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The purpose of this thesis is to try different time-series analysis methods to forecast 

the future production volume of different products of a manufacturing company. 

Currently, the company uses the experience of managers to forecast the production 

volume. The aim of this study is to find if quantitative methods can improve such 

qualitative predictions.  

In literature review, an introduction to forecasting is presented. Additionally, the most 

commonly time-series forecasting methods are described. At the end, different 

performance indicators are briefly explained. 

In the empirical part of the study, first the information about the company and the 

data are presented. Secondly, six different methods are tried to forecast the production 

volume. Then, the performance of these methods is evaluated and compared with the 

qualitative predictions made by the company. 

At the end, the results are analysed and a brief conclusion is presented. With the 

results and the conclusions, the company has a proof of how time-series analysis 

methods work with their products. They can examine the results and decide if it is 

beneficial for the company to implement these methods. 
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𝒙̂𝒕,𝒕+𝝉:forecast made at the end of period t, for a future period 𝑡 + 𝜏, with 𝜏 > 0 

𝒆𝒕,𝒕+𝝉: error associated with the forecast made in period t for period 𝑡 + 𝜏 

𝑵: number of periods used in the moving average model 

𝒙̅𝒕,𝑵: simple N-period moving average calculated at the end of period N 

𝒂̂𝒕: estimate of the level a, after observing the demand in period t 

𝒃̂𝒕: estimate of the trend b, after observing the demand in period t 

𝑭̂𝒕: estimate of the seasonal index 𝐹𝑡, after observing the demand in period t 

𝛂: smoothing constant between 0 and 1 

𝜷: smoothing constant between 0 and 1 

𝜸: smoothing constant between 0 and 1 

𝒑: order of the non-seasonal autoregressive component in ARIMA model 

𝒅: number of non-seasonal differences applied to the time-series in ARIMA model 

𝒒: order of the non-seasonal moving average component in ARIMA model 

𝑷: order of the seasonal autoregressive component in ARIMA model 

𝑫: number of seasonal differences applied to the time-series in ARIMA model 

𝑸: order of the seasonal moving average component 

𝝋𝒕: parameter for period t of the autoregressive model 



10 

 

𝜽𝒕: parameter for period t of the moving average model 

𝑴𝑺𝑬: mean squared error 

𝑹𝑴𝑺𝑬: root mean squared error 

𝑴𝑨𝑬: mean absolute error 

𝑴𝑨𝑷𝑬: mean absolute percentage error 

 

 

  



11 

 

1. INTRODUCTION 

Every manufacturing company needs a production plan that ensures that they have 

sufficient raw materials, staff and other necessary items, to create finished products 

according to their specified schedule. The aim of production planning is to maximise 

the profitability while maintaining the customer satisfaction. 

One of the first steps in production planning is to forecast the future sales, demand or 

production volume. Manufacturing companies need to make accurate predictions of 

how much they are going to sell or to produce in the future. It is the base of every 

production plan, and the success of the company depends strongly on the performance 

of the forecasts.  

This thesis is a case study with real data from a manufacturing company that produces 

materials for construction, such as tile adhesives, grouts, plasters or silicones. 

Currently, the company uses qualitative forecasting methods based on the experience 

of the managers. They do not use any quantitative method for forecasting their future 

production volume. This is common practice in many manufactures, and sometimes it 

gives satisfactory results, especially for short-term forecasts such as weekly or monthly 

forecasts. 

However, theory and research suggest that generally, quantitative methods give better 

forecasts than qualitative techniques. Nevertheless, this depends on the nature of the 

demand of each product. For some products, such as new products or products with 

a very irregular demand, most authors recommend using judgemental methods. On 

the other side, when enough data is available and the demand is relatively stable, 

experts suggest that quantitative methods produce forecasts that are more accurate.  

Although in many companies managers are aware of this, they find these kind of 

methods intimidating and they do not consider that it is advantageous to use them, 

since their qualitative predictions are acceptable. With this thesis, the author expects 

to prove that there are some quantitative methods that, although being very simple 
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and easy to understand and implement, they can give very satisfactory forecasts and 

improve the qualitative predictions made by the company. 

The objective of the thesis is to analyse the data provided by the company and to try 

different forecasting methods. The company has provided with the production volume 

of all their products, and with an example of their qualitative predictions. The main 

idea is to generate forecasts with different types of quantitative forecasting techniques, 

and to compare their performances with the company’s judgemental predictions. Some 

of the methods are very simple and can be easily implemented in a spreadsheet. Other 

methods are more complex and need a deeper background in statistics and 

mathematics to understand how they work.  

With the results of the thesis, the company can evaluate if using quantitative 

forecasting methods is an advantage for them. The author does not expect to suggest 

which option is the best for the company. The aim is to show the results of each 

method compared with the company’s predictions, and to give a brief explanation of 

how the method works. The company can judge the results and balance if the 

improvement achieved with the each method compensates the effort of 

implementing it.  
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2. LITERATURE REVIEW 

2.1. What is forecasting 

Forecasting is evaluating a variable, e.g., sales, demand, or production volume, to 

estimate its value in future periods. Usually, forecasting calculations are a source of 

information for production planning in manufacturing companies.  

The goal of forecasting is to make accurate predictions for the future, minimizing the 

deviation between the actual demand and the forecast.  

There are many other applications of forecasting apart from production planning. 

Forecasting is widely used in economy and in other fields, such as meteorology, 

earthquake predictions or eGain forecasting. 

2.2. Why is forecasting important 

Forecasting is one of the most essential steps in production planning. Production 

planning, as the name suggests, is a projection of the future production activity. 

Every manufacturing company needs to make forecasts of the demand of the items 

they produce. It is crucial to make accurate predictions of the future demand to know 

how many raw materials to buy, or to optimise the inventory levels while meeting 

customer expectations. Production planners need forecasts in order to schedule 

production activities, order materials and establish inventory levels. 

Forecasts based on time-series are the most widely used. These kind of forecasts are 

based only on historical data. These methods do not consider exogenous variables in 

the production process. 
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However, many manufacturing companies determine their production plans using 

subjective and intuitive judgment forecasts. In many cases, this is one of the factors 

that might lead to production inefficiency.  

The accuracy of the forecasts is crucial for the company, since it significantly affects 

inventory levels and customer service levels. For that reason, it is highly important to 

choose the best forecasting method for each product. When the forecast is inaccurate, 

the production plan will be unreliable and may result in lack or excess of goods in 

stock.  

Both of those situations are damaging for the company. When the actual demand is 

lower than the forecast, the company will have to deal with an excess of goods in 

stock, which leads to unnecessary inventory costs. On the other hand, when the actual 

demand is higher than the forecast, some clients will have to wait to receive their 

orders. This is even more detrimental, since it damages the image of the company and 

might result in the loss of potential clients. 

2.3. Qualitative vs quantitative forecasting methods  

Overall, there are three different kind of forecasting techniques: qualitative techniques, 

time-series analysis and projection methods, and causal models. The last two types 

are both quantitative techniques (Chambers, Mullick and Smith, 1971). 

2.3.1. Qualitative methods 

Qualitative forecasting techniques are widely used in manufacturing companies. These 

methods are based mostly in the experience of managers and the opinion of experts. 

They use qualitative data and may or may not consider the past data. 

These methods are primarily used when there is no data, or not enough data, available. 

This is the only way to forecast the demand of a product that has just been introduced 
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into a market. In order to predict the future demand, production planners must use 

human judgement to turn qualitative data into quantitative estimates. 

Some of the most widely used qualitative methods in forecasting are the Delphi 

method, the market research, the panel consensus and the historical analogy. 

2.3.2. Time-series analysis and projection methods 

Time-series analysis methods rely entirely on historical data and focus only on patterns 

and pattern changes. The most used time-series analysis methods are moving 

averages, exponential smoothing and ARIMA or Box-Jenkins techniques. These 

methods will be explained in detail in this thesis. 

2.3.3. Causal models 

Causal models assume that the variable being forecast is related to other variables. 

The challenge is to find the relationships between the forecast variable and the others. 

These relationships are sometimes complicated, and complex mathematical models 

are needed. 

2.4. Components of a time-series 

“A time-series is a sequential set of data points, measured typically over successive 

time units. It is mathematically defined as a set of vectors 𝑥(𝑡), 𝑡 = 0,1,2, …, where 𝑡 

represents the time elapsed. The variable 𝑥(𝑡), is treated as a random variable. The 

measurements taken during an event in a time-series are arranged in a proper 

chronological order” (Adhikari and Agrawal, 2013, p. 12). 
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Depending on how many variables the time-series contains, it can be univariate (if it 

has only one single variable) or multivariate (if more than one variable is considered).  

A time-series can be continuous or discrete. Continuous time-series are obtained when 

observations are recorded over some time interval. On the other hand, discrete time-

series contain observations measured at discrete points of time.  

There are five components that can be present in a time-series: the level, the trend, 

the seasonality, the cyclic variations and the irregular fluctuations. These five 

components might be present or not, and they can be separated from the original 

time-series.   

2.4.1. Level 

The level of a time-series is the average value that is assumed stable over time. If 

there were only the level, the time-series would be constant.  

A constant model can represent some time-series. However, the level is not the only 

component in these models. Random deviations are also present. Nevertheless, the 

average value is relatively stable compared to the random deviations.  

Usually, the letter 𝑎 represents the level. A constant model can be represented as in 

equation (2.1).  

 

𝑥𝑡 = 𝑎 + 𝜀𝑡 (2.1) 

 

where: 

𝑥𝑡  – demand in period 𝑡, 

𝑎 – level, or average demand per period, 

𝜀𝑡 – irregular random fluctuations with mean zero. 
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In some cases, a constant model can represent the demand of a product. It is the case 

of products whose demand is not expected to follow a trend or a seasonal pattern. 

The most common examples are products that are in a mature stage of their life cycle, 

and are used regularly, e.g., toothpaste or toilet paper (Axsäter, 2006). 

2.4.2. Trend

  

When the demand grows or decreases slowly over time, a trend model can represent 

it. The trend represents the long-term growth or decline of a time-series over time. 

A trend may, however, change its direction, which means that it can turn from 

increasing to decreasing, and vice versa.   

In a trend model, the demand is represented by the equation (2.2).  

 

𝑥𝑡 = 𝑎 + 𝑏𝑡 + 𝜀𝑡 (2.2) 

 

where: 

𝑥𝑡 – demand in period 𝑡, 

𝑎 – average demand in period 0, 

𝑏 – trend, 

𝜀𝑡 – irregular random fluctuations with mean zero. 
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2.4.3. Seasonality 

“There is a seasonal pattern in a time-series when the series is influenced by seasonal 

factors (e.g., the quarter of the year, the month, or day of the week). Seasonality is 

always of a fixed and known period” (Hyndman and Athanasopoulos, 2013). 

This type of variation is generally annual in period, whether measured weekly, monthly 

or quarterly, when similar patterns of behaviour are observed at particular times of the 

year. It is important to take into account the need to have enough historical data to 

determine if seasonality is present or not.  (Chatfield, 2000). A seasonal model is only 

meaningful if the demand follows essentially the same pattern year after year (Axsäter, 

2006). 

“Seasonal variations can be of two kinds: (1) those resulting from natural forces and 

(2) those arising from human decisions or customs” (Silver, Pyke and Thomas, 2017, 

p. 73).  An example of seasonal variations of the first kind are weather conditions. The 

demand of many products is strongly related with the weather conditions and the 

season of the year. For instance, the demand of ice creams is much higher in the 

summer than in the winter. On the other hand, various Christmas decorations are sold 

only during a very short period of the year.  

An example of seasonal variations of the second kind are the increase in the demand 

of notebooks and pencils before the start of the school year. In this case, the seasonal 

variations depend on human decisions (Silver, Pyke and Thomas, 2017, p. 74). 

The easiest way to identify seasonal patterns in time-series is the examination of the 

autocorrelation correlogram, which displays graphically and numerically the 

autocorrelation function. 

 

Trend-seasonal model 

In a trend-seasonal multiplicative model, the demand can be expressed using the 

equation (2.3) (Axsäter, 2006, pp. 10, 11). 
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𝑥𝑡 = (𝑎 + 𝑏𝑡)𝐹𝑡 + 𝜀𝑡 

 

(2.3) 

where: 

𝑥𝑡  – demand in period 𝑡, 

𝑎 – average demand in period 0, 

𝑏 – trend, 

𝐹𝑡  – seasonal index in period 𝑡. It indicates how much this period typically deviates 

from the annual average. At least one full season of data is required for the 

computation of the different 𝐹𝑡, 

𝜀𝑡 – irregular random fluctuations with mean zero. 

 

It is required that if there are T periods in one year, then ∑ 𝐹𝑡+𝑘 = 𝑇𝑇
𝑘=1  of any T 

consecutive periods.  

Therefore, if for period 𝑡, 𝐹𝑡 = 1.2, then the demand is expected to be 20% higher due 

to seasonal variations.  

2.4.4. Cyclic variations 

A cyclic pattern exists when the time-series exhibits rises and falls that are not of 

a fixed period. The duration of these variations is usually of two years or more 

(Hyndman and Athanasopoulos, 2013). Therefore, short and medium-term forecasts 

usually do not include cyclical effects. 

An example of cyclic variations are business cycles, which duration is unknown 

beforehand, and it can last for several years.  
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In average, the length of the cycles is longer than the length of a seasonal pattern, 

and the magnitude of cycles tends to be more visible than the magnitude of seasonal 

patterns (Hyndman and Athanasopoulos, 2013). 

2.4.5. Irregular fluctuations 

Irregular fluctuations is the term often used to describe the residue that is left after 

the effects of the four components described above (level, trend, seasonality and cyclic 

variations) are removed from the time-series. Examples of irregular fluctuations are 

weather conditions and unexpected labour strikes (Silver, Pyke and Thomas, 2017, 

pp. 76, 77). 

These variations are the result of unpredictable events. “They are completely random 

and they cannot be forecast. However, they may exhibit short-term correlation or 

include one-off discontinuities” (Chatfield, 2000, p. 23). 

2.5. Multiplicative and additive models 

Combining the five components of a time-series, two different kind of models can be 

formulated: multiplicative or additive models.  

