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Abstract

In the context of Opportunistic Networking (OppNet), routing and delivery al-
gorithms used for content dissemination employ different metrics to perform ac-
curate decisions. It has been shown that of these metrics, the inter-contact time
and the contact duration are very useful for characterising OppNet scenarios. In
this article, we show that the exponential moving averages of the historical values
of these metrics are correlated with future observed values, in addition to also
being good estimators for them. Moreover, we go a step further to investigate
how to locally, from the OppNet node perspective, improve the estimations for
these metrics by defining two novel estimation functions. These estimation func-
tions are based on two different linear models: a general regression model and a
mixed regression model, where future values of the studied metrics are explained
in terms of their corresponding exponential moving averages. Experimentation
using real mobility traces from well-known OppNet scenarios show that our esti-
mation functions greatly reduce the estimation error of the future values of both
metrics when compared to representative state of the art proposals.

Keywords: Opportunistic Networks, inter-contact time, contact duration, regression
models, mixed models

1. Introduction

Opportunistic Networking (OppNet) [1] is an open research field of computer
networks that studies networks where mobile nodes communicate with each other
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even when there is no end-to-end connectivity between them. As mobile devices
get smarter, OppNet has emerged as a solid network solution that allows different
applications to be deployed when under these network conditions.

One of the most challenging issues in OppNet is the routing and delivery
decisions. Routing is the node decision as to whether or not to forward a certain
message upon contacting another node. The delivery decision determines whether
a node should be considered to be the destination of the message. Unlike in
connected networks, OppNet routing and delivery decisions are not trivial because
of OppNet’s dynamical properties when it comes to a node’s movement models.

In the OppNet literature, many different network metrics have been used
to help with these routing and delivery decisions. Among these metrics, inter-
contact time and node contact duration have shown, in a wide range of publi-
cations, to be extremely useful as they are metrics that effectively characterise
the network’s node behaviour [2]. While the inter-contact time metric measures
the time between two successive contacts, the contact duration metric determines
how long two nodes are in contact.

Examples of the benefits of these metrics in the literature are numerous. For
instance, many already published proposals have shown that the contact duration
distribution measured by each node is a very efficient metric for helping to increase
the probability of simultaneous forwarding by deliberately postponing message
forwarding [3]. In the very same way, the inter-contact time has proven to be
a very efficient metric for predicting the number of future contacted nodes in a
certain period of time. These kinds of predictions are very useful for complex
message delivery decisions, such as in proposals like [4].

In order to estimate future values of the inter-contact time and contact du-
ration metrics, the usual approach is to have these nodes fit these metrics to
known distributions, such as exponential or power-law distributions, as in pro-
posals like [5]. Another way of estimating these metrics is to allow OppNet nodes
to build and locally store previous metric average values from the past and use
these averages as estimators for future metric values. For this purpose, statistical
exponential moving averages (ewma) are very useful because with a single aver-
age value both old values and recent values are considered. This is obtained by
applying weighting factors which decrease exponentially and never reach zero.

In this article, we confirm that these exponential moving averages of historical
values of the two studied metrics (inter-contact time and contact duration) are
tightly correlated with future observed values, while also being good estimators
for them. In addition, we take a further step forward and focus on investigating
how to locally, from the OppNet node perspective, improve the estimations for
these metrics by defining two novel estimation functions that use their corre-
sponding exponential moving averages. These estimation functions are created
by defining two different linear models: a general linear regression model and
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a linear mixed regression model, where the explained variables are the future
values of the studied metrics and the explanatory variables their corresponding
exponential moving averages. In order to achieve this, we propose that the sam-
ples needed to define the proposed linear models be collected by the very same
OppNet nodes, and, in the case of the mixed models, even share them upon
encountering other nodes.

Specifically, the contributions of this article can be summarised as follows:

• A first estimation function based on a general linear regression model to
predict the inter-contact time and the contact duration for OppNet.

• A second estimation function based on a mixed linear regression model to
predict both metrics, based on node cooperation.

• We use real mobility traces to validate the correctness and performance of
the two proposed estimation functions.

The paper starts with Section 2, which contains some background information
on exponential averages and linear models. Then, in Section 3, we examine the
state of the art of OppNet proposals that analyse the inter-contact time and
contact duration metrics. Next, we provide a full description of our estimation
models in Section 4. The paper continues with Section 5, where we present
a comparison of our proposal with others from the state of the art. Finally,
Section 6 contains the conclusions we have drawn from this work.

2. Background

In this section, we present some background information needed to understand
our proposal. This will be a brief introduction on moving averages, general linear
regressions, and linear mixed models.

2.1. Moving averages

An exponential moving average (ewma) is a very useful statistic tool for av-
eraging. It is a lightweight (in terms of storage requirements) moving average
that, in an adaptive way, takes into account both historical information from the
past and new recently measured information. A general ewma is calculated every
time a new measure is obtained in the following way:

ewmanew = ewmaold + σ × (lastmeasured− ewmaold) (1)

where ewmanew is the new average value, ewmaold, the old value, lastmeasured
is the last value measured and σ ∈ [0..1] a constant to give different weights to
historical information and new information.
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This way of averaging information using ewma has been widely employed in
OppNet because of these characteristics. For example, in [6], the authors propose
an OppNet routing protocol that uses an ewma-based scheme in order to keep
nodal contact probabilities updated. Additionally, in [7, 8], the authors use ewma
to estimate future times between forwarding actions.

