of development and research nowadays due to its

interesting applications such as space exploration, air and water monitoring, autonomous vehicles

or search and rescue. Swarm robotics is a new and promising branch of knowledge in this field.

It is inspired by social insects and their behaviour. The idea behind this is that a large multi-robot

system can perform tasks more efficiently, robustly and quickly than a single and more complex

mobile robot.

Artificial Potential Fields is one of the most popular path planning methods due to its simplicity,

mathematical elegance and good results. However, this method has inherent problems such as

local minima. The basis of APF method is that robots are considered particles moving in the

virtual potential field. Then, the obstacles are assigned a potential field that repel the robot and

the goal is given a potential field that attract it.

The main aim of this project is to achieve a successful navigation for three robots in a known

environment using APFs. In order to simulate a situation that could be close to a real-world

application, the environment has been inspired by a warehouse where the robots are performing

logistic tasks. Different types of test and simulations have been done to test the features of the

method and its global performance.

2

Table of content

Abstract .. 1

CHAPTER ONE: Introduction ... 7

1.1. Background ... 8

1.2. Motivation ... 9

1.3. Objectives .. 10

1.4. Dissertation outline .. 11

CHAPTER TWO: Literature Review .. 12

2.1. Introduction... 13

2.2. History of Robots ... 13

2.2.1. Mobile robots in history .. 15

2.3. Robot Definition .. 17

2.4. Challenges of mobile robotics .. 18

2.5. Perception .. 18

2.5.1. Machine Vision .. 18

2.6. Navigation problem ... 19

2.7. Motion planning .. 19

2.7.1. Roadmaps .. 20

2.7.2. Cell decomposition .. 21

2.7.3. Bug Algorithm ... 22

2.7.4. Artificial Potential fields ... 24

2.7.4.1. The Traditional Artificial Potential Field Method Formulation 25

2.7.4.2. Problems with the APF method... 25

2.7.4.3. Social Potential Fields ... 27

2.8. Multi-Robot Systems: Swarm Robotics ... 28

2.8.1. Biological Inspiration ... 28

2.8.2. Swarm Intelligence .. 29

2.8.3. Formation control ... 29

2.8.4. Connectivity ... 30

2.9. Summary ... 31

CHAPTER THREE: Methodology .. 33

3.1. Introduction... 34

3.2. Artificial Potential Fields for navigation .. 34

3.2.1. Potential Functions ... 35

3.2.1.1. Attractive: Goals ... 35

3

3.2.1.2. Repulsive: Obstacles ... 36

3.2.1.2.1. Circular ... 36

3.2.1.2.2. Rectangular ... 36

3.3. Navigation ... 38

3.4. Software: MatLab ... 40

CHAPTER FOUR: Simulation and results ... 41

4.1. Introduction... 42

4.2. Environment design ... 42

4.2.1. Obstacles ... 43

4.2.1.1. Rectangular .. 43

4.2.1.2. Circular .. 43

4.2.1.2.1. Static ... 43

4.2.1.2.2. Dynamic ... 44

4.2.2. Robots .. 45

4.2.3. Goals ... 45

4.2.4. Artificial Potential Field ... 46

4.3. Simulation ... 48

4.3.1. Test: Influence of the parameters of the potential functions 48

4.3.2. Test: Boundaries ... 49

4.3.3. Test: Priorities between robots ... 50

4.3.4. Test: Local minima .. 51

4.3.5. Test: GNRON .. 52

4.3.6. Main simulation... 53

4.3.7. Main simulation without moving obstacles ... 56

CHAPTER FIVE: Conclusion ... 57

5.1. Conclusion ... 58

5.2. Future work ... 58

References .. 60

APPENDIX A: MatLab code ... 63

1. Main: Environment.m ... 63

2. Matlab Functions .. 76

2.1. Force Circular Obstacles .. 76

2.2. Force Goals ... 76

2.3. Force Rectangular Obstacles .. 77

2.4. Potential Field Circular Obstacles ... 79

4

2.5. Potential Field Goals .. 80

2.6. Potential Field Circular Dynamic Obstacles .. 80

2.7. Potential Field Rectangular Obstacles ... 81

APPENDIX B: Simulation Snap-shots .. 84

1. 2D Path Planning .. 84

2. 3D Path Planning .. 88

APPENDIX C: Machine Vision ... 93

Part A: Processing and analyzing an image .. 93

Task 1 .. 93

Task 2 .. 94

Task 3 .. 95

Task 4 .. 96

Task 5 .. 97

Task 5.1 ... 98

Task 6 .. 100

Task 7 .. 101

Part B: Analysing the image of chocolate beans .. 104

Task 1 .. 104

Task 2 .. 106

Part C: Tracking a green circle in a life video ... 107

Task 1 .. 107

Task2 ... 107

Part D: Case Study. Human Vision versus Animal Vision. ... 109

What is Vision? ... 109

The Ancient Theories ... 109

Human Vision .. 110

The eye .. 110

Color vision and visual acuity ... 111

Binocular vision .. 111

Human vision versus animal vision ... 112

References ... 116

APPENDIX D: Forms .. 117

5

Table of figures

Figure 1: Robots assisting human navigation.. 8

Figure 2: Swarm of Kilobots. .. 9

Figure 3: Robofly .. 9

Figure 4: Robotic Duck (Hall, 1985) .. 14

Figure 5: Mechanical knight (Valero et al, 2011) ... 14

Figure 6: RoboKent (Bermudez, 2018) ... 15

Figure 7: Denning Sentry (Bermudez, 2018) .. 15

Figure 8: Helpmate (Bermudez, 2018) .. 16

Figure 9: Sajourner (Bermudez, 2018) .. 16

Figure 10: Fletch (Bermudez, 2018) ... 16

Figure 11: Honda P-series (Honda, 2018) ... 17

Figure 12: ASIMO (Honda, 2018) .. 17

Figure 13: Visibility graph (Ge and Lewis, 2006) .. 20

Figure 14: Voronoi diagram (Aurenhammer, 1991) ... 21

Figure 15: Cell decomposition with fixed resolution grid (Ge and Lewis, 2006) 21

Figure 16: Cell decomposition by triangulation (Ge and Lewis, 2006) 22

Figure 17: Bug 1 (Alboul, 2017) ... 23

Figure 18: Bug 2 (Alboul, 2017) ... 23

Figure 19: Force situation APF (Lee et al., 2017) ... 24

Figure 20: Obstacle configurations that create local minima (Wang et al., 2013) 26

Figure 21: GNRON problem (Wang et al., 2013) ... 26

Figure 22: Example of no passage between closely spaced obstacles (Koren and Borenstein,

1991) ... 26

Figure 23: Cluster of robots formed with an identical force law (Reif and Wang, 1999). On the

left it is shown the distribution after 3 iterations, on the right after 225 iterations. 27

Figure 24: Example of collective behaviour performed by ants. .. 29

Figure 25: Formation of robots changing shapes (Desai et al., 2001) ... 30

Figure 26: Formation control obstacle avoidance (Xu et al., 2014) .. 30

Figure 27: Communication in a team of mobile robots (Zalvanos et al., 2007) 31

Figure 28: Goal potential function .. 35

Figure 29: Circular Obstacle Potential Function ... 36

Figure 30: Area of influence rectangular obstacle .. 36

Figure 31: Rectangular Obstacle Potential Function ... 38

Figure 32: Simulation diagram .. 39

Figure 33: Environment boundaries 21x12 ... 42

Figure 34: Boundaries and rectangular obstacles .. 43

Figure 35: Boundaries and rectangular and static circular obstacles .. 44

Figure 36: Boundaries and rectangular and circular obstacles. ... 44

Figure 37: Boundaries, obstacles and robots ... 45

Figure 38: Complete environment. Boundaries, obstacles, robots and goals 46

Figure 39: Contour of the environment ... 46

Figure 40: Contour and potential force ... 47

Figure 41: Potential field ... 47

Figure 42: Contour and potential force high variation of the parameters of the rectangular

obstacle. .. 48

6

Figure 43: Potential Function. Influence of the parameters of the environment. 49

Figure 44: Environment without definition of boundaries. .. 49

Figure 45: Comparison environments with and without boundaries... 50

Figure 46: Without priorities ... 50

Figure 47: With priorities .. 50

Figure 48: Red robot trapped .. 51

Figure 49: Red robot avoiding local minima... 52

Figure 50: GNRON ... 52

Figure 51: 2D simulation result ... 53

Figure 52: 3D simulation result ... 56

Figure 53: Main simulation without dynamic obstacles ... 56

Figure 54: Original Image ... 93

Figure 55: Default colormap parula .. 95

Figure 56: Colormap colorcube ... 95

Figure 57: Brightness profile 3D ... 96

Figure 58: Histograms ... 96

Figure 59: Original vs contrast stretching ... 97

Figure 60: Original vs histogram equalization .. 98

Figure 61: Histogram equalization RGB comparison on bot_garden2.jpg 99

Figure 62: Whitby grayscale ... 100

Figure 63: Histogram grayscale image .. 100

Figure 64: Manual threshold. Brightness 100. .. 101

Figure 65: Otsu's method .. 101

Figure 66: Edge detection Sobel method .. 103

Figure 67: Chocolate beans ... 104

Figure 68: Chocolate beans grayscale ... 105

Figure 69: Chocolate beans histogram .. 105

Figure 70: Chocolate beans threshold 100 .. 106

Figure 71: Green boundaries. Laptop webcam. .. 107

Figure 72: Boundaries and circles. .. 108

Figure 73: The structures of the eye. (Wikipedia, 2018) ... 110

Figure 74: Human binocular field. Image from Quora (2018). ... 112

Figure 75: Parietal eye. Wikipedia (2018) .. 113

Figure 76: Differences in the field of view between a dam and a predator. Wikipedia (2018) 114

7

CHAPTER ONE:

Introduction

8

1.1. Background

Robotics play a key role in the functioning of our lives. They are changing the way people live

and work. Robotics is a science that has achieved a vertiginous development in the last half

century, from the first industrial robots that were conceived to assist or replace humans in

production chains, until the most complex and sophisticated robots that exist nowadays that can

perform surgeries, treat toxic waste, or perform search and rescue tasks.

Mobile robotics is a very popular area of development and research in the field due to all their

interesting applications such as space exploration, air and water monitoring, or autonomous

vehicles, among many others. The aim is to achieve a great degree of autonomy which means that

robots must be able to get the information they need from the environment, process it, and make

decisions on their own.

From one mobile robot to thousands of them, now the attention is focused on multi-robot systems,

also called swarm robotics. The idea behind this is that a large multi-robot system is able to

perform tasks more efficiently, robustly and quickly. Some of the potential applications are

security and surveillance, exploration and mapping, or search and rescue. For example, the

GUARDIANS is a research project developed to assist and safeguard a firefighter (Alboul et

al.,2011). The swarm of robots provide localisation information and warnings about chemicals

while it maintains the communication between them.

Figure 1: Robots assisting human navigation

Furthermore, there are robots specifically designed for research in swarms like Kilobots (K-

Team,2018). As they describe it “The Kilobot is designed to make tests of collective algorithms

on hundreds or thousands of robots accessible to robotics researchers”. It is a low-cost and easy-

to-use robotic system. Rubenstein et al. (2014) used a swarm of 1024 Kilobots to prove how they

can self-organize and imitate complex shapes.

9

Figure 2: Swarm of Kilobots.

Another example is Robofly that is the first robotic insect that flies on its own. It has been

developed in the University of Washington, and now it is in early stages of research, but it has

great potential. Its creators think that in the future, many Robofly could help monitoring crops or

sources of contamination, detecting leaks in pipelines and refineries, and search and rescue.

Figure 3: Robofly

1.2. Motivation

Mobile and swarm robotics are promising fields with interesting and useful applications, as it has

been shown before. Mobile robots were created to fill the lack of mobility of industrial robots and

its advantages, apart from mobility, are autonomy to navigate and make decisions, versatility to

adapt to different environments, and wide range of robot typologies to fit different applications

like humanoid, drone or wheeled robots. In the case of the swarm, it provides robustness,

redundancy, and scalability to the system. Furthermore, it is low cost due to the simplicity of the

10

robots that conform the swam. However, as with any other area of research, both present some

challenges to overcome.

To begin with, mobile robots have been developed for more than thirty years, however they still

offer a wide field for development and innovation. The main goal of a mobile robot is to

accomplish a robust navigation therefore it must be safe, efficient and optimal. To achieve this

goal a multirobot system have tree main challenges:

• Locomotion: This issue can be divided in two parts. On the one hand, the locomotion

mechanisms that enable the robot to navigate. It is referred to the physical components of

the robot that enable the movement such as legs for walking, wheels to roll or helix to

fly. The physical locomotion mechanism of the robot must be chosen in other to fit its

application. On the other hand, there is the path planning that regards to the algorithms

used to create the routes to reach the goal safely, avoiding obstacles and following the

optimal path. There are many algorithms developed to accomplish this purpose but all of

them can be improved or adapted.

• Perception: It concerns the selection and development of sensors because they play a key

role due to through them the robot can perceive the environment. This issue also concerns

how the information is interpreted by the robot.

• Navigation: It can be understood as the union of locomotion and perception towards the

goal. This is about the global performance of the robot.

Next, swarm robotics is a young field therefore it is still the research stage. For this reason, the

problems associated with it are more general than in the case of mobile robotics. The challenges

to overcome are communication, control algorithms, formation and optimal path planning.

1.3. Objectives

The aim of this work is to implement an optimal path planning algorithm using Artificial Potential

Fields (APF) to avoid different types of dynamic and static obstacles and prove its performance

in simulation. The objectives of this project are the following:

• Regarding APFs:

o To model and implement the APFs of rectangular shape static obstacles.

o To model and implement the APFs of circular shape static obstacles.

o To model and implement the APFs of circular shape dynamic obstacles.

o To model and implement the APFs of circular shape static goals.

• Regarding path planning:

o To achieve optimal path planning.

o To avoid the obstacles.

o To reach the goal.

o To avoid local minima.

o To establish priorities between the robots.

• Regarding simulation environment:

o To develop a suitable environment for simulation where all the characteristics of

the algorithm developed could be proven.

o To be easily editable.

• Regarding simulation:

o To simulate in 2D.

11

o To simulate in 3D.

1.4. Dissertation outline

This dissertation consists of five chapters and four appendices. The first chapter is the introduction

and background of the project, where the motivation and aims are established. The second is an

overview of the previous literature in the field focusing on path planning methods and swarm

robotics. Chapter three describes the methodology employed to achieve the aims which is focused

on the Artificial Potential Fields method. In chapter four the results of the simulation will be

shown and finally in chapter five the conclusions reached will be explained.

On the other hand, the appendices contain the following information: appendix A contains the

MatLab code, appendix B shows snap-shots of the simulation, appendix C contains information

about machine vision systems, and the last one, appendix D contains scanned copies of the

original forms required for the submission of this project.

12

CHAPTER TWO: Literature

Review

13

2.1. Introduction

Robotics is a science that has achieved great advances in the last half century, but it still offers a

wide field for development and innovation (Conde-Canaviri, n.d.). As Luo, Su, Shen, and Tsai

(2003) state, nowadays intelligent robotic systems are thoroughly extended in many fields such

as factory automation, surgery, space exploration or military service but it is becoming more and

more common to find robot applications for daily life.

Some examples of the huge range of applications that robots perform nowadays are explained by

Kaplan (2006), who remarks that robots are conceived to replace or support human beings in task

that are hazardous, such as rescuing people in fires, treating toxic waste, assisting doctors in

minimally invasive surgery or explore the deepest of seas; extreme, for example exploring the

surface of Mars or repairing spacecrafts; or tedious, like assembling pieces or packaging and

stacking food products.

Among all the possible applications shown above, in this chapter the attention will go into detail

about mobile robotics. Tanwani and Calinon (2016) define mobile robots as those autonomous

vehicles that are able to understand the environment surrounding them and act consequently.

Ollero Baturone (2007) says that mobile robots were created in response to the necessity to extend

the field of application which was mainly industrial. Robotics was restricted by the range of the

robot arm, so the goal of mobile robotics is to increase autonomy and restrict human intervention.

Summarizing, the aim of this chapter is, in first place, to provide an overview of history of robotics

and to define a robot and its different typologies. Then, the attention will be focused on mobile

robots, concretely in the actual challenges of mobile robotics such as navigation, motion planning

approaches and multi-robot systems.

2.2. History of Robots

Robotics is an old term and concept, yet it is being a long time and effort since the first robots or

mechanical automatons were conceived until now (Conde-Canaviri, n.d.).

As Sánchez-Martín et al. (2007) describe, one of the first automatons date from 1300 B.C,

Amenhotep ordered to build a statue of the King of Ethiopia that emitted sounds when sunrise

rays illuminate it. Many years later, around 400 B.C. Archytas of Tarentum designed a wooden

bird powered by steam that was able to fly 200 meters. At 62 A.D. Heron of Alexandria showed

in his book Pneumatica the designs of toys or mechanic instruments that were able to move on

their own, like singing birds, puppets, a water organ, or different types of engines, the fire engine

or the aeopile that was the very first steam turbine (Encyclopaedia Britannica, 2018). One of the

most remarkable automation inventors in history was Jacques Vaucanson (1709-1782), he did a

flutist automaton, a mechanical duck that was able to complete a full digestion and many others

that were able to write or draw (Encyclopaedia Britannica, 2018).

