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Resumen

La complejidad de las estructuras emergentes en fotónica integrada hace que su opti-
mización sea difı́cil y con altos costes asociados en términos de tiempo y recursos. Los
circuitos fotónicos integrados (PICs, en inglés) se están convirtiendo en una solución
tecnológica para abordar problemas crı́ticos en el campo de las telecomunicaciones, bio-
fotónica o computación cuántica. Especı́ficamente, la fotónica de silicio sobresale como
la plataforma mas prometedora para abordarlos. Obtener un proceso de optimización
eficiente serı́a muy codiciado por las compañı́as para reducir los costes del PIC o pro-
porcionar nuevas y mejores funcionalidades.

En este trabajo, nos ponemos como objetivo probar el potencial de un algoritmo
inspirado en la naturaleza como es la optimización por enjambre de partı́culas (PSO, en
inglés) aplicado a estructuras fotónicas. Especı́ficamente, PSO es aplicado para obtener
alto prestaciones en redes de difracción insensibles a la polarización para acoplo fibra a
PIC. La condición de insensibilidad a la polarización es difı́cil de obtener en fotónica de
silicio debido al gran contraste de ı́ndice. Para conseguir esta condición en una red de
difracción, la solución mas prometedora es el uso de estructuras sub-longitud de onda
que actúan como un metamaterial dieléctrico uniaxial. Como consecuencia, la inclusión
de estas estructuras incrementa exponencialmente el número de variables de diseño, lo
cual dificulta el uso de procesos estándares de optimización.

En este trabajo, las estructuras sub-longitud de onda son en primer lugar analizadas
rigurosamente mediante el método de transferencia de matrices (TMM, en inglés), la ex-
pansión modal y la técnica de adaptación modal para determinar bajo que condiciones
estas actúan como un material homogéneo. A continuación, la optimización de las redes
de difracción insensibles a la polarización es llevada a cabo mediante el desarrollo de
un programa que se integra con un software de simulación fotónica (RSoft). El poten-
cial de PSO aplicado a este tipo de estructuras es demostrado requiriendo al algoritmo
diferentes especificaciones para la red de difracción.

Los resultados muestran para las estructuras sub-longitud de onda un periodo mı́-
nimo de 100 nm a fin de aplicar la aproximación de homogeneidad de forma precisa.
Por otra parte, los diseños dados por PSO presentan un alto prestaciones junto con un
comportamiento insensible a la polarización comparable al estado del arte. Además,
se también se consigue una reducción drástica en el tiempo de optimización en com-
paración con las técnicas comunes.

De esta forma, PSO se presenta como una herramienta eficiente para optimizar es-
tructuras fotónicas complejas. Estos resultados podrı́an llamar la atención de la industria
de los PIC para reducir sus costes. Por otra parte, los diseños propuestos podrı́an ser
de interés para desarrollar nuevas aplicaciones en el campo de las telecomunicaciones o
nuevas formas de computación.





Resum

La complexitat de les estructures emergents en fotònica integrada fa que la seua op-
timització sigua difı́cil i amb alts costos associats en termes de temps i recursos. Els
circuits fotònics integrats (PICs, en anglès) s’estan convertint en una solució tecnològica
per tal d’abordar problemes crı́tics en el camp de les telecomunicacions, biofotònica o
computació quàntica. Especı́ficament, la fotònica de silici sobresurt com la plataforma
més prometedora per tal d’abordar-los. Obtenir un procés d’optimització eficient seria
molt cobejat per les companyies per reduir els costos del PIC o proporcionar noves i
millors funcionalitats.

En aquest treball, ens posem com a objectiu provar el potencial d’un algoritme inspi-
rat en la natura com és l’optimització per eixam de partı́cules (PSO, en anglès) aplicat
a estructures fotòniques. Especı́ficament, PSO és aplicat per obtenir altes prestacions en
xarxes de difracció insensibles a la polarització per acoblament fibra a PIC. La condició
d’insensibilitat a la polarització és difı́cil d’obtenir en fotònica de silici a causa del gran
contrast d’ı́ndex. Per tal d’aconseguir aquesta condició en una xarxa de difracció, la
solució més prometedora és l’ús d’estructures sub-longitud d’ona que actuen com un
metamaterial dielèctric uniaxial. Com a conseqüència, la inclusió d’aquestes estructures
incrementa exponencialment el nombre de variables de disseny, la qual cosa dificulta
l’ús de processos estàndards d’optimització.

En aquest treball, les estructures sub-longitud d’ona són en primer lloc analitzades
rigorosament mitjançant el mètode de transferència de matrius (TMM, en anglès), l’ex-
pansió modal i la tècnica d’adaptació modal amb l’objecte de determinar sota quines
condicions aquestes actuen com un material homogeni. A continuació, l’optimització
de les xarxes de difracció insensibles a la polarització és porta a terme mitjançant el de-
senvolupament d’un programa que s’integra amb un programari de simulació fotònica
(RSoft). El potencial d’PSO aplicat a aquest tipus d’estructures és demostrat requerint a
l’algoritme diferents especificacions per a la xarxa de difracció.

Els resultats mostren per les estructures sub-longitud d’ona un perı́ode mı́nim de
100 nm per tal d’aplicar l’aproximació d’homogeneı̈tat de forma precisa. D’altra banda,
els dissenys donats per PSO presenten unes altes prestacions juntament amb un com-
portament insensible a la polarització comparable a l’estat de l’art. A més, també
s’aconsegueix una reducció dràstica en el temps d’optimització en comparació amb les
tècniques comunes.

D’aquesta manera, PSO es presenta com una eina eficient per tal d’optimitzar estruc-
tures fotòniques complexes. Aquests resultats podrien cridar l’atenció de la indústria
dels PIC per tal de reduir els seus costos. D’altra banda, els dissenys proposats podrien
ser d’interès per a desenvolupar noves aplicacions en el camp de les telecomunicacions
o noves formes de computació.





Abstract

The complexity of emerging photonic integrated structures makes their optimization dif-
ficult and with high associated costs in terms of time and resources. Photonic integrated
circuits (PICs) are becoming a technology solution to address some critical problems in
the field of telecom, biophotonics or quantum computing. Specifically, silicon photonics
stand as the most promising platform to tackle them. Obtaining an efficient optimiza-
tion process would be desired for companies to reduce the cost of the PIC or provide
new and better functionalities.

In the present work, we aim to prove the potential of a nature-inspired algorithm
such as particle swarm optimization (PSO) applied to photonic structures. Specifically,
PSO is applied for obtaining high-performance in polarization-insensitive grating cou-
plers for fibre-to-PIC coupling. The polarization-intensive condition is hard to achieve
in silicon photonics due to the large index contrast. To achieve this condition in grat-
ing couplings the most promising solution is the utilization of subwavelength structures
that act as a uniaxial dielectric metamaterial. As a consequence, the inclusion of these
structures increases exponentially the number of design variables, which difficult the
utilization of standard optimization processes.

In this work, the subwavelength structures are first rigorously analysed by using
transfer matrix method (TMM), eigenmode expansion and mode-matching to deter-
mine under which conditions these act as a homogenous material. Afterwards, the
optimization of polarization-insensitive grating couplers is carried out by developing a
program that integrates with a photonic simulation software (RSoft). The potential of
PSO applied to this kind of structure is demonstrated by demanding different grating
specifications to the algorithm.

Results show for the subwavelength structures a minimum pitch of 100 nm in order
apply accurately the homogenous approximation. On the other hand, the designs given
by PSO present high-performance together with a polarization-insensitive behaviour
comparable to the state-of-the art. Furthermore, a drastic reduction of the optimization
time in comparison with common techniques is also achieved.

Hence, PSO presents as an efficient tool for optimizing complex photonic struc-
tures. These results could catch the attention of the PIC industry to implement this
cost-savings. Furthermore, the proposed designs could be of interest for developing
new applications in the field of telecom or new ways of computing.
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Chapter 1

Introduction

1.1 Context and Motivation

As well as electronics revolutionized the last century, photonics is becoming the most
suitable technology to face current and forthcoming humanity’s challenges. Among
them, data growths year after year [1, 2]. Light can address this problem by encoding
the information in its enormous bandwidth [3,4]. Currently, optical communications are
mainly based on mature technologies such as fibre optics and discreet components (laser,
photodiodes, modulators. . . ). However, the need of reducing costs, produce very large-
scale integration (VLSI) or implement multi-functions can only be fulfilled by using
photonic integrated circuits (PICs) [5].

PICs can be developed in a wide variety of platforms, and among them, silicon
photonics is the most versatile due to the excellent electronic/optical integration and
the ultra-small size of the cross-section waveguides [6, 7]. On one hand, the electro-
optic integration is enabled by the CMOS-compatibility (complementary-metal-oxide-
semiconductor) platform which benefits of mature and well-established fabrications
processes of micro- and nano-electronic industry. On the other hand, the high refractive
index contrast allows to confine the light in the nanoscale. As a result, silicon photonics
has wakened the interest of industry in the recent years with a market growing expo-
nentially as reported by Yole [8]. For instance, the silicon photonics-based transceiver is
forecasted to achieve $4 billion in 2024 (see Fig. 1.1).

In the research field, silicon photonics stands as the preferred platform for develop-
ing disruptive and ground-breaking topics such as integrated quantum photonics [9],
neuromorphic photonics [10] or seamless integration of photonics with nanoelectron-
ics [11] (see Fig. 1.2).

However, despite the silicon photonics technology is beyond the tipping point, it is
not yet fully mature and cannot be compared with the maturity of fibre-based optical
communications. Indeed, some topics such as the fibre-to-chip coupling should be ad-
dressed. Due to the large cross-section mismatch between an optical fibre (∼ 300 µm2)
and the silicon waveguide of a PIC (∼ 0.11 µm2), direct coupling them implies very high
optical losses. To address this drawback, a coupling structure that act as an interface
should be used. Several coupling strategies have been proposed based either in edge
coupling or vertical coupling. In the first case, the light is coupled by placing the fibre
and the waveguide in the same plane (Fig. 1.3a). In the latter, the fibre is placed vertical
to the top surface of the PIC and the light beam is focused to the silicon waveguide by

1



1.1. Context and Motivation

Figure 1.1. Silicon photonics-based transceiver forecast [8].

(a) (b)

(c)

Figure 1.2. (a) Integrated quantum photonic circuit [9]. (b) Photonic circuit with elec-
tronics in the same chip [11]. (c) All-optical neural network based on micro-ring res-
onators and phase-change materials [10].

using a diffractive grating known as grating coupler (Fig. 1.3b).
Although edge coupling approaches may provide low optical losses, grating couplers

stand as the most popular solution due to several factors: (i) the structure integrates
seamless in the PIC; (ii) grating couplers can be placed in any point of the chip, which
facilitates testing at wafer-level structure; and (iii) they have higher alignment tolerances
compared to the edge coupling approaches.

2



Chapter 1. Introduction

(a) (b)

Figure 1.3. Fibre-to-PIC coupling strategies: (a) Edge-coupler [12] and (b) grating cou-
pler [11].

However, grating couplers suffer from high polarization dependence loss (PDL) be-
cause their strong birefringence and thus, a control polarization stage out of the chip
is required before injecting the light into the PIC. The randomness in which arrives
the light to the PIC due to external factors such as fibre bending implies a problem in
terms of optical losses, eliminates the possibility of using on-chip polarization-division
multiplexing [13] and increases the cost of the optical system because of the out-of-chip
polarization stage.

Therefore, polarization-independent grating couplers for the silicon photonics plat-
form and working at telecom wavelengths are highly desirable. In this context, some
approaches based on polarization diversity have been proposed in which the grating
coupler can be viewed as a superposition of two gratings [14] (see Fig. 1.4). However, the
on-chip light is polarized only along a certain axis and usually there is a need to replicate
the structures comprising the PIC. Hence, one-dimensional polarization-independent
grating couplers that maintain the input polarization into the PIC are highly appeal.

Figure 1.4. Polarization diversity grating coupler [14].

3



1.2. State-of-the-art

1.2 State-of-the-art

One-dimensional polarization-independent grating couplers have been proposed rely-
ing on different techniques such as using of subwavelength (SWG) structures [15, 16]
(see Fig. 1.5), geometrical intersection of two different uniform grating couplers [17] or
exploiting different diffraction orders modes [18]. Among all, the utilization of subwave-
length structures has delivered the best performance (see Table 1.1 and sections 4.1 and
4.2.2 for definitions). Furthermore, this kind of gratings benefit of an easier fabrication
process since are fabricated using the same full-etch step of the waveguides instead of
the typical two-steps of standard gratings.

Table 1.1. One-dimensional polarization-independent grating couplers comparison. CE
= Coupling efficiency, PDL = Polarization dependence loss, BW = Bandwidth and WG
= Waveguide.