2.2. General linear regressions and mixed linear models

Linear regression [9] is a basic statistical tool for predictive purposes. It
is extremely useful for finding a relationship between two or more continuous
variables. It studies whether a set of variables are good for predicting a certain
outcome, also called the dependent variable. Given a random sample collection
(Xi, Yi), i = 1, . . . , n, the simplest form of a regression model with one dependent
and one independent variable is defined by the equation of the general linear
regression:

Yi = α+ β ×Xi + εi, εi ∼ N(0, σ2) (2)

where Yi is the explained response (or dependent) variable, Xi the explanatory (or
independent) variable, α is called the intercept value (the value of the dependent
value when the explained equals 0) and β the slope value. The information that
cannot be explained by this model are the residuals εi, which are assumed to be
normally distributed with expectation 0 and variance σ2.

The model coefficients can be obtained as [10]:

α =
(
∑
Yi)×(

∑
X2

i )−(
∑
Xi)×(

∑
Xi×Yi)

n×(
∑
X2

i )−(
∑
Xi)2

(3)

Additionally, β is obtained in the following way:

β = n×(
∑
Xi×Yi)−(

∑
Xi)×(

∑
Yi)

n(
∑
X2

i )−(
∑

(Xi))2
(4)

Linear mixed models [11] are an extension of simple linear models that also
take into account both the variation explained by the independent or explanatory
variables of interest, also called fixed effects, as well as the variation not explained
by the independent or response variables of interest, also called random effects.
They are especially useful when there is non-independence in the data, such as
when the data is hierarchically structured.

The mixed linear model where information is structured into different groups
(i = 1, . . . , N) and every group i contains ni observations can be defined as:

Yi = Xi × β + Zi × bi + εi (5)

where, again as in the linear regression model, Xi contains the explanatory vari-
able, but Yi contains the explained variable for the group i, and where N is
the number of groups. There are two components in this model: the fixed term
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(Xi×β) and the random one (Zi×bi). The component Zi×bi contains the effect
on the model for every group. This means that every group is allowed to have a
different Y : X relationship. However, the β factor is applied to all of the groups.
In order to represent Xi and Zi, two matrices of dimension ni× p and ni× q, are
defined respectively, where ni is the number of observations in Yi (the number of
observations per group), p the number of explanatory variables in Xi and q the
number of explanatory variables in Zi.

A special case of mixed linear models that will be used in this proposal is the
random intercept model, where the model intercept may change per group. The
model is defined as:

Yij = α+ β1 × Zi + β2 ×Xij + εij (6)

where Yij is the explained variable, α is the independent term, β2 is the fixed effect
associated to the fixed Xij variable, and β1 is the fixed effect associated to the
random Zi variable, which has as many levels as there are different sample groups.
The random variable is included in the model assuming that the variations around
the intercept for each member of Zi is normally distributed with a certain variable.
This mixed effect is modelled as:

Yi = Xi × β + Zi × bi + εi (7)

In a matrix notation, the same model can be defined as:
Yi1
Yi2
...

Yini

 =


1 Xi1

1 Xi2

1
...

1 Xini

×
[
α
β

]
+


1
1
...
1

× βi +


εi1
εi2
...
εini

 (8)

From this model, we can extract its coefficients, which are the common slope
(slope) and a list of intercept values for the different groups (intercepti, i =
1, . . . , N). These values are the combination of the fixed effects and the variance
components of the random effects, as explained in [12].

3. Related Work

In this section, we study the state of the art of Opportunistic Networking,
paying special attention to two of the metrics that will be estimated in this study:
inter-contact time and contact duration.

3.1. OppNet Routing and Delivery

Routing and delivery in OppNet are the decisions that set the path of a
message from a source to a destination. There are several surveys that cover the
different challenges routing protocols must face in OppNet. Some examples of
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these surveys are [13, 14, 15, 16]. Among the different metrics used for routing
and delivery decisions, for this study we focus on two of them: inter-contact time
and contact duration.

3.2. Inter-contact time and contact duration aware routing/delivery algorithms

The inter-contact time between nodes in an OppNet has been proposed as a
key metric for defining the performance of an OppNet since it has been proven
to have a broad impact on message delivery reliability [2]. For this reason, the
inter-contact time has been widely used as a metric for performing routing or
delivery decisions. For instance, there is a wide range of social-aware OppNet
routing proposals that identify important nodes in a network by using different
centrality metrics. A large part of these metrics are computed taking into ac-
count the inter-contact time of the nodes: the shorter the inter-contact time is
in a node, the more frequent that node will be encountered, thus increasing its
popularity. For example, in [17], the authors propose a social popularity-based
routing protocol named SPBR that takes into account the inter-contact time and
multi-hop neighbour information.

