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Abstract: Plasmonic technology promises to unfold new advanced on-chip functionalities with direct applications in 

photovoltaics, light matter interaction and the miniaturization of optical interconnects at the nanoscale. In this scenario, 

it is crucial to efficiently drive light to/from plasmonic devices. However, typically-used plasmonic wires introduce 

prohibitive losses, hampering their use for many applications. Recently, plasmonic nanoantennas have been proposed 

to overcome this drawback, not only providing a notable loss reduction, but also an enhanced on-chip flexibility and 

reconfigurability. Nevertheless, these devices still perform poorly for long-reach interconnects, owing to their low-

directive radiation and low efficiency. Here, we introduce a class of slot-waveguide-based silicon nanoantennas that 

lift all these limitations, and show their feasibility to be connected directly and efficiently to plasmonic devices. To test 

the performance of these antennae, an on-chip plasmonic-dielectric interconnect is experimentally demonstrated over 

distances as high as 100 µm. In an outstanding manner, our wireless scheme clearly outperforms previous plasmonic 

approaches in terms of link efficiency and effective gain. This work paves the way to the development of ultra-fast on-

chip wireless reconfigurable and flexible interconnects, and additionally opens new avenues in optical manipulation 

and sensing applications. 

 

Introduction: Plasmonic devices have enabled the development of important applications in fields such as 

spectroscopy, near-field optical microscopy or biosensing (1) thanks to their unique ability to engineer light at the 

nanoscale. Within integrated on-chip communications, plasmonic approaches offer the potential for the realization of 

ultra-compact low-cost devices (modulators, detectors or nanoscale chip sources (1)) able to perform at very high 

operation speeds with a low power consumption (2). The natural way for interconnecting these devices on the optical 

chip is the use of metallic nanowires. Nevertheless, guiding light over long distances via plasmonic waveguides results 

in prohibitive propagation losses (3), (4). An alternative to mitigate this loss relies on the use of dielectric couplers (5), 

able to interface plasmonic devices with typical silicon waveguides. In contrast, these dielectric-metallic wired schemes 

still provide stringent limitations in terms of flexibility and reconfigurability at the photonic layer (6). Recently, the 

emergence of plasmonic nanoantennas (7), (8), (9), (10) has also demonstrated their suitability to reduce propagation 

losses as compared to metallic nanowires (3). This allows, for instance, the implementation of unguided interconnects 

with interferenceless crossing paths on the same layer (thus avoiding multilayer geometries (9)), compact 

reconfigurable devices and more flexible on-chip networks (6), (10), (11). These features lessen the presence of 

waveguides, leading to simpler on-chip layouts (6), (11). Additionally, the interaction with the medium at far-field 

distances enabled by antennas, paves the way to less complex networks for communications (11) and new 

functionalities for sensing applications (6), (12), (13) and microparticle control (6), hardly achievable with wired-based 
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approaches. However, while improving the performance of their wired counterparts, plasmonic nanoantennas yield 

low directivity values and high losses (10), (14) because of their strong field confinement and the metallic absorption 

in the optical regime (15), hindering their application for practical on-chip wireless links. On the other hand, 

nanoantennas based on dielectric nanoparticles (16), (17) have emerged, presenting better radiation efficiencies due to 

their low-loss nature and higher directivity than metallic structures, not always compromising the usual higher 

compactness of plasmonic approaches. Nevertheless, the complexity in the fabrication of these nanoparticles has 

prevented their practical implementation for wireless interconnects. Other approaches with enhanced directivities relies 

on the use of non-compact systems as dielectric arrays (18), (19), more suitable for off-plane interconnects.  