14

Figure 4: Robotic Duck (Hall, 1985)

During centuries, the idea of robots as a machine similar to humankind has prevailed in human

cultures with the aim to create a machine capable of performing tasks with autonomy (Sánchez-

Martín et al, 2007). Leonardo da Vinci in 1495 built the first humanoid robot, it was called

“Mechanical knight” and it was able to imitate the human movement of jaw, arms and neck. A

century later, Gianello Turriano created a doll that played the mandolin (Valero et al., 2011).

Figure 5: Mechanical knight (Valero et al, 2011)

According to Hall (1985) all the developments during the industrial revolution, such as automatic

power sources, machined parts or controllers, led to the actual industrial robots. During the first

part of the 20th century, thanks to all the development in the field of computer science, the first

robotic arm was built by Roselund and Pollard in 1938 to perform painting tasks in a production

chain.

The word “robot” appeared for the first time in 1921 in Karel Capek play “Rossum’s Universal

Robots”. This term comes from a Czech word which means forced labour. Years later, Isaac

Asimov was inspired by the work of Capek and used it in his own books where he defined the

tree laws of robotics. Even though Asimov was a science-fiction writer, the laws of robotics that

he established in his books are still present and used as a theoretical referent (Sánchez-Martín et

al, 2007).

Although the history of Robotics is more than 2000 years old, the last two decades have shown a

remarkable revolution due to the changes it has introduced in fields such as Industry, Science or

Medicine (Valero et al., 2011). An example of this revolution is shown by Yates et al. (2011),

15

currently around the 85% of the interventions in the field of urology are performed by robots in

the U.S.A. Concretely it is done by using da Vinci Surgical System. Lots of examples can be found

in the work of Hall (1985) where he mentioned the following robot applications: automotive

industry, assembly, laboratories, medicine, nuclear energy, agriculture, underwater exploration,

space exploration, custom service, or arts and entertainment among others.

2.2.1. Mobile robots in history
In this section an overview of some mobile robots in history will be done, according to the work

of Bermudez (2018):

• Industrial robots: Their main task was cleaning and hoover in spacious areas. The first

was RoboKent in 1988 followed by Roboscrub in 1991.

 Figure 6: RoboKent (Bermudez, 2018)

• Security: Denning Sentry was designed to patrol and detect intruders. It was equipped

with TV camera, microphone and wireless transmitters.

 Figure 7: Denning Sentry (Bermudez, 2018)

• Hospitals: The robot Helpmate was built to help the nurses. They could send it to another

location just by pushing a button and the purpose of this robot was to transport food and

medication.

16

 Figure 8: Helpmate (Bermudez, 2018)

• Space research: In 1997 Sojourner landed on Mars and for this reason it could be

considered as the autonomous mobile robot more successful in history. It was

programmed to explore the planet and it was controlled from the Earth, but it also was

able to perform actions by itself.

 Figure 9: Sajourner (Bermudez, 2018)

• Military: Fetch robot was conceived to remove from the field the unexploited bombs and

grenades. It performed successfully the navigation from one point to another and the

ammunition research task by following a spiral trajectory.

 Figure 10: Fletch (Bermudez, 2018)

• Humanoids: Honda started in the late eighties the development of prototypes of humanoid

robots with the aim of "duplicate the complexities of human motion and genuinely help

17

people" (Honda, 2018). The development of ASIMO took more than two decades and

now it is still in development. Honda (2018) state that ASIMO is "the most advanced

humanoid robot in the world".

 Figure 11: Honda P-series (Honda, 2018)

Figure 12: ASIMO (Honda, 2018)

2.3. Robot Definition

There are many definitions of a robot, from the most general as the one offered by Encyclopaedia

Britannica (2018) that defines a robot as "any automatically operated machine that replaces

human effort ". Until the most complete and specific such as the definition given by Latombe

(2010) that said "a robot is a versatile mechanical device equipped with actuators and sensors

under the control of a computing system. It operates in a workspace within the real world. This

workspace is populated by physical objects and is subject to the laws of nature. The robot

performs tasks by executing motions in the workspace".

Although one of the most technic definitions is provided by the International Organization of

Standardization (2012), ISO from now on, that defines a robot as "an actuated mechanism

programmable in two or more axes, with a degree of autonomy, moving within its environment,

to perform intended tasks". The ISO also defines the differences among robot typologies:

18

• Industrial robots: it is "an automatically controlled, reprogrammable, multipurpose

manipulator, programmable in three or more axes, which can be either fixed in place or

mobile for use in industrial automation applications". Being a manipulator "a machine in

which the mechanism usually consists of a series of segments, joined or sliding relative

to one another, for the purpose of grasping and/or moving objects (pieces or tools) usually

in several degrees of freedom".

• Mobile robots: Those that "are able to travel under its own control and it can be a mobile

platform with or without manipulators".

• Cobots: robots that "are designed for direct interaction with human, the operations and

the interaction occur within a defined workspace".

2.4. Challenges of mobile robotics

The greatest success to date in robotics has been achieved in the world of industrial manufacturing

thanks to robot arms or manipulators (Fahimi, 2010). The success of manipulators is due to their

speed and high accuracy, so they are perfect to perform repetitive tasks such as welding and

painting in an assembly line. Though all their success, the lack of mobility of robot arms is their

biggest disadvantage. By contrast, mobile robots are able to freely move through the plant, and

its most characteristic quality is their flexibility.

Mobile robotics is an interdisciplinary field that combines knowledge of many different

disciplines such as kinematics, dynamics, control, signal processing, computer vision, or

computer science, among others. To achieve a robust navigation, the following problems must be

solved, and they are related to the different fields that involve mobile robotics. The first challenge

is locomotion; the next is perception and interpretation of the environment; and finally, navigation

that combines cognition and localization (Siegwart and Nourbakhsh, 2004). The challenges

presented above will be further discussed in the next sections.

2.5. Perception

Perception and interpretation of the data are two of the most important tasks that a robot has to

develop because through all the information acquired by the sensors the robot is able to see and

analyse the environment and perform consequently. According to Tzafestas (2013) the sensors

for robots are inspired by the human sensory system that provides input signals to the brain to be

processed. For a robot, those signals provide them with higher intelligence capabilities such as

vision or hearing.

The interest in the field of perception and more precisely in image processing is becoming more

and more popular due to it is a key tool needed to provide vision to autonomous mobile robots.

This tool can be used to solve the problem of object recognition that usually it is processed by

humans.

2.5.1. Machine Vision
A machine vision system objective is to recover useful information about an image from its two-

dimensional projections (Ramesh and Kasturi, 1995). Images are two dimensional projections of

19

the tree dimensional world so there is missed information that must be recovered. The goal is to

create a model of the real world from images. Machine vision provides the robot the information

it needs to understand the environment and be able to navigate autonomously. There are

techniques and methods to recover depth from the images and it is widely used in autonomous

vehicles, airplanes, tanks and robots.

Ramesh and Kasturi (1995) also point that machine vision is usually considered as a subfield of

artificial intelligence. This fact is due to many techniques from artificial intelligence are used in

many aspects of computer vision. The encyclopaedia (2018) defines artificial intelligence as "the

ability of a digital computer to perform tasks commonly associated with intelligent beings".

2.6. Navigation problem

As it has ben said before, navigation is the main challenge of mobile robotics because it involves

all the other aspects.

Bataling et al. (2004) describes the two types of navigation problems in their work. The first one

is the local navigation problem whose scale is only a few meters and the main problem is obstacle

avoidance. As it has been shown in the previous sections, there are many techniques to map the

environment which allow the control system to know the surroundings and using this information

the control system is able to identify the obstacles and avoid them.

The second problem is global navigation and in this case the range is larger than the local. In this

case the problem that must be solved is how to find the goal when it is out of the range of

perception at the initial state. As it happens with the previous case there are many approaches

developed to solve this problem.

2.7. Motion planning

Locomotion includes how the robot should move towards reaching its goal and the mechanisms

involved in the process. Villaseñor Carrillo et al. (2010) state that efficient techniques and

algorithms are required in order to implement the navigation system that is able to achieve an

efficient movement in the surrounding environment. Robots must be able to perform efficiently

in a real environment, build its own map, and navigate autonomously.

The locomotion mechanisms are what enable the robot to move throughout its environment

(Siegwart and Nourbakhsh, 2004). There are robots that can walk, jump, run, slide, roll swim, or

fly, so there are a large variety of possible choices towards locomotion, and this aspect is crucial

because it must be compatible with the robot application needed.

On the other hand, path planning is the compliment to the mechanisms exposed above to achieve

autonomous vehicles. Its purpose is to generate feasible routes between the initial position and

the goal avoiding the obstacles placed in the environment (Gonzalez et al., 2017). Path planning

is about the connectivity of the environment F and the objective is to connect two given

configurations qinit and qgoal. Usually a path planning algorithm discretizes F and searches for its

connectivity graph, and then it searches in the graph a suitable path (Ge and Lewis, 2006). There

are numerous algorithms and the difference between them is how the connectivity graph is built,

some of them will be explained below.

20

2.7.1. Roadmaps
The roadmap is a method that relies on rules based on the geometry of the obstacle field. As

Fahimi (2010) says many motion planning problems have been solved by using this method such

as motion planning for several circular or rectangular obstacles, moving obstacles, and motion

planning for multiple robots.

Digani et al. (2014) define roadmap as a union of one-dimensional curves whose properties are

accessibility, departability, and connectivity. In addition, the robot is restricted to move along the

curves of the network.

Visibility graph is commonly used in 2D roadmaps with polygonal obstacles. It builds the

connectivity graph connecting the vertices of the polygonal obstacles and the configurations qinit

and qgoal. The connexion between two nodes is stablished if the strait line path that connects them

does not intersect the interior of an obstacle (Ge and Lewis, 2006).

Figure 13: Visibility graph (Ge and Lewis, 2006)

Voronoi diagrams are widely used for extracting distance node information from a 2D

environment. The algorithm constructs a skeleton of points with minimal distances to obstacles

and walls. By following the curves in this diagram, the robot stays as far away as possible from

the obstacles. Bräunl (2008) defines Voronoi diagrams as follows:

• F is the free space in the environment

• F' is the occupied space

• b ∈ F' is basis point for p ∈ F if b has minimal distance to p, compared with all other

points in F'

Voronoi diagram= {p ∈ F ' ¦p has at least two basis points}

21

Figure 14: Voronoi diagram (Aurenhammer, 1991)

Ge and Lewis (2006) say that "in 2D polygonal configuration spaces, the visibility graph and the

Voronoi diagram capture the connectivity of the space exactly". This means that a collision free

path exists between two given configurations if and only if a path in the corresponding diagrams

exists.

2.7.2. Cell decomposition
The cell decomposition strategy is based on the division of the free space into a finite set of

regions which can be safely crossed by the robot. This method and the roadmap are based on

geometry, so these types of methods are focused on connectivity ignoring optimality or

computational complexity (Gonzalez et al., 2017).

Figure 15: Cell decomposition with fixed resolution grid (Ge and Lewis, 2006)

The cell decomposition approach divides the free space into canonical regions called cells that

usually are convex, and then the algorithm constructs a graph with the connectivity of the

environment (Ge and Lewis, 2026). The graph obtained contains the information of each cell

stored in the nodes, and each arc links two cells sharing a line segment. A minimum cost path can

be found between the initial position and the goal by using a search algorithm (Gonzalez et al.,

2017).

22

The resolution and the shape of the grid can be chosen. Depending on those parameters the result

may vary due to it will find a path between qinit and qgoal only when one path exists, and the

existence of the path is related directly to the resolution that must be appropriate for the

environment and the obstacles that it contains. As Kloetzer et al. (2015) point, traditional

formulations of this method are based on the usage of the middle points of the boundaries of the

cell to build the path, but this may lead to too conservative routes and longer travelled distances.

Figure 16: Cell decomposition by triangulation (Ge and Lewis, 2006)

2.7.3. Bug Algorithm
The bug algorithm aim is to find a way from the initial point to the goal in unknown environments.

As Xu, Yu and Bai (2017) describe the robot method as it follows "the robot moves directly to

the target position firstly, and then adds the insert points and updates the current path to avoid the

obstacles, until the target position is reached". The advantages of this method are that it is simple

and easy to realize.

Lumelsky and Stepanov developed this algorithm in 1987, but there are many versions of it with

different characteristics, two of them are shown below.

23

Figure 17: Bug 1 (Alboul, 2017)

The main characteristic of Bug 1 is that the robot moves around all the perimeter of the obstacle,

and then it goes to the goal from the point with the shortest distance.

Figure 18: Bug 2 (Alboul, 2017)

In this case, Bug 2 navigates around the contour of the obstacle until it is possible to depart directly

to the goal.

24

2.7.4. Artificial Potential fields
Artificial Potential Field (APF) is a method that is becoming more and more popular due to its

simplicity and mathematical elegance (Wang et al., 2013). This method has easy implementation

and provides good results. However, it has some inconveniences that difficult its application such

as local minima, oscillation and Goal Non-Reachable with Obstacle Nearby (GNRON). It was

introduced by Khatib in 1986, in that paper he proposed the method as a low-level control

mechanism for industrial and mobile robots with the aim of improving collision avoidance in real

time tasks.

The basis of this method is that robots are considered particles moving in the virtual potential

field. Then, the obstacles are assigned a potential field that repel the robot and the goal is given a

potential field that attract it. The resultant of all the forces applied on the robot will determine the

subsequent direction and speed of travel that will guide the robot to the goal avoiding effectively

any collision.

Figure 19: Force situation APF (Lee et al., 2017)

Although this method was conceived by Khatip and Arkin for single robot case in known

environments, many researchers such as Zalvanos and Pappas (2007) have used it for multi-robot

case or unknown environments. In their work, they model connectivity as it was an imaginary

obstacle in the space and use APF to avoid collisions. Continuing the previous work, Zalvanos et

al. (2009) also used APFs for dynamic networks. This approach is also used to control a large

number of robots in swarm robotics as it is exposed by Bayindir and Sahin (2007).

25

2.7.4.1. The Traditional Artificial Potential Field Method Formulation

Lee et al. (2017) describe the method using the most common potential functions as follows,

being the attractive potential of the goal Uatt and the repulsive of the obstacles Urep. The total

potential field Utot is defined as:

𝑈𝑡𝑜𝑡(𝑞) = 𝑈𝑎𝑡𝑡(𝑞) + 𝑈𝑟𝑒𝑝(𝑞)

Where the position of the robot is 𝑞 = (𝑥, 𝑦)T

The most commonly used attractive potential is:

𝑈𝑎𝑡𝑡(𝑞) =
1

2
𝜉𝜌𝑚(𝑞, 𝑞𝑔𝑜𝑎𝑙)

Where 𝜉 is a positive scaling factor, m is 1 for attractive potential with conic shape or 2 for

parabolic shape, and 𝜌(𝑞, 𝑞𝑔𝑜𝑎𝑙) is the distance between the actual position q and the goal qgoal.

𝜌(𝑞, 𝑞𝑔𝑜𝑎𝑙) = ‖𝑞𝑔𝑜𝑎𝑙 − 𝑞‖

The attractive force is given by:

𝐹𝑎𝑡𝑡 = −∇𝑈𝑎𝑡𝑡(𝑞) = 𝝃𝜌(𝑞, 𝑞𝑔𝑜𝑎𝑙)

The commonly used repulsive potential function:

𝑈𝑟𝑒𝑝(𝑞) = {

1

2
𝜂 (

1

𝜌(𝑞, 𝑞𝑜𝑏𝑠)
−

1

𝜌0
)
2

, 𝑖𝑓 𝜌(𝑞, 𝑞𝑜𝑏𝑠) ≤ 𝜌0

0, 𝑖𝑓 𝜌(𝑞, 𝑞𝑜𝑏𝑠) > 𝜌0

}

Where 𝜂 is a positive scaling factor, 𝜌(𝑞, 𝑞𝑜𝑏𝑠) is the distance between the robot and the obstacle,

qobs is the position of the obstacle, and 𝜌0 is the distance of influence.

The repulsive force is:

𝐹𝑟𝑒𝑝(𝑞) = −∇𝑈𝑟𝑒𝑝(𝑞) = {
𝜂 (

1

𝜌(𝑞, 𝑞𝑜𝑏𝑠)
−

1

𝜌0
)
∇𝜌(𝑞, 𝑞𝑜𝑏𝑠)

𝜌2(𝑞, 𝑞𝑜𝑏𝑠)
, 𝑖𝑓 𝜌(𝑞, 𝑞𝑜𝑏𝑠) ≤ 𝜌0

0, 𝑖𝑓 𝜌(𝑞, 𝑞𝑜𝑏𝑠) > 𝜌0

}

Then, the resultant applied to the robot is the sum of the attractive and repulsive force:

𝐹𝑡𝑜𝑡 = −∇𝑈𝑡𝑜𝑡(𝑞) = 𝐹𝑎𝑡𝑡 + 𝐹𝑟𝑒𝑝

And the robot moves in the direction of the resultant:

𝑞̇ = −∇(𝑈𝑎𝑡𝑡(𝑞) + 𝑈𝑟𝑒𝑝(𝑞))

2.7.4.2. Problems with the APF method

As it has been mentioned before, there are inherent problems in this APF method. But those

problems are independent of the particular implementation. Koren and Borenstein (1991) explain

them in their work:

• Trap situations due to local minima: This is the most known problem of APFs. Traps can

be created by different obstacle configurations such as U-shaped obstacles. The next

image shows three examples.