In the context of OppNet delivery protocols, in [4], the authors propose a
general delivery scheme for manycast group communications based on a mobile
code. They present an application of this scheme for solving, by way of an
analytical delivery method, the problem of sending a message to k and only k
nodes of a heterogeneous and opportunistic network scenario that best fit a given
criterion. For these purposes, the authors use for their delivery protocol the
number of potential nodes belonging to a certain profile to which a message can be
forwarded for a given period of time. This number is calculated by understanding
the inter-contact time of every node in the network.

Analysing the duration of node contacts in OppNet, also known as contact
duration, has helped propose very efficient OppNet routing, delivery, data repli-
cation schemes and caching protocols. For example, in the context of OppNet
cooperative caching, Zhuo et al. [18] propose a caching protocol that takes into
account the impact of the contact duration limitation on cooperative caching
by deriving an adaptive caching bound at each OppNet node and analysing its
specific contact patterns with other nodes. In [19], the authors propose a con-
tact duration-aware replication protocol that operates in a fully distributed man-
ner. In this proposal, the authors give an analytical description of the contact
duration-aware data replication problem and propose a centralised solution for
improving the utilisation of the storage buffers as well as the contact oppor-
tunities. In [20], the authors propose an OppNet routing protocol that avoids
forwarding failure by dividing OppNet messages into smaller fragments. The
authors present a mathematical model that considers the contact durations for
deriving the optimal fragment size that minimises message delivery delay.
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Proposals like [2, 17, 4, 18, 19] described in this section show that the inter-
contact time and contact duration metrics are useful tools for making network
decisions, such as the delivery or the routing decision. In turn, these network
decisions aim to improve the performance of the network in terms of metrics,
such as the delivery latency or the delivery ratio. In the following section, we
analyse proposals that make estimations on these metrics.

3.3. Estimating inter-contact time and contact duration

As detailed above, most routing algorithms require a good estimation of the
inter-contact time and contact duration to provide reliable routing decisions.
Thus, the OppNet research community has proposed different ways of estimating
the inter-contact time of nodes in order to make good routing or delivery decisions.

In general, users tend to follow mobility patterns, that is, humans have strong
habits they follow every day, allowing future behaviour to be predicted. There-
fore, the main idea is to predict future encounters among nodes using the past
history of encounters [21]. Concretely, this paper studies the predictability of a
node’s future contacts by analysing their previous contacts. The authors propose
modelling the contact time series as a Poisson distribution (with the number of
contacts being the Poisson events in a fixed one-hour interval), showing that the
number of contacts per time unit in the future can be efficiently predicted. This
model has been evaluated and validated using a trace recorded in the Politehnica
University of Bucharest, in addition to other known traces. Based on this con-
tact prediction model, along with other social criteria, the authors propose in [22]
a new opportunistic routing algorithm (SPRINT), which improves the delivery
ratio of messages as compared to traditional social-based routing approaches.

A further improvement is JDER [23], a new probabilistic forwarding scheme
also based on the history of previously encountered nodes, one that determines the
network cut-nodes, which will increase the probability of reaching the destination
nodes. Another approach is to use a multi-objective model and decision tree based
mechanism for optimising data dissemination under different target performances
[24].

Additionally, other works like [25] estimate OppNet the inter-contact time
of nodes by analysing real mobility traces. Studies like [5] have proven that
the aggregate inter-contact times distribution in OppNet can be fitted to an
exponential distribution for scenarios where nodes are vehicles. Instead, in [26],
a similar exponential model for scenarios where nodes are human is proposed.
Some other works propose compound distributions to explain the inter-contact
time. For example, in [25], the authors prove that there is a characteristic time,
approximately half a day, beyond which the distribution of the inter-contact
time follows a power law distribution. After this time, the distribution decays
exponentially.
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Nevertheless, this established approach of using the inter-contact times be-
tween pairs has been shown to achieve non-representative characterisations [16].
Using the individual nodes’ inter-contacts instead can lead to more precise esti-
mations. Furthermore, the aggregate inter-contact times distribution can only be
representative of the individual distributions when all nodes contacts patterns are
supposed to be the same (the homogeneous network assumption) [15]. Therefore,
considering that opportunistic networks are heterogeneous, the individual nodes’
inter-contact time will lead to better estimations as proposed in this paper.

Summing up, in this section, we have presented the state of the art of inter-
contact time and contact duration estimation on OppNet. To the best of our
knowledge, there are very few proposals using linear models in OppNet. In [27],
the authors show from an analytical perspective that inter-contact times in Opp-
Net can be approximated as exponentially distributed in certain mobility models.
In order to prove this, they use linear regression analysis. Additionally, in [28],
by using real mobility traces, the authors of this study classify users as being
vagabonds or socials according to their social behaviour. They conclude, using
linear regressions as statistical tools, that the effectiveness of OppNet message
dissemination predominantly depends on vagabonds because they outnumber so-
cials. However, as far as we know, there is no proposal in OppNet literature that
uses ewma as an explanatory variable for creating linear general or mixed models
for the purpose of estimating future values of inter-contact times and contact
duration. In the following section, we explain our estimation proposal.