More recently, it was demonstrated that most of the aforesaid disadvantages can be overcome by using strip-

waveguide-based silicon nanoantennas, which have enabled the realization of long-reach dynamically-reconfigurable 

on-chip wireless interconnects, as well as of different lab-on-a-chip sensors (6), (13). It is then natural to ask whether 

these kind of dielectric antenna might interface plasmonic systems to boost a new variety of high-performance 

applications. However, although strip dielectric waveguides can be theoretically connected to slot plasmonic 

waveguides with a very high efficiency, this requires quite complex transitions between the plasmonic and dielectric 

structures, leading to a difficult error-sensitive implementation and large footprints, with a notable reduction of the 

experimental efficiency with respect to theoretical estimations (20).  

In this letter, we explore a different wireless system built upon slot-waveguide-based silicon optical antennas able 

to be efficiently and directly connected to plasmonic slot wires. The simplicity of this dielectric-to-plasmonic transition 

allows us to obtain experimental coupling efficiencies surpassing those obtained with sophisticated strip-to-slot 

couplers. Through this hybrid design, we are able to combine the advantages provided by both dielectric and plasmonic 

technology to produce high-performance on-chip devices, boosting the development of new applications at the 

nanoscale.    

 

Results and Discussion: As a starting point, we consider the system shown in Figure 1a. On the left, a semi-infinite 

plasmonic slot waveguide (PSW) is connected to a finite dielectric slot waveguide (DSW). With the suitable 

dimensions, the open end of the DSW behaves as an efficient aperture antenna (6), while the PSW acts as a bridge to 

connect this antenna with a plasmonic device. Therefore, a plasmonic mode guided by the PSW is converted to a 

guided mode in the subsequent DSW and radiated at its open end. An equal DSW-PSW hybrid device receives the 

radiated wave on the right and transforms it back to a plasmonic mode. It is worth mentioning that the plasmonic 

interconnect is not necessarily a long section of plasmonic wire, since a short waveguide section (with very low losses) 

would readily connect the wireless antennas with the plasmonic system for communications, sensing or other purposes.  

Our goal is to maximize the total power efficiency η of the system, which is basically given by the product η = (ηCGR)2 

for the proposed configuration. Here, ηC is the PSW-to-DSW coupling efficiency, G is the gain of the DSW aperture 

antenna (including directivity, radiation efficiency and reflection coefficient) and R = λ/(4πd) accounts for the free-

space propagation loss associated with a link distance d. The product Geff = ηCG can be considered as the effective gain 

of the DSW-based antenna. Since R is fixed, we need to find the optimal system geometrical parameters providing the 

combination of ηC and G that maximizes η. Driven by technological feasibility, we constrained the height of all 

structures to 220 nm, assuring their compatibility with standard silicon-on-insulator (SOI) wafers. Furthermore, note 

that for a given slot width wS, the width of the arms of the DSW and the PSW has a small influence on the profile of the 



corresponding TE modes, since the field is mainly concentrated on the waveguide slots. Consequently, wS becomes 

the key design parameter to be engineered. 

 

 

Figure 1. (a) Artwork depicting the coupling between plasmonic and dielectric waveguides.  The corresponding mode profiles at y = 

0 are displayed on the transition interface (shaded region). (b) E-field intensity distributions of the TE modes excited at the dielectric 

(top) and plasmonic (bottom) waveguides for wS = 100 nm and wS = 400 nm. Calculations were carried out at the telecom wavelength 

λ = 1550 nm. (c) Coupling efficiency (blue) and DSW-based antenna gain (red) as a function of wS. The dielectric and metallic 

waveguides were assumed to be made of Si and Au, respectively. A Drude model was employed for Au  (21). (d) Effective gain of 

the DSW-based antenna.  

 

We started by studying the influence of wS on ηC, which was numerically calculated using the commercial 

software CST Microwave Studio. As can be seen in Figure 1d, the fundamental TE modes of both structures are quite 

similar for low values of wS. However, they become progressively different as wS increases; the DSW mode becomes 

rapidly unconfined as wS increases, whilst the PSW gap plasmon remains concentrated in the slot up to larger values. 

Consequently, the best figures of ηC are retrieved for low values of wS as shown in Figure 1b, in consonance with the 

mode likeness at both structures.  