A multiplicative model of a time-series looks as follows (Silver, Pyke and Thomas, 2017, 

p. 77): 

 

𝐷𝑒𝑚𝑎𝑛𝑑 = (𝑇𝑟𝑒𝑛𝑑)(𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙)(𝐶𝑦𝑐𝑙𝑖𝑐)(𝐼𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟) = (𝑏)(𝐹)(𝐶)(𝜀) (2.4) 

 

On the other hand, an additive model can be written as (Silver, Pyke and Thomas, 

2017, p. 77): 
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𝐷𝑒𝑚𝑎𝑛𝑑 = (𝐿𝑒𝑣𝑒𝑙) + (𝑇𝑟𝑒𝑛𝑑) + (𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙) + (𝐶𝑦𝑐𝑙𝑖𝑐) + (𝐼𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟)

= 𝑎 + 𝑏𝑡 + 𝐹𝑡 + 𝐶𝑡 + 𝜀𝑡 

 

(2.5) 

There is a third option, which is partly additive and partly multiplicative, called mixed 

model. 

The decision of which of these models should be used, depends on the nature of the 

time-series. For instance, the seasonality is said to be additive when it does not depend 

on the local mean level. On the other hand, the seasonality is multiplicative when the 

size of the seasonal variation is proportional to the local mean (Chatfield, 2000, p. 30). 

For example, during the month of July, the sales of a particular ice cream may be one 

million dollars higher than the average in the whole year. Therefore, every year the 

forecaster would add to the forecasts for the month of July the amount of one million 

dollars over the average. In this case, the seasonality is additive. 

Alternatively, during the month of July, the sales of a particular ice cream may be 1.4 

times higher than the average. Thus, every year the forecast for the sales in July will 

be 40% higher than the average. Consequently, if the sales of that ice cream during 

that year are weak, the forecast for July will be also weak. In this case, the seasonality 

is multiplicative (Kalekar, 2004). 

2.6. Forecasting methods 

Time-series analysis techniques are used only when several years of data are available, 

and when relationships and trends are both clear and relatively stable (Chambers, 

Mullick and Smith, 1971). These methods depend only on historical data, and they use 

it to make projections for the future. 
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The most commonly used time-series analysis forecasting methods are described in 

this section. 

2.6.1. Simple moving averages  

In order to understand the concept of simple moving averages, it is necessary to know 

two of the simplest methods for predicting a model from historical data:  the mean 

model and the random walk model.  

 

The mean model 

The mean model is often used to predict a variable whose values are independently 

and identically randomly distributed. With this model, we simply take the sample mean 

of all the previous values, as the forecast of the next value. The reason why the sample 

mean is used for forecasting the future values is because it is an unbiased predictor 

and it minimizes the mean squared forecasting error (Nau, 2018). 

 

The random walk model 

The random walk model is also one of the simplest models in time-series forecasting. 

In spite of its simplicity, it is often used in finance, physics, chemistry and biology, 

among many other fields. A time-series is said to follow a random walk if the first 

differences (difference from one observation to the next observation) are random. The 

time-series itself is not random, but its first differences are. A random walk model will 

predict that the following value of the time-series equals the last observed value 

(Imdadullah, 2013). 

 

In summary, the mean model gives the same weight to all the previous values in the 

time-series to predict the next one, while the random walk gives all the weight to the 

most recent observation. However, there is a spectrum of possibilities between these 
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two models described above. If we use a model that takes into account, for instance, 

the most recent five observations, we would have a mix of these two models. This is 

the concept of a moving average.  

A moving average model improves both the mean model and the random walk model. 

It adapts better to cyclical patterns than the mean model, and it is less sensitive than 

the random walk model to random shocks from one period to the next one. 

The simplest moving average model is computed giving the same weight to the most 

recent N observations. It is called simple moving average, and its idea is to calculate 

the forecast of the next value, as the average of the previous N values. 

The notation that we will use to describe the moving average model is similar to the 

one used by Silver, Pyke and Thomas (2017): 

 

 𝑥𝑡 is the demand observed in period 𝑡, 

 

 𝑥̂𝑡,𝑡+𝜏 is the forecast made at the end of period t, for a future period 𝑡 + 𝜏, 

with 𝜏 > 0. It is usually called a “𝑙𝑎𝑔 − 𝜏” forecast, since it is a forecast for 

a time period 𝜏 periods in the future. For example, 𝑥̂4,6 is the forecast 

made at the end of period 4 for the future demand in period 6, i.e., “lag-

2” forecast made in period 4 (in this case, 𝑡 = 4  and 𝜏 = 2), 

 

 𝑒𝑡,𝑡+𝜏 =  𝑥𝑡 − 𝑥̂𝑡,𝑡+𝜏 represents the forecast error associated with the 

forecast made in period t for period 𝑡 + 𝜏. If the error is negative, it means 

that the forecast is higher than the actual demand observed.  

 

Updating procedure 

Using the described notation, a simple moving average model can be described with 

equation (2.6). 
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𝑥̅𝑡,𝑁 = 𝑎̂𝑡 =
(𝑥𝑡 + 𝑥𝑡−1 + 𝑥𝑡−2 + ⋯ + 𝑥𝑡−𝑁+1)

𝑁
 

 

(2.6) 

where 𝑥̅𝑡,𝑁 = 𝑎̂𝑡 is the simple N-period moving average calculated at the end of period 

𝑁. It is just an average of the previous 𝑁 observations, where 𝑥𝑡 is the actual value of 

the time-series in period 𝑡 (Silver, Pyke and Thomas, 2017). 

 

Forecast 

Using the simple average model, where the level is the only component of a time-

series that is present, the forecast made at the end of period 𝑡 for any future period 

𝑡 + 𝜏 is: 

 

𝑥̂𝑡,𝑡+𝜏 = 𝑎̂𝑡 

 

(2.7) 

where 𝑎̂𝑡 is the estimate of the level 𝑎, after observing the demand in period 𝑡.  

In other words, in period 𝑡 we calculate an estimate of the level, 𝑎̂𝑡, using the previous 

𝑁 observations. Since we are considering a constant model, we can use 𝑎̂𝑡 as the 

forecast for any future period, 𝑥̂𝑡,𝑡+𝜏. 

In a simple moving average model, all the 𝑁 past observations get the same weight, 

which is of course 1/𝑁. This means that the larger 𝑁 gets, the less is the weight given 

to each of the past observations. Therefore, for large values of 𝑁 the model filters 

better the noise and gives more smoothed forecasts. 

Nevertheless, there is a problem of using large values of 𝑁. The forecasts tend to lag 

behind in trying to follow trends or respond to turning points. The lag shown by the 

forecast depends strongly on 𝑁, since 𝑙𝑎𝑔 = (𝑁 + 1)/2. Therefore, the larger 𝑁 is, the 

bigger will be the lag in our forecasts.  



25 

 

It is important to choose carefully the value of 𝑁. A big 𝑁 value will filter more noise, 

but it will make the forecast slower to respond to trends and turning points. There is 

a need to make a trade-off between these two effects, in order to make forecasts that 

are more accurate.  

For instance, if the level 𝑎 is changing slowly and the stochastic deviations 𝜀𝑡 are large, 

we might prefer to use a large value of 𝑁. This way we will reduce the influence of the 

stochastic deviations. On the other hand, if 𝑎 is varying quickly and the stochastic 

variations are small, we should rather choose a small value of 𝑁, which will allow the 

model to adapt better to the variations in the level 𝑎 (Axsäter, 2006). 

2.6.2. Simple exponential smoothing 

Simple exponential smoothing is probably the most used statistical method for short-

term forecasting. Its concept is in many ways similar to the moving average. Thus, it 

is very intuitive and simple to use. However, the way that the forecast is updated is 

not the same than in moving averages. 

There is an undesired property in the updating procedure of moving averages: it gives 

the same weight to all the precedent observations, which means that they are treated 

equally. Nevertheless, it is obvious that the most recent data has a higher relation with 

the future. For this reason, it is appropriate to give a higher weight to those 

observations, and a lower weight to the oldest values (Nau, 2018). 

In other words, the most recent observation should have the highest weight; the 

second most recent observation should get the second highest weight, and so on. This 

is what simple exponential smoothing does, and that is the reason why in most of the 

cases it makes better forecasts than moving averages.  
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Updating procedure 

Assuming a constant model, we wish to estimate the parameter 𝑎, which represents 

the level of the time-series. We need to use a smoothing constant, a number between 

0 and 1, which will determine the weight given to each past observation. 

In most books and articles about forecasting, the Greek letter α is used to represent 

the smoothing constant. 

 

Initialization 

It is necessary to have an initial value of the level, 𝑎̂𝑡−1 to start the forecasting 

procedure. If enough historical data exist, we can obtain this initial value of the level 

as the average demand in the last few periods. The number of periods that should be 

taken for this average depends on the nature of the time-series (Silver, Pyke and 

Thomas, 2017, pp. 86, 87). 

 

Forecast 

To update the forecast in period 𝑡, we use a linear combination of the previous forecast 

(the forecast made in period 𝑡 − 1) and the most recent observed demand, 𝑥𝑡: 

 

𝑥̂𝑡,𝑡+𝜏 = 𝑎̂𝑡 = (1 − α)𝑎̂𝑡−1 + α𝑥𝑡 

 

(2.8) 

where 𝑡 > 𝜏 and 𝛼 is the smoothing constant (0 <  𝛼 <  1) (Axsäter, 2006, p. 12). 

It is important to note the meaning of using limit values of the smoothing constant 𝛼. 

Using 𝛼 = 0 results in 𝑥̂𝑡,𝑡+𝜏 = 𝑎̂𝑡 = 𝑎̂𝑡−1, which means that the forecast made in period 

𝑡 is equal to the forecast made in period 𝑡 − 1. On the contrary, using 𝛼 = 1 results in 

𝑥̂𝑡,𝑡+𝜏 = 𝑎̂𝑡 = 𝑥𝑡, which means that the forecast made in period 𝑡 is equal to the actual 

demand observed in period 𝑡.  
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The geometric weighting of historical data in exponential smoothing can be expressed 

in a different way, if we substitute the corresponding relation for 𝑎̂𝑡−1. 

Since: 

𝑎̂𝑡−1 = (1 − α)𝑎̂𝑡−2 + α𝑥𝑡−1,  (2.9) 

 

Substituting (2.9) in (2.8), we have:  

 

𝑎̂𝑡 = (1 − α)𝑎̂𝑡−1 + α𝑥𝑡 = (1 − α)((1 − α)𝑎̂𝑡−2 +  α𝑥𝑡−1) +  α𝑥𝑡 

 

(2.10) 

If we keep substituting (2.9), we obtain:  

 

𝑎̂𝑡 = (1 − α)𝑎̂𝑡−1 + α𝑥𝑡 = (1 − α)((1 − α)𝑎̂𝑡−2 +  α𝑥𝑡−1) +  α𝑥𝑡

=  α𝑥𝑡 +  α(1 − α)𝑥𝑡−1 + (1 − α)2𝑎̂𝑡−2 = ⋯

= α𝑥𝑡 +  α(1 − α)𝑥𝑡−1 + α(1 − α)2𝑥𝑡−2 + ⋯

+ α(1 − α)𝑛𝑥𝑡−𝑛 + (1 − α)𝑛+1𝑎̂𝑡−𝑛−1 

 

(2.11) 

Comparing the previous equation with the equation of the moving average forecast, it 

is easy, after some simple calculations that we will skip here, to find a relation between 

the smoothing constant α and the number of periods 𝑁 used in the moving average 

model: 

 

𝛼 =
2

𝑁 + 1
 

 

(2.12) 
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This equation might be used to estimate the value of 𝛼. For instance, the smoothing 

constant 𝛼 corresponding to a moving average that is updated monthly with 𝑁 = 12, 

is: 

 

𝛼 =
2

12 + 1
=

2

13
≈ 0.15 

2.6.3. Exponential smoothing with a trend 

The simple exponential smoothing procedure shown in the previous section is based 

on a constant model. Therefore, it is inappropriate to use it when there is a trend in 

the time-series. In this case, a more complicated procedure is needed. In case of a 

time-series that follows a trend model, we need to estimate two parameters. Apart 

from the level 𝑎, we also have to estimate the trend 𝑏. The model will also contain 

stochastic deviations 𝜀𝑡, but we cannot predict them. 

 

Updating procedure 

 

a) Holt’s linear exponential smoothing  

Let us now describe the two most popular procedures to update the values of 𝑎 and 

𝑏. One of them is the procedure described by Holt. It is a natural extension of simple 

exponential smoothing. However, in this case we need two smoothing constants 

instead of one. The smoothing constants used in this method are 𝛼 and 𝛽. Thus, the 

level and the trend are estimated using the equations (2.13) and (2.14). 

 

𝑎̂𝑡 = α𝑥𝑡 + (1 − α)(𝑎̂𝑡−1 + 𝑏̂𝑡−1) 

 

(2.13) 
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𝑏̂𝑡 = 𝛽(𝑎̂𝑡 − 𝑎̂𝑡−1) + (1 − 𝛽)𝑏̂𝑡−1 

 

(2.14) 

where 𝛼 and 𝛽 are smoothing constants between 0 and 1.  

It is important to note that the difference 𝑎̂𝑡 − 𝑎̂𝑡−1 is an estimate of the actual trend 

in period 𝑡. Therefore, we calculate 𝑏̂𝑡 as a combination of this value and the estimate 

of the trend made in the previous period, 𝑡 − 1.  

One of the most important decisions in every exponential smoothing method is the 

value of the smoothing constants. If there is more than one smoothing constant, the 

challenge is even greater. For that reason, it is crucial to understand how the value of 

these parameters affects the estimates. 

As with simple exponential smoothing, high values of 𝛼 and 𝛽 make the forecasts react 

faster to changes, but it makes it more sensitive to stochastic deviations. Errors in the 

trend can give serious forecast errors for relatively long forecast horizons. Thus, it is 

recommended to choose low values of 𝛽 (Axsäter, 2006, pp. 16, 17). 

 

b) Brown’s linear exponential smoothing 

Brown described another procedure for estimating the level and the trend. It turns to 

be a special case of Holt’s method. However, only one smoothing parameter is used. 

Brown’s updating equations are (Silver, Pyke and Thomas, 2017, pp. 88, 89) (2.15) ad 

(2.16). 

 

𝑎̂𝑡 = [1 − (1 − 𝛼)2]𝑥𝑡 + (1 − α)(𝑎̂𝑡−1 + 𝑏̂𝑡−1) 

 

 

(2.15) 
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𝑏̂𝑡 = [
𝛼2

1 − (1 − 𝛼)2
](𝑎̂𝑡 − 𝑎̂𝑡−1) + [1 −

𝛼2

1 − (1 − 𝛼)2
]𝑏̂𝑡−1 

 

(2.16) 

where 𝛼 is the single smoothing constant with value between 0 and 1.  

 

Forecasting 

Once we have estimated the level and the trend, we can make forecasts for future 

periods. However, there is something important to take into consideration. In the 

simple exponential smoothing, the forecast made in period 𝑡 is the same for any future 

period, because the time-series is supposed to follow a constant model.  