4. Network Model

In this section, we present our two proposed models for estimating future
values for the inter-contact time (ict, from this point on) and the contact duration
(cd, from this point on) metrics. First, in Section 4.1, we describe the functional
architecture of the proposed estimation system and the required data. Then,
in Section 4.2, we present our first estimation function based on a simple linear
regression model. Finally, in Section 4.3, we complement this estimation function
by proposing a second model based on linear mixed models. We provide in
Algorithm 1 a list of the procedures needed to build the two models proposed.
Along with the network model description, we will reference the related lines of
the algorithm for the sake of clearness.

4.1. Functional architecture and dataset

The final objective of the proposed linear estimation models is to provide a
module (or object) that can estimate the ict and cd values from the collected
information of previous contacts, which can be used, for example, by the routing
protocols. A possible functional structure of this module (LinearEstimation) is
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End contact
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Figure 1: Architecture of the estimation module.

depicted in Figure 1. We also provide an algorithmic implementation of the main
methods of this module in Algorithm 1.

The main interface of the LinearEstimation module consists of two methods
for obtaining the cd and ict values based on the current information. This in-
formation is updated when a new contact starts or ends. In OppNet, two nodes
contact each other if, by means of any neighbour discovery protocol, they find
that they are within their communication range. Therefore, this neighbour dis-
covery protocol1 module is required to detect new contacts (and their durations)
and then to notify the LinearEstimation module. Therefore, when a connec-
tion is detected, the On Start Contact method is called to calculate the current
measured (ictm) as (see line 3 from Algorithm 1):

ictm = time.now()− lasttimecontacted (9)

where time.now() is the current time and lasttimecontacted is the last time the
node contacted any other node2. In the very same way, when a contact ends,
the On End Contact method is called and the current cd value updated (line 14
from Algorithm 1):

cdm = time.now()− startcontact (10)

where startcontact is the time when the current contact with the node started.
Note that the global variable startcontact is updated when a new contact starts,
and lasttimecontacted is updated when a contact ends (lines 5 and 15 from
Algorithm 1).

1This module is provided by every OppNet implementation and it is outside of the scope of
this paper.

2Note that for the first contact we cannot obtain an ict value as there is no previous contact.

9



Algorithm 1 Functions for LinearEstimation module.

1: procedure On Start Contact(node)
2: if not first contact then
3: ictm = time.now() - lasttimecontacted
4: end if
5: startcontact = time.now()
6: ewmaict = ewmaict + σict × (ictm − ewmaict)
7: dataset.add ict(ictm,ewmaict,wframe)
8: if mixed then
9: dataset2 = exchangedata(dataset)

10: dataset.update(dataset2)
11: end if
12: end procedure
13: procedure On End Contact(node)
14: cdm = time.now() - startcontact
15: lasttimecontacted = time.now()
16: ewmacd = ewmacd + σcd × (cdm − ewmacd)
17: dataset.add cd(cdm,ewmacd,wframe)
18: end procedure
19: function Estimate ict return ict
20: if mixed then
21: (int,slope,ewmaict)=mxmodel ict(dataset,node)
22: ict = int + slope× ewmaict
23: else
24: (α,β,ewmaict)=lnmodel ict(dataset)
25: ict = α + β × ewmaict
26: end if
27: end function
28: function Estimate cd return cd
29: if mixed then
30: (int,slope,ewmacd)=mxmodel cd(dataset,node)
31: cd = int + slope× ewmacd
32: else
33: (α,β,ewmacd)=lnmodel cd(dataset)
34: cd = α + β × ewmacd
35: end if
36: end function

Additionally, the node keeps an exponential moving average of the two studied
metrics that get updated in the On Start Contact and On End Contact in the
following way (lines 6 and 16 from Algorithm 1):

ewmaict = ewmaict + σict × (ictm − ewmaict),
ewmacd = ewmacd + σcd × (cdm − ewmacd),

(11)

where σict ∈ [0, 1] and σcd ∈ [0, 1] are the exponential moving average weight
constants for giving different weights to historical measured values and new ones.

In order to estimate the ict and cd values, every node node locally builds a
dataset DSnode, that contains a list of sample units:

DSnode = {ds1, ds2, ..., ds|DSnode|} (12)

In turn, every element dsd (d = 1, . . . , |DSnode|) that belongs to dataset
10



DSnode consists of five elements:

dsd = [typed,measuredd, ewmad, timed, samplerd] (13)

where typed is the type of metric (ict or cd), measuredd is a measured value for
any of the two studied metrics (calculated using equations 9 and 10), ewmad is the
value for their corresponding exponential average (calculated using equation 11),
timed is the time when the metric was measured and samplerd is the identification
of the node that sampled the measured value3. The local dataset is updated with
new ict entry when a new contact starts (line 7 from Algorithm 1) and with a
new cd when the contacts ends (line 17 from Algorithm 1).