The next step was to analyze the influence of wS on G. We used Huygens’ principle to model this structure as an 

aperture antenna, following the method typically employed in classic microwave and radiofrequency theory (22). This 

approach directly links the DSW radiation pattern with the Fourier transform of its mode transverse electric and 

magnetic fields. A straightforward implication is that less confined modes lead to higher directivities, since the angular 

extension of the radiation vectors decreases as the spatial extension of the mode increases (6). Figure 1d shows that the 

DSW fundamental TE mode is less confined as wS increases, explaining why G grows as a function of this parameter, 

reaching very high values not achievable with previous plasmonic nanoantennas, see Figure 1b. It is noteworthy that 

the directivity of the DSW-based antenna can be easily tuned just by adjusting wS. Moreover, the propagation constant 

(e.g., β = 6.35362·106 m-1 for wS = 180 nm, which provides an effective refractive index neff = 1.567) associated with 

these less confined modes is close to that of the surrounding medium (SiO2 with refractive index n = 1.45), favoring 

impedance matching and avoiding undesired reflections. Figure 1c depicts Geff as a function of wS, showing that there 

is a large region (wS > 160 nm) for which Geff is higher than 10 dB, slowly increasing with wS. This feature provides us 

with an ample design flexibility. That is, wS can be adjusted to suit applications requiring lower reflections (e.g. to 

improve source protection) or higher directivities (e.g., to minimize radiation interference with adjacent devices), while 

keeping a similar performance in terms of overall power efficiency without any coupling structure. Limiting ourselves 

to typical wS values (20-200 nm (20), (23)), we decided to work with wS = 180 nm, which already shows a gain G ≈ 

40. Furthermore, we could combine the advantages associated with a small wS value (enhanced ηC) and a high wS value 

(enhanced G) just by using a simple and compact silicon PSW-DSW transition (see supporting information, section 

1), which already yields ηC = 0.47 and G ≈ 40 in a footprint of approximately 1 µm2.  

 

Figure 2. (a) Schematic picture of the nanoantenna and the directors with their corresponding dimensions where wS = 180 nm, wCI = 

640 nm, wC = 1000 nm, d = 500 nm, l = 800 nm, g0 = 340 nm, g1 = 200 nm, and g2 = g3 =1000 nm. CST Microwave Studio was 

employed to perform the optimization and all the numerical calculations of this work. (b) Simulated directivity of the designed slot 

waveguide with and without C antenna and directors. (c) Simulated gain of the C antenna. The -3 dB Bandwidth is highlighted, 

demonstrating the broadband behavior of this design.  

 

Note that higher coupling efficiencies could be attained by further optimizing the plasmonic-to-dielectric 

waveguide transition. For example, a longer taper would approach the 62% efficiency value for wS = 40 nm. However, 



although such transitions play an important role in the system, its optimization is out of the scope of this work, which 

focuses on showing that dielectric antennas can act as high-performance wireless interfaces for plasmonic devices 

(outperforming previous all-plasmonic approaches), while keeping the design as simple as possible. 

Additionally, the directivity can also be further enhanced by modifying the DSW radiating end and by adding 

some specific extra dielectric elements. In particular, we explored different modifications inspired by V-antenna 

designs (24), see supporting information, section 2. The best improvement was achieved with a smoothed (C-shaped) 

version of this kind of structure, see Figure 2a, with a directivity improvement of the order of an 11%, see Figure 2b. 