On the other hand, when the time-series follows a trend model, the forecast made in 

period 𝑡 will be different for every future period 𝑡 + 𝜏, with  𝜏 = 1,2,3, … 

The equation used to make forecasts with exponential smoothing with a trend is 

(2.17).  

 

𝑥̂𝑡,𝑡+𝜏 = 𝑎̂𝑡+𝑏̂𝑡𝜏 

 

(2.17) 

where 𝑥̂𝑡,𝑡+𝜏 is the forecast made at the end of period 𝑡, of the demand in period 𝑡 + 𝜏. 

2.6.4. Holt-Winters exponential smoothing for a seasonal model 

The methods that we have explained above are not the most suitable if the time-series 

shows a seasonal pattern. Models that follow the equation (2.3) can represent time-

series with seasonality. 

Since we cannot predict the value of the irregular fluctuations 𝜀𝑡 , there are three 

parameters that we must estimate: the level 𝑎, the trend 𝑏 and the seasonal index 𝐹𝑡.  
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Winters (1960) suggested the following procedure that can be seen as a generalization 

and natural extension of the Holt procedure for a trend model. However, even though 

this method is intuitive, it is not optimal in the sense of minimizing mean-square 

forecast errors.  

 

Updating procedure 

The following equations are used for updating the parameters 𝑎, 𝑏 and 𝐹𝑡: 

 

𝑎̂𝑡 = α(𝑥𝑡 𝐹̂𝑡⁄ ) + (1 − α)(𝑎̂𝑡−1 + 𝑏̂𝑡−1) 

 

(2.18) 

𝑏̂𝑡 = 𝛽(𝑎̂𝑡 − 𝑎̂𝑡−1) + (1 − 𝛽)𝑏̂𝑡−1 

 

(2.19) 

𝐹̂𝑡 = 𝛾(𝑥𝑡 𝑎̂𝑡⁄ ) + (1 − 𝛾)𝐹̂𝑡−𝑇 

 

(2.20) 

where: 

α, 𝛽 and 𝛾 are smoothing constants with value between 0 and 1, 

𝐹̂𝑡−𝑇 is the estimate of the seasonal index for the most recent (𝑇 periods earlier) 

equivalent period in the seasonal cycle 𝛽 (Axsäter, 2006). 

For example, if we want to calculate the seasonal index for the month of March, 𝐹̂𝑡−𝑇 

would be the estimate of the seasonal index made for March of the past year.  

It is important to understand that 𝑎 + 𝑏𝑡 represents the development of demand 

without taking into consideration the seasonal variations, and 𝑥𝑡 𝐹̂𝑡⁄  is also an estimate 

of the deseasonalized demand.  
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Initialization 

For time-series with both trend and seasonality, the initialization of the forecast 

procedure becomes more complicated than when only the trend is present. There are 

several initialization procedures, which consist on separating the effects of the trend 

and the seasonal effects. However, we are not going to show these methods in this 

paper, since it would make it too long. The objective of this thesis is not to dig in the 

theory behind the forecasting methods, but to analyse its performance with real data. 

In Silver, Pyke and Thomas (2017), the reader might find a simple and easy to 

understand explanation of the initialization of this forecasting method. 

 

Forecast 

The equation that gives the forecasts for the Holt-Winters Exponential Smoothing is: 

 

𝑥̂𝑡,𝑡+𝜏 = (𝑎̂𝑡+𝑏̂𝑡𝜏)𝐹̂𝑡+𝜏−𝑇 

 

(2.21) 

where:  

𝑥̂𝑡,𝑡+𝜏 is the forecast made at the end of period 𝑡, of the demand in period 𝑡 + 𝜏, 

𝐹̂𝑡+𝜏−𝑇 is the most recent estimate of the seasonal index for period 𝑡 + 𝜏. In other 

words, it is the estimate of the seasonal index for period 𝑡 + 𝜏 made 𝑇 

periods before.  

2.6.5. Box-Jenkins: ARIMA models 

ARIMA models provide a different approach to time-series forecasting. They aim to 

describe the autocorrelations in the data. ARIMA is an acronym with the first two 
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letters, AR, standing for Autoregressive, the following I standing for Integration, and 

the last two letters, MA, standing for Moving Average. 

The ARIMA models are appropriate for modelling time-series with trend characteristics, 

random walk processes, and seasonal and non-seasonal time-series. This family 

includes models that are combinations of autoregressive and moving average 

processes for stationary and non-stationary time-series.  

A non-seasonal ARIMA model contains three terms: the autoregressive term (AR), the 

differencing, if needed, of the time-series (I), and the moving average term (MA).  

A seasonal ARIMA model, SARIMA, has three additional terms: the seasonal 

autoregressive term, the seasonal differencing and the seasonal moving average term.  

 

Autoregressive (AR) term  

“The autoregressive component refers to the use of past values in the regression 

equation for the time-series” (Dalinina, 2017). 

The description of the different terms of the ARIMA models is similar to the one used 

by Chatfield (2000). 

A time-series {𝑋𝑡} is said to be an autoregressive process of order 𝑝, 𝐴𝑅(𝑝), if it is a 

weighted linear sum of the past 𝑝 values plus a random error:  

 

𝑋𝑡 = 𝜑1𝑋𝑡−1 + 𝜑2𝑋𝑡−2 + ⋯ + 𝜑𝑝𝑋𝑡−𝑝 + 𝜀𝑡 

 

(2.22) 

where: 

𝜀𝑡 denotes a purely random process with zero mean and variance 𝜎𝜀
2, 

𝜑𝑝 are parameters of the model. 
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The auto-regressive parameter 𝑝 specifies the number of lags used in the model. For 

example, 𝐴𝑅(2) or equivalently, 𝐴𝑅𝐼𝑀𝐴(2,0,0), is represented as: 

 

𝑋𝑡 = 𝜑1𝑋𝑡−1 + 𝜑2𝑋𝑡−2 + 𝜀𝑡 (2.23) 

 

Moving average (MA) processes 

The moving average component represents the error of the model as a combination 

of the previous error terms, 𝜀𝑡. 

A time-series {𝑋𝑡} is said to be a moving average process of order 𝑞, 𝑀𝐴(𝑞), if it is a 

weighted linear sum of the last 𝑞 random errors:  

 

𝑋𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 

 

(2.24) 

where  

𝜀𝑡 denotes a purely random process with zero mean and variance 𝜎𝜀
2, 

𝜃𝑞 are parameters of the model. 

 

The order 𝑞 determines the number of terms to include in the model. For example, 

𝑀𝐴(2) or equivalently, 𝐴𝑅𝐼𝑀𝐴(0,0,2), is represented as: 

 

𝑋𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 (2.25) 
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Integrated part (I) 

The 𝐼 in ARIMA is for “integrated”. When the time-series is non-stationary, it is 

necessary to make some transformations to the data in order to make it stationary. 

These transformations are known as differencing.  

The first differences of the time-series are calculated subtracting to each value, the 

previous value in the time-series. If this differencing process is performed twice, we 

have the second differences. Note that the second difference is not the difference from 

two periods ago. It is rather the first difference of the first difference. 

 

If d=0: 𝑋𝑡 = 𝑥𝑡, 

If d=1: 𝑋𝑡 = 𝑥𝑡 − 𝑥𝑡−1, 

If d=2: 𝑋𝑡=(𝑥𝑡 − 𝑥𝑡−1) − (𝑥𝑡−1 − 𝑥𝑡−2) = 𝑥𝑡 − 2𝑥𝑡−1 + 𝑥𝑡−2. 

 

Therefore, 𝑥𝑡 are the values of the time-series and 𝑋𝑡 are the values of the 𝑑𝑡ℎ 

difference of 𝑥𝑡. 

A time-series can be differenced many times in order to obtain stationarity. However, 

differencing tends to introduce negative correlation and it should be done carefully. 

 

ARIMA (p, d, q) 

Given the 𝑑𝑡ℎ difference of a time-series of data 𝑥𝑡, 𝑋𝑡, where 𝑋𝑡 are real numbers  

and 𝑡 is an integer index, an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model is given by:  

𝑋𝑡 − 𝜑1𝑋𝑡−1 − 𝜑2𝑋𝑡−2 − ⋯ − 𝜑𝑝𝑋𝑡−𝑝

= 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 

(2.26) 

 

The moving average parameters, 𝜑𝑝, are defined so that their signs are negative in 

the equation, following the convention introduced by Box and Jenkins (1976).  
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Order of the ARIMA model 

When fitting non-seasonal ARIMA models, there are five parameters that we have to 

estimate: the coefficients 𝜑 and 𝜃, the orders 𝑝 and 𝑞, and the number of times that 

the time-series must be differenced, 𝑑. Nevertheless, the main difficulty is to choose 

the right order of the model rather than the value of the coefficients.  

Fortunately, nowadays we have many computer programmes that will choose the 

optimal order of the ARIMA (p, d, q) model. However, the forecaster should know how 

this is calculated, in order to determine if the model is stable or not.  

The key to determine the order of the different components is to analyse the 

Autocorrelation Function (ACF) plot, and the Partial Autocorrelation Function (PACF) 

plot. Since this is not a guide for forecasting, it is assumed that the reader is familiar 

with the ACF and the PACF concepts.  

The procedure of analysing the ACF and PACF for determining the different orders of 

ARIMA models is long and it is not going to be explained here. The most used reference 

is Box and Jenkins (1976). 

 

Particular cases of ARIMA model 

Some particular cases of ARIMA models are equivalent to other models that we have 

explained before. Here are some examples: 

 

ARIMA(1,0,0) – first-order autoregressive model, 

ARIMA(0,1,0) – random walk, 

ARIMA (1,1,0) – differenced first-order autoregressive model, 

ARIMA (0,1,1) – simple exponential smoothing, 

ARIMA(0,2,1) or ARIMA(0,2,2) without constant – linear exponential smoothing, 

ARIMA (1,1,2) without constant – damped-trend linear exponential smoothing. 
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Seasonal ARIMA models (SARIMA) 

Seasonal ARIMA models, also called SARIMA models, are used for modelling time-

series that contain a seasonal pattern.  

The idea is the same than for non-seasonal ARIMA models. However, there are six 

terms instead of three in these models: 

p: order of the non-seasonal autoregressive component, 

d: number of non-seasonal differences applied to the time-series, 

q: order of the non-seasonal moving average component, 

P: order of the seasonal autoregressive component, 

D: number of seasonal differences applied to the time-series, 

Q: order of the seasonal moving average component. 

 

Therefore, a SARIMA model can be written as SARIMA (p, d, q)x(P, D, Q)s, where 𝑠 is 

the number of seasons in the time-series.  

2.6.6. Combination of forecasts 

Some studies by Makridakis et. al. (1982), Makridakis et. al. (1993) and Makridakis 

and Hibon (2000) (cited in Silver, Pyke and Thomas, 2017, p. 125) prove that in most 

cases, a combination of some forecasting methods gives better results than any of the 

methods itself. 

These studies involved 1.001 time-series of different natures, and different forecasting 

intervals (monthly, quarterly and annual) were used. 

One of the conclusions was, as it has been said before, that it is recommended to 

combine the results of different forecasts. However, it is not necessary to try to find 

optimal weights when combining different forecasts. In most cases, a simple average 

of two or three methods gives good results.  
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2.7. Analysis of the accuracy of the methods used 

We have reviewed different methods for forecasting the future values of a time-series. 

Some methods are simple and others are more sophisticated, and each of them will 

give very different results on each time-series. 

It is important to analyse the accuracy of the forecasts, in order to know which method 

gives better results. The description of some of the most used performance indicators 

can be found below. The description of the performance indicators is similar to the one 

described by Armstrong (2001) and by Silver et. al. (2017) 

2.7.1. Mean squared error (MSE) 

The mean squared error (MSE) measures the average of the squared errors. It requires 

a target prediction (the real demand) along with a predictor or estimator (the forecast). 

The MSE is defined as the average of squares of errors, where the errors are the 

difference between the real demand and the forecast. 
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(2.27) 

where: 

𝑥𝑡 is the actual observed demand in period 𝑡, 

𝑥̂𝑡−1,𝑡 is the one-period-ahead forecast, 

𝑒𝑡−1,𝑡 is the error in the forecast made in period 𝑡 − 1 for period 𝑡, 

𝑛 is the number of forecasts. 
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2.7.2. Root mean squared error (RMSE) 

The root mean squared error (RMSE) is defined as the square root of the MSE. 
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(2.28) 

where: 

𝑥𝑡 is the actual observed demand in period 𝑡, 

𝑥̂𝑡−1,𝑡 is the one-period-ahead forecast, 

𝑒𝑡−1,𝑡 is the error in the forecast made in period 𝑡 − 1 for period 𝑡, 

𝑛 is the number of forecasts. 

 

The RMSE is the square root of the average of squared errors. Since the errors are 

squared before they are averaged, the RMSE gives a higher weight to large errors. 

2.7.3. Mean absolute error (MAE) 

The mean absolute error (MAE) measures the average magnitude of the errors in a 

set of forecasts, without considering their direction. It takes the absolute value of the 

forecast errors and averages them over all forecast time periods.  

For the 𝑛 periods of data, the estimate of the MAE for one-period-ahead forecasts is 

presented in equation (2.29). 
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(2.29) 

where: 

𝑥𝑡 is the actual observed demand in period 𝑡, 

𝑥̂𝑡−1,𝑡 is the one-period-ahead forecast, 

𝑒𝑡−1,𝑡 is the error in the forecast made in period 𝑡 − 1 for period 𝑡, 

𝑛 is the number of forecasts. 

 

The MAE was useful in the past due to its computational simplicity. However, with the 

widespread availability of computers, the MAE has become of less practical importance. 

Nevertheless, it is still often used because it is intuitive (Silver, Pyke and Thomas, 2017 

p. 105). 

2.7.4. Mean absolute percentage error (MAPE) 

The mean absolute percentage error (MAPE) is also widely used because it is an 

intuitive measure of variability. It is expressed as a percentage, thus it is generally not 

affected by the magnitude of the demand values (Silver, Pyke and Thomas, 2017 p. 

106). 
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where: 

𝑥𝑡 is the actual observed demand in period 𝑡, 

𝑥̂𝑡−1,𝑡 is the one-period-ahead forecast, 

𝑒𝑡−1,𝑡 is the error in the forecast made in period 𝑡 − 1 for period 𝑡, 

𝑛 is the number of forecasts. 

 

Nevertheless, the MAPE has same disadvantages when it is used in forecasting. When 

forecasting the future demand or production volume, it is possible that, for some 

period, the value of the time-series is zero. In those cases, the MAPE cannot be used 

since there would be a division by zero.  