In order to reduce the size of these datasets, we define a temporal window
frame of size wframe. That is, old elements are not considered from the current
dataset DSnode if the entries are older than wframe:

DSnode(wframe) = {ds1, ds2, ..., ds|DS′
node|} ⊆ DSnode

| ∀dsd = typed,measuredd, ewmad, timed, samplerd,
dsd ∈ DSnode ⇒ time.now()− timed < wframe.

(14)

where time.now() is the current time and wframe indicates a period of time during
which samples may be considered. This also reduces the size of the messages
exchanged. As we will see in Section 4.3, in our mixed model, when a contact
occurs, both nodes exchange their datasets (using function exchangedata, line
9 from Algorithm 1). Therefore, when two nodes node1 and node2 meet, with
datasets DSnode1 and DSnode2, respectively, they update their datasets:

DSnode1 = DSnode1 ∪DSnode2

DSnode2 = DSnode2 ∪DSnode1
(15)

This procedure is performed in both contacted nodes using dataset.update, as
shown in the Algorithm 1, line 10.

Finally, the impact of the wframe variable will be analysed in Section 5, to
see its performance on our proposal.

4.2. Linear regression model

In this section, we introduce the first estimation function, based on a simple
regression model.

4.2.1. Model definition

After ending a contact with its nth contacted node, any given node in the
network collects a dataset of n − 1 sample units for the pair of values icti :

3Note that a sampler node may be a different node from the one that keeps the sample unit.
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ewmaicti, i = 1, . . . , n− 1 and n samples for cdi : ewmacdi, i = 1, . . . , n following
equations 9 - 11. Given these previous values, we propose a model for explaining
the values of icti+1 in terms of ewmaicti, and the values of cdi+1 in terms of
ewmacdi using a bivariate linear regression model as:

icti+1 = αict + βict × ewmaicti + εicti
cdi+1 = αcd + βcd × ewmacdi + εcdi

(16)

where
εicti ∼ N(0, σict

2), εicti ∼ N(0, σcd
2) (17)

Thus, icti+1 and cdi+1 are the response variables explained by ewmaicti and
ewmacdi, respectively. The information not explained by these models is defined
by the residuals εict and εcd, which are assumed to be normally distributed with
expectation 0 and variance σict

2 and σcd
2, respectively.

4.2.2. Estimation function

Consequently, a node node that at a given time has measured and calculated
m sample values can calculate the estimation for the future values of ict and cd
as:

ictm+1 = αict + βict × ewmaictm
cdm+1 = αcd + βcd × ewmacdm

(18)

where the α and β values can be obtained using equations 3 and 4 detailed in
section 2. The implementation of these estimations is shown in Algorithm 1,
where the Estimate ict and Estimate cd functions calculate first the α, β and
ewma values using the dataset through functions lnmodel ict and lnmodel cd
for later applying equation 18 (lines 25 and 34).

4.3. Linear mixed model

In the previous subsection, we have proposed a linear regression model for
predicting future values for ict and cd in terms of the already measured ones.
Every node performed independent linear regression models. In this section, we
extend our proposal by allowing nodes to share their measured values for both
metrics in order to obtain a more elaborate linear regression mixed model.

4.3.1. Model definition

As explained in Section 2.2, mixed models are very useful in contexts where
data are clustered or hierarchically organised. In our mixed model, the informa-
tion gathered is clusterised, thus creating groups. These groups are the different
nodes in the network. So, as random factors, we use the qualitative variable node,
which represents the original node that measured the information, and, as fixed
effects, we use the studied metrics and their corresponding exponential moving
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averages. The two expressions of random intercept models below represent our
proposed mixed models.

First, we model the inter-contact time (ictd+1) as a linear function of ewmaictd,
where the intercept is allowed to change per each node (nodei = 1, . . . , N). In
this model, nodei is a factor with as many levels as nodes considered in the net-
works, where N is the maximum number of nodes in the network. This means
that nodes group their datasets in N clusters of ni sample units for each group:

icti,j+1 = αict + βict1 × nodei + βict2 × ewmaictij + εictij
i = 1, . . . , N ; j = 1, . . . , ni

(19)

There are two components in this model that include explanatory variables:
the fixed one, βict2 × ewmaictij , and the random one, βict1 × nodei, which rep-
resents the ict : ewmaict effect for every node. Each node is allowed to have
a different ict : ewmaict relationship. Our model considers the type of mixed
model where the different nodes have the same slope, with different intercepts
per node. We are using node as a random effect, assuming that the variations
on the intercept for each node is normally distributed with a certain variance.
This means that the differences per node regarding the intercept are small. Thus,
εictij represents the errors that are normally distributed with covariance matrix
Σ, Σ = σ2 × I.

Secondly, in the very same way, we proposed the following mixed model to
estimate the contact duration:

cdi,j+1 = αcd + βcd1 × nodei + βcd2 × ewmacdij + εictij
i = i, . . . , N ; j = 1, . . . , ni

(20)

Once both mixed models are defined, as explained in Section 2.2, we can
extract its coefficients, that is, the common slopes (slopeict and slopecd, for the
ict and cd mixed model, respectively) and a list of intercept values for the different
nodes (intercepticti and interceptcdi, i = 1, . . . , N , for the ict and cdmixed model,
respectively).