26

 Figure 20: Obstacle configurations that create local minima (Wang et al., 2013)

• The GNRON problem: This situation occurs when the goal has obstacles nearby and the

repulsive force of those is bigger than the attractive force from the goal, so the robot will

never reach the target.

 Figure 21: GNRON problem (Wang et al., 2013)

• No passage between closely spaced obstacles: When two obstacles are too close may be

that the sum of the repulsive forces points in the opposite direction from the opening.

Consequently, the resultant does not lead the robot between them. This problem also

depends on the magnitude and direction of the attractive force of the goal as it is shown

in the nest figure.

 Figure 22: Example of no passage between closely spaced obstacles (Koren and Borenstein, 1991)

• Oscillations: APFs method has a high tendency to cause unstable motion in the presence

of obstacles. For example, when the robot is travelling in narrow corridors where it

experiences repulsive forces from opposite sides.

27

2.7.4.3. Social Potential Fields

Social potential field is the name that Reif and Wang (1999) gave to the method that they develop

to control a very large multi-robot system from hundreds to ten thousand of robots.

For this approach, they choose distributed control due to, for that number of robots, centralized

control has very high computational and communicative requirements. By using decentralized

control, the scalability of the system increases owing to each robot only needs its own information

to plan its navigation. Furthermore, rules were stablished for every robot to regulate the

interactions with other robots and obstacles.

The robot motion is controlled by the resultant artificial force imposed by the neighbour robots

and other components of the system. The force laws between robots are inverse-power laws of

distances incorporating attraction and repulsion.

𝑓(𝑟) = −
𝑐1
𝑟𝜎1

+
𝑐2

𝑟𝜎2

𝑐1, 𝑐2 ≥ 0

𝜎1 > 𝜎2 > 0

The attractive term which is the positive, is dominant when the robot is going too far away, and

the repulsive or negative term dominates when the robot is close to another component of the

system. Collective behaviours can be achieved by the adjustment of the parameters, and those

behaviours can be clustering, guarding, or patrolling.

Figure 23: Cluster of robots formed with an identical force law (Reif and Wang, 1999). On the left it is shown

the distribution after 3 iterations, on the right after 225 iterations.

28

2.8. Multi-Robot Systems: Swarm Robotics

Nowadays multi-robot systems are becoming one of the most important research areas in the field

due to the high potential of its applications (Lima and Custodio, 2015). Similarities between

human and robot teams can be found, for example a group of people in line is able to move a

bucket from a source of water until the fire faster and more efficiently than working individually.

Even though if some of the people left the line the rest can continue working and performing

adequately with the pertinent penalization in velocity.

The same argument can be applied to multi-robot systems to perform tasks such as building

surveillance, transport of large objects, air and underwater monitoring, forest fire detection, or

search and rescue operations. As Arai et al. (2002) say a team of robots is able to perform a task

in a cheaper, faster, and more reliable way than a single robot, furthermore they provide

redundancy and more robustness. In order to perform the tasks such as the ones described before

the robots must accomplish the following requirements: they must be highly mobile, maintain

communication across a large area, estimate their own configuration, and make collective

decisions.

Swarm robotics is a new approach to the coordination of large number of simple robots. It is

inspired by social animals and their way of behaving because they are able to coordinate their

actions to accomplish tasks that are beyond the capabilities of an individual (Bayindir and Sahin,

2007). Social insects like ants, termites, wasps and bees show three characteristics that are desired

for multi robot systems that are robustness that is the degree in which a system can work under

abnormal circumstances; flexibility, which means the ability to adapt; and scalability, that is the

ability to expand. Swarms of robots are better in applications that require spatially distributed

sensing or actuation than single and more sophisticated robots.

In the following sections some relevant aspects about swarm robotics will be introduced.

2.8.1. Biological Inspiration
Swarm behaviour observed in social insects, flocking birds, or shoals of fishes have been the

inspiration of this approach. Individuals within the swarm have their own task, and all those tasks

are integrated perfectly without supervision (Bonabeau et al., 1999). As a result, the swarm has a

collective behaviour that is desired for multi-robot systems due to it is decentralized and self-

organized.

Many examples of this collective behaviour can be found such as ants that are able to form chains

of their own bodies in order to cross wide gaps and pull stiff leaf together to form a nest or create

highways to bring the cut leaves from hundreds of meters away. Wasps can build complex nests

differentiating among three types of groups of workers whose size is determined by the needs of

the colony. Flocks of birds navigate and maintain their formation by adjusting their speed and

orientation according with their immediate neighbours.

29

Figure 24: Example of collective behaviour performed by ants.

2.8.2. Swarm Intelligence
Behaviour-based control pretend to imitate the behaviour and characteristics of social insects or

animals (Arai et al., 2002). It is also known as swarm intelligence because the system has a

collective behaviour even though the individuals that compound it only have information about

their surroundings and are governed by very simple rules that regulate the interaction with other

components of the swarm. Cao et al. (1997) define swarm intelligence as “a property of systems

of non-intelligent robots exhibiting collectively intelligent behaviour”. Two of the most

remarkable characteristics are the ability to self-organize that can be understood as the ability of

the team to distribute optimally to develop a task, and its distributed architecture, which means

that each robot controls itself rather than having a centralized control mechanism for the hole

swarm.

The goal is to apply simple control rules of various biological societies like ants or bees, to multi-

robot systems. Behaviour-based multi-robot teams can control how to disperse, aggregate, forage,

flock and follow trails.

As it has been mentioned before, the application of swarm intelligence to multi robot teams has

numerous advantages such as robustness, due to the inherent redundancy of the system compound

by simple self-organized individuals; parallelism, the team can work in different subtasks

simultaneously to complete the main task in less time; low-cost, due to the robots of the swarm

are simple; and scalability (Winfield and Nembrini, 2006). On the other hand, it also presents

some problems like responsiveness due to it is impossible to control a particular robot of the

system, and low predictability due to their local interaction and the size of the system.

2.8.3. Formation control
Formation control can be understood as the problem of controlling the relative positions and

orientations of each robot in the team, while allowing them to move as a whole. Swarm robots

can form and keep various formations like line or triangle, in order to accomplish different tasks.

Formation control is important in swarm robotics due to it allow individual team members to

concentrate their sensors across a portion of the environment, while their partners cover the rest

to ensure full coverage (Balch and Arkin, 1998).

30

Figure 25: Formation of robots changing shapes (Desai et al., 2001)

There are three main approaches to distributed formation control as it is explained by Xu et al.

(2014):

• Behaviour-based: It has predefined behaviours such as moving-to-target, keeping-

formation, and avoiding-obstacles. This method is suitable for distributed systems where

the robots are strongly autonomous.

• Leader-follower: A leader is designated, and the rest of the team follow it keeping a

certain distance and direction.

• Virtual structure: This method considers the team as an inflexible entity where robots are

points contained on it. The strict requirements of this formation limit its applications.

Figure 26: Formation control obstacle avoidance (Xu et al., 2014)

2.8.4. Connectivity
Communication in multi robot teams is a key issue due to it is important and necessary the

continuous exchange of information between the robot team. As Zalvanos et al. (2009) point one

of the main challenges involving mobile multi-robot systems is the development of distributed

motion algorithms that guarantee connectivity of the overall network. However, the wireless

connection between the team often fails due to environmental interference, fading, or for being

out of the range. For these reasons, dynamic networks are receiving considerable attention, and

algorithms are being developed to solve the problems. An example is shown in the work of

Zalvanos et al. (2007) where they use potential fields for maintaining the connectivity in the

network.

31

Figure 27: Communication in a team of mobile robots (Zalvanos et al., 2007)

2.9. Summary

In general terms, the aim of any mobile robot is to reach effectively his goal, which means that it

must navigate safely, avoiding the obstacles and following the optimum path towards its

objective. To accomplish this task the robot must deal with tree problems: perception, locomotion,

and navigation.

The emphasis in this chapter has been focused on motion planning, and four of the most used

algorithms have been introduced. To begin with, roadmaps and cell decomposition are two

algorithms for known environments and both are based on the geometry of the field. The first one

uses visibility graphs or Voronoi diagrams among others to build the connectivity graph. Whereas

cell decomposition is based on the division of the space in cells following geometrical patterns.

Both methods are widely used, but they need to be applied jointly with a search algorithm to find

an optimum path in the graph.

On the other hand, bug algorithm is suitable for unknown environments. Its goal is to achieve the

target using as little global information as possible, and for this reason it is considered one of the

simplest navigation algorithms. Although, if there is no path possible the robot can be trapped in

a loop around the obstacles. Since it was introduced for the first time, many versions of It have

been developed in other to improve its performance.

Finally, Artificial Potential Field approach is the most popular due to its simplicity, elegance and

good results. Robots are considered particles moving in the virtual potential field and they are

attracted by goals and repelled by the obstacles. However, it has some inconveniences such as

local minima, oscillation, and GNRON. This method was conceived for a single robot when the

environment is known, but it also has been modified and adapted for multiple robots and unknown

environments.

32

To conclude the review, the field of swarm robotics has been introduced and the key points of it

have been exposed. The aim was to provide an overview of one of the most relevant fields in

development nowadays in Robotics, and its possible applications.

Summarizing, among all the algorithms shown in this chapter APF is a method that has proved a

good combination of simplicity and effective results, and it is backed by multiple papers.

Furthermore, its capacity to adapt to the wide casuistry must be highlighted, for example its

applications in the field of swarm robotics.

33

CHAPTER THREE:

Methodology

34

3.1. Introduction

In this chapter, the methodology used to achieve the objectives of this dissertation will be

described. The main goal of this dissertation is to implement and simulate in MatLab an optimal

path planning algorithm using Artificial Potential Fields (APF) for three mobile robots to avoid

different types of static and dynamic obstacles in known environment.

To accomplish this task the APF method will be used for path planning. This algorithm has been

described and compared with others in the last chapter. As it has been said before, even though

this method was purposed by Khatib thirty years ago for single robot case in known environments,

it is widely used nowadays due to its simplicity, elegance, and good results for mobile robot local

collision avoidance.

Furthermore, the method to implement the navigation will be described as well as the software

requirements, MatLab in this case, to perform the simulation and achieve a suitable solution.

3.2. Artificial Potential Fields for navigation

The simplicity of the Artificial Potential Field method relies on the existence of two types of

forces that act on the robot:

• Repulsive forces: generated by obstacles

• Attractive forces: generated by goals

Robots are considered as particles moving in the virtual potential field created by the forces of

the components of the environment. Each position has a potential value which determines the

level of energy for that point. The direction and speed of the robot will be determined by the

resultant of the forces applied on its position. The resultant force will guide the robot towards the

goal avoiding effectively any collision through the optimal path (Wang et al., 2013).

The total potential field Utot is defined as:

𝑈𝑡𝑜𝑡(𝑞) = 𝑈𝑎𝑡𝑡(𝑞) + 𝑈𝑟𝑒𝑝(𝑞)

Where the position of the robot is 𝑞 = (𝑥, 𝑦)T

Uatt is the attractive potential of the goal and Urep is the sum of all the repulsive potentials of the

obstacles. In chapter two section 2.7.4.1., the most commonly used attractive and repulsive

potential functions are shown. The functions employed in the implementation of this work will

be further discuss in the next sections.

A charged particle put in a potential field, it moves in the direction of decreasing the potential.

Hence the applied force Ftot is defined as:

𝐹𝑡𝑜𝑡 = −∇𝑈𝑡𝑜𝑡(𝑞)

The problems of this method are explained in chapter two section 2.7.4.2. Summarizing, these

problems are:

• Local minima.

• Goal non-reachable with obstacle nearby (GNROB).

• Closely spaced obstacles.

35

• Oscillations.

3.2.1. Potential Functions
In this section the different potential functions used for each component of the system will be

exposed.

3.2.1.1. Attractive: Goals

The attractive potential function chosen for Goals is:

𝑈𝑎𝑡𝑡(𝑞) = 𝐾 ∗ 𝜌(𝑞, 𝑞𝑔𝑜𝑎𝑙)

Being K a positive scaling factor and 𝜌(𝑞, 𝑞𝑔𝑜𝑎𝑙) the distance between the actual position q and

the goal qgoal

𝜌(𝑞, 𝑞𝑔𝑜𝑎𝑙) = ‖𝑞𝑔𝑜𝑎𝑙 − 𝑞‖

This attractive function is constant and equal to the value of the constant K.

Finally, the attractive force produced by goals is:

𝐹𝑎𝑡𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝐾 ∗

𝑞𝑔𝑜𝑎𝑙 − 𝑞

𝜌(𝑞, 𝑞𝑔𝑜𝑎𝑙)

Figure 28: Goal potential function

36

3.2.1.2. Repulsive: Obstacles

3.2.1.2.1. Circular

The following potential function has been used for dynamic and static circular obstacles:

𝑈𝑟𝑒𝑝(𝑞) = 𝑒
−
𝜌(𝑞,𝑞𝑜𝑏𝑠)

𝐾

Where 𝜌(𝑞, 𝑞𝑜𝑏𝑠) is the distance between the robot and the obstacle, and qobs is the position of the

obstacle. Then, its attractive force is:

𝐹𝑟𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝑞 − 𝑞𝑜𝑏𝑠)𝑒
−
𝜌(𝑞,𝑞𝑜𝑏𝑠)

𝐾

Figure 29: Circular Obstacle Potential Function

3.2.1.2.2. Rectangular

For this type of obstacles, the potential function is defined in three parts depending on the distance

between the robot and the boundaries of the obstacle. An obstacle is represented in the next figure

where the dark blue area is the obstacle, the light blue area is its area of influence and the white

area is where the obstacle has no influence.

Figure 30: Area of influence rectangular obstacle

𝜌
inv

 𝜌
min

37

The area of influence is defined by two parameters, where 𝜌
inv

 must be grater than cero and it

represents the distance from the boundaries of the obstacle where the influence of it starts, it is

recommended to choose a small value. Then, 𝜌
inv

 is the distance from the boundaries where the

influence ends.

𝜌
inv

> 𝜌
min

> 0

When the distance between the robot and the obstacle 𝜌(𝑞, 𝑞𝑜𝑏𝑠) es greater than 𝜌
inv

 it has no

influence, so the repulsive potential is:

𝑈𝑟𝑒𝑝(𝑞) = 0, 𝑖𝑓 𝜌(𝑞, 𝑞𝑜𝑏𝑠) > 𝜌inv

And the repulsive force is:

𝐹𝑟𝑒𝑝(𝑞) = 0, 𝑖𝑓 𝜌(𝑞, 𝑞𝑜𝑏𝑠) > 𝜌inv

When the robot is in the area of influence:

𝑈𝑟𝑒𝑝(𝑞) =
1

2
 (

1

𝜌(𝑞, 𝑞𝑜𝑏𝑠)
−

1

𝜌inv

)
2

, 𝑖𝑓 𝜌inv > 𝜌(𝑞, 𝑞𝑜𝑏𝑠) > 𝜌min

And the repulsive force is:

𝐹𝑟𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝑞 − 𝑞𝑜𝑏𝑠)
1

2
 (

1

𝜌(𝑞, 𝑞𝑜𝑏𝑠)
−

1

𝜌inv

)
2

Finally, if the potential function is constant in the area where is the obstacle:

𝑈𝑟𝑒𝑝(𝑞) =
1

2
 (

1

𝜌min

−
1

𝜌inv

)
2

, 𝑖𝑓 𝜌(𝑞, 𝑞𝑜𝑏𝑠) < 𝜌min

And the repulsive force is:

𝐹𝑟𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝑞 − 𝑞𝑜𝑏𝑠)
1

2
 (

1

𝜌min

−
1

𝜌inv

)
2

38

Figure 31: Rectangular Obstacle Potential Function

3.3. Navigation

The challenges of mobile robotics nowadays and its thee main problems, including navigation,

have been developed in chapter two. In this section the attention will be focused on navigation.

According with Amiryan and Jamzad (2015), a motion plan can be produced from a potential

field following the next steps. Starting from the initial position, then calculating the force vector

in each state and the consequent new position until the goal is reached, or the robot gets trapped

in local minima. In other words, the steps that must be followed to successfully complete the

navigation are the following:

1. Definition of the environment and the obstacles on it.

2. Introduction of the initial position of the robots and the goals.

3. Calculation of the total APF of the environment

4. Navigation loop until the last robot reaches its objective.

a. Check if the robot has reached the goal

b. Calculation of the forces and the resultant on the robot.

c. Update new position.

5. Finish navigation.

According with Koren and Borenstein (1991), the mayor disadvantage of using APFs for mobile

robot navigation is the existence of local minima. This occurs whenever the attractive and

repulsive forces cancel each other, so the robot gets trapped. They purpose some solutions to this

problem such as the use of harmonic potential fields, but this solution is computationally

expensive; an approach where a local model of the environment is done to determine a possible

escape; or the simplest solution that is to move randomly. The last one has been selected to be

implemented in this work.

39

Furthermore, in the problem proposed for this dissertation the environment contains three robots,

so a system of priorities has been stablished between them in order to avoid collisions. One of the

robots has no restrictions and the other two have to check its proximity with the others and if they

are close they will stop until the other is out of the range of collision.

Finally, in the next diagram the navigation sequence is described including the collision avoidance

and the preferences between robots.