Moreover, we studied the influence of adding further elements (directors) to the C-antenna design. By analogy with 

typical metallic Yagi-Uda configurations (25), (26), (27) in which the directors are basically passive antennas of the 

same type as the principal one (usually dipoles), we considered directors consisting of couples of silicon strips, similar 

to DSW pieces, see Figure 2a. The number of directors as well as their location and dimensions were optimized through 

numerical simulations to maximize the directivity in an on-chip footprint as constrained as possible, see supporting 

information, section 3. The impact of the C-antenna and a varying number of directors on the directivity is shown in 

Figure 2b. Our final configuration includes four directors, since additional elements provide small improvements while 

considerably increasing size, see Figure 2b. In this case, a full single antenna (C nanostructure with four directors) 

achieves a directivity of 71 [previous dielectric nanoparticle antennas reach values up to 12 (16), (17)] and a gain G = 

65 at λ = 1550 nm [G > 100 (linear units) is achieved at longer wavelengths, see Figure 2c]. The corresponding effective 

gain of this device is Geff = 0.30  65 = 19.5 (Geff = 0.47  65 = 30.5 when using the aforementioned coupler).  

Although devices operating at different wavelengths cannot be directly compared (the optical properties of metals 

are frequency-dependent), we take the work in (11) as a reference (which was designed for a wavelength of 650 nm), 

since, to date (and for the best of our knowledge), it provides the highest efficiency for a plasmonic link in any spectral 

band, setting the bar for current research in this area. Particularly, the plasmonic nanoantenna designed therein yields a 

gain of 6.8. Hence, the proposed optical antenna in the present work provides a notable improvement with respect to 

this previous design. Nonetheless, it is worth mentioning that this improvement comes at the cost of a considerably 

higher footprint than that of typical plasmonic antennas. Along this line, to compare the overall goodness of different 

optical antennas, we have defined a figure of merit that takes into account both gain and footprint (see supporting 

information section 4), according to which, in spite of their larger footprint, the proposed DSW-based antennas clearly 

outperform previous designs. In addition, we have compared the power efficiency of a plasmonic wired link with that 

of a wireless one based on the proposed antennas (see supporting information section 5), showing that the wireless 

scheme exhibits a higher efficiency than the waveguide-based interconnect for distances exceeding 55 µm (as an 

example, the improvements achieved at 100 µm and 200 µm are higher than 15 and 55 dB, respectively). Moreover, 

the proposed device possesses a working bandwidth of approximately 600 nm, see Figure 2c, since DSW-based 

antennas do not rely on resonant phenomena. On the contrary, they display almost perfect impedance matching with 

the cladding in a wide spectral region (the reflection coefficient of the DSW-based antenna is below 0.03). Thus, unlike 

in typical plasmonic schemes, auxiliary resonant matching elements (28) are not necessary, avoiding the bandwidth 

limitation they introduce.  



 

Figure 3. (a) Scanning electron microscope (SEM) image of the fabricated gold slot waveguide section in between the silicon wires. 

(b) SEM image of the DSW-based antenna connected to a 1-µm length plasmonic slot waveguide. (c) SEM image of a 100-µm-long 

link consisting of two antennas as the one shown in (b). All the samples were covered with a 2-µm-thick layer of SiO2.  

 

To provide a proof of concept of the proposed approach, we fabricated and characterized different 

devices using Au as the constituent material for the plasmonic wires. In the experiments, we inject/collect 

light to/from the chips via standard silicon grating couplers and waveguides. Therefore, we have a second 

dielectric-plasmonic transition at each link end (between the exciting/collecting Si waveguide and the 

corresponding plasmonic waveguide, see Figure 3) as compared to the structures shown in Figure 1, in 

which a single dielectric-plasmonic transition per link end is assumed (this could actually be the case in a 

practical application). With this consideration in mind, and following the work in (20), we first fabricated 

a sample in which a plasmonic slot waveguide section was inserted in between two dielectric slot 

waveguides (see Figure 3a and Methods), in order to experimentally obtain the value of the PSW-to-DSW 

coupling efficiency ηC (this configuration includes no wireless link). Note that light goes through two PSW-

to-DSW facets in this structure. Consequently, Fabry-Pérot resonances arising from the presence of the 

cavity formed by the plasmonic waveguide in between the silicon wires may alter the power transmission 

efficiency of the system (with respect to a single Si-Au transition), depending on λ and the cavity length 

dC. Specifically, with the employed scheme (dC = 1 µm), the Si-Au-Si transition power efficiency is ηFP ≈ 