4.3.2. Estimation function

Consequently, a node (node) that for a given time has obtained mict and mcd

sample values in its dataset DSnode may calculate the estimation for the future
values of ict and cd as:

ictmict+1 = interceptictnode + slopeict × ewmaictmict

cdmcd+1 = interceptcdnode + slopecd × ewmacdmcd

(21)

where interceptictnode and interceptcdnode are the intercept values for node node
extracted from the ict and cd mixed models, slopeict and slopecd their common
slopes, and ewmaictmict

and ewmacdmcd
the last ewmaict and ewmacd values

calculated. The implementation of these estimations is shown in Algorithm 1
13



(lines 22 and 31), where the Estimate ict and Estimate cd functions calculate first
the intercept (int), slope and ewma values using the dataset through functions
mxmodel ict and mxmodel cd, to be applied later in equation 18.

5. Evaluation

In this section, we present the experiments carried out to evaluate the per-
formance of our proposal. First, we present our evaluation methodology used in
this experimentation. Then, we present the results.

5.1. Evaluation methodology

For the experiments conducted for this article, we chose five different scenar-
ios to analyse the performance of our proposal. The physical encounters for the
five different scenarios were obtained from real mobility traces from the Craw-
dad database4, a community resource for collecting wireless data at Dartmouth
College, United States. The five scenarios are the following:

• The first scenario, the Info5 scenario, is based on real mobility traces,
as published in [29]. These traces were retrieved during the 2005 edition
of the Infocom conference over the course of 2.97 days. Contacts from
these mobility traces represent 41 students carrying iMote platforms5. The
number of contacts provided in these traces is 22,459.

• The second scenario, the Cambridge scenario, as published in [29], is based
on real Bluetooth traces from students from the System Research Group of
the University of Cambridge, UK, carrying small devices for six days. Ad-
ditionally, some stationary nodes were placed at various points of interest.
The number of contacts provided in these traces is 10,873.

• The third scenario, the MIT scenario, as published in [30], represents the
activity information from 100 subjects at the Massachusetts Institute of
Technology over the course of the 2004-2005 academic year. The number
of contacts provided in these traces is 102,593.

• The fourth scenario, the Asturias scenario, as published in [31], contains
connectivity traces extracted from GPS traces obtained from the regional
Fire Department of Asturias, Spain. This data was generated by GPS
devices embedded in different vehicles such as cars, trucks and a helicopter
and a few personal radios. In total, 229 devices reported 3,098,642 contacts.

4Mobility traces can be found at http://crawdad.org/.
5An iMote is a simple device made by Intel Research based on a Zeevo TC2001P system-on-

a-chip providing an ARM7 processor, Bluetooth connectivity and a 950mAh CR2 bakery.
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• The fifth scenario, the Taxis scenario, as published in [32], contains mobility
traces from 320 taxi cabs in Rome over 30 days. The number of contacts
provided in these traces is 224,588.

A summary with the general characteristics of the scenarios can be found in
Table 1. Although the traces have different durations, in all cases we have only
used the first 24 hours in order to compare results using equivalent time intervals.

The traces data are analysed to obtain information about ict and cd met-
rics. Some of these mobility traces contain information on the times when nodes
start contact and end their encounters. Some others, such as the Taxis trace,
contains GPS coordinates instead. For this type of traces, we assume a range of
10m to obtain the information on when the encounter starts and finishes (which
can resemble a typical Bluetooth range). Once the five traces were analysed,
considering only the first 24 hours, we obtained a dataframe with the following
fields6:

• Type: represents the type of sample unit: ict or cd.

• Sampler: name of the node that has measured the sample.

• Custodier: name of the node that keeps the sample unit.

• Value: inter-contact time or contact duration sample unit (seconds).

• Ewma: exponential weight moving average of inter-contact time or contact
duration before the sample unit was obtained.

• Time: time of the sample unit (seconds)

• Scenario: name of the scenario

For example, an entry of our dataset containing the following values:

Type Sampler Custodier Value EWMA Time Scenario

cd x9 x25 30 35 450 Asturias

meaning that node x25 keeps a contact duration sample unit learned from x9
that was sampled at time 450 seconds with a value of 30 seconds and the previous
calculated EWMA was 35 seconds.

6Dataframe with all the traces and metric values can be requested at:
http://deic.uab.es/∼cborrego/linear.html
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Figure 2: Inter contact time and contact duration histograms for the five different scenarios.

The evaluation results presented in the following section have been performed
by analysing this dataframe using the statistical tools R, MATLAB, and Python7.

Finally, for the values of σict and σcd in equations 11, we have used the
constant value 0.7, as in classical proposals such as [33, 34, 35], and wframe was
initially set to 24h.

5.2. Performance evaluation

The goal of this section is to evaluate the performance of our estimation
proposals by comparing them with other well-known methods for estimating ict
and cd. We present the different methods that will be compared in this evaluation
as follows:

• Linear model (LM in the figures) as explained in Section 4.2.

• Linear mixed model (MX in the figures) as explained in Section 4.3.