Ref. Exp. Method TE-CE (dB) TM-CE (dB) PDL (dB) PDL BW (nm) Wavelength (nm) WG thickness (nm)

[15] No SWG (400 nm) −4 −4 ∼ 0 80 nm 1550 340

[16] Yes SWG (400 nm) −3.2 −4.3 ∼ 0.2 12 nm 1460/1510 340

[17] Yes TE/TM intersection −7.8 −8 ∼ 0.2 20 nm 1550 220

[18] No TE00/TM10 coupling −3 −3 ∼ 0 30 nm 1550 400

Figure 1.5. Suspended polarization-independent grating coupler based on subwave-
length structures [16].

However, the inclusion of another structure increases the degrees of freedom and
difficulties to obtain the best design through laborious and non-efficient optimization
process. The low-efficient design process can suppose an increase in the cost of the PIC.
Hence, efficient design strategies with a wide application range may be highly alluring
for the industry.

1.3 Project Outline

The present master thesis is comprised from 5 chapters and 3 appendices. The appen-
dices are also work that has been developed throughout this thesis but are not included

4



Chapter 1. Introduction

in the main text to not break the pace of the reader. These are mainly theoretical devel-
opments and simulation methods. Thus, the organization of this thesis is as follows:

• Chapter 1: Introduction: The first chapter deals with motivation and problem
statement of this work. The state-of-the art about polarization-independent grating
couplers is reviewed.

• Chapter 2: Objectives: In this chapter main objectives of the present thesis are
outlined.

• Chapter 3: Methodology: The project management, work packages in which is
divided the work and temporal distribution are addressed.

• Chapter 4: Development and Results: This chapter is the core of the present work.
The structures and algorithms in which rely the designed polarization-insensitive
grating couplers are analysed and implemented: (i) subwavelength structures and
(ii) particle swarm optimization algorithm. The aim of this chapter is two-fold.
First, crucial design parameters are set based on rigorous simulations. The simula-
tion methods used to derive these values are explained in the appendices. Second
is to present the performance of the gratings based on the aforementioned design
parameters.

• Chapter 5: Conclusions and Future Work: In this chapter main conclusions and
implications are stated. Furthermore, future prospects and concluding remarks
are outlined.

• Author’s Merits: Summarised the main contributions related to this work that
have been published.

• Bibliography: Lists the referenced works in order of appearance.

• Appendix A: Numerical Simulation Methods: This appendix explains and jus-
tifies the main parameters used for simulations based on finite element methods
and finite-difference time-domain.

• Appendix B: Transfer Matrix Method for Periodic Structures: The field profile
expression and the associated effective refractive index in a periodic structure is
derived by means of the transfer matrix method.

• Appendix C: Eigenmode Expansion and Mode-Matching: This last appendix de-
scribes the eigenmode expansion and mode-matching technique applied to the
interface of a homogenous medium and a periodic structure. Electromagnetic pa-
rameters such as reflectance and transmittance are also derived for this case.

5





Chapter 2

Objectives

In the present work, we investigate the utilization of nature-inspired algorithms such as
particle swarm optimization (PSO) for efficient optimization of polarization-independent
grating couplers based on dielectric metamaterials. The main objective is to achieve a
performance comparable to those reported state-of-the-art with a drastic decrease in the
optimization process. Detailed objectives of the present work are listed as follows:

• Demonstrate the feasibility of nature-inspired algorithms for efficient design of
complex photonic integrated structures with performance comparable to the state-
of-the-art.

• Integrate a nature-inspired algorithm such as PSO in a photonic design commercial
software such as RSoft.

• Determine under which conditions periodic subwavelength structures can act as
a dielectric metamaterial for enabling polarization-independency of grating cou-
plers.

• Determine the optimum thickness of the grating coupler waveguide for achieving
polarization-independence performance.

• Investigate the definition of the most suitable figure of merit in terms of the
achieved optimum design.

7





Chapter 3

Methodology

3.1 Project Management

The present work tries to be ambitious in the sense of involving several different top-
ics such as algorithms, advanced electromagnetism, numerical simulation methods or
programming with the aim of facilitating the design procedure of advanced photonic
structures. The utilization of these topics in an emerging field such as silicon photonics
or the utilization of new discipline such as subwavelength integrated photonics arise
problems that must be addressed most of the times with a lack of information in the
literature. For instance, regarding the PSO algorithm, their optimization parameters are
well-known to be problem dependent and, up to date, the use of PSO has not been
reported for the kind of structure used in this work. Basing on our simulations, the
subwavelength structures that enable the polarization-independence condition require
of a more exhaustive investigation compared to the works previously reported. Finally,
the programming part needs to deal an exhaustive debug procedure because of the
integration with a commercial software.

This work started with an initial proof-of-concept that was presented at the 19th

European Conference on Integrated Optics (ECIO) as an oral talk [19]. Despite the suc-
cessful demonstration of PSO for polarization-independent grating couplers, there were
some open questions that could not be addressed at that moment. Some discrepancies
where observed between 2D and 3D simulations with their origin to be determined.
Furthermore, the integration of the PSO algorithm with the commercial software was
very basic. In this work, open questions are tried to be addressed with a solid response
and integration of the PSO algorithm is achieved with fully transparency to the designer
using a user-friendly interface.

3.2 Work Packages

In contrast to the “traditional, sequential approach” based on the consecution of “work
packages”, here we propose a disruptive methodology based on the Agile Scrum frame-
work. Scrum is an iterative and incremental agile development framework in which
the consecution of the project is based in cycles inspired by empirical inspect and adapt
feedback loops to cope with complexity and risk. The main packages and sub-packages
are listed as follows and their interdependence is depicted in Fig. 3.1. As it can be

9



3.2. Work Packages

noticed, work packages 2 and 3 are interdependent and they feed back.

1. Review literature

(a) Grating couplers

i. Polarization-independent

(b) Subwavelength periodic structures

i. Crosswise structures

(c) Nature-inspired algorithms

i. Particle swarm optimization

2. Determine the conditions of using a crosswise periodic structure as a metama-
terial with a homogenous uniaxial dielectric response

(a) Study of its dispersion-relation equation.

(b) Analyse the field profile of the structure.

(c) Analyse the transmittance and reflectance values when the subwavelength
structure is interfaced with a homogenous material.

3. Develop the PSO algorithm for polarization-independent grating couplers

(a) Determine the most optimal PSO parameters such as the inertia weight, social
and cognitive coefficients, etc.

(b) Define the figure(s) of merit.

(c) Develop a computer program in C# that integrates with the commercial soft-
ware of RSoft suite.

4. Write final report

WP #1. Literature review

WP #2. Conditions in which 
SWG acts as a metamaterial

WP #3. Development of the 
PSO algorithm

WP #4. Final report

Figure 3.1. Work packages diagram.

10



Chapter 3. Methodology

3.3 Temporal Distribution

The temporal distribution of the work packages is shown in the following Gantt dia-
gram. Due to the nature of work package #1, this is transverse to the full development
of the work. Second and third work packages are developed simultaneously in order
to cope with complexity and risk because its interdependence. Finally, the last work
package deals with the reporting of the obtained results highlighting the main achieved
conclusions and future work.

Work 
package

2017 2020

Q1 Jan. Feb. Mar. Apr.

WP #1
Proof-of-concept

[ECIO]WP #2

WP #3

WP #4

Figure 3.2. Work packages diagram.
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Chapter 4

Development and Results

4.1 Background and Formalism

Before delving into the core of this work, it is important to address some clarifications
about a few terms such as polarization, material properties or effective refractive index
that are used throughout this work.

Polarization

The polarization can be defined as transverse-electric (TE) or transverse-magnetic (TM)
depending on which are the main components of the electric (E) and magnetic (H) field.
For a wave propagating in the z-axis, the components of both fields depending on the
light confinement and can be classified as follows:

• No confinement [Free space (Fig. 4.1a)]:

– TE: E = {Ex, 0, 0} and H = {0, Hy, 0}.
– TM: E = {0, Ey, 0} and H = {Hx, 0, 0}.

• One-dimension [Slab waveguide (Fig. 4.1b)]:

– TE: E = {Ex, 0, Ez} and H = {0, Hy, 0}.
– TM: E = {0, Ey, 0} and H = {Hx, 0, Ez}.

• Two-dimensions [Strip waveguide (Fig. 4.1c)]:

– TE: E = {Ex, Ey, Ez} and H = {Hx, Hy, Hz}.
– TM: E = {Ex, Ey, Ez} and H = {Hx, Hy, Hz}.

In a strip waveguide, E and H fields are not fully transverse though the major part
of the E-field is comprised in the x-axis (TE) or y-axis (TM).

The effective refractive index

The field distribution of a wave, φ, travelling through the z-axis can be expressed as:

φ(x, y, z) = φ(x, y) exp
(
−j

2π

λe f f
z
)

(4.1)
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TM

TE

(a)

TM

TE

(b)

TM

TE

(c)

Figure 4.1. Illustration of the E-field for the different field confinement: (a) Free space,
(b) slab waveguide and (c) strip waveguide.

where φ = {φx, φy, φz} and stands for the E- or H-field. The term λe f f refers to the
effective wavelength that is defined as:

λe f f =
λ

ne f f
(4.2)

where λ is the wavelength in the vacuum and ne f f is the so-called effective refractive
index. This latter depends on several aspects such as the geometry of the medium
in which the light propagates, the optical properties of the materials that comprises
the medium, i.e., the permeability, µ, and permittivity, ε, and the working wavelength.
Obtaining the value of ne f f from Maxwell’s equations in 1D or 2D structures is not
straightforward since no analytical solution exists. Hence, numerical simulators based,
for instance, on finite element method (FEM) are required.

On the other hand, in this thesis, two types of waves are obtained depending on
whether ne f f is a pure real or imaginary number (see Fig. 4.2). From Eq. (4.1) if ne f f
is real then the exponential is complex, and the light propagates. Conversely, if ne f f is
imaginary, the exponential is real and the amplitude of the light decays with the z-axis
referred as leaky waves. Moreover, the number of real solutions is finite and usually a
single solution is desired (single-mode condition), whereas the number of leaky waves
is infinite.

Material’s optical properties

Both permeability and permittivity are defined as:

µ = µ0µr (4.3)

ε = ε0εr (4.4)

where µ0 and ε0 are the vacuum permeability and permittivity, respectively, and µr and
εr are the relative permeability and permittivity tensors, respectively. From these latter,
the refractive index of the medium is obtained as n =

√
εrµr. Usually, PICs are based on

dielectric materials with non-magnetic response (µr = 1). Furthermore, in the present
work we will deal as most with uniaxial homogenous linear (UHL) materials, thus:

εr =

εxx 0 0
0 εyy 0
0 0 εzz

 (4.5)
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Re(neff)

Im(neff)

z

E

z

E

Figure 4.2. Illustration of the types of waves depending on the value of the effective
refractive index. The insets show the electric field, E, propagating in the z-axis (propa-
gation direction).

4.2 Grating Couplers

Figure 4.3 depicts the typical fibre-to-PIC coupling assisted by a grating coupler used
in silicon photonics. A tilted optical fibre is put on top of grating to inject (collect) the
light to (from) the PIC. The grating coupler is made of a wide corrugated waveguide
that serves to redirect the light to/from the PIC. Because the grating is much wider than
the typical silicon strip waveguide, an adiabatic taper is used to interface both without
optical losses.

y

x
z

Optical fibreTE

TM

TM

TE

Figure 4.3. Illustration of a fibre-to-PIC coupling configuration using a grating coupler.
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4.2. Grating Couplers

Grating couplers are a diffractive structure based on a wide waveguide with an
engineered refractive index distribution along the propagation direction. Typically, the
index profile is obtained by etching grooves on the wide silicon waveguide and this
can be either periodic (uniform grating couplers) or non-periodic (chirped or apodized
gratings) [20]. The cross-section of a uniform grating coupler is depicted in Fig. 4.4. At
the bottom the silicon substrate acts as a partial reflector. The thickness of the buried
oxide layer (BOX) of typical standard silicon on insulator wafers range between 1 and 3
µm and affects to the performance of the grating [21]. In this work is set to the typical
value of 2 µm found in standard silicon-on-insulator wafers. On top of the silicon
waveguide (Si-WG) a protecting oxide upper-cladding is deposited. The thickness of
this layer depends on the devices that comprise the PIC. In this work is set to 1 µm.
The silicon waveguide has different grooves which we call unit cells. These cells have a
length, Λ, or a pitch in the case of being a uniform grating. Each cell is comprised of
an etch and non-etch region. The depth of the etch, tetch, is typically set to 70 nm in SOI
gratings in order to obtain the best performance. Finally, the relation between Λ and the
length of the etch region is called the fill- or filling-factor, f .