In addition, there is no upper limit to the percentage error. The percentage error of 

forecasts that are too low (the actual demand is higher than the forecast), cannot 

exceed 100%. However, when the actual demand is lower than the forecast, the 

percentage error could be higher than 100%. For example, if our forecast for a 

particular period was 250 units, and the actual demand in that period is 800 units, the 

error made in that period would be an error of 220%.  

The MAPE is also not recommended when the values of the time-series are very low. 

For example, if our forecast for a certain period is 1 unit, and the real demand for that 

period is 2 units, we are making an error of 1 unit. However, if we count that error as 

a percentage, it is a 100% error, which could be misleading (Silver, Pyke and Thomas, 

2017 p. 106). 
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3. RESEARCH METHODOLOGY 

3.1. The Company 

The research has been conducted using the data provided by a manufacturing 

company. Since the company prefers to remain anonymous, in this paper we will use 

“the Company” instead of its real name. The name of the products has also been 

changed, since the data provided is confidential information. 

The Company is located in an Eastern European country and it produces construction 

material products, only for the national market. Therefore, the demand of the products 

is strongly related to the national economy.  

The Company produces products for tiling, as well as new construction products and 

construction renovation products. They produce a wide variety of products, such as 

tile adhesives, grouts, floor-levelling compounds, silicones, decorative wall plasters and 

waterproofing products.  

The country where the Company is located suffers very cold and strong winters, with 

considerable amounts of snow and extremely low temperatures. For this reason, the 

construction activity is much lower in the winter than in the summer. Since the demand 

of the Company’s products is highly related to the construction activity in the country, 

it strongly depends on the season of the year and the weather conditions. As a result, 

the demand and the production volume of the Company is expected to follow a clear 

seasonal pattern. 

3.2. The data 

The Company has provided the production volume of all their products from the year 

2010 to the year 2017. In general, manufactures use the demand or the sales volume 
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to make their forecasts. Companies need to have a prediction of how much they are 

going to sell in the next week, month, quarter or year, in order to know how much 

they should produce, how many raw materials they should buy, or how many resources 

they will need. 

According to the operations manager of the company, the data of the production and 

the sales are almost identical, since they use a Make to Order manufacturing process. 

This means that they start producing a product once they receive the customer’s order. 

Therefore, forecasting the production volume or forecasting the sales will give almost 

the same results. The data that the Company has provided is the production volume, 

thus we will forecast that variable and not the sales or the demand. The production 

volume is given in tons. 

3.2.1. Data analysis 

The first step in forecasting is always to analyse the data and to organise it in order to 

understand what might be improved. The data given by the company was very detailed 

and therefore it was difficult to find any pattern or discontinuity. The files with the data 

contain the production volume of each product for each day from the 1st January 2010 

to 31st December 2017. Since the Company produces a high number of products, the 

data provided contains more than 55.000 values.  

3.2.2. Aggregating the data 

The second step is to aggregate the data. For obvious reasons, it is no very useful to 

forecast the production for every day during a whole year. For a manufacturer who 

prepares the production plan for the next year, it is not important to know how much 

they will produce on every single day. It might be more useful to have a prediction of 

how much they will produce on each month, or on each quarter. That is why the next 
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step is to aggregate the data over time. We have analysed all the data provided by 

the Company and aggregated it monthly for every year.  

It is also recommended to aggregate the products into different categories. The 

Company produces a variety of products that can be categorized into product groups 

or families. Individual products in the same product group generally have some 

common characteristics, such as the same demand pattern or relatively stable product 

mix. The general recommendation in those cases is to aggregate the demand or 

production volume of those products and forecast it together as a single product.  

Since the Company produces more than 190 different products, it would be impossible 

in this paper to analyse all of them. After having a conversation with the manager 

about this issue, we decided to analyse only the 15 products with a higher demand.  

Additionally, we decided that it would be better to aggregate these products. We have 

divided the products into four different categories, according to their properties. One 

of the main reasons why we decided to aggregate the demand is that some of the 

products are very similar, thus their demand is related to each other. In Figure 3.1. 

there is an example of this situation. 

The graphs in Figure 3.1. represent the production volume of the products Product 1 

and Product 2. The production of Product 1 started in period 43, which corresponds to 

July 2013. Around that time, there is a clear drop in the production of Product 2. The 

reason of this decrease is that the two products are very similar, and Product 1 took 

part of the demand from Product 2. They have a very similar composition, similar price 

and the company considers them as one group, thus their demand is closely related. 
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Figure 3.1. Production volume of Product 1 and Product 2 from 2010 to 2017 

 

If we try to analyse these two products separately, it is difficult to explain why the 

production of Product 2 suddenly drops between the years 2013 and 2014. However, 

if we aggregate these two products, the demand looks more stable and easier to 

analyse (Figure 3.2.). 
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Figure 3.2. Aggregated production volume of Product 1 and Product 2 from 2010 to 2017 

 

In general, the aggregated demand of these two products is relatively constant from 

the year 2010 to the year 2017, with a clear seasonal pattern with higher production 

in the middle of each year, which corresponds to the summer. The production in the 

year 2017 is higher than in the past data, and there is a drop in the production in 

January 2014. All these singularities in the data will be explained afterward. 

In order to respect the privacy of the Company, neither the real name of the products 

nor the type of product are given in this thesis. Thus, the 15 products have been 

aggregated into 4 categories, which we have named Product A, Product B, Product C 

and Product D.  

 Product A: Product 1, Product 2, Product 3, Product 4 and Product 5. 

 

 Product B: Product 6, Product 7, Product 8 and Product 9. 

 

 Product C: Product 10, Product 11, Product 12 and Product 13. 

 

 Product D: Product 14 and Product 15. 
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For each one of the 15 products, and for each month, we have summed the production 

volume of each day. Here, in Table 3.1. is an example of the production volume of one 

of the aggregated products (Product A). 

 

Table 3.1. Production volume of Product A aggregated monthly from 2010 to 2017 

  PRODUCTION VOLUME OF PRODUCT A (ton) 

  Year 

  2010 2011 2012 2013 2014 2015 2016 2017 

Month 

JANUARY 1172,65 1451,4 1231,8 1380,1 521,7 977,7 1282,5 1129,4 

FEBURARY 1384,8 1723,1 1527,8 1663,85 2637,4 1666,2 1180 1546,3 

MARCH 1110,7 2014 1323,75 1286,8 1622,4 1772,2 1504,3 1558,7 

APRIL 2045,2 2117,7 1254,75 2132,6 1945,1 2079,2 1547 1870 

MAY 1854,7 2494,5 1567,83 1957,5 2083,78 1658,1 1498,7 1784,8 

JUNE 1440,6 2011,6 2617,7 2473 2139,5 2303,2 2335 2502 

JULY 2561,7 2586,2 2409,22 2595 2318,5 2100,7 2306 3122,8 

AUGUST 2409 2031,85 2405,2 2878,1 2662,6 2387,5 2136,9 2987,6 

SEPTEMBER 1940 1773,1 2243,7 2485,5 2369,3 2427,9 2251,9 2508,9 

OCTOBER 2086,3 1815,3 2358,4 2044,8 2390,2 1858,1 1596,2 1865,7 

NOVEMBER 1738,5 1647,1 1597,2 1861,1 1434,6 1438,9 1470,4 1691,4 

DECEMBER 1866,2 1103,9 1127,2 1115,7 1209,9 1155,2 1266,4 1508,4 

 

3.2.3. Forecasting methodology 

The methods that we will use for forecasting the production volume are: 

 moving averages, 

 simple exponential smoothing, 

 Brown’s linear exponential smoothing, 
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 Holt’s linear exponential smoothing, 

 Holt-Winter’s exponential smoothing, 

 ARIMA – Box-Jenkins method. 

Additionally, we will calculate an extra forecast as a combination of the two forecasts 

that give the best results. Research has proved that in most cases, this combination 

gives better forecasts than any method used independently.  

 

 

Figure 3.3. Product life cycle (Business Set Free Ltd, 2013) 

 

All these methods are quantitative methods based on time-series analysis. The only 

variable used for making forecasts is the historical data. One of the main decisions 

before making any forecast is to decide how much data from the past we will use. The 

demand of every product changes along the different life cycle stages. For instance, it 
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is not recommended to use de data from the growth stage (see Figure 3.3.) to make 

forecasts for the decline stage. 

3.3. Forecasting horizon   

Another crucial decision is to choose the forecasting horizon. Since we have 

aggregated the data month by month, there are three possible forecasting horizons: 

monthly, quarterly and yearly. Longer forecasting horizons are not recommended with 

time-series analysis methods. These methods give good results only for short-term or 

medium-term forecasts. Since they do not include the effects of cyclic variations, it 

would be dangerous to make long-term forecasts with them. 

The Company also provided with their monthly, quarterly and yearly predictions for 

the year 2016. These predictions are based in the opinion of experts and managers of 

the Company, and no quantitative methods have been used. In Table 3.2., the reader 

can find the predictions made by the Company of Product A for every month in the 

year 2016. 

The yearly predictions were made at the end of the year 2015, when the real 

production volume of December 2015 was already known. 

The quarterly predictions were made before the beginning of every quarter of the year 

2016. At the end of December 2015, the Company made the predictions for January, 

February and March 2016. At the end of March 2016, the Company made the 

predictions for April, May and June 2016. The same for the other two quarters. 

The monthly predictions were made for every month at the end of the previous month. 

According to the operations manager of the Company, the monthly predictions are 

more a production plan than actual predictions. Therefore, it is not useful to make 

monthly forecasts, since this information would not be relevant for the Company. 
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Table 3.2. Predictions by the Company of the production volume of Product A 

 

 Product A 

 Production 
Volume 

Predictions 

 
Monthly Quarterly Yearly 

January 1282,5 1184,5 1184,5 1.301,3 

February 1180 1501 1496,5 1.633,5 

March 1504,3 1588 1588 1.748,5 

April 1547 1671,2 1671,2 1.891,0 

May 1498,7 1621,5 1593,2 2.004,7 

June 2335 1857 1737 2.122,4 

July 2306 2124,5 2124,5 2.347,5 

August 2136,9 2287 2167 2.515,5 

September 2251,9 2016,5 2042,5 2.352,5 

October 1596,2 1722,5 1722,5 2.030,4 

November 1470,4 1379,5 1462 1.726,5 

December 1266,4 1202,5 1336 1.594,3 

     

 RMSE 207,73 223,10 316,50 

 MAE 172,98 161,68 276,50 

 MAPE 10,13% 9,38% 17,98% 

 

 

Comparing the quarterly and yearly predictions for Product A, it is clear that the 

quarterly predictions are more accurate. This situation also happens for Product D, 

while yearly predictions are more accurate than quarterly predictions for Product B and 

Product C. However, according to the operations manager, it would be more beneficial 

for the Company to improve the yearly forecasts, since they are the base for all plans, 

such as the budget or the numbers presented to stakeholders.  
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For the reasons mentioned above, we decided that the forecasting horizon should be 

one year. At the beginning of the year 2016, we have calculated the forecasts of the 

production volume of each month for the whole year. 

3.4. Procedure followed 

For each one of the products, we first plot the data in order to find and correct 

irregularities. Real production data might contain some discontinuities because of 

reparations of machines, labour strikes, or changes in the production cycle for many 

different reasons.  

Once the irregularities are corrected, we choose how much historical data we use for 

making the forecasts. If there is a clear growing trend and, after a while, the trend 

starts being descending, it is not recommended to include the data that is older than 

the change in the trend. 

After this, for each one of the methods, we use the past data to build the model that 

fits the best our data. We use data from the years 2010 to 2015 to build the model. 

Once we have built the best model, we use it for forecasting the monthly production 

for every month in the year 2016. We then analyse the accuracy of the forecasts with 

different performance indicators. Additionally, we calculate and evaluate a combination 

of the two forecasts that give the best results.  

Finally, we compare the results with the predictions made by the Company, in order 

to discover if the forecasts that we have calculated over perform these predictions.  
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4. EXPERIMENTS 

In this thesis, we only show the analysis and the results of every step of Product A. 

For the other three products, only the value of the performance indicators is shown. 

The production volume of the four products has a very similar pattern and the 

procedure followed to make the forecasts is very similar. It would be too long and 

unnecessary to show the analysis of every product, and to explain how the forecasts 

have been calculated. 

The Product A is the aggregated production volume of five different products (Product 

1, Product 2, Product 3, Product 4 and Product 5) which have a similar composition. 

According to the manager of the Company, they can be aggregated together to make 

the forecasts.  

4.1. Analysis and correction of the data 

The first step is to plot the production volume of Product A from the year 2010 to the 

year 2017. It is important to notice that in Figure 4.1., the Y-axis starts from 500 tons, 

and not from zero.  

Figure 4.1. Production volume of Product A from 2010 to 2017 
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There is a sudden drop in the production in period 49, which corresponds to January 

2014, and an unusually high level of production in period 50, which corresponds to 

February 2014. The reason of this irregularity in the production volume is that in 

January 2014 the Company changed some of the machines used for production. 

Therefore, the demand of January could not be produced in that month, and it was 

produced in February. The methods that we have used for forecasting do not 

understand these kind of irregularities in the time-series. These values should be 

corrected in order to have a more stable time-series and forecasts that are more 

accurate.  

The production volume in January 2014 and in February 2014 needs to be readjusted. 

We have estimated the “correct” production volume for those months based on the 

production volume in January and February in the other years.  

The graph of the production volume of Product A after this correction in represented 

in Figure 4.2. 

 

 

Figure 4.2. Corrected production volume of Product A from 2010 to 2017 
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Let us now analyse the different components in the time-series. In the first three years 

(2010–2012) there seems to be no trend. Without considering the seasonality, the 

production volume seems to be constant. However, in 2013, there seems to be an 

increase in the production volume and, after that, a decreasing trend until the year 

2016. Again, there is a sudden increase of the production volume in the year 2017. 

According to the Company, this sudden increment in 2017 is strongly related with the 

recovery of the economy in the country where the Company is located – the market 

of the company is national, hence they only sell their products in the country where 

they produce it.  

Additionally, a clear seasonality repeats every year. There is a higher production 

volume in the middle of every year, which corresponds to the summer or warm season. 

The products that the Company produces are used in construction; hence, their 

demand relies strongly on the weather conditions. In the country where the Company 

is located, the extremely low temperatures in the winter have a strong impact in the 

construction business. During the cold months, the activity of these companies 

decreases. Therefore, the demand and the production of the Company’s products is 

also much lower during the winter.  