0.45 at λ = 1550 nm (or, equivalently, it possesses an insertion loss, IL, of 3.43 dB), which is higher than 

the previously calculated ηC = 0.3 for a single Au-Si transition (as confirmed by the simulations, compare 

Figures 1c and 4a). The numerically-calculated efficiency ηFP of this Si-Au-Si transition (IL = 3.24 dB) is 

in very good agreement with the measurements (see Figure 4a). For fixed values of dC and λ, ηFP is only a 

function of ηC (and of the theoretically known plasmonic waveguide complex wavenumber). Therefore, the 

good agreement between the numerically and experimentally obtained IL values for this device at λ = 1550 

nm (Figure 4a), implies that ηC ≈ 0.3 is also the coupling efficiency of each single Au-Si transition in the 

fabricated Si-Au-Si structure (note that we do not directly measure this parameter). The experimental and 

theoretical values of IL as a function of wavelength for this structure are shown in Figure 4a (the E-field 



distribution of the Si-Au-Si scheme is available in the supporting information, section 6). Notably, the 

measured insertion loss for a very similar Si-Au-Si scheme based on dielectric strip waveguide to plasmonic 

slot waveguide transitions (also with a 1-µm-long plasmonic slot waveguide) was IL ≈ 14 dB (20), with a 

dielectric-to-plasmonic footprint of approximately 8 µm2 (the coupler footprint is virtually zero in our case). 

Next, we fabricated two different samples including full wireless links consisting of two DSW-based antennas, 

each connected to a 1-µm-long plasmonic slot waveguide section, with distances d of 50 and 100 µm (see Figures 3b, 

3c and Methods). For the sake of simplicity, we focused our experimental efforts on the direct butt-coupling between 

a plasmonic and a dielectric slot wire with wS = 180 nm, see Figure 3b (i.e., we do not include the theoretically-analyzed 

taper shown in the supporting information, section 1). To test the wireless interconnects, we measured the link 

efficiency for both distances (50 and 100 µm), attaining a very good agreement with the simulations (see Figure 4b), 

although small discrepancies arise from waveguide shape imperfections inherent to the fabrication process. A similar 

behavior to that predicted by the Friis transmission equation (22) can be observed in Figure 4b between the 50- and 

100-µm links, which results in an increase of approximately 6 dB in the overall link loss as doubling distances between 

antennas. In addition, we retrieved the antenna gain from the experimental measurements, finding again a good 

agreement with the numerical results (see Figure 4c). Remarkably, the link is able to radiate with a similar performance 

within the whole measured optical bandwidth, spanning 50 nm. It must be pointed out that both the experimentally- 

and numerically-retrieved values of Geff depicted in Figure 4 for the links including the 1-um-long plasmonic 

waveguide are slightly higher than the numerically calculated value for a link with single Au-Si transitions, due to the 

fact that the IL of the Si-Au-Si transition is lower than that of a single Au-Si transition, as mentioned above.  

 

Figure 4. (a) Simulated (red) and experimental (blue) normalized insertion loss of a 1-µm length gold slot waveguide. Shaded areas 

represent the transition facets of the plasmonic wire with the silicon waveguides from which light is injected (collected) via grating 

couplers, see supporting information, section 7. At a wavelength of λ = 1550, the experimental IL = 3.43 dB. (b) Comparison of the 

experimental (solid lines) versus simulated (dashed lines) normalized link power efficiency corresponding to the links with d = 50 µm 

and d = 100 µm. (c) Comparison of the simulated and measured nanoantenna gain. In the worst case, Geff = 14.14 dB at λ = 1550 nm. 
The effective gain was retrieved from the measured power efficiency, which in our experiment is η = Geff

2 · ηG
2 · ηPROP

2, where ηG 

stands for the experimental grating coupler insertion loss, and ηPROP = λ · (4πd)-1, represents the propagation loss in the link (see 

supporting information, section 7 for the values of ηG).  