SiO2 - BOX

Si - Substrate

SiO2 – Upper-cladding

Si - WG

From/To fibre

To/From PIC

z

y

𝜃𝜃𝑓𝑓

2-3 µm

Λ

tetch
f·Λ

Figure 4.4. Cross-section of a uniform grating coupler. The zoom-in shows the detail of
the grating grooves.

On the other hand, because the grating is much wider (∼ 12 µm) than higher (<
0.5 µm) and invariant in the y-axis, this can be approximated as a slab waveguide in the
x-z plane1 (see. Fig. 4.4). This approximation facilities and can speed up up to three
orders of magnitude the simulation of the structure.

1If the grating is not invariant as it is the cased of focusing grating couplers [22], this approximation is
not valid and the whole structure should be simulated.
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4.2.1 Working Principle

The working principle of grating couplers rely on the Bragg condition and by consid-
ering only the first diffracted mode [23]. From this, the well-known phase-matching
equation is established:

Λ =
λ

ne f f − nc sin θ
(4.6)

where Λ is the pitch or the length of a unit cell, λ is the working wavelength, ne f f
is the effective refractive index that experiences the light through the unit cell, nc is
the cladding refractive index and θ is the angle of incidence of the light into/from the
grating. Due to the SiO2 upper-cladding, this angle does not correspond to the physical
tilt of the fibre, θ f , which is typically 10º. Hence, by using the Snell’s law Eq. (4.6) is
rewritten as:

Λ =
λ

ne f f − sin θ f
(4.7)

The value of ne f f can be usually obtained as the average, navg, between the effective
refractive index in the etched, netch, and non-etched region, nwg, [Eq. (4.8)]. However, it
has to be highlighted that this expression is valid if the difference between netch and nwg
is small. Otherwise, numerical simulations should be carried out to obtain an accurate
value.

navg = f netch + (1− f )nwg (4.8)

4.2.2 Performance Parameters

Although the phase-matching equation serves to obtain the physical parameters of the
grating, this does not tell us a about the resulting performance. The performance of
grating coupler is assed by the following parameters and are obtained simulating the
structure with rigorous numerical simulation methods such as finite-difference time-
domain (FDTD):

• Directionality: The amount of diffracted power from the grating to the optical
fibre at a given wavelength.

• Coupling efficiency (CE): The overlap between the fibre optical mode and the
power arriving to the fibre at a given wavelength. This is mathematically defined
by the overlap integral [23]:

η =

∣∣∣∣∫ ∫
E× H f ib

∗dS
∣∣∣∣2 (4.9)

where E is the E-field of the diffracted wave from the grating, H f ib
∗ is the complex

conjugate of the H-field of the fibre mode and S is the fibre facet.

• Back-reflections: The amount of reflected power that occurs due to the impedance
mismatch between the grating index profile and the silicon slab waveguide.

• CE bandwidth: The range of wavelength in which the coupling efficiency is higher
than a certain value, usually 1 dB, in respect to the maximum or a given wave-
length.
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4.2. Grating Couplers

• Polarization-dependence loss (PDL): The difference of coupling efficiency in dB
between both polarizations.

• PDL bandwidth: The range of wavelength in which the PDL is lower than a certain
value in respect to the minimum ir a given wavelength.

4.2.3 Polarization Dependency

The phase-matching equation [Eq. (4.6)] and thus, the grating coupler, is polarization
dependent because the ne f f term. Indeed, standard grating couplers acts as a polarizing
filter. This is shown in Figs. 4.5a and 4.5b where it is represented the coupling efficiency
as a function of the wavelength of both polarizations for standard TE (Fig. 4.5a) and
TM (Fig. 4.5b) optimized grating couplers. Both structures present PDL greater than
20 dB in the telecom C-band (1530-1565 nm) which are too high for the current PIC
requirements.
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Figure 4.5. Coupling efficiency spectra for TE and TM polarization of: (a) TE and (b)
TM optimized grating couplers. Both gratings have 20 periods, 70 nm of etch and are
designed for λ = 1550 nm. The silicon waveguide is 220-nm-thick. (c) Fundamental
mode effective refractive index of a SiO2/Si waveguide for TE and TM polarization as a
function of the Si-core thickness. Results are given at λ = 1550 nm.

In a SiO2/Si slab waveguide the effective refractive index of the fundamental mode
for TE polarization is always greater than TM for thickness below 1 µm (see Fig. 4.5c).
Using greater thicknesses could be a solution by depositing a layer of amorphous sili-
con on top of the grating waveguide by plasma-enhanced chemical-vapour deposition
(PECVD) [24, 25]. However, due to the large thickness mismatch between the grating
waveguide and the strip silicon waveguide the coupling between them suffers from
high optical losses. Furthermore, because the grating waveguide would be highly mul-
timode this presents high-order Bloch modes which complicate the grating design [26].
Therefore, taking into account that in standard SOI wafers the silicon thickness ranges
between 220 nm and 400 nm, other approaches for achieving polarization-independence
should be explored. As stated in section 1.2, using subwavelength structures could en-
able this condition together with a high-performance response.
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Chapter 4. Development and Results

4.3 Subwavelength Integrated Photonics

Subwavelength integrated photonics is the field of periodic photonic structures with a
sufficiently low pitch, ΛSWG, that suppress diffraction effects. In this work, we deal with
subwavelength structures made of isotropic materials such are SiO2 and Si. By using this
kind of structures, the optical properties can be engineered which results in an increase
of the performance of the typical building-blocks used in PICs [27, 28].

Depending on how the light impinges into the subwavelength structures (see Fig.
4.6), these can be classified in two types: (i) lengthwise and (ii) crosswise. In the first
case, the light travels through the periodicity direction –which is in the x-axis–, whereas
in the second case, the light travels normally to the periodic direction, i.e., in the z-
axis. In this work, we deal with crosswise subwavelength periodic structures since
they exhibit a strong birefringence which can be exploited for designing polarization-
insensitive grating couplers.

z

x

y

Figure 4.6. Illustration of a subwavelength periodic structure made of two different
materials. The periodicity is along the x-axis. If the light impinges from the z- or y-axis
the structure is referred as crosswise. Conversely, if the light comes form the x-axis, this
is referred as lengthwise.

4.3.1 Crosswise Subwavelength Periodic Structures as Uniaxial Dielectric
Metamaterials

Let us imagine periodic structure form by a stack of two materials with permittivity
εA and εB, where light impinges normally to the periodicity. This is depicted in Fig.
4.7a, where a plane wave impinges normally into a stack of material of thickness a
and b with permittivities εA and εB, respectively. The stack is periodic along the x-
axis with a pitch ΛSWG = a + b and extends infinitely in both y- and z-axis. If the
relation between the pitch and the wavelength of the incident wave is small enough,
then the periodic structures acts as a UHL material with and effective permittivity, εe f f .
The equivalent metamaterial behaves as a uniaxial crystal with different permittivities
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4.3. Subwavelength Integrated Photonics

depending whether the light is TM-polarized, ε ||, (Fig. 4.7b) or TE-polarized, ε⊥, (Fig.
4.7c).
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Figure 4.7. (a) Illustration of a plane wave with TE (Ex,Hy) or TM (Ey,Hy) polarization
impinges along the z-axis from an isotropic homogenous medium to a subwavelength
one formed by a periodic stack of homogeneous materials with εA and εB permittivities.
(b,c) Equivalent permittivity of the subwavelength medium when the incident wave is
(b) TM and (c) TE polarized.

The value of ε⊥ and ε || can be obtained by using FEM or solving the dispersion-
relation equation which is obtained after some cumbersome steps by applying the
transfer matrix method (TMM) and the Floquet theorem to a two-layer periodic struc-
ture [29–31] (see Appendix B):

cos(kxΛSWG) = cos(kz,aa) cos(kz,bb)− ∆ sin(kz,aa) sin(kz,bb) (4.10)

where
kz,a/b =

2π

λ

√
εa/b − εe f f (4.11)

and ∆ depends on the light polarization:

∆TE =
1
2

(
εbkz,a

εakz,b
+

εakz,b

εbkz,a

)
(4.12)

∆TM =
1
2

(
kz,a

kz,b
+

kz,b

kz,a

)
(4.13)

Since the light propagates only in the z-axis, the term kx equals zero. Therefore, the
Eq. (4.10) has no analytical solution and numeric root finding methods are necessary.
However, if the relation between the pitch and the wavelength is small enough, the
Eq. (4.10) can be accurately approximated to the zero-order of a Taylor expansion by
using the effective medium theory (EMT)2. The approximation for both polarizations
is the well-known Rytov’s formulas [35] and are given by Eqs. 4.14 and 4.15 for TM
and TE polarization, respectively. If the relation is not small enough, a second order

2The effect medium theory is a well-known theory to calculate the equivalent optical properties of
heterogeneous materials. Among the different methods, the Maxwell-Garnett is the most popular [32–34].

20



Chapter 4. Development and Results

approximation can be used [36]. However, in this case it is preferred to obtain the exact
solution by solving Eq. 4.10.

ε || =
a

ΛSWG
εA +

b
ΛSWG

εB (4.14)

1
ε⊥

=
a

ΛSWG

1
εA

+
b

ΛSWG

1
εB

(4.15)

4.3.2 The Deep-Subwavelength Regime: Influence of the Pitch and Wave-
length Relation

In the previous subsection we have stated that a periodic subwavelength structure be-
haves as a UHL dielectric metamaterial if the relation between the pitch and the wave-
length is small enough. However, the term “small enough” has not been rigorously
defined. By using the Bragg’s condition, it can be proved that if the pitch fulfils:

ΛSWG <
λ

max(
√

εA,
√

εB)
(4.16)

then diffraction is not allowed and the light travels through the subwavelength structure
with a phase given by the dispersion-relation expression [Eq. (4.10)]. However, this
does not mean that the subwavelength structure behaves as a homogeneous material.
If Λ/λ → 0 is not accomplished, leaky modes could arise at the interface which can
tunnel through the structure if it is not long enough [37]. Therefore, the material cannot
be treated as homogenous. On the other hand, under some special conditions, to fully
model the metamaterial as homogenous this must present some magnetic response in
order to match both impedance and phase properties [38].

Being able to accurately approximate the periodic structure as a UHL material is
necessary to simulate the grating coupler cross-section instead of the whole structure
due to computer resources constrains and in order to speed up the design procedure.
However, setting the value of ΛSWG for this thesis in which the periodic structure can
be treated as a UHL material is not trivial. The analysis has to be done throughout the
following aspects: (i) inspecting the dispersion-relation equation; (ii) analyse the field
profile inside the periodic structure; and (iii) investigate the transmittance/reflectance
values when it is interfaced with an homogenous material. For this work, the materials
used for the investigated periodic stack are the same that comprise the grating cou-
pler: Si (εr = 12.08) and SiO2 (εr = 2.085) at λ = 1550 nm. Moreover, for the ease of
calculations, the thickness of both layers is set to a = b = ΛSWG/2.

Dispersion-relation

The dispersion-relation equation [Eq. (4.10)] is first investigated by obtaining the real
solutions for both polarizations as a function of the pitch. As shown in Fig. 4.8a, for pitch
values lower than λ/nSi = 445 nm only the zero order is allowed, in accordance with
Eq. (4.16) and the structure is in the subwavelength regime. It has to be noticed that
the lower the pitch the higher the birefringence between the effective refractive index
of both polarizations. As it is later explained in subsection 4.4.1, large birefringence
values are beneficial for designing polarization-insensitive grating couplers. When the
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4.3. Subwavelength Integrated Photonics

subwavelength condition is lost, high-order modes begin to arise and ultimately, when
ΛSWG → +∞ the structure is seen as pure Si and all the solutions converge to the plane
wave solution.

On the other hand, a comparison between the rigorous solution given by Eq. (4.10)
and the Rytov’s approximation (Eqs. (4.15) and (4.14)) is shown in Fig. 4.8b. As it can be
noticed, the approximation is only accurate for pitch values lower than ∼ 100 nm and
for higher values can only be used to estimate the values of the equivalent refractive
index.
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Figure 4.8. (a) Equivalent refractive index for TM (solid line) and TE (dashed line)
polarized light as a function of the subwavelength pitch using Eq. (4.10). (b) Comparison
between Rytov’s approximation [Eqs. (4.14) and (4.15)]. Equivalent refractive index
for both polarizations as a function of the subwavelength pitch. Results are show the
different supported solutions at 1550 nm and for a Si/SiO2 stack.

Regarding the imaginary solutions, corresponding to the leaky modes, we obtain
differences between approximating the periodic stack as an equivalent homogenous
material and solving Eq. (4.10). In a homogenous medium the imaginary solutions of
ne f f are antisymmetric, i.e., ne f f (m) = −ne f f (−m) where m is the mth imaginary solution
(see Appendix C.1). However, in a periodic subwavelength medium –aside from being
the calculus of the values much more complex– the solutions given by Eq. (4.10) are not
antisymmetric (see Appendix C.2) and only approximates to be when the pitch is ∼ 100
nm or lower.