Figure 32: Simulation diagram

The inputs of the system are the initial positions and the parameters of the robots, goals and

obstacles. Then the APF of the static obstacles is built and the navigation can begin. Inside the

navigation loop the first thing that is checked for every robot is if it has reached its goal, if it does

not then the method for collision avoidance is checked. This method consists of the establishment

40

of priorities between robots and the establishment of a safe range for navigation. Therefore, in

each iteration the robot must check if there are robots with more priorities in the area around it

defined by the safety range. If there are robots around, the robot with less priority stops its

navigation until it is safe. Following with the sequence of the diagram, if it is safe to navigate the

resultant of the forces applied on the robot is calculated and the new position. At this point is

where the method for local minima avoidance is checked. The algorithm stores the previous

position of the robot and compare it with the new one. If the robot is in the same position a counter

starts. When this counter arrives until the value set as the maximum number of iterations trapped

permitted a random movement is produced to release the robot from local minima. The new

position of the robot is updated, and the loop begins again.

3.4. Software: MatLab

MatLab is a software developed by MathWorks that is the worldwide leader of mathematical

calculation software for engineers and scientist (MathWorks, 2018). The company describes

MatLab as “a high-level language for the expression of engineering and scientific ideas, and it is

the computational engine that drives discovery and innovation”.

This is the software chosen because it provides quick and efficient mathematical calculations,

easy interface, good support, and great built-in graphics. All these qualities are important for the

correct development of this project.

41

CHAPTER FOUR:

Simulation and results

42

4.1. Introduction

In this chapter the results of the project will be shown. Following the procedures and methods

described in the last chapter, the navigation of three robots in known environment using APFs

has been developed and tested.

To begin with, the design of the environment will be exposed. It has been inspired by a warehouse,

where the robots are transporting materials while people or other robots might be moving around.

It also has been designed to test the features introduced in the code such as the random movement

to avoid local minima.

Then, the results of the simulations will be exposed. In first place, some preliminary simulations

will be performed where the priorities between robots, or the influence of the variation of the

parameters of the obstacles in the simulation, among others, are tested. Finally, the main

simulation will be shown and commented.

The code of the simulation can be found in the Appendix A.

4.2. Environment design

The environment contains static and dynamic obstacles with different shapes and potential

functions associated. These elements are easily editable in size, colour, number, position and

coefficient of influence. On the other hand, the environment also contains the robots and their

corresponding goals, but these ones do not offer that much editability. It is only possible to change

their position and colour. All the details about these elements will be further developed in the next

subsections.

To begin with, the dimensions of the environment must be stabilised. These boundaries are like

the walls of the warehouse, so the robots must avoid collision with them too. For this reason, these

elements have been modelled like rectangular obstacles.

The user only must introduce the dimensions wanted and the boundaries are printed, and their

potential field calculated. In this case, the dimensions are 21x12.

Figure 33: Environment boundaries 21x12

43

4.2.1. Obstacles

4.2.1.1. Rectangular

As it has been said before, these elements are modelled like the boundaries of the environment.

The idea was to represent shelves containing materials in the warehouse.

To add a rectangular obstacle, the position of the left bottom corner of it must be introduced, also

its width and height. In the next table can be found the information about the seven static

rectangular obstacles in the environment.

Left Bottom Corner (x, y) Width Height

3 1,5 5 1

3 3,5 5 1

3 5,5 5 1

3 7,5 5 1

3 9,5 5 1

17 7,5 1 3

17 1,5 1 3

The next figure shows how the environment is build, in this moment it contains the boundaries

plus the rectangular obstacles represented in cyan.

Figure 34: Boundaries and rectangular obstacles

4.2.1.2. Circular

4.2.1.2.1. Static

One of the purposes was to introduce different types of obstacles with different potential

functions. The rounded obstacles are placed in the middle-right side of the environment and

following with the analogy of the warehouse these elements can be considered pillars of the

structure or goods stacked in the ground.

In the next table the parameters to define the circular obstacles are shown: the centre and radius

of the obstacle, the number of points to draw the circle and the coefficient of influence.

44

Centre (x, y) Radius K Points

11 6 0,5 0,35 100

11 9 0,5 0,35 100

11 3 0,5 0,35 100

14 7,5 0,5 0,35 100

14 4,5 0,5 0,35 100

14 10,5 0,5 0,35 100

14 1,5 0,5 0,35 100

Figure 35: Boundaries and rectangular and static circular obstacles

4.2.1.2.2. Dynamic

Two circular dynamic obstacles have been introduced in the environment. One performs a linear

horizontal movement between two shelves and the other is rounding one of the pillars. The

properties are the same than the previous ones, and their movement is configured in the iteration

loop.

Figure 36: Boundaries and rectangular and circular obstacles.

45

4.2.2. Robots
The robots are represented as points situated at the left side of the environment. Their initial

position is:

 Centre (x, y)

Robot 1 1 2

Robot 2 1 6

Robot 3 1 10

Figure 37: Boundaries, obstacles and robots

4.2.3. Goals
The definition of goals and circular obstacles is the same except for the number of points to draw

the circle, in this case is inferior. The goals are matching in colour with the robot that must reach

them.

 Centre (x, y) Radius K Points

Goal 3 20 2 0,3 0,1 9

Goal 2 20 6 0,3 0,1 9

Goal 1 20 10 0,3 0,1 9

46

Figure 38: Complete environment. Boundaries, obstacles, robots and goals

4.2.4. Artificial Potential Field
Once the environment is defined, its artificial potential field is calculated according with all the

potential functions on chapter 3 section 3.2.1, and the result are the following:

Figure 39: Contour of the environment

47

Figure 40: Contour and potential force

Figure 41: Potential field

48

4.3. Simulation

4.3.1. Test: Influence of the parameters of the potential functions
As it has been exposed before, different types of potential functions have been used and the

variation of its parameters affects significantly its influence on the environment. Some examples

are shown here.

Figure 42: Contour and potential force high variation of the parameters of the rectangular obstacle.

Due to the potential functions defined for the obstacles are different there is the possibility of

truncating the values in other to have all the potentials in the same range. In this test the truncation

of the values has not been done to compe both situations, in Figure 40 the contour lines are closer

whereas in Figure 42 the density of contour lines is concentred around the rectangular obstacles.

By comparing Figure 41with Figure 43 it is easy to appreciate this. In the first one the maximum

value of the potential field for the rectangular obstacles is set in 2, however in the second figure

it is not limited and values between 50 and 60 are reached.

49

Figure 43: Potential Function. Influence of the parameters of the environment.

4.3.2. Test: Boundaries
The purpose of this test is to compare the performance of the simulation when the boundaries are

considered another obstacle. The parameters of the rectangular obstacles have been modified to

force the robots to cross the boundaries. In the second case the robots are trapped, and it is

impossible to reach the goals.

Figure 44: Environment without definition of boundaries.

50

Figure 45: Comparison environments with and without boundaries

4.3.3. Test: Priorities between robots
This example has been created to test the performance of the collision avoidance between robots.

In the next figures is it possible to see how the robots with less priority stop its movement until is

safe to move. In both cases the same configuration of the environment and number of iteration.

Figure 46: Without priorities

Figure 47: With priorities

51

4.3.4. Test: Local minima
The performance of the algorithm with and without the random movement to scape local minima

are compared.

Figure 48: Red robot trapped

In Figure 48 the red robot gets trapped in local minima due to the resultant of the forces applied

on it is nullify. In this case, the algorithm does not have the implementation of the local minima

avoidance method, so the simulation will never stop, and the robot will remain in that position

trapped. However, in Figure 49 it is shown how the robot has being able to reach its goal on

iteration number 159.

The configuration of the environment in both cases is the same but with the implementation of

the method, a maximum number of iterations stacked in the same position is set. If the robot is

trapped more than the maximum allowed a random movement is produced to take it out of the

singular point so the navigation can go on.

52

Figure 49: Red robot avoiding local minima

4.3.5. Test: GNRON
To test where this problem appears, some test has been performed using the same environment

that is been designed for the main simulation. The position of the goals as has been moved into

the direction of the boundaries until the goal is not reachable. The x coordinate of the goals in this

case is 20.5 units and the boundaries are at x equal to 21.

Figure 50: GNRON

53

It can be appreciated in the image above that the robots cannot reach the goals and they are doing

random movements because they are “trapped” in the same position trying to reach it. The

simulation usually ends around 400 iterations but when this problem occurs it may be stopped

manually.

4.3.6. Main simulation
In this section, the results of the simulation will be commented. Due to the simulation last around

400 iterations part of the sequence can be found in the appendix B for both cases, bidimensional

and three-dimensional path planning.

The result is shown in the next figure, where it can be appreciated that every robot has reached

its goal without colliding with the obstacles. Later, the most relevant parts will be shown in detail.

The environment was design to challenging, that is the reason why the red robot and its goal are

placed just in the symmetry axis of the figure, so it will be trapped into local minima. Furthermore,

the dynamic obstacles have been placed to obstruct the path of the robots and make them change

direction. It can be clearly seen in the centre of the figure where the obstacle moving in circles

has produced changes in the trajectories of all the robots.

Figure 51: 2D simulation result

To begin with, in the next image is shown the beginning of the navigation. As it has been

commented before, the red robot is trapped in local minima and it will get out of it slowly. In the

loop the actual position of the robot is compared with the previous ones and if it is in the same

position for more than two iterations it will move randomly. The number of iterations trapped can

be edited and the maximum random movement. Regarding the green robot, it changes its direction

because the moving obstacle is obstructing its path.

54

In the next figure is shown how the magenta robot has changed its trajectory twice to avoid

collision with the moving obstacle that is moving in circles in anti-clockwise direction around the

circle in the midle. The red robot is getting out of the trap.

Now the green robot has reached the area where the moving obstacle is, and it was going to

round the blue obstacle in clockwise direction, but the dynamic obstacle made it turn around in

the other direction. The red one is out of the local minima.

55

In the next image is the turn of the red robot to avoid the moving obstacle and the situation is the

same as the one described before. The magenta robot has reached its objective and the green one

has avoided its last obstacle and is about to reach its goal.

Finally, the simulation has also been done in 3D and it is represented in the next figure:

56

Figure 52: 3D simulation result

4.3.7. Main simulation without moving obstacles
With the aim to compare, the same simulation has been realized without the moving obstacles

and there are many differences. The simulation is completed in less iterations and the robots are

going direct to its goals. It is interesting that the green robot avoids going between the two lower

shelves, so in the main simulation the robot goes between the second and the third because it is

the optimal path not because of the moving obstacle.

Figure 53: Main simulation without dynamic obstacles

57

CHAPTER FIVE: Conclusion

58

5.1. Conclusion

Based on the results of this project, diverse conclusions can be drawn.

To begin with, it can be considered that the main purpose of this dissertation has been achieved,

due to it has been possible to successfully perform the simulation of the path planning algorithm

using APFs. The results show how the tree robots move through the environment avoiding

collisions with the different types of dynamic and static obstacles and reaching its goals.

Secondly, the features of the simulation have been discussed individually. These improvements

have been implemented in order to solve some of the inherent problems of the APF method like

local minima, or to upgrade the simulation by making it more realistic such as the system of

priorities between robots or the consideration of the limits of the environment as obstacles.

Regarding local minima, it must be remark that the method implemented is the simplest of them

all. For this reason, it has good performance in simple configurations, however in more complex

configurations like U-shaped or L-shaped obstacles the robot will remain trapped. For example,

it works appropriately when the environment is symmetric, and the robot has two optimal paths

to reach the goal. Such as the red robot in the main simulation, in this situation, when the random

movement is produced, the robot gets out of the crossroads and it only has one of the two paths

close.

On the other hand, the upgrades introduced in this specific configuration are beneficial for the

general performance of the algorithm, but in other situations can generate problems. Regarding

the consideration of the boundaries has obstacles, it is clear that collision avoidance against the

walls or the limits of the environment is a useful upgrade, but it can introduce another of the

inherent problems of the APF method, the Goal Non-Reachable with Obstacle Nearby (GNRON).

Owing to the limits are obstacles if the goal is to close, it may become unreachable.

Finally, talking about the establishment of priorities between robots, it must be remark that is

beneficial when the number of robots is reduced. The main disadvantage of this method is that

every robot must be programmed specifically to sense if the robots with more priority are close,

and if they are close, the robot with less priority will stop its navigation. However, this procedure

can lead to collision.

To conclude, it must be reminded that mobile robotics is a very promising field where lots of

researches and developments are taken place nowadays. The motivation behind this project It

must be highlighted, which has been to acquire and apply knowledge in the field of mobile

robotics, to be able someday to contribute to its development and applications.

5.2. Future work

Based on the results and the test performed in chapter four, the problems of the algorithm

developed have been identified in the conclusion, and its possible solution will be listed below as

possible future work:

• To upgrade the local minima avoidance method.

• To stablish a better method for collision avoidance between robots with easiest

scalability.

• To solve the problem of GNRON.

59

Furthermore, the next step would be to test the algorithm in the real world and compare its

performance with the simulation.

60

References

Alboul, L., Penders, J., Saez-Pons, J., Herbrechtsmeier, S., Witkowski, U., El-Habbal, M., and

Naghsh, A. (2011). A robot swarm assisting a human fire-fighter. Advanced Robotics, vol. 25,

no. 1, pp. 93–117, 2011.

Alboul, L. (2018) Robotics material. Unpublished manuscript.

Amiryan, J. and Jamzad, M. (2015). Adaptive Motion Planning with Artificial Potential Fields

Using a Prior Path. Proceedings of the 3rd RSI International Conference on Robotics and

Mechatronics. October 7-9, 2015, Tehran, Iran

Arai, T., Pagello, E. and Parker L.E. (2002) Advances in Multi-robot Systems. IEEE Transactions

on Robotics and Automation, vol. 18, no. 5, Oct 2002.

Aurenhammer, F. (1991). Voronoi diagrams—a survey of a fundamental geometric data

structure.

Balch, T. and Arkin, R.C. (1998). Behavior-based formation control for multirobot teams. IEEE

Transactions on Robotics and Automation, vol. 14, no. 6, pp. 926-939, Dec 1998.

Batalin, M. A., Sukhatme, G. S. and Hattig, M. (2004). Mobile robot navigation using a sensor

network. Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International

Conference, pp. 636-641 Vol.1.

Bayindir, L. and Sahin, E. (2007). A Review of Studies in Swarm Robotics. Turk J Elec Engin,

vol.15, no 2.

Bermudez, G. (2018). Robots móviles. Teoría, aplicaciones y experiencias. Retrieved from

https://www.researchgate.net/publication/267798579_ROBOTS_MOVILES_TEORIA_APLIC

ACIONES_Y_EXPERIENCIAS [Accessed 9 May 2018].

Bräunl, T. (2008). Embedded robotics. Berlin: Springer.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intelligence: From Natural to

Artificial Systems. Oxford University Press.

Conde-Canaviri, M (n.d.). Generaciones de La Robótica. Retrieved from

http://www.revistasbolivianas.org.bo/pdf/rits/n1/n1a32.pdf [Accessed 8 May 2018].

Digani, V., Sabattini, L., Secchi, C. and Fantuzzi, C. (2014). An automatic approach for the

generation of the roadmap for multi-AGV systems in an industrial environment. International

Conference on Intelligent Robots and Systems, Chicago, IL, 2014, pp. 1736-1741.

El País (2018). Así es el primer insecto robótico que vuela solo. [online] EL PAÍS. Available at:

https://elpais.com/tecnologia/2018/05/22/actualidad/1526997567_208779.html [Accessed 30

May 2018].

Encyclopaedia Britannica (2018). Artificial Intelligence. Retrieved from

https://www.britannica.com/technology/artificial-intelligence

Encyclopaedia Britannica (2018). Heron of Alexandria. Retrieved from

https://www.britannica.com/biography/Heron-of-Alexandria

https://www.researchgate.net/publication/267798579_ROBOTS_MOVILES_TEORIA_APLICACIONES_Y_EXPERIENCIAS
https://www.researchgate.net/publication/267798579_ROBOTS_MOVILES_TEORIA_APLICACIONES_Y_EXPERIENCIAS
http://www.revistasbolivianas.org.bo/pdf/rits/n1/n1a32.pdf
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/biography/Heron-of-Alexandria

61

Encyclopaedia Britannica (2018). Robot. Retrieved from

https://www.britannica.com/technology/robot-technology

Fahimi, F. (2010). Autonomous robots. Modelling, Path Planning, and Control. New York:

Springer.

Ge, S. and Lewis, F. (2006). Autonomous mobile robots. Boca Raton, FL: CRC/Taylor &

Francis.

Gonzalez, R., Kloetzer, M. and Mahulea, C. (2017). Comparative study of trajectories resulted

from cell decomposition path planning approaches. 2017 21st International Conference on

System Theory, Control and Computing (ICSTCC), Sinaia, pp. 49-54.

Hall, E. and Hall, B. (1985). Robotics, a user-friendly introduction. New York: Holt, Rinehart,

and Winston.

Honda (2018). History of ASIMO Robotics | ASIMO Innovations by Honda. Retrieved from

http://asimo.honda.com/asimo-history [Accessed 10 May 2018].

International Organization of Standardization (2012). Robot and robotic devices. Retrieved

from https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en [Accessed 10 May 2018].

Kaplan, L.J. (2006). Robots and Humans. In: Cultures of Fetishism. Palgrave Macmillan, New

York.