 

Finally, to further test the proposed DSW-based antennas, we carried out an additional experiment in which data 

streams of 40 Gbit·s-1 were transmitted over 20-µm-length links (see supporting information, section 8).    

 

Conclusion: We have demonstrated a long-reach wireless plasmonic-dielectric optical interconnect based on silicon 

nanoantennas able to be directly and efficiently connected to plasmonic systems. Specifically, the numerical study of 

the modes supported by plasmonic and dielectric slot waveguides with equal slot widths revealed that an efficient direct 

butt-coupling between these structures is possible. The proper combination of this feature with the development of a 

new kind of DSW-based nanoantenna proves the utility of these dielectric structures as efficient interfaces for 

plasmonic devices. In order to test the performance of the proposed nanoantennas, we experimentally demonstrated 



power transmissions at link distances as long as 100 µm. Despite the fact that the DSW-based antennas here 

demonstrated exhibit less compact footprints than most of the previous metallic schemes, our hybrid design widely 

outperforms its plasmonic counterparts in terms of directivity, efficiency and planar reach. Moreover, such a 

combination merges the ability of silicon nanoantennas to achieve long-reach wireless communications, reconfigurable 

interconnects, beam-shaping elements, and lab-on-a-chip devices (6), with the advantages of plasmonic structures for 

ultra-fast data conversion and light concentration and manipulation. Finally, this hybrid configuration might enable the 

implementation of new sensing applications and microwave plasmonic devices in the THz band (6), (29).  

 

Methods: The fabrication of the dielectric links was based on the use of standard SOI samples from SOITEC wafers 

with a top silicon layer thickness of 220 nm (resistivity ρ ~1-10 Ω · cm-1, with a lightly p-type background doping of 

~1015 cm-3). The fabrication is based on an electron beam direct writing process performed on a coated 100 nm 

hydrogen silsesquioxane (HSQ) resist film. The mentioned electron beam exposure, performed with a Raith150 tool, 

was optimized in order to reach the required dimensions employing an acceleration voltage of 30 KeV and an aperture 

size of 30 µm. After developing the HSQ resist using TetraMethylAmmoniumHyrdoxide (TMAH) as developer, the 

resist patterns were transferred into the SOI samples employing an optimized Inductively Coupled Plasma- Reactive 

Ion Etching (ICP-RIE) process with fluoride gases (SF6 and CF4). Once the dielectric waveguides and antennas were 

fabricated, the plasmonic structures were placed inside the silicon waveguides gaps by means of a second e-beam 

lithography process. This new lithography was performed again with the Raith150 tool (10 KeV, aperture 30 µm) prior 

to a new metal evaporation (220 nm of gold + 5 nm of titanium for adhesion enhancement) performed with a Pfeiffer 

Classic 500 tool. Finally, a soft lift-off process (leaving the sample in acetone for 8 hours) was used to define the 

plasmonic waveguides. To ensure the right positioning of the plasmonic structures, different alignment marks were 

created in the previous silicon etching level, guiding us in an iterative exposure process to achieve the best alignment. 

The plasmonic structures placement during final exposure was adjusted according to this iterative process in order to 

compensate e-beam drifts. Finally, a SiO2 upper cladding (2-µm thickness) was deposited atop the SOI sample by 

Plasma Enhanced Chemical Vapor Deposition (PECVD) performed with a Centura 5200 tool from Applied Materials.  
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transition. Section 7. Experimental grating coupling efficiency. Section 8. Data transmission experimental 
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The picture represents an on-chip dielectric C-shaped antenna, which is the key building block to achieve high-performance 

plasmonic-dielectric wireless interconnects. The electromagnetic field of the aforementioned antenna is also depicted in the 

artwork. 