• Pareto distribution (PD in the figures). The estimation of the inter-contact
time and contact duration is performed using a Pareto distribution, which
is previously calculated using the whole contact trace, as in proposals like
[36].

• Exponential distribution (XD in the figures). This is similar to PD but
using an exponential distribution, as in proposals like [5]. Note that both
PD and XD are offline methods and therefore cannot be implemented in
the nodes.

• Pareto (PW in the figures). The estimation of the inter-contact time and
contact duration is performed using a Pareto distribution as well, but, this
time is built by every node from previously collected samples.

7Source code for the statistical tools can be requested at
http://deic.uab.es/∼cborrego/linear.html
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(b) Linear model cdi+1 = αcd + βcd × ewmacdi + εcdi.

Figure 3: ict and cd general linear models after 24 hours for every node in the network. Colour
circles represent metric values from the different nodes in the network. The circle colour is used
to differentiate the different nodes. The grey lines depict their corresponding general linear
models.

• Exponential (EX in the figures). Similar to PW but using an exponential
distribution.

• Median (MD in the figures). In this case, the estimation of the inter-
contact time and contact duration is performed using the median from the
previous samples, as in proposals like [37].

• Moving Average (MA in the figures). The estimation of the inter-contact
time and contact duration is performed using the exponential moving av-
erage calculated from previous samples, as in proposals like [7].

Finally, in order to evaluate the performance of the different proposals, we
have defined the following error estimation: for a certain metric (ict or cd), we
compute the average of the estimation error of a node with ni samples of the
studied metric as:

Errornodei =

ni∑
n=1
|estimatedn −measuredn|

ni
(22)

Before analysing the different estimation proposals, it is interesting to depict
the distribution of the measured inter-contact time and contact duration for the
five scenarios (Figure 2). As can be seen, the histograms of the five different sce-
narios are very different. As can be seen by the way these metrics are distributed,
their estimation is a difficult challenge.
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(a) Mixed model model ictij+1 = αict + βict1 × nodei + βict2 × ewmaictij + εictij .

(b) Mixed model cdij+1 = αcd + βcd1 × nodei + βcd2 × ewmacdij + εictij .

Figure 4: ict and cd linear mixed models after 24 hours for every node in the network. Colour
circles represent metric values from the different nodes in the network. The circle colour is used
to differentiate the different nodes. The grey lines depict their corresponding mixed models.
The black lines depict the population models.

We depict the different models obtained from the traces to show the corre-
lation between the exponential moving averages of the historical values of the
studied metrics and their corresponding future observed values. In Figure 3(a)
and Figure 3(b), we depict the linear regression model introduced in Section 4.2
for the ict metric and the cd metric for every node in the five different scenarios
and for 24 hours of activity. As can be seen, the nodes belonging to the Info5
scenario have similar slopes in the different models, while in the other scenarios,
the slopes and intercept vary significantly for the different nodes in the network.
Similarly, in Figure 4(a) and Figure 4(b), we depict the results for the mixed
regression models introduced in Section 4.3. In this case, the thin lines repre-
sent the mixed models for the different nodes, while the dark line represents the
population model, that is, the model that contains all the nodes.

We then proceed to compare the performance in estimating for the different
methods. We divide these comparisons into two. In the first one, we compare
our estimation functions against the PD and XD models, where the distribution
is previously calculated. Note that these models are only considered to be a
reference, since they consider the whole contact trace for estimating the values,
and therefore, cannot be implemented in the nodes. In Figure 5(a) and Figure
5(b), we depict the error estimation distribution, as defined in equation 22, for
every node in the five different scenarios.
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(b) Performance study for contact duration.

Figure 5: Performance study. Our linear model (LM) and mixed model (MX) versus using
classical distributions such as Pareto (PD) and Exponential (XD) for estimating the two studied
metrics ict and cd.

In the second type of comparison, we analyse the other proposals where the
distributions of the behaviour of the network are ignored by the nodes in the
network and decisions are taken in terms of observed events, that is, exponential
moving average (MA), the historical median (MD), the exponential distribution
(XP) and the Pareto distributions (PW). The results are shown in Figure 6(a)
and Figure 6(b). As can be seen, our proposals –general linear model (LM) and
mixed model (MX)– outperform all of the other compared proposals in terms of
the estimation error for estimating both ict and cd in all of the studied scenarios.

When comparing our two proposals in terms of the estimation error obtained
for the ict metric, the scenario where the mixed model performs better than the
general linear model is the Info5 scenario. Instead, for the cd metric, in three
scenarios, our mixed model performs better in terms of estimation error than
the general linear model does. These results are shown in Table 1. With data
available for only 5 scenarios, it is difficult to provide a general criterion to define
which proposal fits best for a general scenario.

5.3. Autocorrelation analysis and EWMA dependence

The main objective of this paper is to predict the future values of the inter-
contact times (ict) and contact durations (cd) of the nodes based on the history
of their previous contacts. Therefore, these contacts need to have some kind of
regularity. Formally, the values in the time series of nodes contacts must exhibit
some degree of autocorrelation.
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Figure 6: Performance study. Our linear model (LM) and mixed model (MX) versus built
exponential distribution (EX), exponential moving average calculated from previous samples
(MA), median from the previous samples (MD), built Pareto distribution (PW) for estimating
the two studied metrics ict and cd.