Field profile

Then, the field profile of the zero-order mode is investigated. Recalling Maxwell’s equa-
tions, a plane wave travelling through a homogenous medium has only one component
in both E- and H-fields with a constant value in the axis transverse (x-axis) to the prop-
agation direction (z-axis). However, in a crosswise subwavelength periodic medium
two components (transverse and longitudinal) in the E- or H-field (depending on the
polarization) exists being not constant in the x-axis. The different profiles of the field
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components are obtained by implementing the TMM with eigenmode expansion and
mode-matching [30, 39] (see Appendix B) in MATLAB [40].

First, the transverse component of the field is investigated. For both polarization
these are depicted in Figs. 4.9a and 4.9b, respectively, for different pitch values. It can
be noticed how as the pitch is reduced the peak-to-peak value of the field diminishes
being negligible for pitch values lower than 100 nm and approximates to a plane wave.

z
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|Ey|

(a)

z
y

x

|Hy|

(b)

Figure 4.9. Field profiles obtained by TMM for different values of pitch. (a) TM and (b)
TE polarization. Results are given for a Si/SiO2 stack at λ = 1550 nm.

Secondly, in order to investigate the influence of the longitudinal component the
ellipse of polarization is represented as a function of the pitch in Figs. 4.10a and 4.10b
for TE (Ex and Ez) and TM (Hx and Hz) polarization, respectively. The ellipse is given
at the interface of the Si/SiO2 stack. The interface point is chosen since is the worst case
because the longitudinal component attains its maximum value. As it can be noted, for
both polarizations the polarization ellipse tends to close as the pitch is reduced, i.e., only
exists the transverse component as in a homogenous medium. Furthermore, for TE this
is more accused than TM because in this latter Ez ∝ ε(x). On the other hand, the axial
ratio is obtained as |φx/φz| and is depicted in Fig. 4.10c. For a plane wave in the axial
ratio is infinity, however, in subwavelength medium this is not accomplished as noted.
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Figure 4.10. Ellipse of polarization for (a) TE and (b) TM polarization as a function of
the pitch. (c) Axial ratio for both polarizations as a function of the pitch. Results are
obtained for a Si/SiO2 stack at λ = 1550 nm.

Interface with a homogenous material

The existence of a non-constant field along the x-axis has to be taken into account when
the subwavelength structure is interfaced with a homogenous material. In order to
fulfil boundary conditions, significant leaky modes may arise at the interface and thus,
prohibit to approximate the periodic stack as a homogenous material.

To analyse this behaviour, we now consider the previous SiO2/Si stack (medium II)
interfaced with silicon (medium I). A plane wave travels in the z-axis from the medium I
and impinges into the medium II. The field profile at the interface of Si and the Si/SiO2
stack and each medium is obtained using methods of Appendix C.1-C.3. In contrast
with other simulation methods such as FDTD, the utilization of eigenmode expansion
allows to discriminate between the propagates modes (m = 0) and the leaky modes
(m 6= 0) and thus, obtain an insight of the phenomena that occurs within the structure.
Calculations are obtained for both polarizations and a pitch value of 400 nm and 100 nm.
The first is in the limit of the subwavelength condition whereas the latter approximates
to a homogenous material from previous results.

In Fig. 4.11 is depicted the field distribution (x,z) for ΛSWG = 400 nm of the |Ey|
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(Fig. 4.11a) and |Hy| (Fig. 4.11b) components for the TM and TE polarized waves,
respectively. As it can be noticed, leaky modes at the interface perturb the adjoint
wave between the two media for both polarizations. However, for TE polarization, they
extend further in the z-axis. Therefore, if several homogenous/subwavelength media
are stacked along the z-axis with a pitch lower than 200 nm, then the leaky waves
interact with the propagated wave due the cavity behaviour of the stack. Consequently,
the subwavelength medium cannot be approximated to homogenous. However, if the
subwavelength is decreased to 100 nm, leaky waves are negligible as shown in Fig. 4.12
and thus, the homogenous approximation may be accurate.

The homogenous approximation can be checked by obtaining the transmittance and
reflectance parameters of the propagated mode (m = 0). From these, the relative permit-
tivity and permeability that fulfil the impedance of an equivalent homogenous medium
is calculated using methods of Appendix C.4.2 and compared with that obtained using
the value from Eq. (4.10). Results are depicted in Fig. 4.13. For TM polarization, the
impedance given by the dispersion-relation equation agrees with that obtained from the
eigenmode expansion and mode-matching for pitches. The equivalent homogeneous
material presents lossless dielectric behaviour (Fig. 4.13a) with non-magnetic response
(Fig. 4.13b). However, for TE polarization, despite the lossless behaviour, the equivalent
permittivity is greater than that obtained from Eq. (4.10) (Fig. 4.13c). Furthermore,
the equivalent homogenous material presents a diamagnetic response for pitch values
larges than 100 nm.
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Figure 4.11. Field profiles (propagated + leaky) obtained by eigenmode expansion and
mode-matching when a plane wave in a homogenous medium made of Si (medium I)
impinges into a crosswise subwavelength structure made of a Si/SiO2 stack with a 400
nm pitch (medium II). The final field is the superposition of the propagated mode with
the leaky modes that arise at the interface between medium I and II. Results are given
for (a) TE and (b) TM polarization at 1550 nm.
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Figure 4.12. Field profiles (propagated + leaky) obtained by eigenmode expansion and
mode-matching when a plane wave in a homogenous medium made of Si (medium I)
impinges into a crosswise subwavelength structure made of a Si/SiO2 stack with a 100
nm pitch (medium II). The final field is the superposition of the propagated mode with
the leaky modes that arise at the interface between medium I and II. Results are given
for (a) TE and (b) TM polarization at 1550 nm.
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Figure 4.13. Effective (a,c) permittivities and (b,d) permeabilities as a function of the
pitch for (a,b) TM and (c,d) TE polarization. The dotted line stands for the value given
by Eq. (4.10). Results are obtained for a medium formed by a homogenous material (Si)
and two-layer stack (SiO2/Si) at λ = 1550 nm.
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Fig. 4.14 summarizes the behaviour of a crosswise periodic structure used in this
work as a function of the pitch for both polarizations. Although the crosswise periodic
structure can be approximated to as a stand-alone homogenous material for pitches
lower than ∼ 400 nm. The large evanescent field and the magnetic response of TE
polarization are not convenient to use it for polarization-independent grating couplers
were the leaky modes are expected to interact between the unit cells. Furthermore,
introduce a magnetic response in this kind of structure implies to highly complicate
simulations. Therefore, we choose 100 nm as the pitch for the crosswise subwavelength
structure used for the design of the polarization-independent grating couplers.
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Figure 4.14. Behaviour and methods used to describe the optical properties as a function
of the pitch of the subwavelength structure used in this work.

4.3.3 Tuning the Equivalent Refractive Index

There are two approaches for tuning the equivalent refractive index for a given pitch.
The first one is by changing the fill factor (see Fig. 4.15a), i.e., fSWG = a/ΛSWG as it
can derived from Rytov’s equations [Eqs. (4.15) and (4.14)]. The second one is based
on titling the periodic structure (see Fig. 4.15b) in order to change the amount of bire-
fringence [41]. The titling approach needs of further investigation in order to validate
for both polarizations the resulting non-diagonal tensor of the equivalent permittivity.
Hence, in this thesis, the fill-factor approach we will be used for tuning the optical
properties.

Figure 4.16a shows the equivalent refractive index as a function of the filling fac-
tor using the zero-order approximation given by Rytov. As it can be noticed, TM po-
larization exhibits larger refractive index than TE which will enable the polarization-
independence condition in grating couplers as it is explained afterwards. Furthermore,
the birefringence (∆n) can be as large as 0.8 for filling-factors of around 40% and greater
than 0.2 for almost the whole range (see Fig. 4.16b).
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Figure 4.15. Different ways of tuning the equivalent refractive index of a crosswise
periodic subwavelength structure. (a) Changing the fill-factor that occupies each layer
and (b) tilting the layers.
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Figure 4.16. (a) Equivalent refractive index and (b) associated birefringence, ∆n, as
a function of the fill-factor of the periodic structure. Results are given for a stack of
SiO2/Si using Rytov’s expressions [Eqs. (4.15) and (4.14)].
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4.4 Polarization-Independent Grating Couplers Enabled by Di-
electric Metamaterials

In the previous subsection it has been shown how and in which conditions crosswise
periodic structures can be act and used as uniaxial dielectric homogenous metamateri-
als. The aim of this subsection is to exploit its birefringence for enabling polarization-
independent grating couplers. To this end, the etched regions, known as trenches, of
a typical shallowed-etched grating (see Fig. 4.17a) are replaced by a periodic subwave-
length structure (see Fig. 4.17b). This is made by full-etching the silicon waveguide
and the equivalent refractive index is tuned by changing the subwavelength fill-factor.
Therefore, from the polarization point of view, two different gratings are seen for TE an
TM polarization because of the birefringence of the subwavelength structures.

Shallow-etch grating vs subwavelength

z

y
etch

z

x

Si - waveguide

Et
ch

ed
 re

gi
on

Si
 -

w
av

eg
ui

de

To/From PIC

(a)Shallow-etch grating vs subwavelength

z

y

z

x

Si - waveguide

Si
 -

w
av

eg
ui

de

Periodic subwavelength structure

Equivalent refractive index
[n|| (TM) and n⊥ (TE)]

To/From PIC

(b)

Figure 4.17. Top-view and cross-section of grating couplers made by: (a) Shallow etching
and (b) full etching the grating including a subwavelength structure. These latter act as
an equivalent refractive index as a function of their pitch and fill-factor.
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Metamaterials

4.4.1 Influence of the Waveguide Thickness: Beyond the Standard Thickness

To allow the polarization-independence condition in the grating phase-matching equa-
tion [Eq. (4.6)] the value of ne f f must be the same for both polarizations. By using the
approximation of navg [Eq. (4.8)] and after some manipulations, the resulting fill-factor
that matches both navg for TE and TM is:

f =
nTE

wg − nTM
wg

(nTM
etch − nTE

etch) + (nTE
wg − nTM

wg )
=

1

1 +
nTM

etch − nTE
etch

nTE
wg − nTM

wg

=
1

1 +
∆netch

∆nwg

(4.17)

and being the condition of Eq. (4.18) required since the value of f should be comprised
between 0 and 1 and ∆nwg is always positive.

(nTM
etch − nTE

etch) > 0. (4.18)

In a typical polarization-dependent grating coupler, this condition cannot be fulfilled
since the refractive index of TE is always greater than TM regardless of the waveguide
thickness and thus, (nTM

etch − nTE
etch) < 0, which leads to values of f greater than 1. How-

ever, if the etched waveguide is replaced by a crosswise subwavelength structure, then
is possible to obtain (nTM

etch − nTE
etch) > 0 and thus, exists a value for f between 0 and 1.

For this new case, the thickness of the grating waveguide plays an important role.
The thicker the waveguide the larger the interval of the fill-factor in the unit cell of
the grating. The best case or the lower-limit of the fill-factor is given when ∆netch at-
tains its maximum value, i.e., when subwavelength structure achieves the maximum
birefringence ( fSWG = 0.4). For this latter, the value of ∆nwg and ∆netch is depicted as
a function of the waveguide thickness in Fig. 4.18a. As the thickness increases from
the standard 220 nm, the difference between both increments decreases until they cross
at around 320 nm. The associated minimum value of f is shown in Fig.4.18b. For a
220 nm thick waveguide, f ranges between 0.95 and 1, which is far from being opti-
mal to achieve high grating performance. Thicker silicon layer which are non-standard
but enlarge the fill-factor range may be more suitable for achieving better performance.
Furthermore, in the context of developing polarization-independent PICs, the 320 nm
has been proposed [42] which gives a lower-limit to the fill-factor of 0.5. Therefore, 320
nm is chosen as the thickness for the silicon layer of the gratings. On the other hand,
regarding the upper-limit of the fill-factor, this is achieved when nTM

etch − nTE
etch = 0. For

a 320-nm-thick waveguide this results for fSWG value between 7% and 99.6% (see Fig.
4.16). Finally, minimum feature sizes below 10 nm can be obtained by electron beam
lithography (EBL) [43, 44], hence, the upper- and lower-bounds of the subwavelength
fill-factor are set to 0.1 and 0.9, respectively.