The next step is to decide for which year we will make the forecasts. The methods that 

we are going to use are based on time-series analysis, which means that the only 

variable that they use for forecasting is the historical data. These methods make 

forecasts based on past data, thus the forecast is just a “projection” for the future of 

what has happened before. It is not possible to predict sudden changes in the demand, 

such as changes in the trend, sudden increases or sudden decreases in the production 

volume. 

Using these methods for forecasting the production volume in the year 2017 will not 

give satisfactory results. Managers should take into account other exogenous variables 

that can affect the demand, such as the economy of the country, or the weather 

forecast. If a sudden change in the economy of the country is expected, the forecasts 

made with time-series analysis methods should be used very carefully, since the results 

might be misleading.  
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On the other hand, when the economy of the country and other external factors are 

stable, time-series analysis can give very adequate results. In the production volume 

of Product A, the production is stable from 2010 to 2016, but in the year 2017 there 

is an unexpected increase in the production. The objective of this thesis is to prove 

that time-series analysis methods are useful for stable time-series. Consequently, it 

would be interesting to make the forecasts for the year 2016 since the results will be 

more precise than for the year 2017.  

Once we have decided that we will make the forecasts for the year 2016, we have to 

decide how much of the available historical data we will use. We have data from the 

year 2010, but in the year 2013, there is a change in the direction of the trend. From 

2010 to 2012, it seems that there is no trend, but after the sudden increase in the 

production volume in 2013, there is a clear descending trend. For this reason, we will 

only use the production volume of the years 2013, 2014 and 2015 to make the 

forecasts for the year 2016.  

This division of the data is a common practise in forecasting. In this case, the data 

from 2013 to 2015 is called Training Set, and it is used for building the model. The 

data of 2016 is called Test Set, and it is used to analyse the accuracy of the forecast 

method used. The results of the Test Set are used to choose which method is the best, 

and afterwards this method is used for making forecasts in the future. 

Let us now analyse the production volume of the years 2013, 2014 and 2015. The first 

step is to plot the data to have a more clear idea of how the production volume of 

Product A it looks. 

Looking at the Figure 4.3., we can have a general idea of how the different time-series 

components look. For instance, an obvious seasonal pattern repeats every year, with 

higher seasonal indexes in the middle of each year. In addition, it seems that there is 

a descending trend.  
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Figure 4.3. Corrected production volume of Product A from 2013 to 2015 

4.2. Seasonal decomposition 

We have used the Seasonal Decomposition option in Statgraphics to separate the 

different components of the time-series. This procedure applies a multiplicative 

seasonal decomposition to the data. The reason why we have used multiplicative 

seasonality instead of additive seasonality is that it gave better results after making 

different trials. The purpose of the decomposition is to separate the time-series into 

trend-cycle, seasonal, and random components. The Table 4.1. shows each step of 

the seasonal decomposition.  
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Table 4.1. Seasonal decomposition 

Year Month Period Data 
Trend-

Cycle 
Seasonality Irregular 

Seasonally 

Adjusted 

2013 

January 1 1380,1       2267,6 

February 2 1663,85       1885,03 

March 3 1286,8       1455,63 

April 4 2132,6       2028,63 

May 5 1957,5       1998,46 

June 6 2473       2107,07 

July 7 2595 1990,77 1,30 104,874 2087,8 

August 8 2878,1 1995,57 1,44 102,433 2044,12 

September 9 2485,5 2013,08 1,23 100,556 2024,28 

October 10 2044,8 2019,25 1,01 90,4663 1826,75 

November 11 1861,1 2016,7 0,92 111,132 2241,2 

December 12 1115,7 2008,07 0,56 93,894 1885,46 

2014 

January 13 1410,58 1982,65 0,71 116,898 2317,68 

February 14 1748,52 1962,15 0,89 100,959 1980,96 

March 15 1622,4 1948,33 0,83 94,1964 1835,26 

April 16 1945,1 1957,88 0,99 94,5037 1850,27 

May 17 2083,78 1954,5 1,07 108,845 2127,38 

June 18 2139,5 1940,66 1,10 93,9332 1822,92 

July 19 2318,5 1926,54 1,20 96,8231 1865,34 

August 20 2662,6 1905,08 1,40 99,2642 1891,06 

September 21 2369,3 1907,89 1,24 101,14 1929,65 

October 22 2390,2 1919,72 1,25 111,23 2135,31 

November 23 1434,6 1907,57 0,75 90,5651 1727,59 

December 24 1209,9 1896,65 0,64 107,803 2044,65 
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Year Month Period Data 
Trend-

Cycle 
Seasonality Irregular 

Seasonally 

Adjusted 

2015 

January 25 977,7 1894,4 0,52 84,7988 1606,43 

February 26 1666,2 1873,86 0,89 100,738 1887,7 

March 27 1772,2 1864,84 0,95 107,5 2004,71 

April 28 2079,2 1845,11 1,13 107,193 1977,83 

May 29 1658,1 1823,12 0,91 92,8516 1692,8 

June 30 2303,2 1821,02 1,26 107,764 1962,4 

July 31 2100,7       1690,11 

August 32 2387,5       1695,68 

September 33 2427,9       1977,37 

October 34 1858,1       1659,95 

November 35 1438,9       1732,77 

December 36 1155,2       1952,21 

 

The “Trend-Cycl”e column of Table 4.1. shows the results of a centered moving 

average of length 12 applied to the data. The reason why we need to apply a centered 

moving average is that the number of periods per season (12 months) is an even 

number. With this procedure, we smooth the data and remove the seasonality. The 

values in the “Trend-Cycle” column are an average that includes one value of each one 

of the 12 different periods. This way, we have the data smoothed and “free” of 

seasonality (Figure 4.4). We can understand the graph in Figure 4.4. as how the time-

series would look if there were not a seasonal pattern and irregular fluctuations. 
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Figure 4.4. Trend-Cycle component plot for Product A 

 

The “Seasonality” column is calculated dividing the “Data” column by the “Trend-Cycle” 

column. It represents, for each period, how much the data differs from the average. 

If this value is greater than one, it means that for this period the production volume is 

higher than the average. On the other hand, if this value is between zero and one, it 

means that for this period the production volume is lower than the average.  

Seasonal indexes are computed for each season by averaging the ratios across all 

observations in that season, and scaling the indexes to make an average season 

equal 12. 

In Table 4.2., the value in the column Index in January is the average of the values in 

column “Seasonality” of Table 4.1., which corresponds to January. The same applies 

to every month. However, the sum of all these seasonal indexes is higher than 12. The 

seasonal indexes need to be normalised in order to make the sum equal 12.  
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Table 4.2. Normalised seasonal indexes 

Season Index 
Normalised 

Index 

January 0,614 0,609 

February 0,890 0,883 

March 0,892 0,884 

April 1,060 1,051 

May 0,988 0,980 

June 1,184 1,174 

July 1,253 1,243 

August 1,420 1,408 

September 1,238 1,228 

October 1,129 1,119 

November 0,837 0,830 

December 0,597 0,592 

   

Sum 12,102 12,00 

 

In Figure 4.5. there is a graphical representation of the normalised seasonal indexes. 

As we expected, during the warmest months (from June to October) the seasonal 

indexes are higher than one (also in April, and in May very close to one). In Figure 4.5., 

the seasonal indexes are multiplied by 100. During the coldest months (from November 

to March), the seasonal indexes are significantly lower than one, especially in 

December and January. 
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Figure 4.5. Seasonal Index for Product A 

 

The “Data” is then divided by the “Trend-cycle” component and “Normalised Seasonal 

Indexes” to give the “Irregular” or residual component. This component is then 

multiplied by 100. The “Irregular” component is the residual variation remaining in the 

time-series after the trend-cycle and the seasonality have been extracted from the 

original time-series. Figure 4.6. shows a representation of the irregular component of 

the time-series. 

 

Figure 4.6. Irregular component for Product A 
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The last step in the seasonal decomposition is to obtain the seasonally adjusted data. 

We obtain these values by dividing the original time-series values, by the normalised 

seasonal indexes. These are the values shown in the last column of Table 4.1. 

 

 

Figure 4.7. Seasonally adjusted data plot for Product A 

 

Figure 4.7. represents the time-series without the seasonal component. Only the trend 

and the irregular component are present in the seasonally adjusted data.  

4.3. Moving average 

The first method that we have tried is the moving average. Although this method is 

very simple, it often gives satisfactory results. This method is intuitive and easy to 

apply. 

The main decision that we have to make is the order or length of the moving average. 

The only way to find the optimal order of the moving average is to try different orders, 

and to compare the accuracy of the results. 
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We have applied in Statgraphics moving averages of different orders to the time-series 

from 2013 to 2015. We have analysed the accuracy with three different indicators: 

RMSE, MAE and MAPE. The indicator that we have used to decide which model is more 

accurate is an average of RMSE and MAE. We have also calculated MAPE because it is 

more intuitive and easy to understand, since it shows the average error in percentage. 

 

Table 4.3. Performance of moving averages of different orders 

Model RMSE MAE MAPE 

MA Order 2 254,87 176,51 10,00 

MA Order 3 212,95 155,62 8,52 

MA Order 4 210,43 145,10 7,93 

MA Order 5 210,00 150,43 8,16 

MA Order 6 197,05 141,65 7,78 

MA Order 7 197,64 141,37 7,85 

MA Order 8 205,54 144,76 8,14 

MA Order 9 207,74 145,57 8,18 

MA Order 10 215,42 147,30 8,28 

MA Order 11 209,98 138,95 7,90 

 

In Table 4.3., two of the indicators (RMSE and MAPE) show that the model that fits 

the data the best is a moving average of order 6. However, according to MAE the MA 

of order 11 is the best one. As we have explained before, we will use the average of 

RMSE and MAE (calculated in Table 4.4) for choosing the order. However, the values 

of RMSE and MAE must be normalised before making the average.  
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Table 4.4. Average of RMSE and MAE with normalised values 

 

Performance 
indicators 

Normalised performance 
indicators 

Model RMSE MAE RMSE MAE Average 

MA Order 2 254,867 176,505 0,7732 0,7872 0,7802 

MA Order 3 212,948 155,624 0,9254 0,8928 0,9091 

MA Order 4 210,429 145,096 0,9364 0,9576 0,9470 

MA Order 5 210 150,425 0,9383 0,9237 0,9310 

MA Order 6 197,052 141,65 1,0000 0,9809 0,9905 

MA Order 7 197,64 141,369 0,9970 0,9829 0,9899 

MA Order 8 205,54 144,757 0,9587 0,9599 0,9593 

MA Order 9 207,736 145,571 0,9486 0,9545 0,9515 

MA Order 10 215,423 147,295 0,9147 0,9433 0,9290 

MA Order 11 209,981 138,947 0,9384 1,0000 0,9692 

 

The results in Table 4.4. show that the best method is a moving average of order 6. 

It is important to notice that a moving average of order 6 calculates the forecast for 

the next value of the time-series as the average of the six most recent values. 

However, since there is a seasonality of 12 periods in the time-series, Statgraphics 

uses the “Seasonally Adjusted Data”, and not the original time-series, for the 

calculations. 

  

Table 4.5. Moving average of order 6 model applied to the training set  

MODEL 

Year Month 
Production 

volume (ton) 

Seasonally 

Adjusted 
MA(6) 

2013 
January 1380,1 2267,6   

February 1663,85 1885,03   
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Year Month 
Production 

volume (ton) 

Seasonally 

Adjusted 
MA(6) 

2013 

March 1286,8 1455,63   

April 2132,6 2028,63   

May 1957,5 1998,46   

June 2473 2107,07   

July 2595 2087,8 2432,51 

August 2878,1 2044,12 2713,35 

September 2485,5 2024,28 2398,73 

October 2044,8 1826,75 2292,91 

November 1861,1 2241,2 1673,05 

 December 1115,7 1885,46 1216,15 

2014 

January 1410,58 2317,68 1228,35 

February 1748,52 1980,96 1815,27 

March 1622,4 1835,26 1808,75 

April 1945,1 1850,27 2117,8 

May 2083,775 2127,38 1977,1 

June 2139,5 1822,92 2346,75 

July 2318,5 1865,34 2472,3 

August 2662,6 1891,06 2694,46 

September 2369,3 1929,65 2331,31 

October 2390,2 2135,31 2142,96 

November 1434,6 1727,59 1629,21 

December 1209,9 2044,65 1121,53 
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Year Month 
Production 

volume (ton) 

Seasonally 

Adjusted 
MA(6) 

2015 

January 977,7 1606,43 1176,01 

February 1666,2 1887,7 1667,45 

March 1772,2 2004,71 1669,51 

April 2079,2 1977,83 1998,5 

May 1658,1 1692,8 1836,39 

June 2303,2 1962,4 2193,6 

July 2100,7 1690,11 2306,03 

August 2387,5 1695,68 2631,9 

September 2427,9 1977,37 2255,86 

October 1858,1 1659,95 2051,46 

November 1438,9 1732,77 1477,89 

December 1155,2 1952,21 1057,07 

 

In Table 4.5. we can see the moving average of order six applied to the time-series. 

The values in column 5 “MA (6)” are calculated as an average of the six previous values 

in column 4 “Seasonally adjusted”, multiplied by the normalised seasonal index of that 

period, obtained from Table 4.2. 

For instance, in June 2014:  

 

𝑥̂𝐽𝑢𝑛𝑒 2014 = (
2127,38 + 1850,27 + 1835,26 + 1980,96 + 2317,68 + 1885,46

6
) ∗ 1,174

= 2347,41 𝑡𝑜𝑛𝑠 
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The calculations in Statgraphics were made with more decimals than the ones shown 

in the tables in this paper. That is the reason why the previous calculation is slightly 

different to the value shown in Table 4.5., 2346,75 ton.    

Once we have chosen the moving average model that adjusts the best to the data, we 

have to make the forecast for the year 2016. 

 

Table 4.6. Forecast for the year 2016 using a moving average of order 6  

FORECAST 

Year Month 
Production volume 

(ton) 
MA(6) 

2016 

January 1282,5 1086,19 

February 1180 1575,27 

March 1504,3 1577,69 

April 1547 1876,15 

May 1498,7 1748,1 

June 2335 2094,62 

July 2306 2218,25 

August 2136,9 2512,82 

September 2251,9 2191,31 

October 1596,2 1997,72 

November 1470,4 1482,01 

December 1266,4 1056,07 

 

The forecast values are presented Table 4.6., in column 4 “MA (6)”. In Figure 4.8., we 

can compare the real production volume with the forecast.  
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Figure 4.8. Real production volume in 2016 compared with the forecasts made with MA (6) 

 

Different errors have been calculated in order to obtain the values of the performance 

indicators. Table 4.7. shows the comparison between the performance of the forecast 

and the predictions made by the company. 