Scenario Nodes Contacts Best ict Best cd

Info5 41 10,152 MX MX
Cambridge 51 1,216 LM MX
Taxis 304 6,506 LM LM
MIT 97 5,042 MX MX
Asturias 230 12,705 LM LM

Table 1: Main parameters of the scenarios. The number of contacts corresponds to the 24h
traces extract used. Finally, the columns “Best ict” and “Best cd” represent which method
from the ones proposed in this study performs better.

This autocorrelation is the basis of the EWMA estimation. Concretely, EWMA
estimation is based on giving more weight to recent values of a measured times se-
ries, where the coefficient α represents the degree of weighting decrease. There is
a strong dependence between EWMA and autocorrelation: highly autocorrelated
time series will produce better estimations. On the contrary, time series with
no autocorrelation (for example, white noise) are not predictable, and indeed, in
these cases EWMA is useless.

The coefficient of correlation between two values in a time series is called the
autocorrelation function (ACF). It evaluates the autocorrelation between values
that are k time periods apart (known as lag k). Note that in our case, the
measurement intervals are not constant since new values are obtained when a
contact occurs. Concretely, we have obtained the ACF for the ict and cd time
series from the traces used in this paper. Formally, we obtained a time series for
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Figure 7: Autocorrelation study for the sampled values of the two studied metrics ict and cd.
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Figure 8: Number of messages exchanged as a function of time.

the contact of every node m of the traces: {ictm}, {cdm}.
In general, all used traces exhibit some degree of autocorrelation, as shown

in the boxplots in Figure 7. These plots were obtained in the following way:
for a given lag number and trace, we obtain the autocorrelation values for all
the ict and cd time series of all nodes. The final result is two vectors with
all the autocorrelations. We repeated this procedure for all traces and for lag
values between 1 and 10. Then, the distribution of all the autocorrelations is
displayed using a boxplot, showing the minimum and maximum values and the
interquartile range between a first quartile (Q1=25%) and the third quartile
Q3=75%). The results show that in all the traces, a high proportion of nodes
have (at least) autocorrelations higher than 0.1. Furthermore, nodes exhibit
higher autocorrelations for lower lags values by displaying wider interquartile
ranges.

Summing up, two main conclusions can be drawn from these results. First,
there is a clear dependence between values of recent contacts, and second, that
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using recent values for predicting new values, as EWMA does, can obtain rea-
sonable estimations of future ict and cd values, as is evidenced by the results
obtained in the previous subsection.

5.4. Overhead evaluation and optimisation

As introduced in Section 4.3, our proposed mixed model allows nodes to
share their measured values for both metrics in order to obtain a more elaborate
linear regression mixed model. To learn the amount of overhead implied by
the exchange of messages when implementing our mixed model, in Figure 8, we
analyse the number of exchanged messages as a function of the scenario trace
time. Four different types of analysis are performed for the two studied metrics:
ict− total and cd− total, when all of the information observed by nodes is shared
upon node encounter and ict− lim and cd− lim, when only messages belonging
to a window frame of two hours are used (see Section 4.3 for the window frame
definition). As expected, by limiting the window frame, we obtain a lower number
of exchanged messages per contact. The number of exchanged messages observed
seems reasonably small for OppNet. On the other hand, when not limiting the
number of exchanged messages using the window frame, the number of exchanged
messages could affect the performance of the network, especially in scenarios like
the Taxis scenario, where there is a large number of nodes. The value of two hours
has been chosen by analysing the performance in terms of the error estimation

22



when compared to the window frame. As can be seen in Figure 9, the wframe
value of two hours is a good compromise value with reasonable results in terms
of the error estimation for the two studied metrics, for both general and mixed
models in the five scenarios.

Now, in Figure 10, we analyse the CPU overhead cost in terms of CPU sec-
onds8. We see that the generic linear models are not very sensitive to the size
of the samples, while mixed models are. However, the amount of time needed
for calculating the model is very small, considering as well that this calculation
can be computed at any time and not necessary when performing the routing or
delivery action.

Summing up, although the regression mixed model has a slightly greater
overhead than the linear model, mainly due to its collaborative approach, in
scenarios with a lower number of nodes it can obtain the better estimation.

6. Conclusions

In this paper, we have analysed the problem of estimating future values of
the inter-contact time and the contact duration in Opportunistic Networks. We
have shown that exponential moving averages from historical metrics observed
for both metrics are correlated with their corresponding future values.

Particularly, we have proposed two independent estimation functions based
on two linear models: a general linear regression model and a linear mixed model.
We have shown, by using five different real mobility traces from well-known Op-
portunistic Networks scenarios, that our estimation functions greatly improve the
estimation of future values for the studied metrics when compared to other well-
known proposals in terms of the error estimation. Furthermore, these estimation
models can be easily implemented and integrated into current OppNet routing
protocols, thus enabling improved performance in their routing decisions with no
significant overhead.
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