Kloetzer, M., Mahulea, C. and Gonzalez, R. (2015). Optimizing cell decomposition path

planning for mobile robots using different metrics. 2015 19th International Conference on

System Theory, Control and Computing (ICSTCC), Cheile Gradistei, 2015, pp. 565-570.

Koren, Y. and Borenstein, J. (1991). Potential Field Method and Their Inherent Limitations for

MobileRobot Navigation. Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), Sacramento, 1991, pp. 1398-1404.

Latombe, J. (2010). Robot motion planning. Boston: Kluwer.

Lee, D., Jeong, J., Kim, Y. H. and Park, J. B. (2017). An improved artificial potential field

method with a new point of attractive force for a mobile robot. 2017 2nd International

Conference on Robotics and Automation Engineering (ICRAE), Shanghai, 2017, pp. 63-67.

Lima, P. and Custodio, L. (2015). Multi-robot systems. Institute of Systems and Robotics.

Luo, R. C., Su, K. L., Shen, S. H. and Tsai, K. H. (2003). Networked intelligent robots through

the Internet: issues and opportunities. Proceedings of the IEEE, vol. 91, no. 3, pp. 371-382, Mar

2003.

MathWorks (2018). https://es.mathworks.com

Olfati-Saber, R., Fax, J., and Murray, R.M. (2006). Consensus and Cooperation in Networked

Multi-Agent Systems. Proceedings of the IEEE, April 2006

Ollero Baturone, A. (2007). Robótica. Manipuladores y robots móviles. Mexico: Alfaomega.

Ramesh, J. and Kasturi, R and Schunk, B. G. (1995) Machine Vision.

Reif, J. H. and Wang, H. (1999). Social potential fields: A distributed behavioral control for

autonomous robots. English, Robotics and Autonomous Systems, vol. 27, no.3, pp. 171–194,

1999.

https://www.britannica.com/technology/robot-technology
http://asimo.honda.com/asimo-history
https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en

62

Rubenstein, M., Cornejo, A., and Nagpal, R. (2014). Programmable Self-Assembly in a

Thousand-Robot Swarm.

Sánchez-Martín, F.M., Millán Rodríguez, F., Salvador Bayarri, J., Palou Redorta, J., Rodríguez

Escovar, F., Esquena Fernández, S., & Villavicencio Mavrich, H. (2007). Historia de la

robótica: de Arquitas de Tarento al robot Da Vinci (Parte I). Actas Urológicas Españolas, Vol.

31(2), 69-76.

Sánchez-Martín, F.M., Jiménez Schlegl, P., Millán Rodríguez, F., Salvador-Bayarri, J., Monllau

Font, V., Palou Redorta, J., & Villavicencio Mavrich, H. (2007). Historia de la robótica: de

Arquitas de Tarento al Robot da Vinci (Parte II). Actas Urológicas Españolas, Vol. 31(3), 185-

196.

Siegwart, R. and Nourbakhsh, I. (2004). Introduction to autonomous mobile robots. Cambridge,

Mass.: MIT Press.

Tanwani, A. K., and Calinon, S. (2016). Learning robot manipulation tasks with task-

parameterized semitied hidden semi-markov model. IEEE Robotics and Automation Letters,

1(1), 235-242.

Tzafestas, S. G. (2013). Introduction to mobile robot control. Elsevier.

Valero, R., Ko, Y.H., Chauhan, S., Schatloff, O., Sivaraman, A., Coelho, R.F., … Patel, V.R.

(2011). Robotic Surgery: History and Teaching Impact. Actas Urológicas Españolas, Vol.

35(9), 540-545.

Wang, M., Su, Z., Tu, D. and Lu, X. (2013). A hybrid algorithm based on Artificial Potential

Field and BUG for path planning of mobile robot. Proceedings of 2013 2nd International

Conference on Measurement, Information and Control, Harbin, 2013, pp. 1393-1398.

Winfield, A. F. and Nembrini, J. (2006). Safety in numbers: Fault-tolerance in robot

Swarms. International Journal of Modelling, Identification and Control, vol. 1,

no. 1, pp. 30–37, 2006.

Xu, D., Zhang, X., Zhu, Z., Chen, C., and Yang, P. (2014). Behavior-Based Formation Control

of Swarm Robots. Mathematical Problems in Engineering, vol. 2014, Article ID 205759, 13

pages, 2014.

Xu, Q. L., Yu, T. and Bai, J. (2017). The mobile robot path planning with motion constraints

based on Bug algorithm. 2017 Chinese Automation Congress (CAC), Jinan, 2017, pp. 2348-

2352.

Yates, D. R., Vaessen, C., and Roupret, M. (2011). From leonardo to da vinci: The history

of robot‐assisted surgery in urology. BJU International, Vol. 108(11), 1708-1713.

Yu, T., Yasuda, T. and Ohkura, K. (2015). A duration based behavior analyze approach for

swarm robotics system. 54th Annual Conference of the Society of Instrument and Control

Engineers of Japan (SICE), Hangzhou, 2015, pp. 276-281.

Zalvanos, M. and Pappas, G. (2007). Potential Fields for Maintaining Connectivity

of Mobile Networks. IEEE Transactions on Robotics, vol. 23, no. 4, August 2007.

Zavlanos, M., Kumar, V. and Pappas, G. (2009). Maintaining Connectivity in Mobile Robot

Networks

63

APPENDIX A: MatLab code

1. Main: Environment.m

clf %clears current figure window
close all %close everything
clear all %removes all variables

%% Properties of the figure and definition of the environment
% Select the background color of the figure
figure('Color', 'w');
% Introduce the dimensions of the environment
Env= [0 0 21 12];
% Enter the distance between points
dgrid = 0.1;
x = 0:dgrid:Env(3); % Array with the x values
y = 0:dgrid:Env(4); % Array with the y values
% Matrix that contains all the coordinates of the points of the

environment
[xx,yy] = meshgrid(x,y);

%% Enviroment boundaries
% In this section the limits of the environment are drawn according to
% the dimentions introduced above and its potential field is

calculated.

% Introduce the line width of the boundaries
lw_env=0.1;

% COORD_ENV is an array with values of the coordinates of the left

corners
% of the 4 rectangles used as boundaries of the environment build

according
% to the coordinates and the line width introduced. In each row j, x-

and
% -y coordinates of jth obstacle are stored.
COORD_ENV=[Env(1) Env(2)
 Env(3)-lw_env Env(2)
 Env(1)+lw_env Env(4)-lw_env
 Env(1)+lw_env Env(2)];

% W_ENV is an array with values of the widths of boundaries. It is
% build it is built from the data introduced above. In each row j, the
% width of jth obstacle are stored.
W_ENV=[lw_env
 lw_env
 Env(3)-2*lw_env
 Env(3)-2*lw_env];

% H_ENV is an array with values of the heights of boundaries.
% In each row j, the height of jth obstacle are stored.
H_ENV=[Env(4)
 Env(4)
 lw_env
 lw_env];

64

% Definition of parameters:
% The obstacle influences only a domain around it within the
% distances between 'roinv' and 'romin'.
roinv =0.1;
romin =0.01;
% lw Width of the boundary segments of an obstacle
lw =0.1;
% Curv is the corvature of an obstacle, in this case is 0 because the
% boundaries are defined as rectangles.
Curv = [0,0];
% strCol determines the colour of the internal domain of an obstacle.
% Currently boundaries are painted black
strCol = 'k';
%Truncate the values of the field obtained
t_env=0.5; % Limit value

%determines the size of the rows in COORD_ENV
[rC_env,cCe] = size(COORD_ENV);

UREP =zeros(numel(y),numel(x));
% creating the initial matrix of the repulsive potential,
% with the size correspinding to the size of the matrix of points in
% the grid. Initially all values in UREP are zeros. This
% matrix will accumulate the values of the repulsive
% potentials generated by each obstacle, to obtain at the
% final step the repulsive potential of the environment

for i =1:rC_env
 %In this loop invokes the function 'potrectonstaclenew' for each
 %obstacle, which places the obstacle in the environment and

computes
 %its repulsive potential
Urep = ProtectObsTruncate(COORD_ENV(i,:),W_ENV(i,:), H_ENV(i,:),

Curv,roinv,romin,lw, strCol,x,y,xx,yy,t_env);
UREP = UREP+ Urep;
end
% zz_ENV is a matrix that contains the values of the potential field
% produced by the boundaries in the environment.
zz_ENV = UREP;

%Truncate the resultant of the sum of the potential fields of each of

the
%rectangules that conform the boundaries of the environment
[m,n]=size(zz_ENV);
for i=1:m
 for j=1:n
 if zz_ENV(i,j)>t_env
 zz_ENV(i,j)=t_env;
 end
 end
end

%% Rectangular Obstacles
% In this section rectangular obstacles are defined and placed in the
% envirnoment, its potential field is calculated.

% COORDCORN is an array with values of the coordinates of the left

corners

65

% of obstacles. In each row j, x- and -y coordinates of jth obstacle

are
% stored.
COORDCORN=[3 1.5
 3 3.5
 3 5.5
 3 7.5
 3 9.5
 17 7.5
 17 1.5];
% W is an array with values of the widths of obstacles. In each row j,

the
% width of jth obstacle are stored.
W=[5
 5
 5
 5
 5
 1
 1];
% H is an array with values of the heights of obstacles. In each row

j, the
% height of jth obstacle are stored
H=[1
 1
 1
 1
 1
 3
 3];

% Definition of parameters:
% The obstacle influences only a domain around it within the
% distances between 'roinv' and 'romin'.
roinv =0.5;
romin =0.1;
% lw Width of the boundary segments of an obstacle
lw =1;
% Curv is the corvature of an obstacle, in this case is 0 because the
% boundaries are defined as rectangles.
Curv = [0,0];
% strCol determines the colour of the internal domain of an obstacle.
% Currently rectangular obstacles are painted cyan
strCol = 'c';
%Truncate the values of the field obtained
t_rec=2; % Limit value

%determines the size of the rows in COORDCORN, i.e. the number of

obstacles
[rC,cC] = size(COORDCORN);

UREP =zeros(numel(y),numel(x));
% creating the initial matrix of the repulsive potential,
% with the size correspinding to the size of the matrix of points in
% the grid. Initially all values in UREP are zeros. This
% matrix will accumulate the values of the repulsive
% potentials generated by each obstacle, to obtain at the
% final step the repulsive potential of the environment

for i =1:rC
 %In this loop invokes the function 'potrectonstaclenew' for each

66

 %obstacle, which places the obstacle in the environment and

computes
 %its repulsive potential
Urep = ProtectObsTruncate(COORDCORN(i,:),W(i,:), H(i,:),

Curv,roinv,romin,lw, strCol,x,y,xx,yy,t_rec);
UREP = UREP+ Urep;
end

% zz_R is a matrix that contains the values of the potential field
% produced by all the rectangular obstacles in the environment.
zz_R = UREP;

%% Circular Obstacles
% In this section circular obstacles are defined and placed in the
% envirnoment, its potential field is calculated.

% COORD_CIR is an array with values of the coordinates of the center
% of obstacles. In each row j, x- and -y coordinates of jth obstacle

are
% stored.
COORD_CIR=[11 6
 11 9
 11 3
 14 7.5
 14 4.5
 14 10.5
 14 1.5];
% K is an array with values of the coefficient of each obstacle.
K=[0.35
 0.35
 0.35
 0.35
 0.35
 0.35
 0.35];
% Rad is an array with values of the radius of each obstacle.
Rad=[0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5];
% Points is an array that contains the number of points to make the

cirles.
Points=[100
 100
 100
 100
 100
 100
 100];
% strCol determines the colour of the internal domain of an obstacle.
% Currently circular obstacles are painted blue
strCol = 'b';

%determines the size of the rows in COORD_CIR
[rC_Cir,cC_O] = size(COORD_CIR);

UREP =zeros(numel(y),numel(x));

67

% creating the initial matrix of the repulsive potential,
% with the size correspinding to the size of the matrix of points in
% the grid. Initially all values in UREP are zeros. This
% matrix will accumulate the values of the repulsive
% potentials generated by each obstacle, to obtain at the
% final step the repulsive potential of the environment

for i =1:rC_Cir
 %In this loop invokes the function 'potrectonstaclenew' for each
 %obstacle, which places the obstacle in the environment and

computes
 %its repulsive potential
Urep = ProtectObsCircle(COORD_CIR(i,:),Rad(i,:), K(i,:),Points(i,:),

strCol,x,y);
UREP = UREP+ Urep;
end

% zz_Cir is a matrix that contains the values of the potential field
% produced by all the circular obstacles in the environment.
zz_Cir = UREP;

%% Goals
% In this section goals are defined and placed in the
% envirnoment, its potential field is calculated.

% COORD_GOAL is an array with values of the coordinates of the center
% of obstacles. In each row j, x- and -y coordinates of jth obstacle

are
% stored.
COORD_GOAL=[20 10
 20 6
 20 4];
% K_G is an array with values of the coefficient of each obstacle.
K_G=[0.1
 0.1
 0.1];
% Rad is an array with values of the radius of each obstacle.
Rad=[0.3
 0.3
 0.3];
% Points is an array that contains the number of points to make the

cirles.
Points=[9
 9
 9];

% strCol is an array that contains the colour of the internal domain

of the
% goals. Currently circular obstacles are painted blue
strCol = ['g'
 'r'
 'm'];

%determines the size of the rows in COORD_GOAL
[rC_Go,cC_Go] = size(COORD_GOAL);

UREP =zeros(numel(y),numel(x));
% creating the initial matrix of the repulsive potential,
% with the size correspinding to the size of the matrix of points in
% the grid. Initially all values in UREP are zeros. This

68

% matrix will accumulate the values of the repulsive
% potentials generated by each obstacle, to obtain at the
% final step the repulsive potential of the environment

for i =1:rC_Go
 %In this loop invokes the function 'potrectonstaclenew' for each
 %goal, which places the obstacle in the environment and computes
 %its repulsive potential
Urep = ProtectObsGoals(COORD_GOAL(i,:),Rad(i,:), K(i,:),Points(i,:),

strCol(i,:),x,y);
UREP = UREP+ Urep;
end

% zz_Goal is a matrix that contains the values of the potential field
% produced by all the rectangular obstacles in the environment.
zz_Goal = UREP;

%% Total Potential Field
%Sum of the potential fields calculated before

Z=zz_Cir+zz_R+zz_ENV+zz_Goal;

%% Moving obstacles

%Linear movement
%Obstacle 4 moving
K4m=0.35;
Obs4m=[4 3];

%Draw the obstacle
 MovingObs4=plot(Obs4m(1,1), Obs4m(1,2),'o','Markersize',10,...
 'MarkerFaceColor',[1, 0.5, 0.5],'MarkerEdgeColor',[1, 0.5, 0.5]);

%Variables to contol the movement
dx4=0.5;
dx41=Obs4m;

%Circular movement
%Obstacle 5 moving
K5m=0.55;
Obs5m_ini=[11 6];
Obs5m=[Obs5m_ini(1,1)+1.5 Obs5m_ini(1,2)];

%Draw the obstacle
 MovingObs5=plot(Obs5m_ini(1,1)+1.5,

Obs5m_ini(1,2),'o','Markersize',10,...
 'MarkerFaceColor',[1, 0.5, 0.5],'MarkerEdgeColor',[1, 0.5, 0.5]);

%% Robots and complete environment in initial situation

% Coordinates of the center of each robot in its initial position
%Robot 1 green
Robot1=[1 2];
%Robot 2 red
Robot2=[1 6];
%Robot 3 magenta
Robot3=[1 10];

figure(1)

69

%Draw the robots in the environment
plot(Robot1(1),Robot1(2),'ro', 'MarkerSize', 3, 'MarkerFaceColor',

'g','MarkerEdgeColor','g')
plot(Robot2(1),Robot2(2),'ro', 'MarkerSize', 3, 'MarkerFaceColor',

'r')
plot(Robot3(1),Robot3(2),'ro', 'MarkerSize', 3, 'MarkerFaceColor',

'm','MarkerEdgeColor','m')

title('Enviroment')
axis off

%% Path planning 2D

%comput the current distances between:
%Robots and Goals
trg1=(abs(Robot1(1)-COORD_GOAL(1,1))+abs(Robot1(2)-COORD_GOAL(1,2)));
trg2=(abs(Robot2(1)-COORD_GOAL(2,1))+abs(Robot2(2)-COORD_GOAL(2,2)));
trg3=(abs(Robot3(1)-COORD_GOAL(3,1))+abs(Robot3(2)-COORD_GOAL(3,2)));
%between Robots
tr1=(abs(Robot1(1)-Robot2(1))+abs(Robot1(2)-Robot2(2)));
tr2=(abs(Robot1(1)-Robot3(1))+abs(Robot1(2)-Robot3(2)));
tr3=(abs(Robot3(1)-Robot2(1))+abs(Robot3(2)-Robot2(2)));

% count stores the number of iterations
count=0;

%Counter to save te previous position of the robot, this will be use

to
%identify if the robot is 'trapped'
Robot1_ant=[0 0];
Robot2_ant=[0 0];
Robot3_ant=[0 0];
%Counter no know how many iteration has been the robot trapped
Rob1=0;
Rob2=0;
Rob3=0;
%Maximum number of iterations permeted for the robot to be trapped
it=2;
%Maximum movement permited in random
dx_random=0.1;
%Save positions in each iteration to be used in path plannig 3D
Robot1_Path=[];
Robot2_Path=[];
Robot3_Path=[];
MovObs_Path=[];
MovObs5_Path=[];
%Priorities between robots:
% Robot 1 no restrictions
% Robot 2 has priority over Robot 3
% Robot 3 no priority