 

Table 4.7. Accuracy of the MA (6) forecasts compared with the predictions made by the 
Company  

Forecast MA (6) 
Predictions by the 

Company 

RMSE 256,05 RMSE 316,50 

MAE 219,30 MAE 276,50 

MAPE 14,04 MAPE 17,98 
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All the indicators in Table 4.7. confirm that the moving average forecast gives better 

results than the qualitative predictions made by the company.  

4.4. Simple exponential smoothing 

The simple exponential smoothing method is easy to apply, since there is only one 

parameter that should be calculated: the smoothing constant α. It is important to take 

into account that small values of α smooth out most of the random noise, but it should 

only be used when the time-series is considerably stable.  

The first step in forecasting with simple exponential smoothing is to find the value of 

α that gives the optimal model. In our case, the optimal model is the one that gives 

the lowest RMSE. Statgraphics does not have an option to find the value of α that 

minimizes the average of RMSE and MAE. For this reason, we have chosen the option 

to minimize only RMSE. 

We insert the production volume from the years 2013–2015 in Statgraphics and 

calculate the simple exponential smoothing model, choosing the option “Optimize” the 

smoothing constant α. 

Statgraphics gives a value of α = 0,11. Using the equation (2.10), this is “equivalent” 

to a moving average of period: 

 

𝑁 =
2

𝛼
− 1 =

2

0,0918
− 1 = 17,18 ≈ 17 

 

It is a small value of α, which gives much smoothed results and removes most of the 

“noise” in the data.  

Again, as it happened with the moving average model, the simple exponential 

smoothing is performed on the “Seasonally Adjusted Data”, and then readjusted using 

the normalised seasonal indexes.  



70 

 

Table 4.8. Simple exponential smoothing model applied to the training set 

MODEL 

Year Month 
Production 

volume (ton) 

Seasonally 

Adjusted 
Simple ES 

2013 

January 1380,1 2267,6 1200,94 

February 1663,85 1885,03 1770,28 

March 1286,8 1455,63 1761,27 

April 2132,6 2028,63 2032,39 

May 1957,5 1998,46 1903,95 

June 2473 2107,07 2288,42 

July 2595 2087,8 2444,99 

August 2878,1 2044,12 2788,36 

September 2485,5 2024,28 2440,2 

October 2044,8 1826,75 2229,17 

November 1861,1 2241,2 1638,66 

December 1115,7 1885,46 1185,14 

2014 

January 1410,58 2317,68 1211,08 

February 1748,52 1980,96 1788,23 

March 1622,4 1835,26 1786,6 

April 1945,1 1850,27 2103,1 

May 2083,775 2127,38 1943,37 

June 2139,5 1822,92 2347,1 

July 2318,5 1865,34 2461,44 

August 2662,6 1891,06 2770,5 



71 

 

Year Month 
Production 

volume (ton) 

Seasonally 

Adjusted 
Simple ES 

2014 

September 2369,3 1929,65 2405,67 

October 2390,2 2135,31 2189,49 

November 1434,6 1727,59 1640,66 

December 1209,9 2044,65 1152,97 

2015 

January 977,7 1606,43 1192,29 

February 1666,2 1887,7 1694,92 

March 1772,2 2004,71 1694,36 

April 2079,2 1977,83 2025,07 

May 1658,1 1692,8 1892,4 

June 2303,2 1962,4 2236,65 

July 2100,7 1690,11 2376,41 

August 2387,5 1695,68 2657,63 

September 2427,9 1977,37 2291,67 

October 1858,1 1659,95 2102,88 

November 1438,9 1732,77 1540,05 

December 1155,2 1952,21 1089,5 

 

Once we have the model (results in Table 4.8.) that best fits the time-series, the next 

step is to calculate the forecasts for the year 2016 and evaluate the results. Again, we 

introduce the data in Statgraphics and we forecast the next 12 values using α = 0,11. 

The forecasts for every month in the year 2016 are presented in Table 4.9. 
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Table 4.9. Forecast for the year 2016 using simple exponential smoothing  

FORECAST 

Year Month Production volume Simple ES 

2016 

January 1282,5 1128,01 

February 1180 1635,92 

March 1504,3 1638,43 

April 1547 1948,38 

May 1498,7 1815,4 

June 2335 2175,26 

July 2306 2303,65 

August 2136,9 2609,56 

September 2251,9 2275,67 

October 1596,2 2074,63 

November 1470,4 1539,06 

December 1266,4 1096,73 

 

Since the time-series is seasonal, the forecasts are not calculated using the equation 

(2.8). It is necessary to modify this equation to take into account the seasonality. After 

making the necessary modifications, the equation (2.8) looks as follows: 

 

𝑥̂𝑡,𝑡+𝜏 = 𝑎̂𝑡 = [(1 − α)
𝑎̂𝑡−1

𝐹𝑡−1
+ α𝑥𝑡]𝐹𝑡+1 

 

 

(4.1) 
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This means that the previous forecast, 𝑎̂𝑡−1, should be divided by its normalised 

seasonal index, 𝐹𝑡−1, to obtain the “deseasonalized forecast”. Then the whole result 

should be multiplied by the seasonal index of the period for which we are making the 

forecast, 𝐹𝑡+1.  

For example, the forecast for October 2013 made at the end of September 2013, is 

calculated as follows: 

 

𝑥̂𝑂𝑐𝑡𝑜𝑏𝑒𝑟 2013 = [(1 − 0,11) ∗
2788,36

1,408
+ 0,11 ∗ 2024,28] ∗ 1,119 = 2221,44 ton  

 

The difference between this value and the value shown in Table 4.8. (2229,17 ton) is 

due to the number of decimals used in the calculations.  

The real production volume and the forecast for the year 2016 are presented in Figure 

4.9. 

Figure 4.9. Real production volume in 2016 compared with the forecasts made with 
simple ES 
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In Table 4.10. there is a comparison between the performance of the forecast and the 

predictions made by the Company, for the year 2016. 

 

Table 4.10. Accuracy of the simple ES forecasts compared with the predictions  
made by the Company  

Forecast Simple ES Predictions by the Company 

RMSE 291,98 RMSE 316,50 

MAE 236,49 MAE 276,50 

MAPE 15,40 MAPE 17,98 

 

All the indicators confirm that the exponential smoothing gives better results than the 

qualitative predictions made by the company. However, the indicators of the forecasts 

made with moving average gave better results. It is important to take into account 

that a Simple ES is not as appropriate as other methods for this time-series, since there 

is a trend and seasonality. That is the reason why we have tried other exponential 

smoothing methods that are expected to give better forecasts.  

4.5. Brown’s Linear exponential smoothing 

With this method, not only the level of the time-series is updated with each forecast, 

but also the trend. We can expect better results than with the simple exponential 

smoothing, since there is a trend in our data. However, it is important to take into 

account that the seasonal indexes are not updated; the method uses always the same 

indexes.  

The advantage of Brown’s forecast updating method is that it uses only one smoothing 

constant, 𝛼, which makes it almost as simple as Simple ES. 
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We proceed the same way as we did with simple exponential smoothing. We introduce 

the data in Statgraphics and we obtain the model that adjusts the best to our time-

series. It is the model with the lowest RMSE, with a value of 𝛼 = 0,07. 

One more time, the mode and forecasts are calculated taking the seasonally adjusted 

data. The results of the Brown’s Linear ES applied to our data are shown in Table 4.11. 

 

Table 4.11. Brown’s linear exponential smoothing model applied to the training set 

MODEL 

Year Month 
Production 

volume (ton) 

Seasonally 

Adjusted 

Brown's 

Linear ES 

2013 

January 1380,1 2267,6 1210,31 

February 1663,85 1885,03 1791,42 

March 1286,8 1455,63 1779,16 

April 2132,6 2028,63 2036,43 

May 1957,5 1998,46 1909,81 

June 2473 2107,07 2296,69 

July 2595 2087,8 2459 

August 2878,1 2044,12 2808,86 

September 2485,5 2024,28 2460,1 

October 2044,8 1826,75 2248,26 

November 1861,1 2241,2 1648,5 

December 1115,7 1885,46 1196,64 

2014 
January 1410,58 2317,68 1220,63 

February 1748,52 1980,96 1810,41 
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Year Month 
Production 

volume (ton) 

Seasonally 

adjusted 

Brown's 

linear ES 

2014 

March 1622,4 1835,26 1807,46 

April 1945,1 1850,27 2121,73 

May 2083,775 2127,38 1955,81 

June 2139,5 1822,92 2366,31 

July 2318,5 1865,34 2474,56 

August 2662,6 1891,06 2779,61 

September 2369,3 1929,65 2409,95 

October 2390,2 2135,31 2191,65 

November 1434,6 1727,59 1646,21 

December 1209,9 2044,65 1152,28 

2015 

January 977,7 1606,43 1193 

February 1666,2 1887,7 1686,24 

March 1772,2 2004,71 1684,27 

April 2079,2 1977,83 2015,33 

May 1658,1 1692,8 1884,54 

June 2303,2 1962,4 2218,59 

July 2100,7 1690,11 2359,04 

August 2387,5 1695,68 2628,4 

September 2427,9 1977,37 2258,88 

October 1858,1 1659,95 2076,48 

November 1438,9 1732,77 1515,04 

December 1155,2 1952,21 1069,51 
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Once we have our model and the optimal value of 𝛼, we calculate the forecast for the 

year 2016. The values for each month are presented in Table 4.12.  

 

Table 4.12. Forecast for the year 2016 using Brown’s linear exponential smoothing  

FORECAST 

Year Month 
Production 

volume (ton) 
Brown's linear ES 

2016 

January 1282,5 1109,51 

February 1180 1605,59 

March 1504,3 1604,55 

April 1547 1903,93 

May 1498,7 1770,1 

June 2335 2116,32 

July 2306 2236,3 

August 2136,9 2527,69 

September 2251,9 2199,41 

October 1596,2 2000,66 

November 1470,4 1480,9 

December 1266,4 1052,93 
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The graph in Figure 4.10. compares the real production volume in the year 2016 with 

the forecast made with Brown’s Linear ES. 

Figure 4.10. Real production volume in 2016 compared with the forecasts  

made with Brown’s linear ES  

 

The last step is to calculate the value of the performance indicators used to evaluate 

the forecasts. 

The results shown in Table 4.13. are very similar to the ones obtained with simple 

exponential smoothing, but there is an improvement in the forecasts. However, the 

forecasts made with the moving average method are still slightly more accurate.  
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Table 4.13. Accuracy of the Brown’s linear ES forecasts compared with the predictions  
made by the Company  

Forecast Brown's Linear 

ES 

Predictions by the 

Company 

RMSE 264,51 RMSE 316,50 

MAE 223,94 MAE 276,50 

MAPE 14,44 MAPE 17,98 

 

4.6. Holt’s linear exponential smoothing 

With this method, again both the level and the trend are updated with each new 

forecast, while the seasonal indexes remain constant. The difference between this 

method and Brown’s linear ES is that the procedure described by Holt for updating the 

level and the trend uses two smoothing constants, instead of one.  

We will use 𝛼 and 𝛽 for the smoothing constants, as described in the literature review 

and in most of the books, articles and softwares about forecasting.  

The optimal values of 𝛼 and 𝛽, calculated with Statgraphics, are:  

 

𝛼 = 0,1451 

𝛽 = 0,1968 

 

Which gives the results presented in Table 4.14. for the years 2013–2015. 
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Table 4.14. Holt’s linear exponential smoothing model applied to the training set 

MODEL 

Year Month 
Production 

volume (ton) 

Seasonally 

adjusted 
Holt's linear ES 

2013 

January 1380,1 2267,6 1262,03 

February 1663,85 1885,03 1868,33 

March 1286,8 1455,63 1848,85 

April 2132,6 2028,63 2091,3 

May 1957,5 1998,46 1945,63 

June 2473 2107,07 2323,56 

July 2595 2087,8 2477,8 

August 2878,1 2044,12 2823,25 

September 2485,5 2024,28 2467,84 

October 2044,8 1826,75 2251,59 

November 1861,1 2241,2 1643,29 

December 1115,7 1885,46 1194,53 

2014 

January 1410,58 2317,68 1215,56 

February 1748,52 1980,96 1810,17 

March 1622,4 1835,26 1808,46 

April 1945,1 1850,27 2117,48 

May 2083,775 2127,38 1944,14 

June 2139,5 1822,92 2351,97 

July 2318,5 1865,34 2449,77 

August 2662,6 1891,06 2739,8 
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Year Month 
Production 

volume (ton) 

Seasonally 

adjusted 
Holt's linear ES 

2014 

September 2369,3 1929,65 2365,59 

October 2390,2 2135,31 2144,53 

November 1434,6 1727,59 1613,25 

December 1209,9 2044,65 1124,55 

2015 

January 977,7 1606,43 1165,11 

February 1666,2 1887,7 1636,38 

March 1772,2 2004,71 1630,13 

April 2079,2 1977,83 1952,28 

May 1658,1 1692,8 1829,56 

June 2303,2 1962,4 2148,6 

July 2100,7 1690,11 2289,22 

August 2387,5 1695,68 2544,85 

September 2427,9 1977,37 2180,26 

October 1858,1 1659,95 2009,47 

November 1438,9 1732,77 1463,11 

December 1155,2 1952,21 1031,54 

 

One more time, the forecasts are calculated based on the seasonally adjusted data. 

The forecast for every month in the year 2016 calculated with the above-mentioned 

values for the smoothing constants is presented in Table 4.15. 

 

 



82 

 

Table 4.15. Forecast for the year 2016 using Holt’s linear exponential smoothing  

FORECAST 

Year Month 
Production 

volume (ton) 
Holt's linear ES 

2016 

January 1282,5 1074,24 

February 1180 1550,45 

March 1504,3 1545,31 

April 1547 1828,71 

May 1498,7 1695,58 

June 2335 2021,71 

July 2306 2130,47 

August 2136,9 2401,42 

September 2251,9 2083,73 

October 1596,2 1890,13 

November 1470,4 1395,14 

December 1266,4 989,135 

 

In Figure 4.11., we compare the results of the real production volume and the forecast:  
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Figure 4.11. Real production volume in 2016 compared with the forecasts made with Holt’s 

linear ES  

 

The performance indicators for the forecasts have the values presented in Table 4.16. 

 

Table 4.16. Accuracy of the Holt’s linear ES forecasts compared with the predictions made by 
the Company  

Forecast Holt's 

linear ES 

Predictions by the 

Company 

RMSE 240,93 RMSE 316,50 

MAE 222,19 MAE 276,50 

MAPE 14,00 MAPE 17,98 
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The results of this method are, in general, better than any of the other methods tried 

until now. However, the MAE of the moving average forecasts is lower than the MAE 

of Holt’s ES, which means that it is better. 