On the other hand, as stated in subsection 4.2.1, the value of ne f f can only be esti-
mated as an average if the difference between the netch and nwg is small (< 0.1). By re-
placing the trenches with subwavelength structures this condition does not fulfil. Hence,
a adjusting or correction factor, Γ, should be introduced into the phase-matching equa-
tion, leading to:

Λ = Γ
λ

navg − nc sin θ
(4.19)
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Figure 4.18. (a) Effective indices difference and (b) minimum attainable value of filling-
factor, fmin, as a function of the waveguide thickness. Results are given for a stack of
SiO2/Si of Λ = 100 nm and fSWG = 40% at λ = 1550 nm. (c) Effective refractive index
as a function of the fSWG value for a 320-nm-thick slab waveguide with the core made
of the equivalent material of the aforementioned subwavelength structure.

Consequently, the Eq. (4.17) should rewritten as:

f =
B(A− 1) + (nTE

etch − AnTM
etch)

(nTE
etch − AnTM

etch)− (nTE
wg − AnTM

wg )
(4.20)

where A = ΓTE/ΓTM, B = nc sin θ and value of Γ may range between 0.95 and 1.05
depending on the index difference between netch and nwg.

4.4.2 The Diffraction Strength: An Optimization Problem

Before continuing, let us summarize the main parameters set at this point of the thesis
for the grating coupler:

• Fibre tilt θ f = 10º.

• Working wavelength λ = 1550 nm.

• Buried oxide thickness = 2 µm.

• Silicon waveguide thickness = 320 nm.

• SiO2 upper-cladding thickness = 1 µm.

• The shallow etched waveguide regions are replaced by Si/SiO2 full-etched cross-
wise subwavelength structures with:

– Pitch ΛSWG = 100 nm.

– Fill-factor, fSWG, between 10% (10 nm) and 90% (90 nm).

• Use of the correction factor Γ in the phase-matching equation.
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The phase-matching equation is thus fulfilled for both polarizations for many pos-
sible fSWG values. However, not all the solutions present the same performance. In-
deed, the diffraction strength, i.e., the amount of power that is diffracted due to the
impedance mismatch different waveguides, is different for both polarizations. In Fig.
4.19a is shown the coupling losses between a 320-nm-thick Si-slab waveguide and a
metamaterial-slab waveguide comprised by the subwavelength structure as a function
of the fSWG value (see Appendix A.2 for methods). Coupling losses are greater for TM
polarization because presents higher impedance mismatch compared to TE. The differ-
ence on the diffraction strength is increased with the fill-factor achieving its maximum
for fSWG ≈ 85% as shown in Fig. 4.19b.
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Figure 4.19. (a) Coupling losses and (b) increment between a 320-nm-thick Si and meta-
material waveguide as a function of the subwavelength filling-factor for both polariza-
tions. Results are for a stack of SiO2/Si of ΛSWG = 100 nm at λ = 1550 nm.

Usually, the optimization of the grating would be made by carrying out a parametric
scan of the variables. However, the large number of variables and possible solutions
because of using subwavelength structures impossibilities to address this strategy. Fur-
thermore, grating couplers need to be simulated by FDTD. Although FDTD is rigorous
and can tackle any kind of electromagnetic structure, simulations are very long and
the demand of computational resources is very high which translates to a low efficient
method. Therefore, in order to address the optimization of polarization-independent
grating couplers other approaches should be investigated.

4.5 Nature-Inspired Algorithms for Enabling High-Performance

Nature-inspired algorithms try to mimic the behaviour of nature to solve high-freedom
degree problems. Among all algorithms, genetic algorithm (GA) and particle swarm
optimization (PSO) stand out as the most famous for optimization all-kind of problems
[45] and nanophotonic structures [46–48].
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4.5.1 Particle Swarm Optimization

Particle swarm optimization is a nature-inspired algorithm that tries to mimic the be-
haviour of swarms such as birds or bees. The power of PSO applied to grating cou-
plers has been demonstrated [49–55]. Hence, it is an ideal candidate to optimize our
polarization-independent grating coupler.

The flow-chart of the algorithm is depicted in Fig. 4.20. The algorithm begins ini-
tializing the particles that comprise the swarm. The swarm is comprised of N particles,
being each particle M-dimensional. In our case the particle refers to a grating, in which
the variables are fSWG, ΓTE and ΓTM. Therefore, by setting the number of unit cells to
20, each particle will be 60-dimensional. Then, the following steps are repeated N-times.
First, the performance of the particles is evaluated with the fitness which assigns a cost
to each particle. For each particle, if its cost is better (lower) than the previous itera-
tion, then the pBest (particle best) is updated. Furthermore, among the particles, their
positions is compared to the gBest (global best) which saves the best particle of all iter-
ations. When the pBests and gBest are updated, if required, the velocity of each particle
is updated to obtain the new position.

Initialize particles

Current position 
is better than 

pBest?
Update pBest pBest is better 

than gBest? Update gBest

Update Velocity

Update Position

Evaluate Fitness

Yes

No

Yes

No

Repeat N-times

Figure 4.20. Flow-chart of the PSO algorithm.

The fitness of the particles, i.e., the performance of the grating is assed by using
2D-FDTD simulations for TE and TM polarizations (see Appendix A.3).

The velocity of the particles is calculated by using the following expression:

vnm[i + 1] = ωvnm[i] + c1r1,nm[i](gBestm[i]− xnm[i]) + c2r2,nm[i](pBestnm[i]− xnm[i])
(4.21)

where ω is the inertia weight which prevent the particle from drastically change its
direction, c1 is the cognitive coefficient that is related to the memory of the previous
best position, c2 is the social coefficient and relates the neighbours, rnm[i] is a random
number between 0 and 1 following a uniform distribution and xnm[i] stands for the
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current position. The coefficients c1 and c2 impose a trade-off between exploration and
exploitation, i.e., the ability to explore regions of the search space or to concentrate the
search around a promising area, respectively. For instance, if c1 = c2 > 0 particles are
attracted towards the average of the personal best position and the global best position.
On the other hand, c2 > c1 is more beneficial for unimodal problems whereas c2 < c1 is
better for multimodal problems.

Finally, the position is updated as:

xnm[i + 1] = xnm[i] + vnm[i + 1] (4.22)

Every nature-inspired algorithm is not exempt of possible issues. Most common are
that the particles position do not convergence throughout iterations, the final solution is
a minimum local or particle position go out of boundaries. Several solutions have been
proposed to tackle these problems [56]. Among them, in this work we use the following
strategies:

• Usually, the positions of particles are initialized to uniformly cover the search
space. An efficient initialization method for the particle position is:

xnm[0] = xmin + r(xmax − xmin) (4.23)

• To control the global exploration of particles, velocities are clamped to stay within
the boundary constraints. The velocity clamping is defined as:

vnm[i + 1] =
{

vnm[i + 1] i f vnm[i + 1] < vmax
vmax i f vnm[i + 1] ≥ vmax

(4.24)

where vmax = k(vub − vlb), being k a constant comprised between 0 and 1 and vup
and vlb the upper- and lower-boundaries of the velocity. Moreover, if the particle
is about to go further the boundary limits the velocity is set randomly in order to
set the next position of the particle between boundaries.

• The inertia weight value is problem dependent. A common strategy is to start
with a large values to facilitate the exploration and linearly decrease its value to
promote exploration. Hence:

ω[i] = (ω[0]−ω[N − 1])
N − i

N
+ ω[N − 1] (4.25)

where ω[0] = 0.9 and ω[N − 1] = 0.4.

• It has been shown that PSO has the ability to find optimum solutions with a small
sizes of 10 to 30. In this work we will use 25 particles.

• Particles draw their strength from their cooperative nature, and are more effective
when nostalgia (c1) and envy (c2) coexist in a good balance (c1 ≈ c2).
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4.5.2 The Figure of Merit

The fitness of the solutions is assessed by defining a figure of merit (FOM) that include
the performance parameters shown in subsection 4.2.2. The FOM gives a value that
should be minimized. Defining the right FOM is crucial to obtain the best solution and
being its definition dependent on the required specifications. One must keep in mind
that trade-off exist among the key performance parameters and at some optimization
point, the optimizer will arrive the Pareto front in which one or some parameter will
not be improved without diminishing other(s) [57].

In a grating coupler low optical losses and large bandwidth are desired, however,
a trade-off exists between them (2D Pareto’s front). Furthermore, in a polarization-
independent grating coupler PDL and its bandwidth are included as an extra parameters
which leads to extend the Pareto’s front to four dimensions. The dependence among
the four parameters is reflected in Fig. 4.21.

CE (TE/TM) BW (TE/TM) PDL PDL BW

BW (TE/TM) CE (TE/TM) PDL PDL BW

PDL CE (TE/TM) BW (TE/TM) PDL BW

PDL BW CE (TE/TM) BW (TE/TM) PDL

Parameters to optimize Parameters susceptible to improve (green) or worsen (red)

Figure 4.21. Grating coupler parameters dependence.

In this work, grating couplers are designed to cover the telecom C-band (1530 - 1560
nm) while maximizing the coupling efficiency at 1550 nm. The perfect grating does not
exist, thus according to Fig. 4.21 three different FOMs are proposed depending on the
critical parameter to improve while the others can be relaxed. The first FOM includes
the four parameters [Eq. (4.26)] and tries to balance them. The second one is focused on
the coupling efficiency and both PDL and bandwidth constraint are relaxed [Eq. (4.27)].
Finally, the last FOM relaxes the performance at 1550 nm and aims to cover the entire
C-band with PDLs lower than 1 dB [Eq. (4.28)]. The values of PDL and CE are in dB
and are obtained at 1550 nm whereas the bandwidth is in nanometres and is clipped in
the C-band wavelength range (35 nm).

FOM =
35

BWPDL PDL− 35
BWTE CETE − 35

BWTM CETM (4.26)

FOM = −
(

CETE + CETM
)

max (1, PDL) (4.27)
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FOM = −
(

CETE + CETM
)( 35

BWPDL

)8

(4.28)

4.5.3 Integration with a Commercial Software

The PSO algorithm is developed in C# using the Visual Studio IDE [58] and is integrated
with the RSoft commercial software [59] which is used to calculate the response of
the gratings by 2D-FDTD (see Appendix A.3 for grating’s simulation method). The
developed program is mainly based on variables such as structs, lists and arrays. Several
functions have been developed to implement functionalities such as to launch or read the
status of RSoft, sorting, search, read/create files, etc. Furthermore, the program works
with asynchronous tasks and a user interface was developed to ease its utilization.

User interface

The user interface of the program is shown in Fig. 4.22. The output textbox contains
the name of the name of the output simulation. The Nequiv textbox refers to a text file
containing the subwavelength fill-factor, the equivalent refractive index of the subwave-
length structure and the associated effective refractive index of the slab waveguide for
TE and TM polarization. In the Grating Parameters box the user can set the number of
periods and the lower- and upper-limits of fSWG and Γ. The Particle Swarm Optimiza-
tion box contains the parameters related to the PSO algorithm together with elapsed
time of the optimization. Finally, at the bottom, a live log indicates the key parameters
of each particle and the associated cost (FOM).

Figure 4.22. User interface of the developed program for combining PSO and RSoft.
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Figure 4.23. Implemented program flow-chart.

Back-end

Once the Optimize button is pressed, the programs begins to run and loads the user
parameters as well as the data from the Nequiv file. Then, several steps are carried out
internally by the program as depicted in the flow-chart of Fig. 4.23. Detailed description
of each step is as follows.

Initialize particles The particles position are randomly initialized. The associated
pBests are assigned to that position and velocities are set to zero. The gBest is initialized
with a cost equal to +∞.

Update report A text file that serves as report for the user is updated with all the
particles position, velocity, pBests and gBest.

Phase-matching The parameters of the grating unit cells (Λ and f ) are obtained by
using Eqs. (4.19) and (4.20).

Physical parameters The physical parameters such as the widths and the position in
the z-axis of the grating etched regions together are set with the associated equivalent
refractive index for both polarizations.

CAD creation The CAD files used for simulation by RSoft for TE and TM polariza-
tion are created using the aforementioned physical parameters. Furthermore, several
fibre monitors are placed over the z-axis in order to obtain the position of the fibre
corresponding to the best FOM value in a single simulation.
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Run simulations Parallel simulations are launched taking advantage of the CPU multi-
cores. The program remains in this step until all the simulations are finished.

Fitness calculation The values of the FOMs are obtained from the output spectra given
by ended simulations. For each particle the FOM is calculated at each fibre position and
the best is saved.

pBest update The pBests of each particle are updated, if required.

gBest update The gBest is updated, if required.

Live log update The live log of the program is updated with the new values.

Save best spectra The spectra associated to the gBest is saved in text file.

Velocitiy update The velocity of the particles is updated. Clamping is made, if re-
quired.

Position update The position of the particles is update with the obtained velocity.