%check if the robots had reached the specified targets
 while trg1>0.1 || trg2>0.1 || trg3>0.1

 %accumulation matrix
 dx1=[0 0];
 dx2=[0 0];
 dx3=[0 0];

 %Compute change in robots position over time and then update it

70

 %Boundarys: Enviroment limits
 %Initialization of the dx produced by the boundaries on Robot
 dx_R1e=[0 0];
 for i=1:rC_env % rC_env is the number of boundaries and always is

4
 % This loop calculates the dx produced by each of the

boundaries
 % and sum all the results.
 dx_R1e=dx_R1e+ForceNewTruncate(COORD_ENV(i,:),W_ENV(i,:),

H_ENV(i,:), Robot1,roinv,romin,t_env);
 end

 %Obstacle: Rectangles
 %Initialization
 dx_R1=[0 0];
 for i=1:rC % rC is the number of rectangular obstacles in the env
 % This loop calculates de dx produced by each rectangular

obstacle
 % and sum all the results
 dx_R1=dx_R1+ForceNewTruncate(COORDCORN(i,:),W(i,:), H(i,:),

Robot1,roinv,romin,t_rec);
 end

 %Obstacle: Circles
 %Initialization
 dx_C1=[0 0];
 for i=1:rC_Cir % rC_Cir is the number of circular obstacles in

the env
 % This loop calculates de dx produced by each circular

obstacle
 % and sum all the results
 dx_C1=dx_C1+ForceNewCircleExp(COORD_CIR(i,:), K(i,:),Robot1);
 end

 %Influence of the goal on the actual position of the robot
 dx_goal1=ForceNewGoalExp(COORD_GOAL(1,:),K_G(1,:),Robot1);

 % Sum of the dx calculated above and the influence of the moving
 % obstacle
 dx1= dx1 +dx_C1+...
 (Robot1-Obs4m)*exp((-norm(Robot1-Obs4m))/K4m)+...
 (Robot1-Obs5m)*exp((-norm(Robot1-Obs5m))/K5m)+...
 dx_goal1+dx_R1e+dx_R1;

 % New position of the robot 1
 Robot1=Robot1+dx1;

 % Check if Robot 1 is trapped comparing the position obtained in

this
 % loop with the previous one stored in Robot1_ant.Due to the

position
 % contains 4 decimals it has been decided to round to two in the
 % following statement
 if round(Robot1(1),2)==round(Robot1_ant(1),2) &&

round(Robot1(2),2)==round(Robot1_ant(2),2)
 Rob1=Rob1+1; %Number of iterations the Robot is trapped
 else
 Rob1=0; %Reset the counter if the robot is not trapped
 end

71

 % When the robot reaches the maximum number of iterations trapped

it
 % is moved randomly.
 % The result of '-1+2*rand' is a number between -1 and 1 and it

is
 % aplied in both coordinates and multiplied by 0.1 to reduce its

value
 if Rob1==it
 Robot1=Robot1+[-1+2*rand -1+2*rand]*dx_random;
 Rob1=0;
 end

 %Update the position of Robot 2 only when Robot 1 is out of range
 if tr1>0.7

 %Boundarys: Enviroment limits
 %Initialization of the dx produced by the boundaries on Robot
 dx_R2e=[0 0];
 for i=1:rC_env % rC_env is the number of boundaries and

always is 4
 % This loop calculates the dx produced by each of the

boundaries
 % and sum all the results.
 dx_R2e=dx_R2e+ForceNewTruncate(COORD_ENV(i,:),W_ENV(i,:),

H_ENV(i,:), Robot2,roinv,romin,t_env);
 end

 %Obstacle: Rectangles
 %Initialization
 dx_R2=[0 0];
 for i=1:rC % rC is the number of rectangular obstacles in the

env
 % This loop calculates de dx produced by each rectangular

obstacle
 % and sum all the results
 dx_R2=dx_R2+ForceNewTruncate(COORDCORN(i,:),W(i,:),

H(i,:), Robot2,roinv,romin,t_rec);
 end

 %Obstacle: Circles
 %Initialization
 dx_C2=[0 0];
 for i=1:rC_Cir % rC_Cir is the number of circular obstacles

in the env
 % This loop calculates de dx produced by each circular

obstacle
 % and sum all the results
 dx_C2=dx_C2+ForceNewCircleExp(COORD_CIR(i,:),

K(i,:),Robot2);
 end

 %Influence of the goal on the actual position of the robot
 dx_goal2=ForceNewGoalExp(COORD_GOAL(2,:),K_G(2,:),Robot2);

 % Sum of the dx calculated above and the influence of the

moving
 % obstacle
 dx2= dx2 +dx_C2+...
 (Robot2-Obs4m)*exp((-norm(Robot2-Obs4m))/K4m)+...
 (Robot2-Obs5m)*exp((-norm(Robot2-Obs5m))/K5m)+...

72

 dx_goal2+dx_R2e+dx_R2;

 % New position of Robot 2
 Robot2=Robot2+dx2;

 % Check if Robot 2 is trapped comparing the position obtained

in this
 % loop with the previous one stored in Robot1_ant.Due to the

position
 % contains 4 decimals it has been decided to round to two in

the
 % following statement
 if round(Robot2(1),2)==round(Robot2_ant(1),2) &&

round(Robot2(2),2)==round(Robot2_ant(2),2)
 Rob2=Rob2+1; %Number of iterations the Robot is trapped
 else
 Rob2=0; %Reset the counter if the robot is not trapped
 end

 % When the robot reaches the maximum number of iterations

trapped it
 % is moved randomly.
 % The result of '-1+2*rand' is a number between -1 and 1 and

it is
 % aplied in both coordinates and multiplied by 0.1 to reduce

its value
 if Rob2==it
 Robot2=Robot2+[-1+2*rand -1+2*rand]*dx_random;
 Rob2=0;
 end
 end

 %Update the position of Robot 3 only when Robot 1 and Robot 2 are

out of range
 if tr2>0.7 && tr3>0.7

 %Boundarys: Enviroment limits
 %Initialization of the dx produced by the boundaries on Robot
 dx_R3e=[0 0];
 for i=1:rC_env % rC_env is the number of boundaries and

always is 4
 % This loop calculates the dx produced by each of the

boundaries
 % and sum all the results.
 dx_R3e=dx_R3e+ForceNewTruncate(COORD_ENV(i,:),W_ENV(i,:),

H_ENV(i,:), Robot3,roinv,romin,t_env);
 end

 %Obstacle: Rectangles
 %Initialization
 dx_R3=[0 0];
 for i=1:rC % rC is the number of rectangular obstacles in the

env
 % This loop calculates de dx produced by each rectangular

obstacle
 % and sum all the results
 dx_R3=dx_R3+ForceNewTruncate(COORDCORN(i,:),W(i,:),

H(i,:), Robot3,roinv,romin,t_rec);
 end

73

 %Obstacle: Circles
 %Initialization
 dx_C3=[0 0];
 for i=1:rC_Cir % rC_Cir is the number of circular obstacles

in the env
 % This loop calculates de dx produced by each circular

obstacle
 % and sum all the results
 dx_C3=dx_C3+ForceNewCircleExp(COORD_CIR(i,:),

K(i,:),Robot3);
 end

 %Influence of the goal on the actual position of the robot
 dx_goal3=ForceNewGoalExp(COORD_GOAL(3,:),K_G(3,:),Robot3);

 % Sum of the dx calculated above and the influence of the

moving
 % obstacles
 dx3= dx3 +dx_C3+...
 (Robot3-Obs4m)*exp((-norm(Robot3-Obs4m))/K4m)+...
 (Robot3-Obs5m)*exp((-norm(Robot3-Obs5m))/K5m)+...
 dx_goal3+dx_R3e+dx_R3;

 % New position of Robot
 Robot3=Robot3+dx3;

 % Check if Robot 2 is trapped comparing the position obtained

in this
 % loop with the previous one stored in Robot1_ant.Due to the

position
 % contains 4 decimals it has been decided to round to two in

the
 % following statement
 if round(Robot3(1),2)==round(Robot3_ant(1),2) &&

round(Robot3(2),2)==round(Robot3_ant(2),2)
 Rob3=Rob3+1; %Number of iterations the Robot is trapped
 else
 Rob3=0; %Reset the counter if the robot is not trapped
 end
 % When the robot reaches the maximum number of iterations

trapped it
 % is moved randomly.
 % The result of '-1+2*rand' is a number between -1 and 1 and

it is
 % aplied in both coordinates and multiplied by 0.1 to reduce

its value
 if Rob3==it
 Robot3=Robot3+[-1+2*rand -1+2*rand]*dx_random;
 Rob3=0;
 end

 end

 %Save positions of the robots
 Robot1_ant=Robot1;
 Robot2_ant=Robot2;
 Robot3_ant=Robot3;

 %Moving obsacle
 %Linear movement

74

 if dx4==1
 if dx41(1)<4 %(1) L-r %(2) u-d %lowest it goes to
 dx4=2;
 else
 dx41(1) = dx41(1)-0.5;
 end
 else
 if dx41(1)>7 %Biggest it goes to
 dx4=1;
 else
 dx41(1)=dx41(1)+0.5;
 end
 end

 %Update position of the obstacle
 Obs4m=dx41;
 %Save the position
 MovObs_Path=[MovObs_Path;Obs4m];

 %Circular movement
 Obs5m=[cos(count*pi/25) sin(count*pi/25)]*1.5+Obs5m_ini;

 %Save the position
 MovObs5_Path=[MovObs5_Path;Obs5m];

 %Recalculate distances
 %Robots and Goals
 trg1=(abs(Robot1(1)-COORD_GOAL(1,1))+abs(Robot1(2)-

COORD_GOAL(1,2)));
 trg2=(abs(Robot2(1)-COORD_GOAL(2,1))+abs(Robot2(2)-

COORD_GOAL(2,2)));
 trg3=(abs(Robot3(1)-COORD_GOAL(3,1))+abs(Robot3(2)-

COORD_GOAL(3,2)));
 %Between Robots
 tr1=(abs(Robot1(1)-Robot2(1))+abs(Robot1(2)-Robot2(2)));
 tr2=(abs(Robot1(1)-Robot3(1))+abs(Robot1(2)-Robot3(2)));
 tr3=(abs(Robot3(1)-Robot2(1))+abs(Robot3(2)-Robot2(2)));

 %update display
 count=count+1;

 %Plots and save position in each iteration
 if trg1>0.1
 plot(Robot1(1,1), Robot1(1,2), 'G.','MarkerSize',20);
 Robot1_Path=[Robot1_Path;Robot1];
 end
 if trg2>0.1
 plot(Robot2(1,1), Robot2(1,2), 'R.','MarkerSize',20);
 Robot2_Path=[Robot2_Path;Robot2];
 end
 if trg3>0.1
 plot(Robot3(1,1), Robot3(1,2), 'M.','MarkerSize',20);
 Robot3_Path=[Robot3_Path;Robot3];
 end

 %Plot new position of the moving obstacle
 MovingObs42= plot(Obs4m(1), Obs4m(2), 'o',...
 'Markersize', 10, 'MarkerFaceColor',[1, 0.5,

0.5],'MarkerEdgeColor',[1, 0.5, 0.5]);
 MovingObs52= plot(Obs5m(1), Obs5m(2), 'o',...

75

 'Markersize', 10, 'MarkerFaceColor',[1, 0.5,

0.5],'MarkerEdgeColor',[1, 0.5, 0.5]);
 %Delete the previous plot
 delete(MovingObs4);
 delete(MovingObs5);
 MovingObs4=MovingObs42;
 MovingObs5=MovingObs52;

 title(sprintf('Iteration: %d',count));
 refresh;
 drawnow;
 pause(0.02)
 end

 %% Plots
%Contour figure
figure(2)
title('Contour')
hold on
contour(Z,100)
pause(1)
hold on;

%combine figures
figure(3)
title('Potential Force Field on Contour')
hold on
contour(Z,100)
hold on
[px,py]=gradient(Z); %calculate gradient
quiver(xx*10,yy*10,-px*10,-py*10,'r'), hold on % plot velocity vectors
pause(1)

%3D plot
figure(4)
title('Potential Function Landscape')
hold on; grid on
view([100,100,80])
%Calculate the potential field of the moving obstacle in initial

position
Z_mov=ProtectObsMovingCircle(Obs4m,

K4m,x,y)+ProtectObsMovingCircle(Obs5m, K5m,x,y);
% Plot the potential fields obtained before and sum the new one
Moving=surfc(Z+Z_mov);

pause(1)

%% Path planning 3D
% In this secction is done the 3D plot of the path planning realized

before
% usig all the data stored.

%Sizes of the path of each robot
[path1,n] = size(Robot1_Path);
[path2,n] = size(Robot2_Path);
[path3,n] = size(Robot3_Path);

%The next loop will calculate and update the potential field produced

by the

76

%moving obstacle on the surface figure of the environment. Also is

made the
%plot of the path of each robot on it.
for i=1:count

 %Calculate the potential field of the moving obstacle in this

iteration
 Z_mov=ProtectObsMovingCircle(MovObs_Path(i,:),

K4m,x,y)+ProtectObsMovingCircle(MovObs5_Path(i,:), K5m,x,y);
 %Delete the previous one
 delete(Moving);
 %Print the surface with the updated potential field of the moving
 %obstacle
 Moving=surfc(Z+Z_mov);

 % Prints the position of the robots if they have not reached their
 % goals.
 if i<path1
 plot3(Robot1_Path(i,1)*10, Robot1_Path(i,2)*10,

Z(round(Robot1_Path(i,2)*10),

round(Robot1_Path(i,1)*10)),'G.','MarkerSize',20);
 end

 if i<path2
 plot3(Robot2_Path(i,1)*10, Robot2_Path(i,2)*10,

Z(round(Robot2_Path(i,2)*10),

round(Robot2_Path(i,1)*10)),'R.','MarkerSize',20);
 end

 if i<path3
 plot3(Robot3_Path(i,1)*10, Robot3_Path(i,2)*10,

Z(round(Robot3_Path(i,2)*10),

round(Robot3_Path(i,1)*10)),'M.','MarkerSize',20);
 end

 title(sprintf('Iteration: %d',i));
 refresh;
 drawnow;
 %pause(0.1)

end

2. Matlab Functions

2.1. Force Circular Obstacles
function [Frep] = ForceNewCircleExp(Coordcorn, K,Robot)

Frep=(Robot-Coordcorn)*exp((-norm(Robot-Coordcorn))/K);

End

2.2. Force Goals
function [Frep] = ForceNewGoalExp(Coordcorn, K,Robot)

Frep=K*(Coordcorn-Robot)/norm(Coordcorn-Robot);

end

77

2.3. Force Rectangular Obstacles
function [Frep_R] = ForceNewTruncate(Coordcorn,w, h,

Robot,roinv,romin,truncate)

% this function computes and visualises the potential function for a
% rectangular obstacle
% Parameters:
% 'Coordcorn' - an array of two numbers, Coordcorn(1) - x-coordinate

of the
% left corner of the rectangle, Coordcorn(2) - y-coordinate of the
% left corner of the rectangle.
% w - width of the rectangle,
% We also assume that the environment where the obstacle is placed has

a rectangular form.
% and that the boundaries (straight line segments) of the
% obstacle are parallel to the boundaries of the environment.
% Env is aan array with four elements, the first two are the x- and y-

coordinates of
% the left corner of the environment.
%In this code we assume that Env(1) =0, and Env(2) =0.
% Env(3) and Env(4) - width and height of the environment

%In this code the obstacle influences only a domain around it within

the
% distances between 'roinv' and 'romin'. When the distance becomes

equal or
% smaller than 'romin', the repulsive potential becomes constant and

equal
% to (1/2)*(1/romin - 1/roinv)^2;
% [x,y] and [xx, yy} are determined in the main function, x - an

array of
% the x-coordinates of the grid points along the OX axis,
% y - an array of
% the y-coordinates of the grid points along the OY axis,
% [xx,yy] - are the resulting arrays of 'meshgrid(x,y)
%char strCol %strCol is a character
%rectangle ('Position',[Coordcorn(1),Coordcorn(2),w,h],'Curvature',

[Curv(1),Curv(2)], 'LineWidth', lw, 'FaceColor', strCol), hold on
% the statement above draws a rectangular obstacle coloured with

green
%x1 = 5; y1 =3; x2=5; y2 =5; x3 = 7; y3 = 5; x4 =7; y4 =3; % these

values are x-coordinates and y-coordinates of corner vertices of the

obstacle
x1 = Coordcorn(1); y1 = Coordcorn(2); x2 = Coordcorn(1); y2 =

Coordcorn(2)+h;
x3 = Coordcorn(1)+w; y3 = Coordcorn(2)+h; x4 = Coordcorn(1)+w; y4 =

Coordcorn(2);

line1x =Coordcorn(1);
line2x =Coordcorn(1)+w;
line1y = Coordcorn(2);
line2y = Coordcorn(2)+h;
% four expressions above provide the equations of the bounding lines

of the obstacle

%Check if the robot is under line1y
 if Robot(2)< y1
 %Check if the robot is between lines x1 and x2
 if ((Robot(1) >= x1) && ((Robot(1)) <= x4))
 dist1 = sqrt((Robot(2)-line1y)^2);