4.7. Holt-Winters exponential smoothing 

The Holt-Winters Exponential Smoothing method should only be used for time-series 

with a seasonal pattern. The Holt’s Linear ES only updates the level and the trend on 

each new forecast. However, as we have seen before, we can also include seasonal 

indexes in the method. Nevertheless, these seasonal indexes remain constant and they 

are not updated with each new forecast. 

On the other hand, in the Holt-Winters ES, there is one more smoothing constant, 𝛾, 

that is used for updating the value of the seasonal indexes. The equations for updating 

the level and the trend, (2.18) and (2.19), are the same than in the Holt’s linear ES. 

The value of the three smoothing constants calculated in Statgraphics, for the time-

series from 2013 to 2015 is: 

 

𝛼 = 0,0174 

𝛽 = 1 

𝛾 = 0,6665 

 

It is important to notice that this time there was no need to apply a multiplicative 

seasonal decomposition before using the method. The previous methods that we have 

used are not meant to be used for time-series with a seasonal pattern. Therefore, we 

need to eliminate the seasonal component before using the methods, and afterwards 

we can readjust the forecast applying the seasonality. 
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However, the Holt-Winters method is designed for seasonal time-series. Therefore, the 

equations already take into account the seasonality. The results of the model for the 

years 2013-2015 are presented in Table 4.17. 

 

Table 4.17. Holt-Winters linear exponential smoothing model applied to the training set 

MODEL 

Year Month 
Production 

volume (ton) 

Holt-Winters 

ES 

2013 

January 1380,1   

February 1663,85   

March 1286,8   

April 2132,6   

May 1957,5   

June 2473   

July 2595   

August 2878,1   

September 2485,5   

October 2044,8   

November 1861,1   

December 1115,7   

2014 

January 1410,58 1380,10 

February 1748,52 1665,13 

March 1622,4 1290,53 

April 1945,1 2160,59 
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Year Month 
Production 

volume (ton) 

Holt-Winters 

ES 

2014 

May 2083,775 1987,56 

June 2139,5 2525,05 

July 2318,5 2648,11 

August 2662,6 2930,40 

September 2369,3 2522,42 

October 2390,2 2067,31 

November 1434,6 1886,66 

December 1209,9 1121,56 

2015 

January 977,7 1405,31 

February 1666,2 1701,63 

March 1772,2 1474,54 

April 2079,2 1952,60 

May 1658,1 1972,68 

June 2303,2 2152,50 

July 2100,7 2294,95 

August 2387,5 2582,97 

September 2427,9 2255,87 

October 1858,1 2117,14 

November 1438,9 1455,87 

December 1155,2 1078,46 
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The forecast for every month in the year 2016, calculated with the Holt-Winters 

Exponential Smoothing method is shown in Table 4.18. 

 

Table 4.18 Forecast for the year 2016 using Holt-Winters linear exponential smoothing 

FORECAST 

Year Month 
Production volume 

(ton) 
Holt-Winters ES 

2016 

January 1282,5 1021,50 

February 1180 1532,91 

March 1504,3 1524,35 

April 1547 1845,76 

May 1498,7 1591,80 

June 2335 2030,07 

July 2306 1945,57 

August 2136,9 2202,13 

September 2251,9 2125,84 

October 1596,2 1741,74 

November 1470,4 1295,15 

December 1266,4 1012,23 

 

As we can see in Table 4.19., the results of this method are the best of all the methods 

that we have tried until this point. This is not surprising, since this is the only method 

that updates the seasonal indexes.  
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Table 4.19. Accuracy of the Holt-Winters linear ES forecasts compared with the predictions 
made by the Company  

Forecast Holt-

Winters 

Predictions by the 

Company 

RMSE 232,83 RMSE 316,50 

MAE 204,79 MAE 276,50 

MAPE 12,96 MAPE 17,98 

 

As we expected, this method over performs all the other exponential smoothing 

methods. The reason is that Holt-Winters ES is designed for time-series with 

seasonality, while the other exponential smoothing methods had to be adapted to 

include the seasonal effects. 

The graph in Figure 4.12. is a comparison of the real production volume with the 

forecast made with the Holt-Winters ES method.  

Figure 4.12. Real production volume in 2016 compared with the forecasts  

made with Holt-Winters linear ES 
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4.8. ARIMA 

Fitting an ARIMA model to a time-series is not as easy as the previous models that we 

have tried. It requires a more advanced knowledge of the method and the procedure 

to follow.  

Since this paper is not a guide for forecasting, it is assumed that the reader has a 

certain knowledge of time-series analysis. The moving average and exponential 

smoothing methods, however, are simple and easy to understand for a person with a 

medium/high level in mathematics and statistics.  

Nevertheless, to fit correctly an ARIMA model it is required a higher understanding of 

the topic. The most common procedure for fitting ARIMA models is the one described 

by Box and Jenkins (1976). 

The biggest challenge in fitting an ARIMA model to a time-series it to determine the 

number of times that the data should be differenced, and the order of the moving 

average term and the autoregression term. If the time-series contains seasonality, it 

is even more challenging since there are seven parameters, instead of three, that must 

be determined.  

In other words, if the time-series is seasonal, then the ARIMA model is defined by 

(𝑝, 𝑑, 𝑞)𝑥(𝑃, 𝐷, 𝑄)𝑠, where: 

𝑝 is the non-seasonal autoregression term order, 

𝑑 is the number of non-seasonal differences, 

𝑞 is the order of the non-seasonal moving average term, 

𝑃 is the order of the seasonal autoregression term, 

𝐷 is the number of seasonal differences, 

𝑄 is the order of the seasonal moving average term, 

𝑠 is the number of periods on each season.  
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The procedure described by Box and Jenkins (1976), which is not explained here, uses 

the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots 

to determine both the number of differences needed and the orders of the moving 

average and autoregression terms. 

We have followed the procedure described by Nau (2018) for fitting ARIMA models, 

which is based on the method described by Box and Jenkins (1976). 

The first step is to determine if there is a seasonal pattern present in the data. We 

already know that this is true, from the plot of the time-series in Figure 4.2. However, 

it is also possible to detect the seasonality by plotting the ACF and the PACF of the 

time-series (Figure 4.13.). In our case, for Product A the number of periods per season 

is 12, thus 𝑠 = 12.  

 

Figure 4.13. ACF plot and PACF plot of the production volume of Product A 

 

From the plots in Figure 4.13., there is an obvious seasonality and the time-series is 

non-stationary (there are nine values of the ACF out of the limits of stationarity). Thus, 

it must be differenced. The question is how many times it should be differenced. For 

seasonal time-series, the recommendation is to use only one or two differences. In 

most of the cases, one seasonal difference is enough. Sometimes, however, it is 

necessary to add one non-seasonal difference.  
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A non-seasonal difference consists on subtracting the previous value to each value of 

the time-series (𝑦𝑖
′ = 𝑦𝑖 − 𝑦𝑖−1). A seasonal difference consists on subtracting to each 

value of the time-series, the value corresponding to the same period but one season 

before (𝑦𝑖
′ = 𝑦𝑖 − 𝑦𝑖−𝑠). 

We will first apply one seasonal difference to the time-series and plot the ACF and the 

PACF of the result of this difference (Figure 4.14.). 

 

Figure 4.14. ACF plot and PACF plot of the first seasonal difference of the production volume 

of Product A 

 

From the observation of the ACF plot in Figure 4.14., it seems that only one seasonal 

difference is enough to make the time-series stationary (all the values are inside the 

limits). However, it is always possible to try to add later one non-seasonal difference 

and check if the model is more accurate. 

Therefore, we have decided that initially 𝑑 = 0 and 𝐷 = 1. The next step is to 

determine the order of the seasonal autoregression and moving average terms, SAR 

and SMA. 

We have to look at the ACF and the PACF for this (Figure 4.14.). Basically, a pure 

SAR(1) process has spikes in the ACF at lags s, 2s, 3s, etc., while the PACF cuts off 
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after lag s. On the other hand, a pure SMA(1) process has spikes in the PACF at lags 

s, 2s, 3s, etc., while the ACF cuts off after lag s. 

Since it is possible that our model will contain both SAR and SMA terms, we will use 

the above-described approach to determine an “initial solution” that afterwards we will 

try to improve.  

There is a clear spike in lag 12 in the PACF plot, while the ACF suddenly decays after 

lag 12. This indicates that we should include at least one SMA term in the model. 

The next step is to fit this model to our time-series in Statgraphics and validate the 

results obtained. Afterwards, we must try to add AR, MA and SAR terms, and try these 

combinations with SMA(2).  

After trying all these combinations, we obtained that the model that gives the best 

RMSE is the ARIMA (0,0,0)x(0,1,2)12. There were other models that gave similar 

results, like ARIMA (1,0,0)x(0,1,2)12 or ARIMA (2,0,0)x(0,1,2)12. However, the best 

is to keep the model as simple as possible. For this reason, we will make the forecast 

with the model ARIMA (0,0,0)x(0,1,2)12. 

The results of applying the model to the Test Set of the time-series (from 2013 to 

2015) are presented in Table 4.20. 

 

Table 4.20. ARIMA model applied to the training set 

MODEL 

Year Month 
Production 

volume (ton) 

Seasonally 

adjusted 
ARIMA 

2013 

January 1380,1 2267,6   

February 1663,85 1885,03   

March 1286,8 1455,63   

April 2132,6 2028,63   
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Year Month 
Production 

volume (ton) 

Seasonally 

adjusted 
ARIMA 

2013 

May 1957,5 1998,46   

June 2473 2107,07   

July 2595 2087,8   

August 2878,1 2044,12   

September 2485,5 2024,28   

October 2044,8 1826,75   

November 1861,1 2241,2   

December 1115,7 1885,46   

2014 

January 1410,58 2317,68 1347,82 

February 1748,52 1980,96 1643,33 

March 1622,4 1835,26 1393,9 

April 1945,1 1850,27 1936,54 

May 2083,775 2127,38 1953,62 

June 2139,5 1822,92 2235,85 

July 2318,5 1865,34 2433,66 

August 2662,6 1891,06 2749,84 

September 2369,3 1929,65 2419,23 

October 2390,2 2135,31 2163,06 

November 1434,6 1727,59 1536,94 

December 1209,9 2044,65 1150,98 

2015 
January 977,7 1606,43 1133,63 

February 1666,2 1887,7 1717,96 
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Year Month 
Production 

volume (ton) 

Seasonally 

adjusted 
ARIMA 

2015 

March 1772,2 2004,71 1685,9 

April 2079,2 1977,83 1938,58 

May 1658,1 1692,8 1788,45 

June 2303,2 1962,4 2210,26 

July 2100,7 1690,11 2128,62 

August 2387,5 1695,68 2483,65 

September 2427,9 1977,37 2384,1 

October 1858,1 1659,95 2079,19 

November 1438,9 1732,77 1449,64 

December 1155,2 1952,21 1169,76 

 

The results of the forecasts with ARIMA (0,0,0)x(0,1,2)12 are shown in Table 4.21. 

 

Table 4.21. Forecast for the year 2016 using ARIMA  

FORECAST 

Year Month 
Production 

volume (ton) 
ARIMA 

2016 

January 1282,5 845,506 

February 1180 1517,05 

March 1504,3 1539,86 

April 1547 2028,95 

May 1498,7 1488,09 
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Year Month 
Production 

volume (ton) 
ARIMA 

2016 

June 2335 2304,4 

July 2306 2074,97 

August 2136,9 2339,44 

September 2251,9 2351,39 

October 1596,2 1609,73 

November 1470,4 1469,58 

December 1266,4 1002,76 

 

In Figure 4.22., there are the performance indicators of the forecasts made with 

ARIMA, compared with the predictions made by the Company. 

 

Table 4.22. Accuracy of the Holt-Winters linear ES forecasts compared with the predictions 
made by the Company  

Forecast ARIMA 
Predictions by the 

Company 

RMSE 243,78 RMSE 316,50 

MAE 178,65 MAE 276,50 

MAPE 11,98 MAPE 17,98 

 

The graph in Figure 4.12. is a comparison of the real production volume with the 

forecast made with the Holt-Winters ES method.  
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Figure 4.15. Real production volume in 2016 compared with the forecasts  

made with Holt-Winters linear ES 

 

In this case, it is difficult to decide if the results are better than the results obtained 

with Holt-Winters ES. The RMSE is lower with Holt-Winters ES, but the MAE and the 

MAPE are lower with ARIMA. The decision of which method is better, depends on what 

is more important for the forecaster.  

The RMSE gives more weight to the highest errors, since the errors are squared. If the 

forecaster wants to avoid high errors, the Holt-Winters ES would be the best option in 

this situation. On the other hand, if the forecast prefers to minimize the average error, 

the forecasts should be made with ARIMA. 
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5.  RESULTS 

In the previous section, we have analysed the performance of six different time-series 

analysis forecasting methods. These methods have been applied to the data of one of 

the products produced by the Company, Product A. The objective is to determine which 

one of those methods gives better results, and how many of them outperform the 

predictions made by the Company. 

However, it would be dangerous to attempt to reach successful conclusions analysing 

only one product. We have applied the six methods to three more products – Product 

B, Product C and Product D – in order to broader results. 

It is important to take into account that not all the methods are equally accurate for 

every product. Each product has a different demand, and some methods work well for 

some products, while they give bad results for other products. 

The procedure followed with Product B, Product C and Product D is the same than with 

Product A. For this reason, it is not going to be described step by step. 

In Table 5.1., we present the production volume of 2016, the predictions made by the 

Company for that year, and the forecasts made for that year with each one of the 

methods. There are also presented the values of the performance indicators – RMSE, 

MAE and MAPE – for the predictions and for every method. 
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Table 5.1. Production volume, predictions and all forecasts for Product A in 2016  

 

As we have mentioned before in this thesis, the MAPE will not be used for making any 

decision. It is presented only because its values are intuitive and give an easy to 

understand estimate of the performance of the forecasts. 

In Table 5.2., only the values of the performance indicators are shown. We have used 

a colour scale in order to identify more easily the best methods. The scale goes from 

red (highest values, which means worst results), to green (lowest values, best results). 

 

 

 

PRODUCT A (ton) – YEAR 2016 

Production 
volume 

Prediction MA(6) 
Simple 

ES 
Brown's 
linear ES 

Holt's 
linear ES 

Holt-
Winters 

ES 
ARIMA 

1282,5 1301,3 1086,19 1128,01 1109,51 1074,24 1021,50 845,506 

1180 1633,5 1575,27 1635,92 1605,59 1550,45 1532,91 1517,05 

1504,3 1748,5 1577,69 1638,43 1604,55 1545,31 1524,35 1539,86 

1547 1891 1876,15 1948,38 1903,93 1828,71 1845,76 2028,95 

1498,7 2004,7 1748,1 1815,4 1770,1 1695,58 1591,80 1488,09 

2335 2122,4 2094,62 2175,26 2116,32 2021,71 2030,07 2304,4 

2306 2347,5 2218,25 2303,65 2236,3 2130,47 1945,57 2074,97 

2136,9 2515,5 2512,82 2609,56 2527,69 2401,42 2202,13 2339,44 

2251,9 2352,5 2191,31 2275,67 2199,41 2083,73 2125,84 2351,39 

1596,2 2030,4 1997,72 2074,63 2000,66 1890,13 1741,74 1609,73 

1470,4 1726,5 1482,01 1539,06 1480,9 1395,14 1295,15 1469,58 

1266,4 1594,3 1056,07 1096,73 1052,93 989,135 1012,23 1002,76 

        

RMSE 316,50 256,05 291,98 264,51 240,93 232,83 243,78 

MAE 276,50 219,30 236,49 223,94 222,19 204,79 178,65 

MAPE 17,98% 11,63% 13,62% 12,56% 13,10% 13,08% 12,34% 
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Table 5.2. Performance indicators values of Product A 

 
Product A 

 
Prediction MA 

Simple 
ES 

Brown's linear 
ES 

Holt's linear 
ES 

Holt-Winters 
ES 

ARIMA 

RMSE 316,50 256,05 291,98 264,51 240,93 232,83 243,78 

MAE 276,50 219,30 236,49 223,94 222,19 204,79 178,65 

 

Both RMSE and MAE show that every method gives better results than the predictions 

made by the Company. According to the RMSE, the best method for Product A is Holt-

Winters ES. However, according to the MAE, the method that gives the best results is 

ARIMA.  

In order to have values that are easier to understand, we have normalised the values 

in Table 5.2. These values are represented in Table 5.3. 

 

Table 5.3. Normalised performance indicators values of Product A 

 Normalised Product A 

 
Prediction 

MA 
(6) 

Simple 
ES 

Brown's linear 
ES 

Holt's linear 
ES 

Holt-Winters 
ES 

ARIMA 

RMSE 0,74 0,91 0,80 0,88 0,97 1,00 0,96 

MAE 0,65 0,81 0,76 0,80 0,80 0,87 1,00 

Total 0,69 0,86 0,78 0,84 0,89 0,94 0,98 

 

We have in Table 5.3. the normalised values of the performance indicators in a scale 

from 0 to 1, which gives value 1 to the best value, which is the lowest value. 

Additionally, we have averaged the results of both methods, obtaining normalised 

values that represent the accuracy of each method. 

The best method is ARIMA, followed by Holt-Winters ES. Nevertheless, we have tried 

one more method. As we stated in section 2.6.6., some studies suggest that the 
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combination of the two best methods, gives better results than any of the methods 

itself. 

For each month of the year 2016, we have averaged the forecasts made with ARIMA 

and with Holt-Winters ES methods. This numbers are presented in Table 5.4. 

 

Table 5.4. Combination of the two best forecasting methods for Product A 

 PRODUCT A (ton) 

2016 
Holt-

Winters 
ES 

ARIMA Combination 

January 1021,50 845,506 933,50 

February 1532,91 1517,05 1524,98 

March 1524,35 1539,86 1532,11 

April 1845,76 2028,95 1937,36 

May 1591,80 1488,09 1539,95 

June 2030,07 2304,4 2167,23 

July 1945,57 2074,97 2010,27 

August 2202,13 2339,44 2270,78 

September 2125,84 2351,39 2238,61 

October 1741,74 1609,73 1675,74 

November 1295,15 1469,58 1382,37 

December 1012,23 1002,76 1007,49 

    

RMSE 232,83 243,78 225,55 

MAE 204,79 178,65 182,54 

MAPE 13,08% 12,34% 12,70% 

 

Once again, in Table 5.5., we have calculated the normalised values of the 

performance indicators, this time including the combination of the two best methods. 
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Table 5.5. Performance indicators values, before and after normalization, for Product A 

 
Product A 

 
Prediction 

MA 
(6) 

Simple 
ES 

Brown's 
linear ES 

Holt's 
linear 

ES 

Holt-
Winters 

ES 
ARIMA 

Combination of 
the 2 best 
methods 

RMSE 316,50 256,05 291,98 264,51 240,93 232,83 243,78 225,55 

MAE 276,50 219,30 236,49 223,94 222,19 204,79 178,65 182,54 
 

Normalised Product A 

 
Prediction 

MA 
(6) 

Simple 
ES 

Brown's 
linear ES 

Holt's 
linear 

ES 

Holt-
Winters 

ES 
ARIMA 

Combination of 
the 2 best 
methods 

RMSE 0,71 0,88 0,77 0,85 0,94 0,97 0,93 1,00 

MAE 0,65 0,81 0,76 0,80 0,80 0,87 1,00 0,98 

Total 0,68 0,85 0,76 0,83 0,87 0,92 0,96 0,99 

 

As we had assumed, the combination of ARIMA and Holt-Winters ES is the method 

that gives the best forecasts, followed by ARIMA and by Holt-Winters ES. All the 

methods over perform the qualitative predictions made by the Company. 

For Product B, Product C and Product D, only the normalised values of the performance 

indicators are presented in Table 5.6., Table 5.7. and Table 5.8. 

The results for Product B (Table 5.6.) are very similar to the ones obtained with 

Product A. All the methods give better results than the predictions made by the 

Company, and the best methods are ARIMA and Holt-Winters ES. Additionally, the 

combination of the two best methods gives better results than any of the methods. 
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Table 5.6. Normalised performance indicators values for Product B in 2016 

 Normalised Product B 

 
Prediction 

MA 
(5) 

Simple 
ES 

Brown's 
linear ES 

Holt's 
linear 

ES 

Holt-
Winters 

ES 
ARIMA 

Combination of 
the 2 best 
methods 

RMSE 0,725 0,803 0,795 0,796 0,725 0,880 1,000 0,992 

MAE 0,674 0,783 0,786 0,792 0,776 0,799 0,931 1,000 

Total 0,699 0,793 0,790 0,794 0,751 0,839 0,965 0,996 

 

The results of Product C (Table 5.7.) are not as optimistic as with Product A and 

Product B. Surprisingly, the method which gives the best results is the moving average 

of order 10. In spite of its simplicity, this method over performs not only the predictions 

made by the Company, but also more sophisticated methods such as ARIMA or Holt-

Winters ES.  

Apart from the moving average, the only “method” that gives better results than the 

predictions made by the Company, is the combination of the two best methods: the 

moving average and the Simple ES. This is a proof that sometimes even simple 

quantitative methods can give satisfactory results. 

It is important to notice that in this case, the combination of the two best methods is 

in the second place. It did not over perform the moving average of order 10. 

 Table 5.7. Normalised performance indicators values for Product C in 2016 

 Normalised Product C 

 
Prediction 

MA 
(10) 

Simple 
ES 

Brown's 
linear ES 

Holt's 
linear 

ES 

Holt-
Winters 

ES 
ARIMA 

Combination of 
the 2 best 
methods 

RMSE 1,00 0,98 0,86 0,68 0,70 0,67 0,90 0,92 

MAE 0,84 1,00 0,95 0,69 0,74 0,70 0,84 0,97 

Total 0,92 0,99 0,90 0,69 0,72 0,68 0,87 0,94 
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Finally, for Product D, only the ARIMA and the Simple ES forecasts improve the 

predictions made by the Company (Table 5.8.). The combination of these two methods 

also over performs the predictions, but once again, it does not give the best results. 

For Product D, ARIMA gives the best results.  

 

Table 5.8. Normalised performance indicators values for Product D in 2016 

 Normalised Product D 

 
Prediction 

MA 
(7) 

Simple 
ES 

Brown's 
linear ES 

Holt's 
linear 

ES 

Holt-
Winters 

ES 
ARIMA 

Combination of 
the 2 best 
methods 

RMSE 0,748 0,731 0,757 0,715 0,664 0,638 1,000 0,865 

MAE 0,744 0,730 0,757 0,714 0,658 0,635 1,000 0,862 

Total 0,746 0,730 0,757 0,715 0,661 0,637 1,000 0,864 

 

 

 

  



104 

 

6. DISCUSSION OF THE RESULTS 

In section 5, we have presented the results of the forecasts made with different time-

series analysis methods. In this section, we will briefly analyse the results. 

Firstly, it is important to know which are the methods that give the best results for 

each product. Additionally, it is valuable to know how many of the methods give 

forecasts that are better than the qualitative predictions made by the Company. This 

information is presented in Table 6.1. 

 

Table 6.1. Best methods for each product 

 Best 
forecast 

Second 
best 

forecast 

Number of methods 
better than the 

prediction 

Product  A Combination ARIMA 7 

Product  B Combination ARIMA 7 

Product  C MA (10) Combination 2 

Product  D ARIMA Combination 3 

 

The combination of the two best methods turns to be the best option for forecasting 

the production volume of Product A and Product B, while ARIMA is the second best 

option. For both of these products, all the methods tried gave better results than the 

Company’s predictions. 

For Product C, the best option is a moving average of order 10, after applying a 

multiplicative seasonal decomposition to the time-series. The second best option is a 

combination of a moving average of order 10 and a Simple ES. Two of the methods 

gave better results than the Company’s predictions. 

For Product D, ARIMA (0,1,0)x(0,1,2)12 model is the best method, while the 

combination of ARIMA (0,1,0)x(0,1,2)12 and a moving average of order 7 is the second 

best option. Three of the methods gave better results than the Company’s predictions. 
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Finally, we have evaluated each one of the methods for every product. In Table 6.2., 

the crossed cells indicate that the method outperformed the Company’s predictions for 

the forecasts of that product. 

 

Table 6.2. Number of times that a method outperforms the Company’s predictions 

 

All the methods exceeded the accuracy of the qualitative predictions made by the 

Company for at least two of the products. 

Additionally, in Table 6.3., we show the improvement in the forecasts of each product. 

For each product, we have calculated the RMSE and MAE of the Company’s predictions, 

and of the method that gave the best results. 

We have calculated the average of RMSE and MAE, and then we have used these 

values to determine the improvement (in percentage) in the forecasts of each product. 

 

 

 

 Product  
A 

Product  
B 

Product  
C 

Product  
D 

Times that 
forecast is better 
than prediction 

MA x x x 
 

3 

Simple ES x x 
 

x 3 

Brown's 
linear ES 

x x 
  

2 

Holt's linear 
ES 

x x 
  

2 

Holt-Winters 
ES 

x x 
  

2 

ARIMA x x 
 

x 3 

Combination 
of the 2 best 

methods 
x x x x 4 
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Table 6.3. Improvement in the forecast of each product  

 PRODUCT A PRODUCT B 

 Prediction Best forecast Prediction Best forecast 

RMSE 316,50 225,55 147,37 107,74 

MAE 276,50 182,54 106,73 71,91 

Average 296,50 204,05 127,05 89,82 

     

Improvement 45,31% 41,45% 

     

     

 PRODUCT C PRODUCT D 

 Prediction Best forecast Prediction Best forecast 

RMSE 234,33 239,74 39,99 29,91 

MAE 198,31 167,30 35,51 26,41 

Average 216,32 203,52 37,75 28,16 

     

Improvement 6,29% 34,05% 

 

Product A shows the highest improvement, with 45,31%. On the other hand, Product C 

has the lowest enhancement, which is still 6,29% higher than the Company’s 

predictions. On average, the increase in the performance of the forecasts is of 25,42%. 
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7. CONCLUSIONS 

The results of this thesis confirm our hypothesis that quantitative methods make better 

forecasts than qualitative methods, when enough data is available. All the products 

that we have analysed are in a mature stage of their life cycle. For that reason, there 

is sufficient data to apply time-series analysis methods, and the results obtained are 

better than the predictions made by the Company. 

For the four products that we have used for the experiments, at least two of the six 

methods tried (seven, if we count the combination of the two best forecasts), 

outperformed the predictions made by the Company. For two of those products, all 

the methods, even the simplest ones, improved the Company’s judgemental forecasts. 

One of the simplest time-series analysis methods, the moving average, was able to 

improve the qualitative predictions by almost 25% in one of the products. The 

simplicity of this method (it can be easily implemented in a spreadsheet), make it an 

attractive option for managers with a shallow knowledge of forecasting, or with the 

lack of a background in mathematics.  

The results obtained prove that, in general, ARIMA models give the best results for the 

Company’s products. For some of the products, they can improve by 40% the yearly 

predictions made by the Company. Nevertheless, ARIMA models are more 

sophisticated and difficult to implement. They require a higher forecasting expertise 

and a deeper background in statistics and mathematics. In addition, expensive 

software is necessary for forecasting with ARIMA models. 

However, all these conclusions should be considered carefully. All the products that 

we have analysed show a relatively stable demand. Moreover, there are six years of 

historical data available, which is enough for using time-series analysis methods. On 

the other hand, when the forecaster has only one or two years (or less, for new 

products) of data, it is not advised to depend purely on these methods. In those cases, 

the best option might be the usage of judgemental forecasts and qualitative 

techniques, perhaps combined with some quantitative method. The same conclusion 
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should be taken into account when sudden changes in the demand are expected due 

to cyclic variations. It is important to notice that time-series analysis forecasting 

methods do not consider cyclic variations. Therefore, forecasts with a forecasting 

horizon longer than one or two years might lead to erroneous results. 

Furthermore, it is important to take into account that only a yearly forecasting horizon 

has been used. Time-series analysis forecasting methods can be also used for quarterly 

or monthly forecasts. Nonetheless, the qualitative predictions made by the Company 

are much more accurate the shorter the forecasting horizon is. For this reason, some 

forecasters might consider to use quantitative techniques only for longer forecasting 

horizons (yearly or biannual). 

In general, the results of the thesis indicate that time-series analysis methods should 

definitely be considered for forecasting the demand or the production volume of the 

Company’s products. The improvement that these methods can bring to the Company 

are more accurate forecasts, which results in a better production planning. 

Consequently, the Company would avoid having a lack or an excess of inventory levels. 

A lack of goods in inventory might have disastrous effects on the Company, since it 

could lead to unsatisfied customers and the loss of potential clients.  An excess of 

goods in inventory results in unnecessary costs for the Company. Avoiding these two 

situations are key for the success of every manufacturing company, and optimizing the 

forecast is the first step that they should take. 
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