4.6 Final Designs

In this section the results obtained by applying PSO for the different FOMs are shown.
Table 4.1 shows the parameters used for all optimization cases and in all cases the
number of periods in the grating was fixed to 20. For the three different FOMs the
final grating and optimized variables value are summarized as well as the initial and
final spectra of the gBest and the evolution of the fitness with the iterations. Finally, a
comparison among the three FOMs is carried out.

Table 4.1. Summary of the PSO parameters used for optimization.

Iterations # Particles c1 c2 ωini ωend k χ

150 25 2.05 2.05 0.9 0.4 0.1 1

Figure of Merit #1

The best values for the optimized variables together with the corresponding grating’s
physical parameters are shown in Table 4.2. Most of fSWG values are between 35 %
(35 nm) and 75 % (75 nm). On the other hand, the Γ factors are close but different
to 1, which proves the necessity of their inclusion in the phase-matching equation and
the optimization. Furthermore, for the three variables, most of values are far from
boundaries. Regarding, the physical values, the length of the different subwavelength
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Table 4.2. Final grating and PSO parameters using FOM #1.

Grating period

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Λ (nm) 742 693 714 723 633 798 601 692 728 598 840 762 575 801 739 662 643 650 662 569

f (%) 60 45 52 48 31 59 17 41 44 19 67 53 21 56 48 36 32 31 40 12

fSWG (%) 37 49 51 64 75 63 82 73 71 84 59 64 10 72 68 72 77 67 47 81

ΓTE 1.02 1.01 0.99 1.01 0.99 1.02 1.02 1.01 1.04 1.01 1.02 1.03 1.03 1.04 1.03 1.00 1.00 1.02 1.00 1.00

ΓTM 0.99 1.02 0.97 0.99 0.99 0.97 1.05 0.99 1.01 1.02 0.96 0.99 1.03 0.98 1.00 0.99 0.99 1.04 1.03 1.04

structures is greater than 100 nm, which is far from the lithography minimum feature
size.

The evolution of the gBest fitness as a function of the iterations is shown in Fig.
4.24a. The cost of the gBest is rapidly decreased in the first iterations. This behaviour is
attributed to the size of the swarm and the promotion of the exploration. Afterwards,
the cost decrease with a slower pace and converges from the 100-iteration. The spectra
for the gBest particle at the beginning and at the end of the optimization are depicted in
Fig. 4.24b and 4.24c, respectively. At the beginning, the PDLs are very low but because
of the low coupling efficiency for both polarizations (see Fig. 4.21). For the final spectra,
the coupling efficiencies are increased from −7.5 dB to −4 dB while keeping the PDL
lower to 1 dB in the entire C-band.
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Figure 4.24. (a) Fitness of the gBest as a function of the iterations. (b) Initial and (c) final
spectra of the gBest. Results correspond to FOM #1.

Figure of Merit #2

For the second FOM the best values are summarized in Table 4.3. The optimized vari-
ables show similar behaviour like the previous design but with different values. Fur-
thermore, the physical parameters are feasible to fabricate since the minimum size is 20
nm.

The PSO converges in the first iterations as seen in Fig. 4.25a. The initial spectrum
does not meet the requirement of having less than 1 dB of PDL at 1550 nm. Moreover,
the coupling efficiencies are quite low (see Fig. 4.25b). These values are improved at the
end of the optimization (see Fig. 4.25c). The PDL is lower than 1 dB, however, the PDL
bandwidth is small it was object of optimization since it is not included in the FOM.
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4.6. Final Designs

Table 4.3. Final grating and PSO parameters using FOM #2.

Grating period

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Λ (nm) 760 700 794 677 650 699 729 669 680 763 718 678 662 796 727 709 610 668 614 743

f (%) 67 51 59 39 33 41 45 37 43 63 49 43 47 59 51 48 26 51 48 55

fSWG (%) 31 45 51 70 75 70 70 73 65 38 63 54 28 53 55 58 68 30 19 48

ΓTE 1.03 0.99 1.04 1.00 1.00 1.02 1.04 1.00 0.98 1.02 1.00 0.99 1.01 1.05 1.01 1.00 0.98 1.00 0.98 1.01

ΓTM 0.98 0.98 1.01 0.99 0.99 1.00 1.01 0.99 0.97 0.98 0.97 1.00 1.01 1.01 0.99 0.98 1.02 0.99 0.96 0.99

Regarding the coupling efficiencies, these suffer an increment of up to 5 dB and values
as high as −2.5 dB are achieved for TE polarization.
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Figure 4.25. (a) Fitness of the gBest as a function of the iterations. (b) Initial and (c) final
spectra of the gBest. Results correspond to FOM #2.

Figure of Merit #3

The best values corresponding to the last FOM are summarized in Table 4.4. As well
as with the previous designs, the optimized variables are within boundaries and the
physical parameters are feasible to fabricate since the minimum size is 20 nm.

Table 4.4. Final grating and PSO parameters using FOM #3.

Grating period

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Λ (nm) 696 652 763 781 644 626 713 695 803 701 677 653 634 655 620 541 679 712 573 665

f (%) 60 43 63 55 28 32 45 41 61 41 50 37 37 43 38 6 44 51 13 39

fSWG (%) 30 43 41 60 77 77 71 71 57 67 32 49 42 33 18 84 42 42 83 57

ΓTE 0.98 0.97 1.00 1.04 1.02 0.97 1.01 1.01 1.03 1.03 1.00 1.00 0.98 1.00 1.03 0.98 1.01 1.02 1.00 0.99

ΓTM 0.95 0.99 0.96 1.00 1.03 0.96 0.98 0.99 0.98 1.02 1.00 1.04 1.02 1.03 1.03 1.03 1.03 1.01 1.04 1.01

The PSO converges in in a similar way as in FOM #1 as seen in Fig. 4.26a. Although
the initial spectrum meets the requirement of having a PDL bandwidth in the C-band
with PDLs lower than 1 dB, the coupling efficiencies are very low (see Fig. 4.26b). After
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Chapter 4. Development and Results

the optimization, PDL requirements are still met but coupling efficiencies improve more
than 5 dB as shown in 4.25c.
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Figure 4.26. (a) Fitness of the gBest as a function of the iterations. (b) Initial and (c) final
spectra of the gBest. Results correspond to FOM #3.

4.6.1 Comparison

The final parameters of the gratings for the different FOMs are shown in Table 4.5.
Overall, the best grating performance is achieved to the grating corresponding to FOM
#1. The grating of FOM #2 presents better CE for TE polarization, but at the cost of
lower bandwidth and an increase in the PDL. Finally, the grating of FOM #3 covers the
entire C-band with PDL lower than 1 dB, but with slightly worse CE values than the
one of FOM #1 since this parameter it is not evaluated in the FOM.

Table 4.5. Comparison of the final gratings performance. Coupling efficiencies and
PDLs are given at λ = 1550 nm.

TE TM PDL

CE (dB) BW (nm) CE (dB) BW (nm) PDL (dB) BW (nm)

FOM #1 −3.96 35.0 −3.97 35.0 0.01 35.0

FOM #2 −2.79 35.0 −3.78 29.06 0.99 21.3

FOM #3 −3.70 35.0 −4.08 34.4 0.39 35.0

It would be also interesting to known if by using other simulation methods or doing
a parametric scan of the optimized variables, similar results would have been attained.
A comparison in terms of time and resources among the different FDTD methods to
simulate a grating coupler is shown in Table 4.6. The comparison is made for the same
workstation that has 8 core CPU @ 3.00 GHz (Intel Xeon E5450) and 18 Gb of RAM.
Simulate the whole structure by mean of 3D-FDTD is feasible but becomes very low
efficient. Periodic boundary conditions (PBC) can be applied because of the subwave-
length periodicity in the x-axis. By using this condition, the times decreases from around
one day to one hour. However, despite this drastic decrease, optimization is not feasible
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4.6. Final Designs

yet. Although PSO converges rapidly, if the same optimization produce is applied simu-
lating the gratings with 3D-FDTD with PBC then, the optimization would last almost 64
years. Finally, by simulating the cross-section of the grating with 2D-FDTD, simulation
time decreases to only 20 s with a single core of the CPU. This last enables to simulate
different gratings at the same time. As a consequence, the total optimization time is
only 6-7 hours.

Table 4.6. Grating simulation for different FDTD methods.

3D-FDTD 3D-FDTD (PBC) 2D-FDTD

Time ∼ 24 h ∼ 1 h ∼ 20 s

CPU Cores 8 8 1

RAM ∼ 12 Gb ∼ 800 Mb ∼ 20 Mb

On the other hand, let us suppose a very coarse parametric scan of the grating
coupler parameters with 10 steps for each variable. The number of combinations is 1060

and gratings are simulated with 2D-FDTD and taking advantage of parallel simulations.
The required time would be of ∼ 5× 1054 years. The number of workstations working
on clustering to reduce the total time to 6 hours would be ∼ 1056, which assuming
that each workstation consumes 400 W this would be equal to the power that generates
∼ 1032 Suns [60]. In other words, it is impossible to apply a parametric scan to all the
variables for optimization purposes.
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Chapter 5

Conclusions and Future Work

In this master thesis, novel high-performance polarization-insensitive grating couplers
have been proposed for the silicon photonics platform. The working principle of the
proposed gratings is two-fold. On one hand, the polarization-insensitive condition is
provided by using subwavelength structures that act as uniaxial dielectric homogeneous
metamaterials. On the other hand, the high-performance behaviour is achieved after
optimizing the grating by means of a nature-inspired algorithm such as particle swarm
optimization.

The investigation of the influence of the subwavelength pitch has been focused on
the capability of approximating these kind of structures as homogenous materials. Dif-
ferent studies have been carried out through: (i) the analysis of the dispersion-relation
equation; (ii) the field profile and axial ratio; (iii) the leaky modes and transmittance/re-
flectance values when it is interfaced with silicon. From (i) it has been shown that
diffraction or higher-order solutions are suppressed from pitches lower to 450 nm. From
(ii) the field profile is not constant along the periodicity and approximates to a plane
wave when ΛSWG → 0 nm. This field variation arise leaky modes when the structure
is interfaced with silicon, as it has been shown in (iii). For ΛSWG values greater than
100 nm, these leaky modes could interfere with the propagated wave within the grat-
ing and thus, the homogeneity approximation does not fulfil for the crosswise stack.
Furthermore, for TE polarization the equivalent metamaterial exhibits not only a uni-
axial dielectric behaviour but also a diamagnetic one. Therefore, pitch values lower
than ∼ 100 nm are needed to accurately approximate the periodic structure as a pure
dielectric homogenous material.

Regarding the optimization, the combination of the developed program integrated
with the commercial photonic software (RSoft) –the first to implement the PSO and the
second to perform the simulations– has provided excellent results. The potential of the
algorithm has been tested with different grating specifications defined in the FOM. In all
cases, the achieved results have met the specifications with values comparable or even
superior to the state-of-the-art. Furthermore, the utilization of this algorithm together
with the approximation of the dielectric metamaterials as homogenous –that allows fast
2D-FDTD simulations– provides an ultra-efficient design method compared with typical
parametric scans of the grating variables.

Therefore, PSO has been successfully demonstrated as an efficient way for optimiz-
ing complex and high-degree freedom photonic structures such as these metamaterial
grating couplers. The drastic reduction that proves this tool in terms of time and re-
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sources would be interesting for the industry where one of the main objectives is cost-
saving. On the other hand, the proposed grating designs could be used in a wide range
of integrated photonic applications such as telecom or new ways of computing.

Future Work

The topics developed in this thesis allow for future work. More interesting are:

• The experimental demonstration of the proposed gratings would be the last step
to close this work. The gratings could be fabricated using PECVD for depositing
the 100 nm remaining silicon layer and the 1-µm-thick SiO2 upper-cladding. For
lithography of the grating patterns electron beam lithography (EBL) would be
used.

• The study of subwavelength structures have arisen intriguing results that would
be interesting to further investigate. The diamagnetic response that exhibits the
equivalent metamaterial for TE polarization is very strong –comparable to super-
conductors – and, to the best of our knowledge, have not been reported up to date
this kind of behaviour using lossless dielectric structures.

• Finally, regarding the PSO, the developed software allows for further improve-
ments such as including more features that improve the user experience. Fur-
thermore, the software could be extended to any kind of grating and integrated
photonic platform.

Concluding Remarks

I would like to highlight all of the bulk work that has been carried out to perform
this thesis. Most of this work has been developed based on mathematical formulae
and expressions. These have to be translated into a computer program or script in
which many times either the formal definition cannot be implemented, or the intrinsic
discretization of the expression arise other issues that have to be tackle. Continuing with
programming, implementing PSO and integrating with RSoft have required thousands
of code lines and countless time of debugging process. Although RSoft is very well
documented and their files can be modified easily, it has to be noticed that is not an open
source program. Indeed, a wide variety of programs –each one with its own learning
curve– have been used to develop (Visual Studio, Matlab, Mathematica, RSoft. . .) and
write (LATEX, PowerPoint, Adobe Acrobat, Mendeley, Blender. . .) this thesis.
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Author’s Merits

The potential of PSO applied to polarization-intensive grating couplers based on dielec-
tric metamaterials was presented at the 19th European Conference of Integrated Optics
(ECIO)1 as an oral talk:

• J. Parra and P. Sanchis, “Particle Swarm Optimization for Polarization-Independent
and Low Loss Grating Couplers,” in 19th European Conference of Integrated Optics
(ECIO 2017), pp. 1-3, Belgium, 2017.

Although it is not directly related to this work, the study of the effective medium
theory for the subwavelength structures allowed its application on a hybrid silicon/-
vanadium dioxide waveguide that act as a TE pass-polariser. This work was published
in the journal Optics Letters:

• L. D. Sánchez, I. Olivares, J. Parra, M. Menghini, P. Homm, J.-P. Locquet, and P.
Sanchis, “Experimental demonstration of a tunable transverse electric pass polar-
izer based on hybrid VO2/silicon technology,” Optics Letters, vol. 43, no. 15, p.
3650, 2018.

1ECIO is a conference focused on leading edge research on integrated optics, optoelectronics and nano-
photonics and gathers experts from academia and industry to show their latest technical results, and show-
case their products and services [www.ecio-conference.org].
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Appendix A

Numerical Simulation Methods

Throughout the present work, several numerical simulations have been carried in or-
der to solve the Maxwell’s equations either by using finite element method (FEM) or
finite-difference time-domain (FDTD). This appendix deals with the set-up simulations
parameters such as boundary conditions or mesh size used in the different simulation
of the structures used in the work.

A.1 Eigenmodes of a Slab Waveguide

Eigenmodes of a slab waveguide are obtained by 1D-FEM since the refractive index
varies only in the y-axis. The simulation domain is depicted in Fig. A.1. A silicon
waveguide is surrounded by a 1-µm-thick under- and upper-cladding of SiO2. However,
the silicon can be replaced by other material with refractive index greater than SiO2.
Simulations are carried out at 1550 nm using a mesh size larger than 25 points per
wavelength in order to obtain a good accuracy in the refractive index value.

SiO2SiO2 Si

1 µm 1 µm

y

z twg

Figure A.1. Slab waveguide simulation set-up.
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A.2. Diffraction Strength Between a Silicon Slab Waveguide and a Metamaterial
Slab Waveguide

A.2 Diffraction Strength Between a Silicon Slab Waveguide and
a Metamaterial Slab Waveguide

The diffraction strength or coupling losses between a silicon slab waveguide (medium I)
and a metamaterial slab waveguide (medium II) is obtained by using 2D-FDTD. In Fig.
A.2 is shown the CAD of the simulation set-up. Both slab waveguides are 320-nm-thick
and fully surrounded of SiO2. The permittivity of the core metamaterial waveguide is
obtained using Rytov expressions for TE and TM polarization [Eqs. (4.15) and (4.14)].
Perfect match layers (PMLs) are used at boundaries in order to absorb the scattered light
at the interface between both waveguides. The structured is excited with the slab mode
of the Si-waveguide, which propagated along the z-axis. Finally, the diffraction strength
is calculated as the relation between the input power and the remain guided power. This
latter is recorded by placing a monitor far away from the interface to avoid leaky waves.

PML

PML

PML

Si

εeff

Power
monitor

Slab 
mode

PML

x

z

Figure A.2. Simulation set-up used for obtaining the diffraction strength between a Si-
slab waveguide and a metamaterial slab waveguide. The thickness of both waveguides
is 320 nm and are fully surrounded of SiO2.

A.3 Grating Coupler Performance

Grating couplers are simulated using 2D-FDTD. The simulation set-up is shown in Fig.
A.3. The grating is comprised of a silicon waveguide with metamaterial teeth of a
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refractive index Nequiv. The domain comprises the silicon substrate to take into account
reflections from the SiO2-BOX/Si substrate interface. Open boundary conditions are
set by using a perfect matched layer (PML). A non-uniform mesh is used in order to
alleviate the computational cost while maintaining the accuracy. A maximum size of 50
nm is set with a minimum division of 10 in both axis between refractive index changes.
Therefore, the mesh is ultra-fine in the grating teeth while in the air region becomes
coarse. A pulse is used as a launch in order to obtain the performance of the grating with
a single simulation by using afterwards the fast Fourier transform. Furthermore, several
monitors are placed with an offset in the z-axis in order to record the best possible
coupling efficiency. This latter is calculated as the overlap between mode of a single-
mode fibre and the recorded diffracted wave.

Si substrate

SiO2 BOX

SiO2 Upper-cladding

Fibre monitors

Air

Reflectance 
monitor

Launch

Si Nequiv

z

y

Figure A.3. Simulation set-up used obtaining the performance of the polarization-
independent grating couplers.
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Appendix B

Transfer Matrix Method applied to
Periodic Structures

This appendix deals with the transfer matrix method (TMM) applied to a two-layer
crosswise periodic structure. The utilization of TMM allows to obtain both the field
profile and propagation constant. Let us suppose a semi-infinite structure in the y-
and z-axis formed by two-layers with permittivites εa and εb with thicknesses a and b,
respectively (see Fig. B.1). The two-layers extend periodically in the x-axis with a pitch
Λ = a + b.

εa εb

a b

… …

x

Figure B.1. Two-layers periodic stack.

The field solution, φ(x), which corresponds to the E- and H-field depending on the
polarization, can be expressed in each n-unitary cell as:

φa,n(x) = a+n e−jkx,a(x−nΛ) + a−n ejkx,a(x−nΛ)

φb,n(x) = b+n e−jkx,b(x−nΛ) + b−n ejkx,b(x−nΛ),
(B.1)

where the superscripts + and − stands for the forward (+x) and backward (−x) wave,
the subscript n is the n-unitary cell and kx is the value of the wavevector. On the
other hand, the field must satisfy the boundary condition of the continuity of the vector
displacement (D) and its derivative at the interfaces. For the Ey-polarized light we have
that:

φa,n(nΛ + a) = φb,n(nΛ + a) and φb,n(nΛ + Λ) = φa,n+1(nΛ + Λ)

dφa,n(nΛ + a)
dx

=
dφb,n(nΛ + a)

dx
and

dφb,n(nΛ + Λ)

dx
=

dφa,n+1(nΛ + Λ)

dx

(B.2)
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whereas for the Hy-polarized light:

φa,n(nΛ + a) = φb,n(nΛ + a) and φb,n(nΛ + Λ) = φa,n+1(nΛ + Λ)

1
εa

dφa,n(nΛ + a)
dx

=
1
εb

dφb,n(nΛ + a)
dx

and
1
εa

dφb,n(nΛ + Λ)

dx
=

1
εb

dφa,n+1(nΛ + Λ)

dx
(B.3)

Replacing the above expressions into the field expressions and arranging the result-
ing equations in a matrix form, we arrive to Eqs. (B.4) and (B.5) for Ey-polarized light
and Eqs. (B.6) and (B.7) for Hy-polarized light.(

1 1
−kx,a kx,a

)(
e−jkx,aa 0

0 ejkx,aa

)(
a+n
a−n

)
=(

1 1
−kx,b kx,b

)(
e−jkx,ba 0

0 ejkx,ba

)(
b+n
b−n

) (B.4)

(
1 1
−kx,a kx,a

)(
1 0
0 1

)(
a+n+1
a−n+1

)
=(

1 1
−kx,b kx,b

)(
e−jkx,bΛ 0

0 ejkx,bΛ

)(
b+n
b−n

)
.

(B.5)

 1 1

− kx,a

εa

kx,a

εa

( e−jkx,aa 0
0 ejkx,aa

)(
a+n
a−n

)
=

 1 1

− kx,b

εb

kx,b

εb

( e−jkx,ba 0
0 ejkx,ba

)(
b+n
b−n

) (B.6)

 1 1

− kx,a

εa

kx,a

εa

( 1 0
0 1

)(
a+n+1
a−n+1

)
=

 1 1

− kx,b

εb

kx,b

εb

( e−jkx,bΛ 0
0 ejkx,bΛ

)(
b+n
b−n

)
.

(B.7)

For the sake of simplicity this can be expressed as:

MaPa(a)
(

a+n
a−n

)
= MbPb(a)

(
b+n
b−n

)
(B.8)

and

MaPa(0)
(

a+n+1
a−n+1

)
= MbPb(Λ)

(
b+n
b−n

)
(B.9)
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where Ma and Mb depend on the light polarization and Pa/b(x) refers to the complex
exponential matrix evaluated at a given x point. By eliminating [b+n b−n ]T, the field
transfer function in a unitary cell is obtained:(

a+n+1
a−n+1

)
= Pa(0)−1M−1

a MbPb(Λ)Pb(a)−1M−1
b MaPa(a)

(
a+n
a−n

)
(B.10)

The above expression can be further simplified taken into account the properties of
complex exponentials in Pi(x), i.e., Pi(x)−1 = Pi(−x) = P∗i (x). Therefore:(

a+n+1
a−n+1

)
= MabPb(b)MbaPa(a)

(
a+n
a−n

)
→
(

a+n+1
a−n+1

)
= Q

(
a+n
a−n

)
(B.11)

where Q is the so-called translation matrix within a unitary cell. The Qij terms for
Ey-polarized light are:

Q11 = e−jkx,aa
[

cos(kx,bb)− j
1
2

(
kx,a

kx,b
+

kx,b

kx,a

)
sin(kx,bb)

]
Q12 = ejkx,aa

[
j
1
2

(
kx,a

kx,b
− kx,b

kx,a

)
sin(kx,bb)

]
Q21 = e−jkx,aa

[
−j

1
2

(
kx,a

kx,b
− kx,b

kx,a

)
sin(kx,bb)

]
Q22 = ejkx,aa

[
cos(kx,bb) + j

1
2

(
kx,a

kx,b
+

kx,b

kx,a

)
sin(kx,bb)

]
(B.12)

whereas for Hy-polarized light are:

Q11 = e−jkx,aa
[

cos(kx,bb)− j
1
2

(
εbkx,a

εakx,b
+

εakx,b

εbkx,a

)
sin(kx,bb)

]
Q12 = ejkx,aa

[
j
1
2

(
εbkx,a

εakx,b
− εakx,b

εbkx,a

)
sin(kx,bb)

]
Q21 = e−jkx,aa

[
−j

1
2

(
εbkx,a

εakx,b
− εakx,b

εbkx,a

)
sin(kx,bb)

]
Q22 = ejkx,aa

[
cos(kx,bb) + j

1
2

(
εbkx,a

εakx,b
+

εakx,b

εbkx,a

)
sin(kx,bb)

]
(B.13)

Finally, the translation matrix is unimodular, i.e.:

Q1,1Q2,2 −Q2,1Q1,2 = 1. (B.14)

On the other hand, due to the periodicity of the structure, the Floquet theorem can
be applied. Hence, the problem becomes in an eigenvector and eigenvalue problem:(

a+1
a−1

)
= e−jkxΛ

(
a+0
a−0

)
Q
(

a+0
a−0

)
= e−jkxΛ

(
a+0
a−0

) (B.15)
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The eigenvalue is given by:

e−jkxΛ =
1
2
(Q1,1 + Q2,2)±

√[
1
2
(Q1,1 + Q2,2)

]2

− 1 (B.16)

and the associated eigenvectors are:(
a+0
a−0

)
=

(
Q1,2

ejkxΛ −Q1,1

)
and

(
ejkxΛ −Q2,2

Q2,1

)
(B.17)

The eigenvalue equation gives the dispersion-relation equation of the structure, which
relates the values of kz and kx:

cos(kxΛ) =
1
2
(Q1,1 + Q2,2) (B.18)

The field distribution in the a-layer can be obtained from the previous eigenvector.
In order to obtain the eigenvector of the b-layer we can use:(

b+0
b−0

)
= Pb(−a)MbaPa(a)

(
a+0
a−0

)
(B.19)

As a result, we have fully described both field distribution, φ(x), and the associated
wavevectors, kx and kz, for a periodic two-layer. In the present work, the wave propa-
gates only in the z-axis and thus, kx = 0. For this case, the dispersion-relation equation,
i.e., the value of kz, cannot be solved analytically and numeric root-search methods are
required.
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Appendix C

Eigenmode Expansion and
Mode-Matching

This appendix deals with the eigenmode expansion and mode-matching technique ap-
plied to the interface of a homogeneous dielectric medium (Medium I) and one dimen-
sional crosswise subwavelength periodic structure (Medium II). An illustration of this
situation for both polarizations is depicted in Fig. C.1, where a plane wave travels from
medium I to II.
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Figure C.1. Illustration of the analysed situation comprised of a natural homogenous
dielectric medium (medium I) and a periodic two-layer stack (medium II). Both medi-
ums are semi-infinite in the x- and y-axis. The periodicity of the medium II is along
the x-axis. A plane wave is incident from medium I to II with (a) TM and (b) TM
polarization.

Ideally, the number of expanded modes should be ∞, however, computational re-
sources are limited and, from a given point, the contribution of high order modes tends
to be negligible. In this work the number of expanded modes has been taken to ensure
good convergence. Thus, the number of expanded modes has been truncated up to 50.
Furthermore, basing on the results given by these methods, parameters such transmit-
tance and reflectance and the approximation of medium II to a magnetic one are also
derived.
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C.1. Field Expression in a Homogenous Medium (Medium I)

C.1 Field Expression in a Homogenous Medium (Medium I)

In a natural homogenous medium Maxwell’s equations derived in a plane wave solution
being both electric and magnetic components transverse (TEM wave). However, if the
field at the interface with a periodic structure is expanded to higher modes then the
wave is no longer TEM. Thus, the components of the electric and magnetic fields are:

• TE: E = {Ex, 0, Ez} and H = {0, Hy, 0}.

• TM: E = {0, Ey, 0} and H = {Hx, 0, Hz}.

where nI,m is the effective refractive index of the m-expanded mode and ε I the permittiv-
ity of the medium I. In a homogeneous medium, the effective refractive index of a plane
wave that propagates through the medium (m = 0) is equal to the refractive index of
the medium. The effective refractive index of leaky modes, i.e., the higher order modes
(m 6= 0) that do not propagate but can exist at the interface between both media is given
by the following dispersion-relation equation:

kz,m =

√
k2

0ε I −
(

kx + m
2π

Λ

)2

(C.1)

where Λ stands for the period of medium II, kz,m is the value of the wavevector cor-
responding to the m-expanded mode, k0 is the value of the vacuum wavector (2π/λ)
and m is an integer number ranging from −∞ to +∞. Taking into account that the in-
cident wave only propagates in the z-axis, kx = 0 and kz,m = nI,mk0. Thus, the effective
refractive index can be expressed as:

nI,m =

√
ε I −

(
m

λ

Λ

)
(C.2)

The values of nI,m are antisymmetric in respect to m, i.e., nI,m = −nI,−m. On the other
hand, it should be noted that for large λ/Λ relations no diffraction is allow and thus,
the effective refractive index becomes imaginary for m 6= 0. Therefore, these modes can
exist at the interface between the two media but do not propagate.

Finally, the field expressions at the interface (z = 0) along the x-axis for the m-mode
and both polarizations are summarized in Table C.1 where the term φm(x) is:

φm(x) =

∫ Λ

0
exp

(
j
2πm

Λ
x
)

. (C.3)

It has to be noticed, that for m = 0 we obtain the typical expression of a plane wave with
a constant field along the x-axis, whereas for m 6= 0 the field expression corresponding
to leaky modes is not constant along the x-axis and these do not propagate.
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Table C.1. Field profile expression of the E- and H-fields in medium I.

TE TM

E H E H

Ex/Hx
nI,m

ε I
φm(x) – – −nI,mφm(x)

Ey/Hy – φm(x) φm(x) –

Ez/Hz −j
k0

ε I

dφm(x)
dx

– jk0
dφm(x)

dx

C.2 Field Expression in a Crosswise Periodic Structure (Medium
II)

In the second medium comprised by a stack of two-layers, the fields are obtained from
solving the dispersion-relation equation of a two-layer periodic medium and TMM us-
ing the method explained in Appendix B. Conversely to a homogenous medium, both
propagated and leaky waves are not TEM. Thus, the electric and magnetic fields have
two components, which are:

• TE: E = {Ex, 0, Ez} and H = {0, Hy, 0}.

• TM: E = {0, Ey, 0} and H = {Hx, 0, Hz}.

The z-component of the E- and H-field becomes negligible only when λ/Λ → ∞.
Hence, in order to rigorously solve the field between both media, the z-component must
be taken into account. By solving the dispersion-relation equation [(Eq. (4.10))], the
effective refractive indices for the propagated and leaky modes are obtained. In this
case, the equation cannot be solved analytically. Furthermore, the values of nI I,m are
antisymmetric only for some certain values of m. Hence, the values given when solving
the dispersion-equation need to be sorted. The following produce was carried out to
assign each value to the associated m-mode:

1. Collect M unsorted imaginary ne f f values by solving Eq. (4.10) with a root-finding
algorithm, for instance, Newton’s method.

2. Calculate the same number of values by using Eq. (C.2) with ε I equal to the
effective permittivity of the two-layers stack.

3. For each value obtained in the first step, compare to those obtained in the second
step and assign the corresponding m-position.

Finally, the field expressions (E and H) of the m-mode for both polarization at the
interface are summarised in Table C.2.
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Table C.2. Field profile expression of the E- and H-fields in medium II.

TE TM

E H E H

Ex/Hx
nI I,m

ε I I(x)
φx(x) – – −nI,mφx(x)

Ey/Hy – φm(x) φm(x) –

Ez/Hz −j
k0

ε I I(x)
dφm(x)

dx
– – jk0

dφm(x)
dx

C.3 Interface between Medium I and II

Once the propagation constants and field profiles have been calculated in both medium,
amplitude of each expanded mode is obtained by applying the so-called mode-matching
technique. The relation is given by the transmitted and reflected vectors containing the
amplitude of each mode and applying boundary conditions. For the sake of simplicity,
this is done at z = 0 in order to eliminate the complex exponential of the field. Therefore,
after some cumbersome process it can be arrived to Eqs. C.4 and C.5 for Ey-polarised
light. Similar expression can be obtained for Hy-polarised light [Eqs. (C.6) and (C.7)].

a + r = VI It (C.4)

YI(a− r) = VI IYI It (C.5)

a + r = UI It (C.6)

ZI(a− r) = VI It (C.7)

The terms a, r and t stand for arrays that contains the complex amplitudes of the
incident (medium I), reflected (medium I) and transmitted (medium II) modes. The size
of these arrays is N × 1, where N is the number of expanded modes. YI and YI I stand
for the diagonal admittance matrices in the medium I and II, respectively, and equal to
YI = nI,m I and YI I = nI I,m I, where I is the unitary matrix. ZI is the impedance matrix
of medium I, which is defined as ZI = nI,m/ε I I. Finally, the terms VI I and UI I are the
matrices whose columns contain the eigenvector of the m-mode of the E- and H-field,
respectively, in the medium II. The eigenvectors are calculated as:

VI I(m, p) =

∫ Λ

0
EI I,m(x) exp

(
j
2πp

Λ
x
)

dx (C.8)

and

UI I(m, p) =

∫ Λ

0
HI I,m(x) exp

(
j
2πp

Λ
x
)

dx (C.9)

where EI I,m(x) and HI I,m(x) are the y-component of the E- and H-field, respectively, in
the periodic medium and p is an integer number that ranges between −N/2 and N/2.

Here, only a plane wave impinges from the medium I into the II. Therefore, the array
a equals 1 for m = 0 and 0 for m 6= 0. The value of the transmission and reflection arrays
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is calculated using Eqs. (C.10) and (C.11) for the Ey-polarised light and using Eqs. (C.12)
and (C.12) for Hy-polarised light.

t = 2
(

I + VI I
−1YI

−1VI IYI I

)−1
VI I a (C.10)

r = VI It− a (C.11)

t = 2
(

I + UI I
−1ZI

−1VI I

)−1
UI I a (C.12)

r = UI It− a (C.13)

Once the values of r and t are obtained, the E- and H-fields in the x-z plane of both
medium can be calculated as:

EI(x, z) = ∑
m
(am ± rm)EI,m(x) exp (jk0nI,mz) (C.14)

HI(x, z) = ∑
m
(am ± rm)HI,m(x) exp (jk0nI,mz) (C.15)

EI I(x, z) = ∑
m

tmEI I,m(x) exp (−jk0nI I,mz) (C.16)

HI I(x, z) = ∑
m

tmEI I,m(x) exp (−jk0nI I,mz) (C.17)

where the sign of ± in the field expression of medium I will depend on the polarization.

C.4 Reflectance and Transmittance

Power

The power, P, can be defined as the integral of the Poynting vector over a line, region or
volume. The Poynting vector is defined as S = <(E× H∗). For our case, the Poynting
vector for an Ey- and Hy-polarized light is given by Eqs. (C.18) and (C.19), respectively.

S = Sx x̂ + Szẑ = <(EyH∗z x̂− EyH∗x ẑ) (C.18)

S = Sx x̂ + Szẑ = <(−EzH∗y x̂ + Ex H∗y ẑ) (C.19)

The electric and magnetic fields at z = 0 vary only in the x-axis. The integral of S gives
a vector with the amount of power in each direction, i.e.:

P =

∫
Sdx =

∫
Sxdxx̂ +

∫
Szdxẑ = Px x̂ + Pzẑ (C.20)

69



C.4. Reflectance and Transmittance

Reflectance

Reflectance, R, is the relation between the reflected power of the m-mode, Pr,m and
the incident power, Pi, which typically corresponds to m = 0. Both powers are in the
medium I, thus we have:

Rm =
Pr,m

Pi
=

(
P2

r,m,x + P2
r,m,z

)1/2

|P0,z|
(C.21)

where Pr,m,x and Pr,m,z are x- and z-components of power of the reflected m-mode and
P0,z the z-component of the incident power (m = 0). The reflected powers can be defined
as:

Pr,m,x = |rm|2Pm,x (C.22)

Pr,m,z = |rm|2Pm,z (C.23)

Hence, we arrive to the following expression:

Rm = |rm|2
(

P2
m,x + P2

m,z
)1/2

|P0,z|
(C.24)

where the values Pm,x and Pm,z are obtained from the expanded fields and using the
aforementioned definitions of power.

Transmittance

Transmittance, T, is the relation between the transmitted power of the m-mode, Pt,m, and
the incident power, Pi. The transmitted power is in medium II, whereas incident power
in medium I. Hence, we have an expression similar to the reflectance:

Tm =
PI I

t,m

Pi
=

(
PI I

t,m,x
2
+ PI I

t,m,z
2
)1/2

|P0,z|
(C.25)

The x- and z-component of the transmitted power for each m-mode in the medium II
can be defined as:

Pt,m,x = |tm|2PI I
m,x (C.26)

Pt,m,z = |tm|2PI I
m,z (C.27)

Hence, the following expression is obtained:

Tm = |tm|2
(

PI I
m,x

2
+ PI I

m,z
2
)1/2

|P0,z|
(C.28)

where the values PI I
m,x and PI I

m,z are obtained from the expanded fields and using the
aforementioned definitions of power.
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Appendix C. Eigenmode Expansion and Mode-Matching

C.4.1 Fresnel Equations

The reflection, r, and transmission, t, coefficients between two homogenous media and
assuming normal incidence of the light to the interface are given by Eqs. (C.29) - (C.31),
which are the so-called Fresnel equations.

r(Ey) =
YI I −YI

YI + YI I
(C.29)

r(Hy) =
YI −YI I

YI + YI I
(C.30)

t =
2YI

YI + YI I
(C.31)

The parameter Y stands for the normalized admittance of the medium I or I I, and
is defined as:

Y =

√
εr

µr
(C.32)

Finally, the reflectance and transmittance are |r|2 and
YI I

YI
|t|2, respectively.

C.4.2 Crosswise Subwavelength Periodic Structure as a Homogenous Medium
with Magnetic Properties

A crosswise subwavelength periodic dielectric structure –not in the deep-subwavelength
regime– exhibits an effective refractive index given by the dispersion-relation equation
but does not behave as a pure homogeneous dielectric material since the equivalent
impedance cannot be expressed only in terms of 1/nequiv. In order to fulfil both char-
acteristics, the equivalent medium needs to have some magnetic response, i.e., µr 6= 1.
If the power is not transferred to leaky modes and assuming that the equivalent per-
mittivity and permeability are positive and real, then these can be obtained from the
following equations:

nequiv =
√

µr,I Iεr,I I (C.33)

T0 =
YI I

YI

4Y2
I

Y2
I + 2YIYI I + Y2

I I
(C.34)

in which after doing some manipulations it can be arrived to:

YI I =
2±

√
Y2

I −Y2
I T0 − T0YI + 2YI

T0
(C.35)

µr,I I =
nequiv

YI I
(C.36)

εr,I I = nequivYI I (C.37)

assuming that the medium I is purely dielectric and the sign in Eq. (C.35) is determined
if nI is greater (−) or lower (+) than nequiv.
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