78

 %Check de distance and the consequent influence
 if (dist1 <= roinv)
 if dist1 >=romin
 Frep = (1/2)*(1/dist1 - 1/roinv)^2;
 else
 Frep = (1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Frep=0;
 end
 %Check if the robot is left of line 1x
 elseif Robot(1) < x1
 dist2 = sqrt((Robot(1)-x1)^2 + (Robot(2)-y1)^2);
 if (dist2 <= roinv)
 if dist2 >=romin
 Frep = (1/2)*(1/dist2 - 1/roinv)^2;
 else
 Frep = (1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Frep =0;
 end
 elseif Robot(1) >= x4
 dist3 = sqrt((Robot(1)-x4)^2 + (Robot(2)-y4)^2);
 if (dist3 <= roinv)
 if dist3 >=romin
 Frep = (1/2)*(1/dist3 - 1/roinv)^2;
 else
 Frep = (1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Frep =0;
 end
 end
 elseif Robot(2) > y3
 if (Robot(1) >= x2) && (Robot(1) <= x3)
 dist4 = sqrt((Robot(2)-line2y)^2);
 if (dist4 <= roinv)
 if dist4 >=romin
 Frep = (1/2)*(1/dist4 - 1/roinv)^2;
 else
 Frep = (1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Frep =0;
 end
 elseif Robot(1) < x2
 dist5 = sqrt((Robot(1)-x2)^2 + (Robot(2)-y2)^2);
 if (dist5 <= roinv)
 if dist5 >= romin
 Frep = (1/2)*(1/dist5 - 1/roinv)^2;
 else
 Frep = (1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Frep =0;
 end
 elseif Robot(1) >= x3
 dist6 = sqrt((Robot(1)-x3)^2 + (Robot(2)-y3)^2);
 if (dist6 <= roinv)
 if dist6 >=romin

79

 Frep = (1/2)*(1/dist6 - 1/roinv)^2;
 else
 Frep =(1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Frep=0;
 end
 end
 else
 if Robot(1)< x2
 dist7 = sqrt((Robot(1)-line1x)^2);
 if dist7 <= roinv
 if dist7 >=romin
 Frep = (1/2)*(1/dist7 - 1/roinv)^2;
 else
 Frep =(1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Frep = 0;
 end
 elseif Robot(1) > x3
 dist8 = sqrt((Robot(1)-line2x)^2);
 if dist8 <= roinv
 if dist8 >=romin
 Frep = (1/2)*(1/dist8 - 1/roinv)^2;
 else
 Frep =(1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Frep = 0;
 end
 end
 end

 if ((Robot(1) >= x1) && (Robot(1) <= x4)&&(Robot(2)>=y1)

&&(Robot(2)<=y2))
 Frep =(1/2)*(1/romin - 1/roinv)^2;
 end

 %Truncate the results
 if Frep>truncate
 Frep=truncate;
 end

 Center=[(Coordcorn(1)+w/2) (Coordcorn(2)+h/2)];
 Frep_R = (Robot-Center)*Frep;

end

2.4. Potential Field Circular Obstacles
function [Urep] = ProtectObsCircle(Coordcorn,R, K,points, strCol,x,y)

%Print the obstacle
char strCol; %strCol is a character

theta = linspace(0, 2*pi,points);
x1 = Coordcorn(1) + R*sin(theta);
y1 = Coordcorn(2) + R*cos(theta);

80

plot(Coordcorn(1),Coordcorn(2), 'o', 'MarkerFaceColor', strCol,

'Markersize', 6), hold on
plot(x1,y1, strCol);
fill(x1,y1,strCol);
axis equal;

Urep =[];

for i = 1:numel(y) % i refers ro the rows in Urep, which corresponds

to values along OY-axis
 for j = 1:numel(x) %refers to the columns in Urep, which

corresponds to values along OX-axis
 Urep(i,j)=exp(-norm([j/10 i/10]-Coordcorn)/K);
 end
end

end

2.5. Potential Field Goals

function [Uatt] = ProtectObsGoals(Coordcorn,R, K,points, strCol,x,y)

%Print the obstacle
char strCol; %strCol is a character

theta = linspace(0, 2*pi,points);
x1 = Coordcorn(1) + R*sin(theta);
y1 = Coordcorn(2) + R*cos(theta);
plot(Coordcorn(1),Coordcorn(2), 'o', 'MarkerFaceColor', strCol,

'Markersize', 6), hold on
plot(x1,y1, strCol);
fill(x1,y1,strCol);
axis equal;

Uatt =[];

for i = 1:numel(y) % i refers ro the rows in Uatt, which corresponds

to values along OY-axis
 for j = 1:numel(x) %refers to the columns in Uatt, which

corresponds to values along OX-axis
 Uatt(i,j)=K*(norm(Coordcorn-[j/10 i/10]));

 end
end

end

2.6. Potential Field Circular Dynamic Obstacles

function [Urep] = ProtectObsMovingCircle(Coordcorn, K,x,y)

Urep =[];

81

for i = 1:numel(y) % i refers ro the rows in Urep, which corresponds

to values along OY-axis
 for j = 1:numel(x) %refers to the columns in Urep, which

corresponds to values along OX-axis
 Urep(i,j)=exp(-norm([j/10 i/10]-Coordcorn)/K);
 end
end

end

2.7. Potential Field Rectangular Obstacles

function [Urep] = ProtectObsTruncate(Coordcorn,w, h, Curv,roinv,romin,

lw, strCol,x,y,xx,yy,truncate)

char strCol; %strCol is a character
rectangle ('Position',[Coordcorn(1),Coordcorn(2),w,h],'Curvature',

[Curv(1),Curv(2)], 'LineWidth', lw, 'FaceColor', strCol), hold on
x1 = Coordcorn(1); y1 = Coordcorn(2); x2 = Coordcorn(1); y2 =

Coordcorn(2)+h;
x3 = Coordcorn(1)+w; y3 = Coordcorn(2)+h; x4 = Coordcorn(1)+w; y4 =

Coordcorn(2);

line1x =Coordcorn(1);
line2x =Coordcorn(1)+w;
line1y = Coordcorn(2);
line2y = Coordcorn(2)+h;

Urep =[];

for i = 1:numel(y) % i refers ro the rows in Urep, which corresponds

to values along OY-axis
 for j = 1:numel(x) %refers to the columns in Urep, which

corresponds to values along OX-axis
 if yy(i,j) < y1
 if ((xx(i,j) >= x1) && (xx(i,j) <= x4))
 dist1 = sqrt((yy(i,j)-line1y)^2);
 if (dist1 <= roinv)
 if dist1 >=romin
 Urep(i,j) = (1/2)*(1/dist1 - 1/roinv)^2;
 else
 Urep(i,j) = (1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Urep(i,j) =0;
 end
 elseif xx(i,j) < x1

 dist2 = sqrt((xx(i,j)-x1)^2 + (yy(i,j)-y1)^2);

 if (dist2 <= roinv)
 if dist2 >=romin
 Urep(i,j) = (1/2)*(1/dist2 - 1/roinv)^2;
 else Urep(i,j) = (1/2)*(1/romin - 1/roinv)^2;
 end

82

 else
 Urep(i,j) =0;
 end
 elseif xx(i,j) >= x4
 dist3 = sqrt((xx(i,j)-x4)^2 + (yy(i,j)-y4)^2);
 if (dist3 <= roinv)
 if dist3 >=romin
 Urep(i,j) = (1/2)*(1/dist3 - 1/roinv)^2;
 else Urep(i,j) = (1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Urep(i,j) =0;
 end
 end
 elseif yy(i,j) > y3
 if (xx(i,j) >= x2) && (xx(i,j) <= x3)
 dist4 = sqrt((yy(i,j)-line2y)^2);
 if (dist4 <= roinv)
 if dist4 >=romin
 Urep(i,j) = (1/2)*(1/dist4 - 1/roinv)^2;
 else Urep(i,j) = (1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Urep(i,j) =0;
 end
 elseif xx(i,j) < x2

 dist5 = sqrt((xx(i,j)-x2)^2 + (yy(i,j)-y2)^2);
 if (dist5 <= roinv)
 if dist5 >= romin
 Urep(i,j) = (1/2)*(1/dist5 - 1/roinv)^2;
 else Urep(i,j) = (1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Urep(i,j) =0;
 end
 elseif xx(i,j) >= x3
 dist6 = sqrt((xx(i,j)-x3)^2 + (yy(i,j)-y3)^2);
 if (dist6 <= roinv)
 if dist6 >=romin
 Urep(i,j) = (1/2)*(1/dist6 - 1/roinv)^2;
 else Urep(i,j) =(1/2)*(1/romin - 1/roinv)^2;
 end
 else
 Urep(i,j)=0;
 end
 end
 else
 if xx(i,j)< x2
 dist7 = sqrt((xx(i,j)-line1x)^2);
 if dist7 <= roinv
 if dist7 >=romin
 Urep(i,j) = (1/2)*(1/dist7 - 1/roinv)^2;
 else Urep(i,j) =(1/2)*(1/romin - 1/roinv)^2;
 end
 else Urep(i,j) = 0;
 end
 elseif xx(i,j) > x3
 dist8 = sqrt((xx(i,j)-line2x)^2);
 if dist8 <= roinv
 if dist8 >=romin

83

 Urep(i,j) = (1/2)*(1/dist8 - 1/roinv)^2;
 else Urep(i,j) =(1/2)*(1/romin - 1/roinv)^2;
 end
 else Urep(i,j) = 0;
 end
 end
 end
 if ((xx(i,j) >= x1) && (xx(i,j) <= x4)&&(yy(i,j)>=y1)

&&(yy(i,j)<=y2))
 Urep(i,j) =(1/2)*(1/romin - 1/roinv)^2;
 end

 %Truncate
 if Urep(i,j)>truncate
 Urep(i,j)=truncate;
 end
 end
end
end

84

APPENDIX B: Simulation Snap-shots

1. 2D Path Planning

85

86

87

88

2. 3D Path Planning

89

90

91

92

93

APPENDIX C: Machine Vision

Part A: Processing and analyzing an image

The image that will be used to develop the different tasks included in this part is called

‘Whitby.jpg’, it was acquired with a Samsung S5 on Whitby shore.

Figure 54: Original Image

Task 1
Upload the image to MATLAB and determine its properties. Determine its size. Explain the

MATLAB functions used.

The properties of the image used are shown in the following figure. Its size is 5312x2988.

The functions used are ‘imread’ to read the image and store it in the workspace and ‘imfinfo’ that

displays the information about the image.

94

jhvjv

Task 2
Convert the image to an indexed image. Explain the difference between an indexed image

and a true color image. Display the obtained indexed image in a colormap of your choice.

There are 4 different image types that MATLAB can support: binary, indexed, grayscale and true

color.

Indexed images are formed by two matrices: The first one is the data matrix and it contains only

integers, the second one is the colormap matrix. This type of image is also called pseudo-color

image due to its color depends on the colormap selected to be applied with the data matrix,

because color information is not carried by the last one.

On the other hand, true color images are formed by tree matrices that contains the intensity

information in red, green and blue. The color of each pixel is obtained by the combination of those

tree matrices, therefore the colormap is not necessary since the image itself contains all the

information.

MATLAB has different predefined colormaps, in this case it has been used the default colormap

called parula and colorcube.

95

Figure 55: Default colormap parula

Figure 56: Colormap colorcube

Task 3
Convert the image to a gray-scale image. Determine the pixel intensity of each pixel and

visualize the brightness profile in 3D. Produce the MATLAB code to perform visualization

of the brightness profile in 3D.

The conversion to gray scale has been done in two different ways. The first one using MATLAB

functions, in this case rgb2gray. The second one, by separating RGB channels and applying to

them the coefficients of the human eye response to each channel according with:

𝐼𝑔𝑟𝑎𝑦 = 𝛼 𝐼𝑟𝑒𝑑 + 𝛽 𝐼𝑔𝑟𝑒𝑒𝑛 + γ Iblue

𝛼 = 0.2989

𝛽 = 0.5870

96

𝛾 = 0.1140

Figure 57: Brightness profile 3D

Task 4
Create MATLAB codes to produce the histograms of color channels in the true color image

and the histogram of a gray-scale image.

Figure 58: Histograms

A histogram is a plot of the frequency of occurrence of each color level in the image. In this case

the histograms shown in the figure above represent the occurrence of red, green, blue and

grayscale.

97

Task 5
Perform contrast enhancements of the gray-scale image by contrast stretching and by

histogram equalization. Produce the corresponding MATLAB codes. Explain the effects of

both enhancement procedures. Report on their attractions and possible undesirable effects.

The objective of these two methods is to adjust the intensity values of the image to cover the

entire available range from 0 to 255. The technique used in each one is different.

The first one, contrast stretching, uses the lowest and the highest values of brightness in the image

and sets these values as 0 and 255 and readjust the values between them. Whit this method is

possible to restore the original image due to there is a one to one relationship between the values

before and after. The problem of this technique is that if there is one point in the original picture

whose value is in the limits, there will be no effect because the readjustment will not be effective.

Figure 59: Original vs contrast stretching

The second method, histogram equalization, uses probability distribution to perform the

readjustment. The objective is to obtain a histogram with a uniform distribution. By using this

method, the contrast enhancement will always be performed but the problem is that it is

impossible to restore the original image because there is no relationship between the pixel of the

image before and after.

98

Figure 60: Original vs histogram equalization

Task 5.1
Perform histogram equalization on the true color image.

This task has been performed in two different ways. On the one hand, the RGB image has been

separated into channels and histogram equalization has been performed in each one. Then, the

new image has been built and displayed. On the other hand, the RGB image has been transformed

to HSV and the histogram equalization has been performed only in value. The results are shown

in the following figures:

99

Due to the similar results obtained by the two methods on the original image, the code has been

checked using the image ‘bot_garden2.jpg’, the results are the following:

Figure 61: Histogram equalization RGB comparison on bot_garden2.jpg

As it is shown on the images above, the first method is not good in an image that contains low

values of one of the main colors. In this case, the image of botanical garden has low content in

blue and, because of histogram equalization is applied in each channel, the resultant image has

unrealistic colors.

100

Task 6
Convert the gray-scale image to a binary image by using an appropriate threshold.

Figure 62: Whitby grayscale

Figure 63: Histogram grayscale image

As it is shown in the histogram, the frequency of occurrence of the values of brightness is

concentrated mainly in two pics. The first one, between 70 and 100, that represents the darkest

areas in the image that are four of the five houses and the path in the hill. The second pick

represents the brighter areas which are the remaining house, the ground and the grass in the

background. According to this, has been decided to choose the value of brightness 100 to realize

the binarization with the objective of separate these two areas described.

To verify if the selection of the threshold is correct, the process has been repeated, using in this

case the function ‘imbinarize’ to compare the results. This MATLAB functions uses the method

of Otsu to perform the binarization.

101

Figure 64: Manual threshold. Brightness 100.

Figure 65: Otsu's method

By comparing the results, the conclusion is that the solutions are similar, so the value selected to

realize the binarization was correct. In the first case, it is possible to appreciate more details of

the houses like the wood or where are the doors situated whereas in the second one there are

almost no details on the facade of the constructions.

Task 7
Perform an operation of edge detection using a method of your choice. Briefly explain the

key steps of the method.

102

The method used to perform this task is Sobel operator. It is a first order differential method

through which intensity gradient is calculated in each pixel of an image. By performing this

method, it is obtained the magnitude of the biggest change possible and its direction.

The gradients are computed in two directions, vertical and horizontal, by using these masks:

𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] for horizontal direction detection

𝑆𝑦 = [
1 2 1
0 0 0

−1 −2 −1
] for vertical direction detection

Due to the size of the masks, that is odd, the pixel is centered and it reduces interpolation errors

furthermore larger size masks are better against noise.

The steps to perform this method are the following:

First, it is necessary to know the size of the original image to stablish the parameters of the loop.

Then, in each loop iteration the gradients in horizontal and vertical direction are calculated and

using these values it is possible to calculate the magnitude and direction of the edge.

Being I(x,y) the value of brightness of the image in the pixel position defined by the coordinates

x and y, each gradient is calculated according to the following equations:

𝐺𝑥(𝐼(𝑥, 𝑦)) = −1 ∗ 𝐼(𝑥 − 1, 𝑦 + 1) − 2 ∗ 𝐼(𝑥 − 1, 𝑦) − 1 ∗ 𝐼(𝑥 − 1, 𝑦 − 1) + 1

∗ 𝐼(𝑥 + 1, 𝑦 + 1) + 2 ∗ 𝐼(𝑥 + 1, 𝑦) + 1 ∗ 𝐼(𝑥 − 1, 𝑦 − 1)

𝐺𝑦(𝐼(𝑥, 𝑦)) = −1 ∗ 𝐼(𝑥 − 1, 𝑦 − 1) − 2 ∗ 𝐼(𝑥, 𝑦 − 1) − 1 ∗ 𝐼(𝑥 + 1, 𝑦 − 1) + 1

∗ 𝐼(𝑥 − 1, 𝑦 + 1) + 2 ∗ 𝐼(𝑥, 𝑦 + 1) + 1 ∗ 𝐼(𝑥 + 1, 𝑦 + 1)

Using the values of the gradients obtained it is possible to calculate the magnitude of the edge:

𝐸(𝐼(𝑥, 𝑦)) = √𝐺𝑥(𝐼(𝑥, 𝑦))
2
+ 𝐺𝑦(𝐼(𝑥, 𝑦))

2

And the direction, from dark to light:

𝐷(𝐼(𝑥, 𝑦)) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦(𝐼(𝑥, 𝑦))

𝐺𝑥(𝐼(𝑥, 𝑦))
)

As a result of the performance of this method, the image obtained is shown below. In this case,

the original image used is not suitable to perform edge detection considering the results because

it is too dark which means that there are too many edges detected.

103

Figure 66: Edge detection Sobel method

104

Part B: Analysing the image of chocolate beans

Figure 67: Chocolate beans

Task 1
Threshold appropriately the image to emphasise the dark areas in it.

The procedure to perform this task is the same followed in Task 6 part A of this assignment.

Summarizing, it is necessary to transform the true colour image into grayscale, obtaining Figure

68. Then, the information of the histogram of the grayscale image must be analysed to find the

appropriate threshold.

According with the information shown in histogram in Figure 69, it is possible to differentiate

between the darker areas, that correspond with the chocolate beans, whose values of brightness

are between 20 and approximately 100 and the frequency of occurrence in this interval remains

mainly constant. Next, the interval between 100 and 125 corresponds with the fold in the tissue

that contains the chocolate beans. Finally, the peak between 125 and 180 is the color of the

background of the image, in this case the white tissue. Keeping in mind this information has been

considered suitable to stablish the value for the threshold in 100.

105

Figure 68: Chocolate beans grayscale

Figure 69: Chocolate beans histogram

106

As a result, the next image is obtained where the chocolate beans are clearly defined.

Figure 70: Chocolate beans threshold 100

Task 2
Compute approximately the area of the dark spots (in pixels) Explain the operations used.

The number of black pixels in Figure 70 is 348626. To obtain this result, a counter has been added

in the loop that performs the binarization of the grayscale image to know how many pixels have

been set to ‘0’, in other words, how many pixels are whose brightness is under the value set as

threshold.

107

Part C: Tracking a green circle in a life video

Task 1
Produce a code to tracking the green colour.

Once the parameters of the webcam attached had been set, the loop of data acquisition starts. In

every iteration, a picture is taken and the green colour on it is subtracted in a different image and

it is binarized. Then, by using the function bwboundaries with the option ‘noholes’ the boundaries

of all the green regions on the picture are stored and afterwards plotted.

It is important to remark that the light in the room and the quality of the camera are important to

identify green colour. In this case, the quality of the webcam is not good, and it identify “light

green” as it is shown in the next figure.

Figure 71: Green boundaries. Laptop webcam.

Task2
Be able to distinguish the circle from an object of the same green colour but of a different

shape.

In addition to the code implemented in the last task, it has been necessary to use the function

regionprops to know the area and perimeter of each green region in the picture. Using this data,

the roundness of each object is calculated, and the boundaries are plotted in different colours to

distinguish rounded shapes among the other shapes.

In this case, the image shown was taken with a modern webcam and there is a huge difference

between the green colour in Figure 71 and the next one.

108

Figure 72: Boundaries and circles.

109

Part D: Case Study. Human Vision versus Animal Vision.

What is Vision?
Vision can be understood as the interpretation of the external world by internal coding and

representation systems through the extraction of the information contained in retinal images. An

accumulation of data reaches the brain from the eyes and it is processed in an efficient and quick

way to provide a reliable representation of the environment. The complexity of this process

contrasts with its versatility and, overall, with the simplicity whereby this information is assumed

by humans and animals (Pons & Martínez, 2004).

Human interest in optical phenomena has been present since the beginnings of human history.

Lindberg (1996) says that there are documents of speculations about the rainbow as old as the

first written records or Egyptian ophthalmological recipes written in a papyrus from 1500 B.C.,

also mirrors and burning lenses of that period has been found. According to Putri (n.d.), the reason

for the early interest of humankind in vision is because the eye is considered the most important

organ of sense. For this reason, many theories have been enunciated over the years.

The aim of this essay is to show the evolution of knowledge in this field in order to be able to

compare human with animal vision. To achieve this, first a summary of the most important ancient

theories of vision will be exposed, then the characteristics and particularities of human and animal

vision will be compared.

The Ancient Theories
The theories regarding the history of vision can be divided into three parts depending on who

introduced them: the Greek philosophers, the Roman and the Arabs. Based on the work of Putri

(n.d.) and O’Regan (n.d), a summary of the main points of the ancient theories is shown below:

• The Greek philosophers:

▪ The Atomists: The main principle of their theories was that vision can only occur

when existing contact or “touch” between the object and the eye. There are two

assumptions about this, in the first one, the touch is produced by the compression

of the air between the object and the organ. Whereas in the second one states that

particles of the object fly into the eye.

▪ Plato: He propounds that the eye emitted fire that combined with the ambient

light generates a “body of vision”, also known as emission theory.

▪ Aristotle: He positioned himself against the two previous theories. He

emphasized that the medium between the object and the eye was transparent and

it was the responsibility of the movement of the colour particles. Visual

perception is possible because the light is reflected by the object and enters the

eye.

• The Romans:

▪ Euclid and Ptolomy: The first one explained the mechanism of sight by the

establishment of seven postulates, although his theory is only about the

geometrical aspects of vision, he did not explain why things can be perceived.

Then, Ptolomy extended the theory by adding the physical, physiological and

psychological aspects.

▪ Galen: In his theory, the soul sensed the objects, and that was possible through a

visual spirit pneuma which travels along the optic nerve setting a connection

between the eye and the brain.

• The Arabs:

110

▪ Al-Kindi: He was influenced by Aristotle, Galen and Euclid, and attempted to

improve them and introduce the concepts to the mass.

The understanding of eye mechanism has been advancing from the first theories based on

speculations until today.

Human Vision

The eye

The eye is the organ that detects light and it is the responsible of the sense of sight. Its main

function is to transform the light energy into electric signals that are sent through the optic nerve

to the brain (Wikipedia, 2018). Its anatomy is shown in the following figure:

Figure 73: The structures of the eye. (Wikipedia, 2018)

The eye receives the light stimulus from the environment. The light goes through the cornea and

the lens and forms an inverted image on the retina. Specialized cells transform the image into

nerve impulses that are sent to the posterior region of the brain where the information is processed.

Each part of the organ has an important purpose in this process, below is shown a summary of the

most important parts and its function:

• The Pupil and iris are responsible for the amount of light that enters the eye. The size of

the pupil is adjusted by the iris.

• The Cornea and lens are the responsible for adapting the trajectory of the light to be

projected on the retina.

• The Ciliary body contracts and expands to allow the light to be focus on the retina.

• The Retina contains the cells that catch the light.

• The rods and cones are the sensorial cells contained into the retina. Rods allow to

distinguish between black, white and gray. Cones make possible color sight, there are

three types, sensible to red, green and blue color.

111

Color vision and visual acuity

Color vision can be defined as “the ability to distinguish objects based on the wavelengths of the

light they reflect, emit or transmit” (Wikipedia, 2018). As it was mentioned before, human eye

contains rods and cones, concretely around 6 million of cones and 110 million of rods that are the

responsible of human tricolor vision.

Cone type Name Range (nm) Peak wavelength (nm)

S β 400-500 420-440

M γ 450-630 534-555

L ρ 500-700 564-580

Visual acuity is the capacity to perceive, detect or identify objects with good light conditions, in

technical words, is the resolution of the visual system. It depends on optical and neuronal factors

such as the shape of the eye or the capacity of interpretation in the brain. For humans, a normal

visual acuity is 20/20 (feet) or 6/6 (meters). The numerator indicates the distance between the

subject and the chart and the denominator is the distance a person with 6/6 acuity would see the

same. For example, a visual acuity of 6/3 means that a person has twice spatial resolution and

needs half the size to discern the figure. On the other hand, 6/12 means the contrary, this person

needs twice the size and has half resolution than normal 6/6.

Binocular vision

Howard and Rogers (2008) said that every animal with two eyes have binocular vision but it

usually refers to “those animals who possess a large area of binocular overlap and use it to code

depth”.

According with Pons and Martínez (2004), there are four conditions that must be verified to

consider binocular vision:

• Both fields of view must overlap in a wide area to obtain a large binocular field, in other

words, eye orbits must be frontal.

• The eyes must move coordinately to form the images on symmetric areas of the retinas

of both eyes.

• The information received in each retina must maintain a correspondence with each other

during all the processing of information.

• The brain must have the capacity to merge the two neuronal images into one unique

representation.

The principal utility of binocular vision is that by losing amplitude of the field of view precision

in the perception of depth is won. This effect is due to the brain can obtain the distance, and

consequently the depth, from the images provided by each eye. These images are taken from

slightly different positions and, by its analysis, the human brain can correct the mistakes

committed by one eye with the correct details obtained by the other (Wikipedia,2018).

112

Figure 74: Human binocular field. Image from Quora (2018).

An interesting example of the perception of the space for humans is shown in the work of Pons

and Martínez (2004). With only one eye humans have spatial sense, but depth perception is not

as good as if both eyes are used. The example proposed by them to prove it is as easy as holding

a pen in the right hand in front of your face, with the arm stretched, keeping only the right eye

open and try to reach the tip of the pen with the left hand.

Summarizing, the anatomy of the eye is the responsible of adjust the image in the retina, where

its cells process the information. First, cones and rods, capture the light and then other cells

transform this information into electric impulses that travel through the optic nerve until the brain.

Then, the information is processed, the colors are formed, and the reconstruction of distances,

movements and depth distinction takes place. As Pons and Martínez (2004) stated “the human

eye is considered one of the biggest achievements of natural evolution”.

Human vision versus animal vision
The main points discussed above, anatomy, color vision, acuity and binocular vision, will be

exposed and compared for animal vision.

There are anatomic differences between human eyes and animal but also, inside the animal

kingdom, there are huge differences between species and the reason is evolution. All animals,

including humans, have been evolving to adapt. The function of the eye is the same for all, to

catch the light, transform and transport it to the brain, where it is processed.

One of the most obvious differences is the number of eyes, humans and many animals have only

two but there are animals with three, four, five, six or more. For example, there are spiders with

four, six or eight eyes, while bees have five eyes, or some reptiles or fishes have a third eye called

parietal eye.

113

Figure 75: Parietal eye. Wikipedia (2018)

In addition, there are animals such as fishes, snakes or insects don’t have eyelid to protect their

eyes, by contrast, camels have three to protect themselves from sand storms. Talking about size,

ostriches have one of the biggest eyes, even biggest that their brain (MuyInteresante, 2018).

Regarding color vision, not all animals have tricolor sight. For example, dogs have only two sets

of cones so the cannot distinguish between red from green. Other animals, like birds or insects,

can detect ultraviolet light to help them find nectar. In the following table extracted from

Wikipedia (2018) there is a resume of the type of color vision of the different species:

State Types

of cone

cells

Approx.

number of

colors

perceived

Carriers

Monochromacy 1 100 Marine mammals, owl monkey, Australian sea

lion, achromatprimates

Dichromacy 2 10,000 Most terrestrial non-primate mammals, color

blind primates

Trichromacy 3 10 million Most primates, especially great apes (such

as humans), marsupials, some insects (such

as honeybees)

https://en.wikipedia.org/wiki/Cone_cell
https://en.wikipedia.org/wiki/Cone_cell
https://en.wikipedia.org/wiki/Monochromacy
https://en.wikipedia.org/wiki/Marine_mammals
https://en.wikipedia.org/wiki/Owl_monkey
https://en.wikipedia.org/wiki/Australian_sea_lion
https://en.wikipedia.org/wiki/Australian_sea_lion
https://en.wikipedia.org/wiki/Achromatopsia
https://en.wikipedia.org/wiki/Dichromacy
https://en.wikipedia.org/wiki/Mammal
https://en.wikipedia.org/wiki/Color_blindness
https://en.wikipedia.org/wiki/Color_blindness
https://en.wikipedia.org/wiki/Trichromacy
https://en.wikipedia.org/wiki/Great_apes
https://en.wikipedia.org/wiki/Human
https://en.wikipedia.org/wiki/Marsupial
https://en.wikipedia.org/wiki/Honeybee

114

Tetrachromacy 4 100 million Most reptiles, amphibians, birds and insects,

rarely humans

Pentachromacy 5 10 billion Some insects (specific species of butterflies),

some birds (pigeons for instance)

In addition, some animals, especially nocturnal animals have bigger number of rods which means

that they have sight in darkness conditions than humans.

As it was said before, evolutionary factors are crucial in animal color perception, concretely, color

perception has been improved with the purpose of finding food easily. For example, adequate

light is needed for cones to function properly, for that reason nocturnal mammals have bad color

vision. On the other hand, for herbivorous a good color perception is essential to recognize green

leaves.

Binocular vision in animals is also highly influenced by evolution, mainly in the field of view,

that depends on the position of the eyes. For example, predators like wolves or eagles have a

binocular vision similar to humans because they need precision in order to hunt. On the other side,

the prey like rabbits or zebras, have a wide field of view which means that they have a small

binocular field. The he reason is because they need to be alert and cover the maximum field

around them.

Figure 76: Differences in the field of view between a dam and a predator. Wikipedia (2018)

Finally, talking about acuity its general characteristics are like binocular vision. Predators have

good acuity and can clearly identify their prey at long distances, for example, felines can

distinguish a mouse up to 75 meters or eagles have acuity 20/4. On the other hand, prey usually

have wide field of view, as it is said before, but low acuity. An example of that is the horse that

have 20/70 or dogs with 20/75 which means that what a human can see at 70-75 feet distance is

approximately what a dog or a horse can see at 20.

To sum up, it is important to remark the importance of evolutionary factor, as it has been discussed

before, because depending on the environment and the habits of the animal, they have evolved

https://en.wikipedia.org/wiki/Tetrachromacy
https://en.wikipedia.org/wiki/Reptiles
https://en.wikipedia.org/wiki/Amphibians
https://en.wikipedia.org/wiki/Bird
https://en.wikipedia.org/wiki/Insects
https://en.wikipedia.org/wiki/Pentachromacy
https://en.wikipedia.org/wiki/Butterfly
https://en.wikipedia.org/wiki/Pigeon

115

more in some attributes rather than others to survive. Humans do not have the best qualities in

any of the aspects shown, due to there are lots of animals with better color sight like butterflies,

better acuity and binocular sight like owls or better aptitudes to see at night like felines. In general,

animals have usually one attribute highly evolved but with lack in the others. Predators like

wolves have good acuity and binocular sight but lack in color vision, or herbivorous have good

color vision to recognize the leaves and wide field of view but low acuity. So, it is possible to

affirm that the advantage of human vision against animal vision is that humans have a good

combination of attributes without any “lack” and a powerful brain.

116

References

Howard, I. and Rogers, B. (2008). Binocular vision and stereopsis. Oxford: Oxford University

Press.

Lindberg, D. (1996). Theories of vision from al-Kindi to Kepler. Chicago: University of

Chicago Press.

MuyInteresante.es. (2018). Curiosidades sobre los ojos - Dormir con un ojo abierto. [online]

Available at: https://www.muyinteresante.es/naturaleza/fotos/curiosidades-sobre-los-

ojos/dormir-con-un-ojo-abierto [Accessed 20 Apr. 2018].

O’Regan, K. (n.d.). Ancient Visions. [online] Available at: http://nivea.psycho.univ-

paris5.fr/FeelingSupplements/AncientVisions.htm#_ednref3 [Accessed 19 Apr. 2018].

Pons Moreno, A. & Martínez Verdú, F. (2004). Fundamentos de visión binocular (pp.15-22).

València: Publicacions de la Universitat de València.

Putri, I. (n.d.). Ancient Theories of Vision and Al-Kindi’s Critique of Euclid’s Theory of Vision.

Quora (2018). What is the maximum human field of vision? - Quora. [online] Available at:

https://www.quora.com/What-is-the-maximum-human-field-of-vision [Accessed 20 Apr. 2018].

Wikipedia (2018). Ojo humano. [online] Available at:

https://es.wikipedia.org/wiki/Ojo_humano [Accessed 20 Apr. 2018].

Wikipedia (2018). Human eye. [online] Available at: https://en.wikipedia.org/wiki/Human_eye

[Accessed 20 Apr. 2018].

Wikipedia (2018). Visión binocular. [online] Available at:

https://es.wikipedia.org/wiki/Visión_binocular [Accessed 20 Apr. 2018].

Wikipedia (2018). Color vision. [online] Available at:

https://en.wikipedia.org/wiki/Color_vision [Accessed 20 Apr. 2018].

Wikipedia (2018). Parietal eye. [online] Available at: https://en.wikipedia.org/wiki/Parietal_eye

[Accessed 20 Apr. 2018].

117

APPENDIX D: Forms

In this appendix, the different forms required for the submission of this project are attached in the

following order:

• Project Specification form

• Risk Assessment

• Ethics Checklist

• Project Supervisor form

	Dropdown3: [TRABAJO FIN DE MASTER EN INGENIERÍA INDUSTRIAL]
	Nombre Autor: ESPERANZA GARCÍA MARTÍNEZ
	Cotutor: []
	Curso: [2017-18]
	Nombre Tutor: DR LYUBA ALBOUL
	Text2:
	Text4: DEVELOPMENT OF A MULTI-ROBOT PATH PLANNING ALGORITHM IN DYNAMIC ENVIRONMENT
	Author: [AUTHOR:]
	Text3: SUPERVISOR:

