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Resumen

Los satélites con instrumentos 0pticos pasivos son ampliamente utilizados para la teledeteccion de
la superficie terrestre, con aplicaciones que abarcan desde la cartografia hasta la monitorizacion
de recursos naturales. L.os componentes opticos que componen el sensor producen imagenes de
la radiacion solar reflejada por la superficie terrestre en diferentes canales espectrales entre 400 y
2500 nm. La calidad de las imagenes obtenidas depende de la respuesta espectral, radiométrica
y espacial del instrumento. En este ultimo caso, la respuesta espacial determina la resolucion
espacial de las imagenes, y viene definida por la funcion de transferencia de modulacion (MTF,
por sus siglas del inglés). En este trabajo se han implementado dos métodos para la evaluacion de
la MTF del instrumento a partir de las imagenes captadas por satélite. Uno de los métodos permite
estimar la MTF utilizando transiciones abruptas de brillo, mientras que el otro utiliza elementos
con forma de pulso identificados en la imagen, como por ejemplo los puentes. Una vez validado el
funcionamiento de ambos algoritmos mediante simulaciones y el Reference Dataset proporcionado
por el Committee on Earth Observation Satellites (CEOS), se han realizado estimaciones de la MTF
del instrumento Multispectral Imager de la mision Sentinel-2 de la Agencia Espacial Europea. Los
resultados obtenidos son similares a los publicados en los Data Product Quality Report oficiales de
la agencia. Finalmente, se ha estimado el efecto que tiene en la calidad de la imagen la correccion
geométrica aplicada a los datos de Sentinel-2 recibidos por los usuarios.

Resum

Els satel.lits amb instruments Optics passius son ampliament utilitzats per a la teledeteccio de la
superficie terrestre, amb aplicacions que abasten des de la cartografia fins a la monitoritzacié de
recursos naturals. Els components optics que componen el sensor produeixen imatges de la ra-
diaci6 solar reflectida per la superficie terrestre en diferents canals espectrals entre 400 i 2500
nm. La qualitat de les imatges obtingudes depén de la resposta espectral, radiométrica i espa-
cial de I'instrument. En aquest ultim cas, la resposta espacial determina la resolucid espacial de
les imatges, i ve definida per la funcié de transferéncia de modulacié (MTF, per les seues sigles
de I’anglés). En aquest treball s’han implementat dos métodes per a 1’avaluaci6 de la MTF de
I’instrument a partir de les imatges captades per satel.lit. Un dels métodes permet estimar la MTF
utilitzant transicions abruptes de brillantor, mentre que ’altre utilitza elements amb forma de pols
identificats en la imatge, com per exemple els ponts. Una vegada validat el funcionament dels dos
algoritmes mitjangant simulacions i el Reference Dataset proporcionat pel Committee on Earth
Observation Satellites (CEOS), s’han realitzat estimacions de la MTF de I’instrument Multispec-
tral Imager de la missid Sentinel-2 de I’Agéncia Espacial Europea. Els resultats obtinguts son
similars als publicats en els Data Product Quality Report oficials de I’agéncia. Finalment, s’ha
estimat 1’efecte que té en la qualitat de la imatge la correcci6é geométrica aplicada a les dades de
Sentinel-2 rebuts pels usuaris.

Abstract

Satellites with passive optical sensors are widely used for remote sensing of the Earth’s surface,
with applications ranging from cartography to the monitoring of natural resources. The optical



components of the sensor generate images of the reflected solar radiation by the Earth’s surface
in different spectral channels between 400 and 2500 nm. The quality of the resulting images is
defined by the instrument spectral, radiometric, and spatial responses. In the later case, the spa-
tial response conditions the spatial resolution of the images, and it is defined by the Modulation
Transfer Function (MTF). In this work, two methods to assess the MTF of the optical instrument
using in-flight satellite images are implemented. On of them allows to estimate the MTF response
from sharp contrast edges, while the other uses pulse targets identified within the image. Once
the performance of both algorithms is validated with ideal simulations and the Reference Dataset
provided by the Committee on Earth Observation Satellites (CEOS), MTF estimations of the Eu-
ropean Space Agency Sentinel-2 Multispectral Imager are carried out. The obtained results are
similar to those reported at the official Data Product Quality Report of the agency. Finally, the
effect of the geometric correction on the final spatial quality of the image has been analyzed for
Sentinel-2 images.
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Chapter 1

Introduction

1.1 Remote sensing

Remote sensing can be defined as the measurement of object properties on the Earth’s surface
using data acquired form aircraft and satellites [1, 2], that is, retrieving information about objects
or phenomena at a distance. This information can be used in many applications in various fields,
including geography, agriculture, climate change studies, meteorology, and military surveillance.
Since the measuring instrument is not in physical contact with the object of interest, the information
has to be obtained from some kind of electromagnetic waves. In this work, we are going to focus
on the optical waves, ranging from 400 to 2500 nm, as optical remote sensing is the most widely
used technology for Earth observation. The information retrieved from the surface of the Earth
can be used to monitor short and long-term changes and the impact of mankind activities. This
information can be used in many applications in various fields, including geography, agriculture,
climate change and global warming, meteorology, and military surveillance.

Optical instruments on Earth observation satellites have several to hundreds of so-called spec-
tral channels at which images of the Earth’s surface are produced. Evaluating what wavelengths
are absorbed by a specific object, it is possible to gain information on its composition. The modern
era of optical remote sensing began when the USA launched the first Landsat Multispectral Scan-
ner System (MSS), in 1972 [1, 3]. Landsat 1 had 4 spectral bands with a spectral resolution of 100
nm and a pixel size of 80 m. From that moment on, many new remote sensing missions have been
deployed, with increasingly better spectral and spatial resolution coverage.

1.2 Earth observation using passive optical sensors

The reflectance spectrum in the region from 400 to 2500 nm (which includes visible, near infrared
and short wave infrared bands, as shown in Table 2.1) can be used to identify a large range of
surface cover materials [4]. This identification is possible because many common materials have
characteristic absorption features that are 20-40 nm wide at half the band depth.

The main radiation source in the V, NIR and SWIR bands is the solar radiation. Passive optical
sensors of remote sensing satellites take advantage of the solar radiation reflected from the Earth to
retrieve information of the Earth’s surface. The Sun nearly behaves as a blackbody radiator, which
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Band name Wavelength range
Visible (V) 400-700 nm
Near InfraRed (NIR) 700-1100 nm

Short Wave InfraRed (SWIR) 1100-2500 nm

Table 1.1: Spectral bands in the 400-2500 nm spectra.

means that the spectral radiant exitance, M), can be modeled by Planck’s blackbody equation [1,
2]
Ch

—/\5 (e%_1)7 (1.1

where T is the blackbody temperature in Kelvin, C; = 3.74151-108 Wm—2um—4, Cy = 1.43879-
10 mK and X is the wavelength in gm. Empirical measurements show that a blackbody temper-
ature of 7" = 5900 K is a good approximation to model M) in the case of the Sun.

My =

The spectral radiant exitance represents the power per unit area of the surface of the Sun, per
unit of wavelength, and it is measured in Wm~2um™!. The spectral irradiance that reaches the
Earth, Eg, can be calculated by propagating M, that is,

50 _ M)y Area of the solar disk
A7 7 (Distance to Earth)2 ’

(1.2)

which has units of spectral flux density, Wm™2um~".

From the incident radiation E?\, there are three main reflected and scattered contributions that
affect the optical detectors of remote sensing instruments. These contributions are:

* L3", which represents the unscattered surface reflected radiation.
. Lid, which corresponds to the down-scattered surface reflected radiation.

. Lip , which represents the up-scattered radiation from the atmosphere.

1.2.1 Unscattered surface reflected radiation — L5"

The unscattered surface reflected radiation represents the main contribution to the final radiance
detected at the optical sensor of the satellite, as it is caused by a direct reflection of the incident
irradiance at theEarth’s surface, as shown in Figure 1.1(a). The spectral flux density that reaches the
Earth’s surface, Fy, is influenced by the atmosphere. This influence is modeled as a transmittance
function 74(\), which represents the fraction of incident radiation that goes trough the atmosphere.
In addition, the spectral irradiance at the Earth’s surface also depends on the angle of incidence, 0,
measured from the incident path to the normal direction of the Earth’s surface. Therefore, E can
be calculated as

Ey\ = 14(\)E cos(6). (1.3)

When the incident irradiance finally reaches the surface of the Earth, it is reflected and then
influenced again by the atmosphere until it finally reaches the optical instrument of the remote
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Figure 1.1: Scheme of the three main radiation contributions: (a) Unscattered surface re-
flected radiation, (b) down-scattered surface reflected radiation, and (c) up-scattered radia-
tion from the atmosphere.

sensing satellite. Ifthe surface is assumed to be Lambertian, that is, it provides an isotropic radiance
reflection [1, 5, 6], the surface radiance can be finally calculated as

Tu(AN)7a(A)

LY = p(A) = EX cos(6), (14)

with 7,,(\) being the atmosphere transmittance in the Earth-sensor path and p(\) the diffuse surface

spectral reflectance. The surface radiance is measured in Wm™2srad ! ym~—!.

For remote sensing applications, the signal of interest is the surface reflectance, p(\), which
depends on the surface material. Different materials have different reflectance responses as a func-
tion of the wavelength, which allows the remote identification of the material composition from
its spectral signature. To showcase this phenomenon, Figure 1.2 depicts reflectance spectra for
four different materials: green vegetation, soil, kaolinite and water. As it can be observed from the
figure, all the materials have distinctive absorption features that allow for their identification and
classification.

1.2.2 Down-scattered surface reflected radiation — L3¢

The optical instrument of the satellite detects, in addition to unscattered reflected radiance, radiance
down-scattered from the atmosphere to the surface of the Earth and then reflected to the satellite
sensor. This case corresponds to the situation depicted at Figure 1.1(b). The down-scattered radi-
ation is often known as “skylight”. The skylight reflected radiance, L5?, can be calculated as

L3 = Fp(X) T“T(FA)

E, (1.5)

where I represents a shape factor due to obstruction of terrain slope or adjacent objects and Eil
corresponds to the Earth’s surface irradiance due to skylight.
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Figure 1.2: Reflectance as a function of the wavelength for green vegetation, soil, kaolinite
and water. Black solid lines correspond to spectroscopy (continuous 10-nm spectral sam-
pling), while blue dots corresponds to the spectral resampling of the spectroscopy case to the
spectral response of Sentinel-2 Multispectral Imager. (Image extracted from [7]).

1.2.3 Up-scattered radiation from the atmosphere — L}’

The last of the three main contributions to the detected radiance at the satellite sensor is the up-
scattered radiation from the atmosphere, which corresponds to Figure 1.1(c) scenario. The up-
scattered radiation is generated by a combination of Rayleigh scattering and Mie scattering in
molecules with different sizes present at the atmosphere [1, 6]. Empirical measurements show
that for homogeneous scenes the up-scattered radiance, L}’, can be approximately assumed to be
constant.

1.2.4 Total radiance at the optical sensor — L3

In remote sensing satellites, the surface reflectance is estimated from measured radiance values at
the optical instrument. The final radiance contribution at the sensor can be calculated as the sum
of the three main components described above, that is,

u >\ S
= L3+ L 4 L3P = p(M) 7(T ) <Tu(A)E§ cos(6) + FEgl) + L. (1.6)
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1.3 Main parameters of passive remote sensing data

Each pixel of the resulting spectral image of the satellite is generated at the optical sensor as a result
of integrating the reflected scene radiance, L3, along three dimensions, including time, space,
and wavelength. The effect of the integration along time dimension can be usually neglected,
as integration times are very low. In contrast, the spatial and wavelength integrations play a very
important role in the final quality of the image, as they define important parameters, such as spatial
and spectral resolution.

Remote sensing satellites with optical sensor payloads generate three dimensional images of
the Earth’s surface radiance as a function of (z,y,\), with (x,y) being spatial coordinates and ()
the spectral coordinate. This means that the satellite generates one 2D image for each one of the
spectral channels it samples. As a result of the integration along the spatial axis, each (x,y) pixel
of the image does not only contain information about that specific spatial point, but it also includes
information about surrounding points. This fact is a consequence of the spatial resolution of the
sensor, given by the sensor Point Spread Function (PSF), which will be discussed in later chapters.
Similarly, for a given (x,y,)) pixel, the spectral information contains information not only of the
center wavelength () of the detector, but also about contiguous wavelengths, depending on the
spectral response of the detector.

1.3.1 Spatial resolution

The grid of (z,y,\) pixels of the spectral image is generated as a combination of scanning in both
along-track and across-track directions. The along-track axis represents the direction aligned to the
satellite motion, while the across-track axis is defined perpendicular to the satellite motion. There
are three main scanning methods:

 Line scanner: a single detector is used to scan all the scene. The satellite requieres moving
parts to scan an entire line along the across-track axis.

* Whiskbroom scanner: an array of detectors aligned along-track is used to achieve parallel
scanning in the across-track axis. The satellite requieres moving parts to perform the scan
in the across-track axis.

* Pushbroom scanner: an array of detectors aligned across-track is used to achieve parallel
scanning in the along-track axis. The satellite does not requiere moving parts.

The most common scanning method is the pushbroom scanning, depicted in Figure 1.3(a), as it
provides high spectral resolution and avoids the use of moving parts in the satellite optical subsys-
tem. Figure 1.3 shows some of the main parameters characterising the image acquisition. The field
of view (F'OV) is defined as the full angular coverage of the satellite, whereas the instantaneous
field of view (/ F'OV) represents the angular coverage of a single detector element. The distance
projected on the Earth’s surface is known as ground-projected field of view (GF'OV) in the case
of the full angular coverage, and ground-projected instantaneous field of view (GIFOV) in the
case of a single detector element. In the figure, f represents the focal distance of the optical system
and w is the detector width. Another important parameter is the ground sampling distance, GSD,
which represents the distance between two contiguous pixels. Typically, remote sensing satellites
are designed for GSD = GIFOV.
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Figure 1.3: (a) Scheme of a pushbroom scanner with its main parameters and (b) geometric
description of one detector element.

The GFOV, also known in the literature as swath width, can be calculated directly from the
FOV parameter as

GFOV = 2H tan <F(2)V> , (1.7)
being H the nadir distance between Earth and satellite.
Analogously to the GFOV parameter, the GI FOV can be calculated as
GIFOV = 2H tan (IFOV) , (1.8)
which, keeping in mind that tan (/FOV /2) = w/(2f), can be simplified to
GIFOV = wg. (1.9)

f

On the other hand, the G.S'D can be calculated from the inter-detector distance (d) and the focal

distance of the optical system :
GSD:dE. (1.10)

f

Therefore, if the inter-detector distance is equal to the detector width (d =2 w), the GSD is
equal to the ground-projected instantaneous field of view. Another important parameter that de-
fines the spatial quality of spectral images is the spatial resolution of the optical instrument, which
should not be confused with the GSD. The spatial resolution is usually defined as the full-width
half maximum (F'W H M) of the optical system P.SF'. The information at the input of the optical
detector corresponds to the top-of-atmosphere Earth’s surface scene convoluted with the PSF,
which means the output image is going to be more blurred or sharper depending on the FW H M
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of the PSF. Remote sensing optical instruments are usually designed for F'W H M ranging from
1GSD to 1.6GSD, and thus each pixel contains mainly information about its GIF'OV scene.
The Fourier transform of the PSF' is known as the modulation transfer function (M7 F'), and it
specifies the spatial frequency response of the instrument. A critical parameter defined from the
MTF is the MTF value at Nyquist frequency. All the information containing spatial frequencies
above Nyquist frequency will translate into aliasing artifacts at the image, and thus a high MT'F'
value at this frequency means that the spectral image will have those aliasing artifacts. There-
fore, ideally, to reduce aliasing the MT'F' of the instrument should be designed to provide a low
MTF value at Nyquist. However, as the MT'F is the Fourier transform of the PSF’, a narrower
MTF response results in a wider PSF' in the spatial domain and, therefore, a lower spatial reso-
lution (wider F'W H M). In this sense, simulations show that a normalized M T'F" value at Nyquist
between 0.2 and 0.5 is a good trade-off between aliasing and resolution [8].

1.3.2 Spectral resolution

For a given (z,y) point, the spectral information for that pixel (z,y,)) is the result of a convolution
between the incoming spectral radiance and the instrument spectral response. The main spectral
parameters of the sensor are: spectral resolution, spectral coverage, and spectral sampling. The
spectral resolution is defined as the width of the spectral channels of the instrument, while the
spectral sampling corresponds to the spectral distance between consecutive channels. On the other
hand, the spectral coverage refers to the spectral range sampled by the instrument. Depending on
these spectral parameters, the optical sensors can be classified in three types:

* Panchromatic: one single spectral channel with a large bandwidth (typically >100 nm).
» Multispectral: several spectral channels with a medium bandwidth (typically >20 nm).

» Hyperspectral: large amount of contiguous spectral channels (typically 100 or more) with
bandwidths from 5 to 20 nm.

1.3.3 Product types

The output information produced by the sensor has to be preprocessed in order to generate a reliable
spectral image. Thus, the objective of the preprocessing step is to produce high quality reflectance
data in a given map projection from the raw data acquired by the sensor. In this sense, the scientific
community has established a name convention for remote sensing products, classified depending
on the type of preprocessing corrections applied to the data:

* Level 0 (L0): raw data from the sensor (digital numbers).
* Level 1B (L1B): radiometrically calibrated radiance data (LY).

* Level 1C (L1C): radiometrically calibrated radiance data (L3 ) in a map projection. Depend-
ing on the mission, sometimes L1C products correspond to top-of-atmosphere reflectance in
a map projection (e.g. Sentinel-2 European mission).

* Level 2A (L2A): surface reflectance data (p(\)) in a map projection.
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Figure 1.4: Surface reflectance (blue) calculated from the measured radiance at the sensor
(red).

L1B products are obtained as a result of the radiometric correction of L0 data. The radiometric
corrections allows to obtain calibrated top-of-atmosphere radiance data from the digital numbers
stored by the sensor. After the radiometric corrections, geometric corrections are applied to L1B
products, which correct spatial distortions and project L1B products to conventional map coor-
dinates, in order to generate L1C images. Then, atmospheric corrections convert L1C radiance
data to surface reflectance data, which contains the spectral signatures of the Earth’s surface com-
ponents. Figure 1.4 shows an example of the measured spectral radiance L3 information for one
pixel of a L1B product in red color, and the resulting reflectance p(\) spectrum after applying the
atmospheric corrections in blue.




Chapter 2

Methodology

2.1 Objectives

The main objective of this master thesis is to implement a method to estimate the modulation trans-
fer function (MT'F') of optical imagers using images acquired during regular mission operations.
Two different algorithms are selected by reviewing current state of the art MT'F' assessment tech-
niques, and then implemented in Python using Open Source libraries. As explained in the previous
chapter, the MT'F' represents the spatial frequency response of the optical sensor, and therefore it
conditions the spatial resolution and quality of the resulting images. The algorithms are developed
in Python, a widely used programming language among scientist and professional developers. The
performance and the accuracy of the estimation algorithms are tested using both simulations and
real images from remote sensing satellites in order to validate the M T F' assessments.

2.2 Thesis structure

This master thesis has been structured along three phases. The first phase consists on the bibli-
ographic review of how remote sensing satellites work, with special attention to passive optical
instruments. The results of this phase are summarized in Chapter 1. The second phase consists
on a bibliographic review of MT'F' estimation methods and their theoretical models, which corre-
sponds to Chapter 3. The third and last thesis phase is to develop and validate the M T F estimation
algorithms, which corresponds to Chapter 4.

In order to complete all three phases, the project has been divided in the following tasks:

1. Bibliographic review of optical remote sensing instruments for earth observation.

2. Bibliographic review of theoretical M T F' estimation methods for remote sensing satellites.
3. Design and development of M T'F' estimation algorithms in Python.

4. Develop an algorithm to simulate ideal images to test the estimation algorithm.

5. Test the MTF algorithms with ideal simulations.
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6. Test the MTF algorithms with calibrated real images.
7. Estimate the MT'F of real remote sensing missions with the developed algorithms.

8. Write the Master thesis with the obtained results.

2.3 Task schedule

The tasks described in the previous section have been arranged following the next schedule:

Task | October 19 | November 19 | December 19 | January 20 | February 20
1 X
2 X X
3 X X
4 X
5 X
6 X
7 X
8 X

Table 2.1: Schedule of the Master thesis tasks.




Chapter 3

Modulation Transfer Function

3.1 Definition

As introduced in Chapter 1, the modulation transfer function (M T F') plays a very important role
in the spatial quality of the image. Physically, the MTF' of an optical instrument relates the output
amplitude of a given spatial frequency component with its input amplitude. The spatial domain
equivalent of the MT'F' is the point spread function (P.SF’), which is given as a function of the
imaging optics, detector, electronics, and satellite motion spatial responses.

Figure 3.1 depicts a block diagram of the optical instrument of a remote sensing satellite. The
function of the spectral filter, or the dispersion element, is to split the incoming image into the
different wavelengths \; of the detectors, where ¢ = 1,2,..., N, being N the total number of
detectors. In the figure, i(x,y, \) stands for the input radiance at the imaging optics subsystem,
while i’ (z,y, \;) represents the output radiance of the imaging optics for each spectral band \;,
and DN, represents the output digital numbers of each spectral band.

Input scene Output scenes

i’(xaya )\1) O(Jj’y’)\l)
Spectral Filters M DNy,
i(z,y,\) — Imaging Optics or * |Electronics| - A/D | :
Dispersion Element
- [Detector An] on
i,($7y7 )‘N) 0(557?/7/\N)

Figure 3.1: Block diagram of the optical instrument.

It results more intuitive to start with the explanation and mathematical analysis of the PSF,
and then translate the results from spatial to spatial frequency domain to explain the MTF and its
different contributions.
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3.1.1 Point Spread Function

The total point spread function of the optical instrument, P.SF}, can be calculated as the convolu-
tion of the PSF’ of each one of their parts [1, 9, 10], that is,

PSFy(z,y) = PSF, «+ PSF,, x PSF; x PSF., 3.1)

where PSF,, corresponds to the optical imaging subsystem, P.S F;;, models the effect of the satellite
motion on the image, P.S'F}; corresponds to the detector, and P.SF, corresponds to the electronics.
At this step, it is worth noting that, depending on the instrument subsystem, its P.SF’ can be given
as a function of the focal plane spatial coordinates (z’,3’) or the earth’s surface coordinates (z,y).
Thus, focal plane coordinates (z’,y’) can be easily converted to earth’s surface coordinates (x,y),
and viceversa, using the following equivalences:

Xz
7o G.2)
and .
v _uy
o (3.3)

Analogously, the convolution can be performed in the spatial frequency domain. The Fourier
transform of the PS'F' is known as the optical transfer function (OT'F'). Therefore, the total optical
transfer function, OT F3, is given by

OTFy(fs, f,) = OTF, - OTF,, - OTF; - OTF,. (3.4)

with (fz,fy) being the spatial frequencies in the across-track and along-track axis, respectively.

First, the optical imaging introduces blur at the input scene as a consequence of its limited
spatial resolution. In addition, the satellite is moving during the integration time of each pixel,
which decreases the resolution along the motion direction of the satellite. Then, each detector
introduces blur because of their limited spatial size. Finally, the electronics further degrade the
image quality as a consequence of the low-pass filtering. Therefore, the image at the input of
the analog/digital (A/D) converter for the A; band, o(x,y, \;), can be calculated as i(x, y, A;) *
PSFy(x,y,\i):

“+o00 “+o00
o,y ) = / / i, 7. \)PSE( — 1,y — 7 M) dudr. (3.5)

Analogously, in the spatial frequency domain, o( f,, fy, \i) is given by

O(f;tvfyu/\i) :i(fzyfyv)‘i)'OTFt(f;viy)- (3-6)

3.1.1.1 Imaging optics — PSF,

The resolution of the imaging optics of the satellite is limited by diffraction, as an ideal point source
i(z,y,\;) = d(z,y) at the input will not generate an ideal point source at the focal plane. The
energy of the point source will be spread over a limited area at the focal plane. The size of this area
depends on the resolution of the imaging optics. If we consider an ideal circular pupil function, the
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resulting optical point spread function, PSF,, will be an Airy pattern, with a main circular lobe
and surrounding rings with decreasing intensity:

2J1 (kD sin(6)/2)\ ?
kD sin(0)/2 ) ’

PSF,(0,);) = < (3.7)

being D the aperture diameter of the optics, & = 27 /)\; the wavenumber, # the angle referred
to the nadir direction, and J; the first kind and first order Bessel function. Keeping in mind that
sin(f) = r//r2+ f2 = r/f, where r = /(2')? + (y')? is the radial distance over the focal
plane, the above expression can be simplified to

2
2J1 <Z\TT?T>

Aifr

PSF,(r,\i) = (3.8)

Depending on the imaging optics subsystem, it may not be possible to describe the PSF,
analytically. In these cases, the PSF, has to be experimentally measured and characterized. A
common function used to describe P.SF,, in these cases is the 2D gaussian function:

2
— __Y
1 e 203207/\1' e 205’

PSFO(ZL',Z/, )\Z) Ai (39)

2MOT N Ty i

The parameters o, », and o, , determine the optical resolution in the across-track and along-
track directions, respectively. For an ideal gaussian function, the resolution is given by FW H M; =
20;4/In(4). Figure 3.2 shows an example of an Airy pattern as a function of the normalized radial
coordinate (r/\) for a lens with f/D = 1, compared to its gaussian approximation function. The
gaussian approximation for an Airy function is optimum for o = 0.42\f/D. In the case of the
figure, the resolution of the optical point spread function is FW HM = 1.03\.

3.1.1.2 Satellite motion — PSF},

The effect of the satellite motion can be modeled as a rectangular pulse aligned in the scanning di-
rection. Therefore, for a pushbroom scanner, the scanning is produced in the along-track direction
(y-axis), which yields to the following P.S F,,, response:

PSEy(z,y) = 6(x) - rect (f) : (3.10)
d

where sy represents the distance that the satellite covers during the integration time of one pixel,
that is,
sq = satellite velocity x integration time. (3.11)

3.1.1.3 Detector — PSF},

The blur caused by the detector is due to its non-zero size, which means that the detector is mea-
suring information of the point (x, y) and its surroundings. Thus, if we consider a square detector
with dimensions w X w, its spatial response can be modeled by

/ /
PSFy(2',y") = rect <Z> - rect <y> : (3.12)

w

13
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Figure 3.2: Optical point spread function along the normalized radial coordinate: airy pat-
tern (solid line) and gaussian approximation (dashed line).

3.1.1.4 Electronics — PSF,

The last element of the block diagram of Figure 3.1 that degrades the image quality is the electronic
subsystem. The signal at the output of the detector has to be electronically filtered to reduce noise
an avoid aliasing due to frequency components above the Nyquist frequency of the A/D. As the
low pass filter is performed in the time domain, time-dependence has to be converted to spatial
dependence. For a pushbroom scanner, this is achieved by

y = satellite velocity x time. (3.13)

As the motion direction is aligned with the along-track axis, the low pass filtering affects the
frequency components of the along-track axis, that is,

OTF.(fz, fy) = H(fy), (3.14)

where H ( f,) represents the spatial low-pass frequency response of the electronics. This response
can be implemented as any kind of low-pass filter, e.g. a 3"¢ order Butterworth filter. The low-pass
filter is not always implemented, depending on the mission and scanning type.

3.1.1.5 Total response — PSF;

As stated before, the total response is calculated as the convolution of each one of the point spread
function of its components. In this sense, Figure 3.3 depicts a simulation of an instrument PSF
and the contributions of the different subsystems, as a function of the normalized spatial coordi-
nates in the focal plane. Figure 3.3(a) corresponds to the optical P.SF},, while 3.3(b) corresponds to
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the motion contribution PSF,,, and 3.3(c) represents the detector response P.SF;. Finally, Figure
3.3(d) represents the total PSF; of the instrument. In the simulation, a 2D gaussian response with
a resolution of F'W H M, ,» = 0.8w and a motion distance of s; = 0.7w have been considered
for the imaging subsystem and the motion contribution, respectively. For simplicity, no electronic
filtering has been used. As it can be observed from the figure, the motion contribution only de-
grades the PSF; quality along the motion direction, and the most significan contribution to the
PSF; is the detector PSFy.

1 (2) 1 (b)

—
1

—

—

0 0
x'fw x'Jw
Figure 3.3: PSF as a function of the focal plane spatial coordinates (z’,5') normalized by
the detector width w: (a) Optical imaging PS F,, (b) motion contribution PSF,,, (c) detector
PSFy, and (d) total response PSF;.

Figures 3.4(a) and 3.4(b) depict across-track and along-track total PSF;, respectively, and
the corresponding contributions of the different elements to the final instrument response shown
in Figure 3.3. Blue lines represent the imaging optics P.SF,, while red lines correspond to the
detector P S Fy; and gray lines to the motion degradation P.SF;,,. Black lines are for the total P.SF;
of the instrument. Figure 3.4 reveals that, as mentioned before, the main source of spatial resolution
degradation is the non-zero size of the detector, P.SF,;. Considering an inter-detector separation
of d = w and using equations 1.10, 3.2 and 3.3, total spatial resolutions of FW H M, = 1.04w
and F'W H M, = 1.14w along the focal plane correspond to spatial resolutions along the earth’s
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surface of
H
FWHM, = 7FWHMx/ =1.04-GSD (3.15)
and
H
FWHM, = TFWHMy/ =1.14-GSD, (3.16)

proving that, as expected, in pushbroom scanning instruments across-track resolutions are usually
higher than along-track resolutions.
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Figure 3.4: PSF; and their different contributions as a function of the focal plane coordinates
normalized by the detector width w: (a) Across-track (y' = 0) and (b) along-track (=’ = 0).

3.1.2 Modulation Transfer Function

Mathematically, the modulation transfer function (M1 F’) is defined as the absolute value of the
OTF, and it represents the instrument response as a function of the spatial frequency [1, 9, 10].
In this sense, dealing with the M T F' assessment of an instrument is equivalent to dealing with
its PSF evaluation, and viceversa, as the only difference is that the first function is given along
spatial coordinates and the later along spatial frequency coordinates. Due to the limited spatial
resolution of the instrument components, the instrument acts as a low-pass filter in the spatial
frequency domain. This means that, depending on the P.SF; resolution, the sharper details of the
image, which correspond to higher spatial frequencies, will be attenuated or lost in the imaging
and detection process. Thus, the higher the spatial resolution is, the sharper the details the optical
instrument can detect. The total MT'F' of the instrument, M T'F, can be calculated as the product
of the MTF responses of each element of the system, that is,

MTF, = |OTF,| = |OTF,| - |OTF,,| - |OTFy| - |OTF,|. (3.17)

16
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3.1.2.1 Imaging optics — MTF,

If we consider an ideal 2D gaussian function as the optical PSF,, (Equation 3.9), the contribution
of the imaging optics to the M T F' response is simply given by

2

MTF, = |Fuy{PSF,}| = 20D | o] (3.18)

where F,, {-} represents the Fourier transform along the (z,y) axis.

3.1.2.2 Satellite motion — MTF,,

Analogously to the imaging optics, the contribution of the satellite motion to the final MTF; of
the instrument can be calculated as the Fourier transform of its point spread function, P.S F},,, that
18,

MTPF,, = |Fpy{PSFy,}| = sqlsinc(sqfy)l, (3.19)

sin(mz)

with sinc(z) = =

3.1.2.3 Detector — MTF}

The modulation transfer function of a square detector with an area of w x w, MT Fy, is given by

MTF, = |Fuy{PSF,;}| = w?|sinc(wf,) - sinc(wfy)|. (3.20)

3.1.2.4 Electronics — MTF,

As the low-pass filter is usually designed in the frequency domain, the contribution of the electronic
subsystem to MT'F; is simply calculated as

MTF, = |OTF.| = [H(f,). (3.21)

3.1.2.5 Total response — MTF};

As mentioned earlier, the total modulation transfer function of the instrument is calculated as the
product of its different contributions. Figure 3.5 shows a simulation of the M T F' responses as a
function of the spatial frequency coordinates ( f;, f, ), normalized by the spatial sampling frequency
(fs). Onthe focal plane, the sampling distance corresponds to the inter-detector separation, d, while
on the earth’s surface this sampling distance is converted to the GSD. Therefore, the sampling
frequency on the focal plane is given by the inverse of the sampling distance, that is, f; = 1/d.
Keeping in mind that, in this case, d = w, the sampling frequency is finally given by f; = 1/w. In
the figure, all the results have been calculated from the PSF' simulations depicted in Figure 3.3.
Thus, Figure 3.5(a) corresponds to the imaging optics M T F,,, whereas 3.5(b) corresponds to the
satellite motion degradation MT'F,,,, 3.5(c) represents the detector M T F}, and 3.5(d) represents
the total response MT'F;. As expected from the theoretical model, the satellite motion only affects
the along-track spatial frequencies, and remains constant along the across-track spatial frequencies.

17
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Figure 3.5: MT'F as a function of the spatial frequency coordinates (f;,f,): (a) Optical imag-
ing MTF,, (b) motion contribution M T F,,, (c) detector M T F;, and (d) total response M T F;.

Figures 3.6(a) and 3.6(b) represent the across-track and along-track M T'F' responses, respec-
tively. As in Figure 3.4, blue lines represent the optical imaging subsystem contribution, red lines
represent the detector response, gray lines correspond to the satellite motion effect, and black lines
represent the final MT F;. As can be seen in the figure, the most significant contribution is that
from the detector, MT F,;, which agrees with the fact that the detector is also the main source of
spatial resolution degradation. As mentioned in Chapter 1, one important parameter that scien-
tists use to characterize the MTF' is the MTF' value at Nyquist frequency, MT F™¥4. All the
information with spatial frequencies above Nyquist frequency will produce aliasing artifacts at the
image. Therefore, to reduce the amount of aliasing artifacts, a low MT F™¥? is required. However,
as analyzed in this section, the M T F' is calculated as the Fourier transform of the PSF', which
means that a narrower MT'F' will produce a wider PSF' and, thus, decrease the resolution of the
instrument. This is why an MT F"¥? value between 0.2 and 0.5 is considered a good trade-off
between resolution and aliasing.

The Nyquist frequency is calculated as half the sampling frequency, which in the case of the
Earth’s surface (z,y) yields to

fs 1

frya =5 = 5 aap (3.22)
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while in the case of the focal plane (z’,3/) it yields to
1

Therefore, in this case, as d = w, the Nyquist frequency is given by fs = 0.5/w. The MTF
values at Nyquist frequency for the across-track and along-track total responses are MT F, Y7 =
0.42 and MTF,¥" = (.34, respectively. Thus, as expected from the results depicted in Figure
3.4, the across-track value at Nyquist frequency is higher than the along-track value at the same
frequency, meaning that the across-track spatial resolution is higher than that of the along-track.
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Figure 3.6: MTF; and their different contributions as a function of the spatial frequency
coordinates (f;,f,): (a) Across-track (f, = 0) and (b) along-track (f, = 0).

3.2 Influence on the image quality

The MTF of the instrument relates the input amplitude i(fz,, f,;) of a given spatial frequency
(fz;,fy;) with its amplitude at the output of the instrument o( fz,, fy; ), that is,

0(fais fy,)]

MTE e 1) = 55 70l

(3.24)

Therefore, as the MT'F response decreases with the spatial frequency, the output amplitude of
higher spatial frequency components is lower than that of lower spatial frequency components. In
order to showcase this phenomenon, Figure 3.7 shows a simulation of an ideal MT'F' and its effect
on the output signal of the instrument. Figure 3.7(a) depicts the simulated M7 F', while Figure
3.7(b) shows the input signal (blue color) and the output signal (red color). As can be observed
from the figure, the input signal is an ideal sinusoidal function along the spatial coordinate, that is,

i(z) = sin(27 fox), (3.25)
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being fo = 1/T, the spatial frequency of the signal and T, its spatial period. The frequency
response of an ideal sinusoidal function is given by

5(fz — fO) _5(fac + fO)

Z(fm) = ]:x{z('r)} = 27

(3.26)

where j = v/—1. Thus, in this case, the output signal can be calculated using Equation 3.24 as

o(fz) = MTF(f,)-i(fz) = MTF(fe)0(f2 — fo);—jMTF(fx)é(fx +fo)

(3.27)

Using the translation property of the delta function, which states that f(x)d(z—x0) = f(z0)d(z—
x0), the above equation can be simplified to

o(fs) = MTF(fo)d(fz — fo) +.5(fac + fo)

= MTF(fo)i(fa). (3.28)
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Figure 3.7: (a) MTF and (b) input (blue color) and output (red color) signals. The input
signal is an ideal sinusoidal function of frequency f.

As MTF(foy) is a constant value, the output signal in the spatial domain can be finally calcu-
lated as

o(x) = Fy Ho(f2)} = MTF(fo)F, {i(fs)} = MTF(fo)i(x), (3.29)

where F,1{-} denotes the inverse Fourier transform. Thus, the signal of spatial frequency fj is
attenuated by the MT'F' value at that specific frequency. For instance, Figure 3.7(a) shows that,
for the frequency fj, the modulation transfer function is MTF(fy) = 0.38, and 3.7(b) depicts
that the output amplitude of an ideal sinusoidal function of frequency fp is 0.38, which agrees
with the theoretical equations. Therefore, lower spatial frequencies than f will be less affected,
while higher spatial frequencies will be more strongly attenuated by the M T F’ of the instrument. In
order to demonstrate this fact, Figure 3.8 depicts a simulation of a sinusoidal signal with increasing
frequency along the spatial distance. As can be observed from Figure 3.8(b), the output amplitude
decreases as the frequency increases.

Figure 3.9 depicts a simulation of a high resolution image filtered with two different PSF’s,
being both of them ideal 2D gaussian functions (Equation 3.9). Figure 3.9(a) corresponds to an
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Figure 3.8: Same as Figure 3.7, but with increasing frequency along the spatial dimension.

image filtered with a PSF' with spatial resolution FW HM = 1GSD, while Figure 3.9(b) is
obtained using a PSF with FWHM = 1.6GSD. The MTF value at Nyquist frequency in
Figures 3.9(a) and 3.9(b) are M T F"¥? = (0.41 and MT F™¥9 = 0.10, respectively. As can be seen
in the figure, the image with a wider MT'F', and therefore higher spatial resolution, looks sharper
than the image with a narrower M T F'. The simulation process used to obtain these images will be
described in Chapter 4.

y (m)
y (m)

x (m)

Figure 3.9: High resolution image filtered with: (a) PSF with resolution FW HM = 1GSD
and (b) PSF with resolution FWHM = 1.6GSD.

3.3 Image-based estimation methods

In the past decades, scientists and engineers have developed different techniques that allow to esti-
mate the M T F response of an instrument from experimental measurements. These techniques can
be classified intro two big groups: ground-based techniques and in-flight methods. Ground-based
techniques measure the M 7T F and PSF responses in the laboratory under controlled conditions,
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following standardized procedures such as the ISO12233 [11]. On the other hand, in-flight meth-
ods use in-orbit satellite images to estimate the MT'F' response of the instrument from specific
ground targets [10, 12, 13, 14, 15, 16, 17, 18]. In this work, we are going to focus on these kind of
techniques. The main methods used for in-flight M 7T F' estimation are:

* Slanted edge methods.
* Pulse target methods.

* Double-pulse target methods.

3.3.1 Slanted edge

Slanted edges methods employ ground targets that can be modeled as perfect sharp contrast edges
[10, 13, 14]. From these targets, an oversampled edge spread function (E'SF’) is estimated, then
the line spread function (LSF) is calculated, and, finally, the MT'F' function is evaluated. The
ESF represents the 1D output signal of the instrument when the input is an ideal step function,
u(z), defined as

0 ;2<0
u(z):{ 1 x>0 (3.30)

Therefore, the £S'F is given as a function of the spatial direction aligned perpendicularly to the
contrast edge, z. Analogously, the LS F' represents the 1D PSF' along the same spatial direction
than the £SF. Thus, the £ SF can be calculated as the convolution of the step function and the
LSF along the z-axis:

ESF(z) = u(z) * LSF(2). (3.31)

Figure 3.10 represents a scheme of an ideal 2D image with a sharp contrast edge slanted
degrees respect to the x-axis. The fact that the edge is not perfectly aligned to the vertical y-axis
allows to combine different z-axis cuts of the 2D image to form an oversampled ESF’, which
provides sub-pixel accuracy. Therefore, for each row y; of the image, the horizontal edge location
of the z-axis cut, zo(y;), has to be estimated. Once z((y;) is obtained, the z-axis ESF is centered
and then projected onto the z-axis, obtaining the edge spread function of that row, ESF;(z). The
equivalence between x-axis coordinates and z-axis coordinates is given by

z = (x — x0(y;)) - cos(h). (3.32)

This ESF;(z) centering and projection process is repeated for each one of the image rows, and
the final oversampled E'SF is calculated as

N
ESF(z) =Y ESFi(2), (3.33)
=1

where N is the total number of rows. As the z-axis evaluation points are different for each row
(which provides the sub-pixel resolution), the combined E.SF' is unevenly sampled. This means
that the final £'SF’ has to be interpolated from the combined F S F; samples, usually using a reso-
lution between 0.1 and 0.2 pixels.
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Figure 3.10: Slanted edge scheme used to estimate an oversampled £ SF'.

At this step, it is worth noting that the sampling distance of the profile along the z-axis, Az, is
no longer the GSD, but it is given by

Az =GSD - cos(6), (3.34)

and therefore the spatial sampling frequency for the z-axis is f, = 1/Az = fs/cos(f). It is
important to use this sampling frequency when calculating the MT F', in order to avoid estimation
errors.

Once the ESF is estimated, its derivative is numerically calculated. Theoretically, the deriva-
tive of the E.SF' is given by
dESF(z) d

7 == (u(z) x LSF(z)). (3.35)

Keeping in mind that % (f(x)xg(x)) = (d];(xx) * g(x)) = (f(x) * dif?), the above ex-
pression can be simplified to
dESF(z)  du(z)
dz - dz

which, given that the derivative of an ideal step function is an ideal delta function, can be finally
expressed as

« LSF(2), (3.36)

dESF(z)
dz

Therefore, the derivative of the E.SF profile directly provides the LS F’, which can be used to
estimate the spatial resolution of the instrument along the z-axis. Finally, the M T F' as a function

= 6(2) x LSF(z) = LSF(2). (3.37)
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of the z-axis spatial frequency can be calculated as the absolute value of theFourier transform of

the LSF:
MTF(f.) = |FALSF(2)}|. (3.38)

Figure 3.11 depicts an example of the MTF' estimation process using the slanted edge tech-
nique. Figure 3.11(a) shows the 2D input image of an ideal slanted edge, whereas Figure 3.11(b)
depicts the oversampled ESF along the z-axis. Then, this £SF is numerically differentiated in
order to obtain the LSF of Figure 3.11(c) and, finally, the MT'F’ of Figure 3.11(d) is computed
as the Fourier transform of the LSF'. Therefore, in order to estimate the M T F in the across-track
direction (x-axis), ground targets with approximately ideal contrast edges in that direction have
to be used. Simulations show that optimal performance is achieved for edge inclinations between
5° and 20°. Likewise, along-track MT'F’ estimations (y-axis) have to be performed using slightly
slanted vertical ground targets with sharp contrast edges. However, it is important to keep in mind
that the MTF' estimation is not exactly calculated in the across-track or along-track directions,
but in the z-axis direction of the slanted edge. A good ground target that approximates an ideal
contrast edge is the transition between vegetation and land of crop fields.

(a) (b)
101« Combined ESFs 47
Estimated ESF ¢
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Figure 3.11: Slanted edge technique to estimate the AM/'T'F': (a) input image, (b) oversampled
ESF, (c) calculated LSF, and (d) estimated MTF'.
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3.3.2 Pulse target

Another common target type used for MT'F' assessment is the pulse target. In this sense, bridges
are typical ground targets which shape can be approximated by a pulse function. This technique
requires a high resolution model of the pulse target, 7(z), and an oversampled profile of the pulse
at the output of the satellite instrument, o(z) [16, 17]. As in the slanted edge case, the z-axis
represents the direction perpendicular to the pulse target. Once both 7(z) and o(z) are calculated,
the MTF is estimated using Equation 3.24:

MTF(f.) = 12U (3.39)

()l

where O(fz) = ]72{0(2)} and r(fz) = fz{r(z)}

The high resolution model can be estimated from ground-based measurements or using high
resolution satellite images (higher resolution than the instrument under consideration). If an ideal
pulse is considered, the high resolution model is given by

z
= A - rect
r(2) rec (W

z

> , (3.40)

being W, the pulse width and A an amplitude factor. Therefore, as r(f,) = F.{r(z)} = AW, -
sinc(W, f,), the MTF can be expressed as

MTEF(f.) = [o(£:)] (3.41)

AW [sine(W..f)|"

Keeping in mind that the sinc(x) function is 0 for z = 1,2, 3, ..., the above expression tends
to 400 at spatial frequencies

n
= — 342

. = i (3.42)

where n = 1,2, 3, .... This means that, nearby those frequencies, the MT F' estimation error will

increase considerably. Thus, as the interest frequency range for MTF evaluation is 0 < f, < fI,
being f. = 1/(GSD cos(0)), the following condition has to be fulfilled to avoid estimation errors:

WL > fi— W, < GSDcos(0). (3.43)

The above condition ensures that the firs zero value of ( f,) is outside the spatial frequency re-
gion of interest, which reduces the estimation error. Therefore, at the first step, the high resolution
pulse model r(z) has to be estimated either using an analytical approach or using high resolution
satellite images. If high resolution satellite images are used, the high resolution model has to be
created by combining centered x-axis or y-axis profiles (depending on the estimation direction),
and then projecting them onto the z-axis using Equation 3.32, as in the slanted edge case. Then,
the output profile of the instrument o(z) has to be calculated in a similar way, by centering, com-
bining and projecting onto the z-axis different z-axis or y-axis profiles of the 2D image, therefore
providing sub-pixel resolution.

Figure 3.12 shows an example of the MT F’ estimation process along the z-axis using a pulse
target of width W, = (5/3) - GSD along the across-track direction, and an inclination of § = 10°.
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Figure 3.12: Pulse target technique to estimate the AT F': (a) high resolution image, (b) in-
strument image, (c¢) high resolution model 7(z), (d) output profile model o(z), (¢) Fourier
transforms of r(z) and o(z), and (f) final estimated M TF. In this case, W, = (5/3) -
GSD cos(0).

This W, width translates onto a pulse width along the z-axis of W, = W, cos(f). Figures 3.12(a)
and 3.12(b) correspond to the high resolution and the instrument images, respectively. Figure
3.12(c) shows the estimated high resolution profile r(z) after combining several centered profiles
along the x-axis and projecting them onto the z-axis, while Figure 3.12(d) shows the instrument
filtered centered and oversampled profile o(z). The Fourier transforms of both profiles are depicted
in Figure 3.12(e) and, as can be observed, the Fourier transform of the pulse profile exhibits a zero
value at the frequency f./f. = GSDcos(0)/W, = 3/5 = 0.6. Thus, this pulse target does not
fulfill the condition established at Equation 3.43, which yields to the MTF estimation error near
spatial frequencies f./f. = 0.6, as shown in Figure 3.12(f). To decrease this error, a narrower
pulse target should be used.

If required, the LSF' of the instrument can also be estimated as the inverse Fourier transform
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of the MTF, that is,
LSF(z) = |F,Y{MTF(f.)}|. (3.44)

3.3.3 Double-pulse target

The MTF' can also be calculated from two pulse targets separated a distance d, following the
same procedure as in the single pulse target case. This case corresponds, for instance, to a bridge
with two spans. Thus, if we consider an ideal pulse model, the high resolution response is given

by
d,/2 —d,/2
r(z) = A - rect (Z—;VA/> + B - rect (ZVVB/) , (3.45)
where A and Wy are the amplitude and width of the left span, respectively, and B and Wp are the
amplitude and width of the right span.

The frequency response of this high resolution model can be calculated as

r(f.) = AW, - sinc(Wa f.)el™ /= 4 BWg - sinc(Wpg f,)e ™27z, (3.46)

If the width of both spans is approximately the same (W4 = Wp = W), which tends to be
the case with real bridges, the above equation can be expressed as

r(f.) = Wisine(W, f,)e Izl (Aeﬂ“dzfz n B) . (3.47)

Once the high resolution model is obtained, an oversampled profile of the instrument image
has to be calculated, as in the single pulse target technique. Then, the MT'F' can be estimated using
Equation 3.39:

lo(/2)]

~ W.|sinc(W.f,) (AeiZmd=- + B) |’

MTF(f.) (3.48)

Analogously to the single pulse target case, the denominator in Equation 3.47 will tends to 0
for spatial frequencies multiple of f, = 1/, and therefore to avoid M T F estimation errors the
condition of Equation 3.43 has to be fulfilled. In addition, from Equation 3.47, it can be deduced
that the spatial frequency response of the high resolution model will have a local minimum when
both bridge spans are in phase opposition, that is, 27d,, f, = (2n — 1), beingn = 1,2, 3, .... This
means that there will be additional M T F' estimation errors near spatial frequencies

(2n—1)

Therefore, in order to reduce the estimation error of the destructive interference between the
Fourier transform of both bridge spans, the following condition has to be fulfilled:

54 > fl — 2d, < GSD cos(0). (3.50)

Figure 3.13 depicts a simulation for a double pulse target with pulse widths W, = (3/10)-G.SD
along the across-track directions, span separation d, = (13/15) - GSD, and equal amplitudes
(A = B = 1), with an inclination of # = 10°. Thus, the double pulse target fulfills the first
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Figure 3.13: Double-pulse target technique to estimate the MT F': (a) high resolution im-
age, (b) instrument image, (c) high resolution model r(z), (d) output profile model o(z),
(e) Fourier transforms of r(z) and o(z), and (f) final estimated M/TF'. In this case, IV, =
(3/10) - GSDcos(f) and d, = (13/15) - GSD cos(0).

condition to avoid estimation errors, as W, < G\SD cos(6). However, the second condition is not
fulfilled, as in this case GSD cos(f) < 2d,. Therefore, as shown in Figures 3.13(e) and 3.13(f),
the spatial frequency response of the high resolution model is zero at f,/ f. = 15/(2-13) = 0.58,
which yields to high MTF errors near that frequency. To decrease the estimation error, the double-
pulse ground target used to perform MT'F' estimations should have a shorter span separation.

3.4 Implemented estimation algorithms

Two MTF estimation algorithms have been developed for this work. One of them performs the
MTF estimation using the slanted edge method, while the other performs the MT F' estimation
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using the pulse and double-pulse target techniques. Both algorithms have been implemented in
Python 3.6.6 [19], a programming language widely used by scientist and engineers due to its easy
programming workflow and good performance. The Python interpreter has been installed within
the Anaconda distribution [20], which provides a large number of libraries commonly used for data
science, signal processing, and artificial intelligence. Specifically, the developed algorithms make
use of functions available in the Numpy [21], SciPy [22], Matplotlib [23], and Spectral python [24]
libraries. The Numpy library provides useful functions for array data manipulation and basic math
operations, the SciPy library provides optimized functions for cross-correlation and least-squares
optimization problems (among many other), the Matplotlib library implements functions for data
visualization; and the Spectral python library implements functions to read, write and manipulate
spectral satellite data.

3.4.1 Slanted edge

The slanted edge algorithm is based on the theoretical model explained in Section 3.3.1. This
MTF estimation approach is based on the £/'S F' estimation. Thus, at the first step, each row profile
ESF;(x)—or column ESF;(y), depending on the M T'F estimation direction— of the slanted edge
has to be centered. Once the different E'SF;(z) are centered, they are combined to form a single
oversampled ESF(x). Then, the inclination angle of the slanted edge, 6, has to be estimated,
which allows to project the .S F'(x) profile from the = or y-axis onto the z-axis, perpendicular to
the contrast edge, which then has to be interpolated to provide an evenly sampled E'SF(z). Finally,
the LSF(z) is numerically calculated as the first derivative of the ESF(z), and the MTF(f,) is
obtained as the absolute value of the Fast Fourier Transform (FFT) of the LSF'(z).

Sub-pixel centering Combination and
Sharp contrast . . . .
d using Fermi function projection of
e fitting centered ESF;(z)
FFT to calculate Differentiate ESF(z) ES F(z) intﬁerEOlati(lm
MTF(f,) to obtain LSF(2) using a S?Etz y-Golay
er

Figure 3.14: Flow diagram of the slanted edge estimation algorithm.

Figure 3.14 depicts a flow diagram of the different steps implemented to estimate the MT'F'.
As shown in the figure, the first step is to center the different £\SF;(z). This centering process is
implemented fitting the E/SF;(z) profile to a Fermi function, f(x), which is given by

f(x) = ——— +4, (3.51)
e ¢ +1

where a and d are amplitude constants, b is the center of the function, and c is a factor that controls
the function slope.

Therefore, the different .S F;(x) are fitted to a Fermi function using a non-linear least square
approach, available in the SciPy library, which minimizes the mean squared error between the
Fermi function and the data. This allows to obtain the parameter b of the function, which can be
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used to center each ESF;(x) profile with sub-pixel resolution. Figure 3.15 shows an example of
a Fermi function fitted to a real ESF;(x) profile obtained from a L1C Sentinel-2 image. In this
specific example, the center of the profile is located at the pixel b = 1969.25.

.18 A
0.18 —— . —e— ESFi(x)

Fermi function
0.16 -

0.14 1
0.12 A1

0.10 A 1

ESFi(x)

0.08 -
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\- _
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Figure 3.15: ESF;(z) (blue) and Fermi function (orange) along the across-track direction.

Once each ESF;(z) is centered, the center of each profile is used to estimate the inclination
angle () of the slanted edge. Thus, the center of each ESF;(x) profile is represented as a function
of the y-axis, and then a linear function is fitted to the data:

b(y) = my +n, (3.52)

where m is the line slope and n is a constant. Therefore, the inclination angle is estimated from
the fitted line slope as
6 = tan~ ! (m). (3.53)

Figure 3.16 depicts the different steps of the F\SF;(x) centering and edge angle estimation
process for a contrast edge extracted from a real satellite image. Figure 3.16(a) shows the input
slanted edge along the across-track direction, while Figure 3.16(b) shows the different E'SF;(x)
profiles obtained for each row of the image. Figure 3.16(c) depicts the different E.SF;(x) profiles
after being centered using a Fermi function fitting, and, finally, Figure 3.16(d) shows the center of
each ESF;(x), b(y), as a function of the y-axis. The linear fit of Figure 3.16(d) is used to estimate
the inclination angle, which in this case is § = 13.18°.

The next step is to combine all ESF;(x) into a single ESF;(x). This is performed by arranging
the different profiles into a single Numpy array. Once all the profiles are combined, the resulting
ESF(x) is projected onto the z-axis using Equation 3.32 and the edge inclination angle obtained
from the linear fit. As the projected E\SF(z) is unevenly spatially sampled along the z-axis as
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Figure 3.16: (a) Slanted across-track edge, (b) E'SF;(x) profiles, (c) centered £SF;(x) pro-
files, and (d) center of each ESF;(z) as a function of y.

a consequence of the sub-pixel centering, the F'SF(z) has to be interpolated. This interpolation
is performed using a modified Savitzky-Golay filter [10]. The Savitzky-Golay filter fits the input
data to an M -degree polynomial function using a sliding-window. The pixel values that are within
the range of the sliding window, are used to fit a polynomial function. The M -degree polynomial
follows the equation

Yi = co + cru; + cau? + caud + -+ cprul, (3.54)

where u; is the x-axis input value centered respect to the x-value of the output point, that is,
u; = x; — X, being x; the x-axis input point and x the interpolated x-axis output point. The main
objective of the filter is to calculate the different ¢, coefficients of the polynomial. The output of
the filter is given by the 0-degree coefficient of the polynomial, that is, cg. Therefore, for a given
group of (z;,y;) input points, where ¢ = 1,2, ..., N, being N the total number of points within the
sliding window, the output value of the Savitky-Golay filter (x¢,yo) can be calculated by solving a
linear least squares problem. In matrix form, the problem can be expressed as

2 M
Y1 (31 (51 ul e u1 C
2 M
Y2 U2 U2 Uy -+ Uy C1
= . . S . s (3.55)
2 M
YN UN UN Uy - Uy CM
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which in matrix notation is equivalent to

y = Uc. (3.56)

The least-squares solution of the above equation is given by

¢ = (UTu) " U7y, (3.57)

where the superindex 7" represents the transpose matrix. Thus, for an M -degree polynomal fitting,
M + 1 points that are within the range of the sliding window are needed to fit the polynomial.
Equation 3.57 is applied to calculate each (xg,yo) output point of the filter.

In this work, a 3-degree Savitzky-Golay filter is employed, with a sliding window width of
1.2 pixels. Figure 3.17 depicts as blue dots the input centered and oversampled ESF(z) profile
obtained by combining and projecting the different £.SF;(x) shown in Figure 3.16(c) onto the z-
axis. The z-axis of the figure is converted from pixel to metric units by multiplying by the GSD,
which in this case is GSD = 10 m. Figure 3.17 also depicts in orange color the interpolated
ESF(z) profile calculated using a 3-degree Savitzky-Golay filter with a window width of 1.2
pixels. The interpolation is implemented with a resolution of 1/10 pixels.
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Figure 3.17: Centered and projected £'SF(z) (blue) and interpolated F.SF'(z) using a 3-
degree Savitzky-Golay filter (orange).

Following the flow diagram of Figure 3.14, the next step is to calculate the first derivative the
interpolated E.SF(z) profile which, as demonstrated in section 3.3.1, provides the LSF(z). This
derivative is numerically calculated for each z; point using the gradient function of the Numpy
library, which calculates the derivative using second order accurate central differences:

LSF(z) = ESF(Z"+1)2;ESF(%_1), (3.58)
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where A; represents the interpolation resolution, measured in pixels, which in this case is A; =
1/10 pixels.

Once the LSF(z) is calculated, the final step is to estimate the M T F(f,) response of the
instrument, which can be directly calculated as

MTF(f.) = [FFT,,, {LSF(2)}|, (3.59)

nfft

where FFT,,, ., {-} represents the Fast Fourier Transform operation with n; spatial frequency
points. At this step, it is worth noting that, in order to avoid estimation errors, the spatial fre-
quency axis, f., has to be calculated carefully. Thus, the discrete spatial frequency axis, fZ, can
be calculated as a uniform array ranging from 0 to (nf ¢ —1)/ny s with 1/n ¢4, steps. This discrete
frequency axis can be then converted to a continuous spatial frequency array by multiplying all its
values by the spatial sampling frequency, which is calculated as f¢ = 1/Az;, being Az; the spatial
resolution of the LS F'(z) along the z-axis. In this case, the spatial resolution is given as a function
of the LSF'(z) interpolation resolution, the GSD of the instrument, and the inclination angle of
the edge:

Az = AjAz, (3.60)

where Az is the sampling distance of the satellite projected onto the z-axis. Therefore, using
Equation 3.34, the continuous spatial frequency axis, measured in m !, can be finally calculated
as

fe fe

d . pi
L= fl i = = . 61
fo=ton s AjAz  A;GSDcos(0) (3-61)

Usually, the spatial frequency axis is represented normalized by the sampling frequency of the
instrument along the z-axis, f, = 1/(GSD cos(f)), which finally yields to

,_ S
fl fi= 5 (3.62)

)

Figures 3.18(a) and 3.18(b) show the LSF(z) profile calculated from the interpolated ESF(z)
depicted in Figure 3.17, and the MTF(f,) response calculated from the LSF(z), respectively.
The spatial resolution of the instrument can be obtained from the LSF'(z) depicted in Figure
3.18(a). In this particular case, the instrument presents an across-track resolution of FW H M, =
12.3 m. However, it is worth noting that, as discussed in section 3.3.1, this is not exactly the across-
track resolution, but the resolution along the z-axis, which, given that § = 13.18°, should be very
similar to the actual across-track value. On the other hand, Figure 3.18(b) depicts the MTF(f,)
response, calculated with n sy, = 2048 frequency points. As shown in the figure, the MT'F' value
at Nyquist frequency (f./f. = 0.5) is MTF™? = 0.235. As stated in previous sections, this is a
good trade-off M1 F™¥9 value between resolution and aliasing.

3.4.2 Pulse and double-pulse targets

The pulse target algorithm is based on the theoretical models described in sections 3.3.2 and 3.3.3.
As both single and double-pulse target approaches are very similar, they can be implemented using
a single algorithm. Figure 3.19 shows a flow diagram of the different algorithm steps. Basically,
the objective of the method is to obtain a high resolution model of the pulse or double-pulse target
(r(z)) using high resolution images of the target, and to obtain a model of the target filtered by the
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Figure 3.18: (a) Calculated LSF'(z) profile and (b) estimated M T F(f,) response.
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Figure 3.19: Flow diagram of the pulse and double-pulse target estimation algorithm.

instrument (o(z)) using satellite images. Once both models are obtained, the M T'F is calculated

using Equation 3.39.

The high resolution model is created by averaging centered profiles of the high resolution im-
age. Thus, at the first step, each r;(x) (or 7;(y), if the target is aligned across-track) profile, where
i =1,2,..., N, being N the total number of target profiles, is centered using a cross-correlation
method. Thus, a cross-correlation function ¢(x) of each r;(x) with a reference ro(x) profile of the
target is calculated as

¢(x)

In discrete form, this cross-correlation is given by

L,—1

/ ri(7)ro(r — a)dr.

Sl = Y milrlrolr — @i,

=0

(3.63)

(3.64)
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Figure 3.20: (a) reference 7 (x) profile (blue), r;(x) profile (orange), and centered r;(x + ;)
(dashed green); (b) cross-correlation function ¢(z;).

where L, is the length of both arrays. Therefore, when the two profiles 7;(z) and ro(z) over-
lap completely, the cross-correlation function reaches its maximum value. Thus, once the cross-
correlation function is calculated, the x; point at which it reaches the maximum value is considered
as the shift of the r; () profile respect to the 7o (z) reference, such as that r;(x) = ro(x — ;). This
means that the 7;(x) profile is centered as r;(z + x;). Thus, all ;(x) profiles will be centered re-
spect to the reference ro(z) profile. This r¢(x) reference profile can be selected arbitrarily among
the different r;(x). Once all r;(z) profiles are centered, the high resolution model is created as
the average of all profiles. Then, the inclination angle of the target, 6, is estimated similarly to the
slanted edge case, by fitting a linear function to the different x; centers along the y-axis. Thus,
once 0 is calculated using Equation 3.53, the averaged high-resolution profile is projected onto the
z-axis using Equation 3.32.

Figure 3.20 depicts an example of the centering process of a double-pulse target using the
cross-correlation function. Figure 3.20(a) depicts the reference profile 7o(z), the r;(x) profile,
and the centered r;(x + x;) profile. As can be observed, both () and r;(x + x;) profiles overlap
perfectly, meaning that the centering algorithm provides the desired outcome. The x; value used
to center the profile is extracted from the cross-correlation ¢(x;) function shown in Figure 3.20(b).
As seen in the figure, ¢(x;) has a maximum value at z; = —4, which is exactly the moment when
both profiles overlap. Finally, Figure 3.21 shows the final (z) high resolution double-pulse model
obtained by averaging the centered r;(z) profiles.

Once the high resolution model is created, its continuous component has to be removed in
order to avoid MT'F estimation errors. Let r/(z) be the high resolution model of the target with a
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Figure 3.21: High-resolution model r(x) (orange) created by averaging the different com-
bined r;(x) profiles (blue dots).

continuous component, defined as

r'(z) =r(z) + K - rect (Z) , (3.65)
L,
where K is a constant value, i.e. the continuous component of the model, and L, is the observation
window length of the model. 7(2) is the ideal target model without the continuous component. The
frequency response of the model will be given by

r'(f.) = FA{r'(2)} = r(f.) + KL, -sinc(Lzf,). (3.66)

Thus, the sinc(L, f,) term of Equation 3.66 will cause estimation errors, specially for the low
frequency components of the MTF'. Indeed, the narrower the observation window of the high
resolution model, the higher the estimation error, as the sinc(L, f,) term gets wider. Therefore, it
is important to remove the continuous component of the model to avoid this kind of error.

On the other hand, as described in the flow diagram of Figure 3.19, the different o;(x) pro-
files of the instrument filtered image have to be centered and combined to create a filtered o(x)
model of the target. The centering process is achieved using a 1D gaussian function fitting, which
provides sub-pixel accuracy. Once the different profiles are centered, they are combined into a
single array to obtain an oversampled o(x) profile, and then projected onto the z-axis. Similarly
to the slanted edge case, the oversampled profile is unevenly sampled and, therefore, a 3-degree
Savitzky-Golay filter is used to create an interpolated o(z) profile. Then, as in the r(z) case, the
continuous component of the model is removed. Finally, the MT F' is calculated as

[FFTy, {o(2))]

MTF(f,) = |FFTn;ft{T(Z)H’

(3.67)
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where n? ft and n} f¢ Tepresent the number of frequency points of the filtered model and the high
resolution model. It is important to keep in mind that, in order to be able to calculate the above
equation, both model and filtered target frequency responses have to be evaluated at the same
frequency points. Fulfilling this condition requires that

g a6

Nhre Mg

with f¢ = 1/(A;GSD,cos()) and fI = 1/(GSD, cos(f)) being the sampling frequencies of
the interpolated filtered target model and the high resolution model, respectively. Analogously
to the slanted edge case, A; represents the interpolation resolution of the Savitzky-Golay filter,
measured in pixels. Thus, the above condition can be finally expressed as

. AGSD,

The procedure used in this work consists on fixing n% ,, and then calculate the resolution of
the Savitzky-Golay filter A; so that n? ft is an integer multiple of n? - As in the slanted edge
method, if the MT'F response is represented as a function of the normalized frequency axis, f,
must be normalized by the sampling frequency along the z-axis, that is, f. = 1/(GSD, cos(6)).

Figure 3.22 shows the MT'F' estimation results for a real satellite image of a bridge with two
spans. In this case, the high-resolution model has a spatial sampling resolution of GSD, = 0.9
m, while the spectral instrument has a sampling resolution of GSD, = 30 m. The number of
frequency points of the filtered profile is set to n? = 2048 points and the interpolation resolution
is set to A; = 0.3 pixels, which yields to a number of high-resolution model frequency points
of n? = 20480 points. Figures 3.22(a) and 3.22(b) represent the high-resolution image and the
instrument filtered image, respectively, whereas Figures 3.22(c) and 3.22(d) represent their cor-
responding high-resolution profile (z) and instrument filtered profile o(z), before removing the
continuous component. Using the high resolution model of Figure 3.22(c), the bridge dimensions
can be estimated. Thus, the width of each span bridge is W, = 8.5 m and the span separation
is d, = 25.3 m, with an inclination of § = —8.96°. With these dimensions, the double-pulse
target only fulfills the first of the two conditions required to avoid MTF' estimation errors ex-
plained in section 3.3.3. The first condition requires that the width of each span is lower than the
sampling distance of the satellite instrument, that is, GSD, cos(f) > W, which in this case is
fulfilled by a considerable margin. In contrast, the second condition does not hold, as in this case
GSD,cos(f) > 2d,. This means that the frequency response of the high-resolution model, 7( ),
has its first local minimum at the normalized frequency

GSD,cos(0)

= 0.586, (3.70)

as described by Equation 3.49. This local minimum can be clearly observed at Figure 3.22(e),
which represents both the high-resolution and the filtered model frequency responses. Therefore,
as expected from the results discussed in section 3.3.3, the MT'F response depicted in Figure
3.22(f) presents a large estimation error in the spatial frequencies nearby the first local minimum
of the high-resolution model. Thus, for this specific bridge, the MTF value at Nyquist frequency
can not be estimated from this image using the double-pulse target approach.
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Figure 3.22: Results of a real double-pulse target MTF' estimation: (a) high-resolution im-
age, (b) instrument filtered target, (c) averaged r(z) model, (d) interpolated o(z) profile, (e)
spatial frequency responses of both profiles, and (f) estimated M T F(f.) response.

3.4.3 Discussion

Both estimation algorithms presented in this chapter have advantages and disadvantages. On the
one hand, the slanted edge algorithm does not require a high resolution model. However, it does not
estimate the MT'F' exactly in the across-track nor the along-track, as it performs the estimation in
the direction perpendicular to the edge. This restriction is intrinsic to the theoretical model, as the
derivative of the step function is a delta function only in the direction perpendicular to the edge. On
the other hand, the pulse and double-pulse target techniques are able to estimate the M T'F' using
targets smaller than the pixel size. However, the estimation can yield to high estimation errors
depending on the bridge/target dimensions, and the MTF' is estimated along the perpendicular
axis to the target, as in the slanted edge case. In addition, the estimation also requires a high-
resolution model of the target, which cannot always be obtained.
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Overall, the slanted edge approach is preferred over the pulse or double-pulse target technique
in the literature, as it can be used without needing any high-resolution model, and only the instru-
ment image is required. Moreover, it avoids the estimation errors caused by the pulse width or the
span separation.
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Chapter 4

Results

4.1 Sensitivity analysis

In order to test the performance of both slanted edge and pulse/double-pulse target M T F' estima-
tion methods, an ideal simulation algorithm has been developed. The main objective of this task is
to generate either perfect slanted edges or pulse/double-pulse targets filtered with an input PSF
function, and sampled at the desired output G.SD. Thus, the input PSF can be specified from its
resolution (F'W H M in the across-track and along-track directions), or from the M T'F' response.
Asboth PSF and MTF are known, the performance of the algorithms can be tested by comparing
the estimated responses with the input responses.

The main steps of the ideal simulation algorithm are:

1. Create an ideal high-resolution slanted edge or pulse/double-pulse target, with a sampling
distance GSD;,.

2. Calculate the instrument PSF. The PSF is calculated as an ideal 2D Gaussian function
(Equation 3.9). In this case, the input parameters are the total P.SF' resolutions £'W H M,
and FW HM,,. The MTF response is calculated from the PSF. The sampling distance of
the PSF' is the same as in the ideal target case, that is, G.S D;y,.

3. Perform a 2D convolution of the ideal target and the generated PSFE'. The convolution is
performed in the spatial domain.

4. Resample the filtered target at the specified output sampling distance, GS'Dy¢.

Figure 4.1 depicts the output of the different steps of the ideal simulation algorithm. As can be
observed, first, the ideal target and the instrument PSF’ are generated, with a resolution G\S D;,,.
In this particular case, the high-resolution sampling distance is GSD;,, = 1 m, and the target is a
slanted edge with an inclination of § = 10°. The PSF resolution is FW HM = 32 m for both
across-track and along-track directions. The output spatial sampling distance is set to G.S D,y =
30 m. In order to obtain an accurate convolution result, the ideal edge sampling distance has to
be considerably lower than the PSF resolution. A value of GSD;,, = GSD,,:/10 or lower is
recommended. Finally the filtered target image is obtained by performing a 2D convolution of the
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PSF and the ideal target, and the output filtered image is obtained by resampling the filtered image
at GSDy;. As the GS D,y is set to an integer multiple of GS Dy, no interpolation is required.

High resolution slanted edge

00000

Filtered Edge

Resampled Edge

~1000

-500

2D Convolution * — £
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1000

500 1000
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Figure 4.1: Schematic view of the ideal simulation steps.

4.1.1 Slanted edge

The slanted edge simulations have been performed for three different G.SD values: 10, 20, and
30 m. For each GSD, FW H M resolutions ranging from 1G.SD to 2GS D have been simulated,
with equal resolution in both across-track and along-track. In addition, two edge inclinations have
been considered: § = 8° and 6 = 10°.

Figure 4.2 represents the simulation results for the three G.S D cases. Figures 4.2(a) and 4.2(b)
correspond to GSD = 10 m, while 4.2(c) and 4.2(d) correspond to G.SD = 20 m, and 4.2(e) and
4.2(f) correspond to GS D = 30 m. The left column (Figures 4.2(a), 4.2(c), and 4.2(e)) represents
the estimated resolution F'W H M, as a function of the simulated resolution, whereas the right
column (Figures 4.2(b), 4.2(d), and 4.2(f)) shows the corresponding F'W H M, estimation errors,
given also as a function of the simulated resolution. The estimation error, F'W H M., is defined as

FWHM, = FWHM™ — FWHMZ, 4.1

being FW HM3$"™ and FW HM¢% the simulated and estimated PSF resolutions, respectively.

As can be observed from Figure 4.2, the algorithm provides an accurate estimation of the
instrument resolution, obtaining similar results for both § = 8° and § = 10° edge inclinations. In
addition, in all three G.S D cases the algorithm provides analogous results, showing a similar error
tendency. The maximum estimation errors of approximately 0.4 m for the GSD = 10 m case, 0.8
m for the GSD = 20 m case, and 1.35 m for the GSD = 30 m case.

Table 4.1 shows the accuracy and precision parameters for both § = 8° and # = 10° edge
inclination cases. All the results are normalized by the corresponding G.SD of each simulation.
The accuracy, uéc whm, is calculated as the mean value of the resolution estimation error, while the
precision, ag whm, is defined as the standard deviation of the estimation error. As shown in the
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Figure 4.2: Slanted edge algorithm: (a, c, e) estimated F'W H M, and (b, d, f) estimation error
FW H M, as a function of the simulated F'WW H M,. (a, b) correspond to GSD = 10 m,(c, d)
correspond to GSD = 20 m, and (e, f) correspond to GSD = 30 m.

table, the algorithm performs similarly for all GSD cases. This happens because the simulated
resolution range is the same in terms of the GSD in the three cases, that is, for each GSD, the
FWHM is shifted from FWHM = 1GSD to FWHM = 2GSD, at 0.1GSD steps. Thus,
the estimation performance depends on the FW HM /GSD ratio. The global accuracy of the
algorithm for the § = 8° slanted edge, calculated as the mean value between the three accuracies, is
1 M™ = 0.0091-GSD (0.91% of the GSD), while the global precision is o “"™ = 0.024-G.SD
(2.4% of the GSD). On the other hand, for the § = 10° slanted edge, the global accuracy is
™M™ = 0.0089 - GSD (0.89% of the GSD) and the global precision is o “"™ = 0.023 - GSD
(2.3% of the GS D), which are very similar to the § = 8° case.
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0() GSDm) ul*"™(@GSD) ol“"™ (GSD)

10 0.00818 0.02316
8 20 0.00864 0.02336
30 0.01045 0.02464
10 0.00727 0.02206
10 20 0.00909 0.02311
30 0.01045 0.02285

Table 4.1: Resolution estimation: accuracy (1{“"™) and precision (o) parameters nor-

malized by the GSD.

Figure 4.3 depicts the MT F' estimation results of the ideal slanted edge simulations. The left
column of the figure represents the estimated MTF' values at Nyquist frequency as a function of
the simulated resolution F'W H M, while the right column depicts the M T F' estimation errors at
Nyquist for each case, also as a function of the simulated W H M. The first row of the figure
shows the results of the GSD = 10 m case, the second row corresponds to GSD = 20 m, and
the third row depicts the GSD = 30 m results. Analogously to the resolution error, the MTF
estimation error, MT'F,, is defined as

MTF, = MTF™ — MTFS, (4.2)

where MTF$"™ and MT F¢t correspond to the simulated and estimated M T'F values at Nyquist
frequency, respectively. As shown in the figure, the algorithm provides a good MT F"¥9 estima-
tion, showing similar error tendencies in all GS D cases. In addition, the estimation error of the
0 = 10° case is almost exactly the same than that of the § = 8° case. Simulations show that good
MTF estimations are obtained for inclination angles between = 5° and 6 = 20°, although the
error increases with 6, as reported in [10, 14]. Moreover, it is important to use edge inclination
and GS'D combinations that provide a uniformly sampled oversampled ESF'. If the GSD and
f combination is not optimum, the oversampled F.SF profile will present data points clustered
together, which can yield to bad E'SF' interpolation results. For instance, Figure 4.4(a) shows the
ESF interpolation results for § = 8° and GSD = 30 m, whereas Figure 4.4(b) represents the
ESF results for # = 10° and GSD = 30 m. As can be observed, the § = 8° edge inclination
provides a more uniform oversampled E'SF', especially at the slope of the ESF.

Table 4.2 represents the M'I'F' estimation accuracy (,uzntf ) and precision (o' tf ) parameters of
the algorithm for the three G.SD and the two considered edge inclinations. In this case, the global
accuracy and precision of the algorithm are uznf = 0.0059 and o¢" = 0.0035 for both 6 = &°
and 6 = 10° inclinations.

4.1.2 Pulse target

Pulse target simulations have been carried out considering a pulse width of W = 0.8GSD,
which fulfills Equation 3.43 to avoid high MTF' estimation errors. As in the slanted edge case,
the simulations have been performed for PSF resolutions ranging from FW HM = 1GSD to
FWHM = 2GSD, at 0.1GSD steps. In this case, a pulse inclination of # = 8° has been
considered. Figures 4.5(a) and 4.5(b) represent the estimated resolution and the estimation error,
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Figure 4.3: Slanted edge algorithm: (a, c, e) estimated MT'F, and (b, d, f) estimation error
MTF, as a function of the simulated resolution /"W H M.. (a, b) correspond to GSD = 10
m,(c, d) correspond to GSD = 20 m, and (e, f) correspond to GSD = 30 m.

respectively, as a function of the normalized simulated resolution. Both the estimated FW H M
and the estimation error F'W H M, are normalized by the GSD. As shown in the figure, the algo-
rithm achieves a good FW H M estimation, with maximum estimation errors of 0.06GSD. The
spatial accuracy and precision of the algorithm are Mgwhm = 0.024 - GSD (2.4% of the GSD)
and o™ = 0.018 - GSD (1.8% of the GSD).

On the other hand, Figure 4.6 depicts the estimated MT'F' value at Nyquist frequency and the
MTF estimation error at that specific spatial frequency. As can be observed, the algorithm pro-
vides good M TF estimation results, with a maximum estimation error of MT F¢¥? = 0.005. The
MTF estimation accuracy is #;”tf = 0.0032, while the precision is o¢" = 0.0014. Therefore,
the pulse target technique provides precision and accuracy values of the same order of magnitude
than the slanted edge method for § = 8°.
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Figure 4.4: (a) £ SF interpolation for § = 8° and (b) ESF interpolation for 6 = 10°. In both
cases, GSD = 30 m.

0C) GSD@m) upl o
10 0.00553 0.00336
8 20 0.00541 0.00330

30 0.00663 0.00371

10 0.00555 0.00340
10 20 0.00555 0.00338
30 0.00669 0.00381

Table 4.2: MTF estimation: accuracy (M?tf ) and precision (o¢" tf ) parameters for the dif-

ferent GSD values.

4.1.3 Double-pulse target

Double-pulse target simulations have been performed for a double-pulse considering equal ampli-
tude spans, with widths of W, = 0.2 - GSD and a separation of d, = 0.4 - GSD. The target
inclination is set to § = 8°. These target dimensions fulfill the conditions established at Equations
3.43 and 3.50, which avoids the estimation error caused by the interference between the Fourier
transform of both spans. The simulated PSF resolutions are the same than those used in both
slanted edge and pulse target cases. Figures 4.7(a) and 4.7(b) depict the estimated resolution and
the estimated resolution error, respectively, as a function of the normalized simulated P.S'F resolu-
tion. Figures 4.8(a) and 4.8(b) represent the estimated M T F"Y4 values and the M T F’ estimation
errors. As can be observed from both figures, the algorithm provides very similar results to those
obtained in the case of pulse target simulations. This result was expected, as the developed algo-
rithm is the same in both cases, and the only difference between the pulse target and double-pulse

simulations is the type of input target. Thus, the resolution accuracy and precision are, in this case,
pd™"™ = 0.019 - GSD and o{“"™ = 0.014 - GSD, whereas the MTF accuracy and precision

are '/ = 0.0033 and o7 = 0.0014.
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Figure 4.5: Pulse target algorithm: (a) Estimated F'W H M normalized by the GSD as a
function of the normalized simulated resolution and (b) estimation error as a function of the
normalized simulated resolution.
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Figure 4.6: Pulse target algorithm: (a) Estimated M T F' at Nyquist frequency as a function
of the normalized simulated resolution and (b) M1 F™Y? estimation error as a function of the
normalized simulated resolution.

4.1.4 Discussion

Ideal simulation results of the previous section show that, for the same target inclination (6 = 8°),
the slanted edge algorithm provides M T F' estimation at Nyquist frequency with similar accuracy
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Figure 4.7: Double-pulse algorithm: (a) Estimated F'W H M normalized by the GSD as a
function of the normalized simulated resolution and (b) estimation error as a function of the
normalized simulated resolution.
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Figure 4.8: Double-pulse algorithm: (a) Estimated M T F' at Nyquist frequency as a function
of the normalized simulated resolution and (b) M1 F™? estimation error as a function of the
normalized simulated resolution.

than the pulse/double-pulse algorithm (17" = 0.0059 vs "/ = 0.0032 and 4™ = 0.0033).
However, the slanted edge approach provides more accurate P.SF’ resolution estimations than the
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pulse/double-pulse techniques (u2™“"™ = 0.0091 - GSD vs pl™"™ = 0.024 - GSD and pf*"™ =
0.019-GS D). Thus, if both sharp contrast edges and pulse targets are present on the spectral image,
the slanted edge approach is preferred over the pulse/double-pulse technique, as the slanted edge
algorithm does not require any high-resolution image and provides similar estimation performance.

4.2 Real data

Once the algorithm performance was tested using ideal simulations, MTF' estimations of real
passive optical instruments were carried out. The estimations were performed using one refer-
ence dataset from the Committee on Earth Observation Satellites (CEOS), and L1B products from
the Earth observation Sentinel-2 mission from the European Space Agency (ESA). The reference
dataset is used to validate the algorithm with spectral images obtained using instruments which
MTF has been previously characterized by experts. On the other hand, in-flight Sentinel-2 prod-
ucts are used to perform M T F' estimations, comparing them to the results reported at the Data
Product Quality Reports [25] generated by ESA experts.

4.2.1 Calibration and validation reference dataset

The reference dataset consists on a combination of simulated and real images of slanted edge tar-
gets. This dataset is available at the Validation and Calibration portal from the CEOS [26], under
the section "MTF Reference Dataset”. The dataset was created by a team of researchers and pro-
fessionals from different parts of the world who deal with MI"'F' measurements, with the objective
to create a reference dataset to check the performance of MT'F' estimation algorithms. The results
and methodology used to create the dataset can be found at [14]. The Cal/Val dataset is formed
by a total of 6 slanted edge targets, classified from letters A to F. This reference Cal/Val dataset is
a blind test. Thus, at the first step, the reference images are downloaded and their corresponding
MTF responses are estimated using the developed slanted edge algorithm. Then, the estimation
results are uploaded to the Cal/Val website and, once all the results have been uploaded, the MT'F’
reference responses are provided by the Cal/Val site admins, so that the uploaded estimated MT F
responses can be compared to the reference responses.

Figure 4.10(a) depicts the across-track M T F' estimation results obtained using the “Image A”
target of the Cal/Val dataset, compared to the reference MT'F' response. In this case, only across-
track MT'F' assessment is possible because of the slanted edge orientation (Figure 4.9(a)). On the
other hand, Figure 4.10(b) represents the M T F' estimation error as a function of the normalized
spatial frequency. As can be seen in the figure, the estimated M T F response fits to the reference
MTF very well, especially in higher frequencies. The difference between reference and estimated
MTF atlower frequencies could be caused by a bad continuous component compensation, among
other factors. Figures 4.11, 4.12,4.13, 4.14, and 4.15 show the estimated M T F responses and the
MTF estimation errors for images B, C, D, E, and F, respectively. As shown in the figures, the
algorithm achieves a reliable MT"F' estimation in all cases. In general, the higher estimation error
is located at lower spatial frequencies, as in the image A results. It is worth noting that the best
estimation result is achieved for the Image D case (Figure 4.13). This fact is a consequence of the
algorithm calibration, as the different algorithm parameters (sliding window width, interpolation
resolution, Savitzky-Golay polynomial degree, etc.) were tuned using input edges filtered with a
gaussian function, which is the PSF type used to filter the slanted edge of Image D. Thus, the

49



4.2. REAL DATA

(@)

ixels)

¥ (pi

x (pixels)

110 115 120 125 130 135 140
X (pixels)

(d)

¥ (pixels)
¥ (pixels)

0 25 50 75 100

0 20 40 60 8 100 120 140
X (pixels) X (pixels)

0 25 50 75 100 125 150 175
X (pixels)

Figure 4.9: Slanted edge targets from the reference Cal/Val dataset: (a) image A, (b) image
B, (¢) image C, (d) image D, (e) image E, and (f) image F.

tuning process of the different algorithm parameters could yield to a biased estimation of other
PSF types, and the algorithm performance may depend on the shape of the M T F response under
estimation, which agrees with the results reported in [14].
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Figure 4.10: Image A: (a) across-track MTF estimation results and (b) across-track M TF
estimation error as a function of the normalized spatial frequency.
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Figure 4.11: Image B: (a) across-track and (b) along-track MTF estimation results. (b)
across-track and (d) along-track M T I’ estimation errors.
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Figure 4.12: Image C: (a) across-track and (b) along-track MTF estimation results. (b)
across-track and (d) along-track M1 I’ estimation errors.
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Figure 4.13: Image D: (a) across-track and (b) along-track MTF' estimation results. (b)
across-track and (d) along-track MT'F' estimation errors.
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Figure 4.14: Image E: (a) across-track and (b) along-track MTF estimation results. (b)
across-track and (d) along-track MT'F' estimation errors.
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Figure 4.15: Image F: (a) across-track and (b) along-track MTF estimation results. (b)
across-track and (d) along-track MT'F' estimation errors.

4.2.2 Sentinel-2

Sentinel 2 is an Earth observation mission providing high quality spectral images of the Earth’s
surface with high revisit frequency [27]. This spectral images can be used, for instance, to monitor
climate change effects, water content and chlorophyll plant indexes, or forestal areas, among many
other applications. The mission consists on two polar-orbiting satellites, Sentinel-2A and Sentinel-
2B, each one equipped with a passive optical multispectral instrument (MSI) with a swath width
(GFOV) 0f 290 km and a total of 13 spectral bands, ranging from the visible and and VNIR bands
to the SWIR band, with different spectral and spatial resolutions. The MSI features 4 high spatial
resolution bands with GSD = 10 m centered at 490 nm (blue), 560 nm (green), 665 nm (red),
and 842 nm (near infrared). In addition, it features 6 narrow spectral bands with GSD = 20 m
for vegetation characterization at 705, 740, 783, and 865 nm; and two wider SWIR bands at 1610
and 2190 nm for snow, ice, and cloud detection. The MSI also features 3 low spatial resolution
bands with GSD = 60 m mainly for atmospheric corrections and cloud screening, centered at
443, 945, and 1375 nm. The instrument employs the pushbroom scanning technique. The latitude
coverage ranges from 56° south to 84° north, with 10 days of revisit time at the equator. The first
satellite, Sentinel-2A, was launched at 237¢ June of 2015, while the second one, Sentinel-2B, was
launched at 7" March of 2017. The main specifications for each spectral band of the mission are
shown in Table 4.3. In the table, the radiance sensibility column represents the radiance range

L in < L3o; < Liyq, that the sensor is able to detect, measured in Wm™>srad ™" um .

max
Sentinel-2 products include L1C and L2A images, available for free at the Copernicus Open
Access Hub [28]. L1B products are also available for scientific and professional users under pre-
vious request. Usually, the generation of L2A products is on user’s side, and can be obtained using
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Band GSD (m) Mg (nm) AM(nm) Radiance sensibility range SNR @ L;, f (dB)

1 60 443 20 16<129<588 129
2 10 490 65 11.5<128<615.5 154
3 10 560 35 6.5<128<559 168
4 10 665 30 3.5<108<484 142
5 20 705 15 2.5<74.5<449.5 117
6 20 740 15 2<68<413 &9
7 20 783 20 1.5<67<387 105
8 10 842 115 1<103<308 174
8a 20 865 20 1<52.5<308 72
9 60 945 20 0.5<9<233 114
10 60 1375 30 0.05<6<45 50
11 20 1610 90 0.5<4<70 100
12 20 2190 180 0.1<1.5<24.5 100

Table 4.3: Sentinel-2 mission specifications for each spectral band.

the SNAP Toolbox [29] and the sen2cor algorithm. Thus, the Sentinel-2 mission products are:

» L1B: top of atmosphere radiometrically corrected radiances in sensor geometry.
* LIC: top of atmosphere radiometrically corrected reflectance in a map projection.

» L2A: bottom of atmosphere radiometrically corrected reflectance in a map projection.

The calibration and validation methods of the different satellite parameters can be found at the
Sentinel-2 Calibration and Validation Plan for the Operational Phase [30]. The MT'F response
of the instrument must be performed using L1B products, as L1C products implement geometric
corrections that include interpolation and resampling operations that affect the effective MT'F' and
PSF responses. The MTF specifications for both Sentinel-2A and Sentinel-2B satellites are:

* GSD = 10 mbands: 0.15 < MTF™1 < 0.3 (specification S2-MP-045).
* GSD =20mand GSD = 60 m bands: MTF™9 < (.45 (specification S2-MP-045).
* MTF in-orbit stability of 10% during lifetime (specification S2-MP-050).

Sentinel-2 MT'F' validations are performed once per year by the Mission Performance Centre
(MPC) and Expert Support Laboratories (ESL) groups. The validation results are reported at the
Data Product Quality Reports [25] as MT'F' estimations at Nyquist frequency. In order to double
check the MT'F' estimations reported at the Data Product Quality reports, M T F' estimations for
the high spatial resolution red, green, and blue bands have been performed using the developed
slanted edge algorithm. As suggested in the Sentinel-2 Cal/Val plan [30], the selected location to
perform the estimation is Maricopa, Arizona, USA. Maricopa has many crop fields slightly slanted
respect to the along-track axis, which makes this location a suitable choice to detect contrast edge
targets. The L1B product requested to the ESA was acquired with the Sentinel-2A satellite in April
2017, with product ID S2A_ MSIL1B 20170405T181441 N0204 R041 20200203T162745. Es-
timations were performed using the data from detector 2. Figure 4.16(a) depicts an image of the
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Band 3 with some Maricopa fields with a red rectangle highlighting the slanted edge used for the
estimations, which can be found in more detail at Figure 4.16(b).
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Figure 4.16: (a) Input image from Band 3 of the Detector 2, and (b) sharp edges used to
estimate the M T F response.

Figures 4.17(a) and 4.17(b) depict the estimated across-track ESF(z) and LSF(z) profiles,
respectively. The ESF'(z) has been obtained by interpolating the oversampled ESF'(z) profile,
created from the combination and projection of the different £.SF;(z) centered using the Fermi
function fitting technique. In this case, the estimated inclination of the edge is § = 13.03°. On the
other hand, the LS F'(z) was calculated by differentiating the E.SF(z). The across-track resolution
estimated from the LSF(z) is FW H M, = 12.4m. Finally, Figure 4.18 shows the M T F response
calculated as the Fourier transform of the LSF. As can be observed, in this case the across-track
MTF value at Nyquist frequency is MT F;Y? = 0.27

Figure 4.19 depicts the estimation results of high-resolution Bands 2, 3, and 4. All the results
have been obtained using images from Detector 2 of the MSI. Figures 4.19(a), 4.19(c), and 4.19(e)
correspond to Band 2, 3, and 4 LS F’ estimations, respectively, while Figures 4.19(b), 4.19(d), and
4.19(f) represent their corresponding M T'F’ responses. Blue lines are for across-track results and
red lines are for along-track estimations. As can be observed from the figure, all three bands present
similar resolutions and M T F' responses, with no significant differences between across-track and
along-track responses.

Table 4.4 shows the across and along-track M T F" values at Nyquist frequency reported at the
Data Product Quality Report of April 2017 with the estimation uncertainty of each estimation for
Bands 2, 3, and 4. On the other hand, Table 4.5 show the estimation results of both F'W H M and
MTF™1 obtained from the LSF and MT'F responses depicted in Figure 4.19. As can be ob-
served from the comparison of Tables 4.4 and 4.5, the estimated M T'F’ values at Nyquist frequency
obtained using the developed slanted edge algorithm are in good agreement with those reported
at the Data Product Quality Report, and fall within the uncertainty range provided by the ESA.
In addition, the estimation results also agree with the results presented by the ESA in [31]. The
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Figure 4.17: (a) oversampled and interpolated £'SF'(z) across-track profile, and (b) esti-
mated LSF(z).
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Figure 4.18: Estimated across-track M T F'(f,) response.

estimated resolutions are in the range of FWHM = 1.2-GSD and FWHM =1.3-GSD.

4.2.3 L1C vs. L1B products

As mentioned before, MTF' estimations must be carried out using L1B and not L1C products.
However, it is important to point out that final users employ not L1B, but L1C products, which
means that MTF and PSF resolution degradations due to the interpolation and resampling pro-
cess used to project L1B products onto conventional map coordinates should be considered, as
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Figure 4.19: (a, c, e) Estimated LSF for Bands 2, 3, and 4, respectively; (b, d, f) MTF
responses of Bands 2, 3, and 4, respectively. Blue lines are for across-track results, while red
lines are for along-track estimations.

they will be present at final user’s products. In order to study this degradation, MT'F and LSF
estimations of the L1C product associated to the employed L1B product used for the Sentinel-2
assessment have been carried out. The corresponding product ID is:

* S2A MSILIC 20170405T181441 N0204 R041 T12SVB_20170405T181440.

Figure 4.20 depicts the estimation results obtained from the L1B image and its associated L1C
product, for Band 4. Figures 4.20(a) and 4.20(b) correspond to across-track results, while 4.20(c)
and 4.20(d) correspond to along-track estimations. As shown in the figure, there is a noticeable
degradation in terms of both resolution and MT'F'. For the across-track direction, the resolution
is reduced from FWHM, = 12.4 mto FW HM, = 15.5 m for the L1B and L1C cases, respec-
tively, while the M T F at Nyquist is reduced from M T F;? = 0.253 to MT F;'¥? = 0.109. Like-
wise, for the along-track direction the resolution changes from FW HM, = 13.2 m in the L1B
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Band MTF¥"  MTF"

2 0.25£0.06 0.2740.06
3 0.27+£0.03 0.28+0.04
4 0.25+£0.04 0.23+0.03

Table 4.4: Sentinel-2: MTF™Y1 values reported at the Data Product Quality Report from
April 2017. Subindex = denotes across-track results, while subindex y denotes along-track
values.

Detector Band FWHDM, (m) MTF FWHM,@m) MTF

2 2 12.5 0.287 12.5 0.298
2 3 12.4 0.272 12.7 0.260
2 4 12.4 0.253 13.2 0.241

Table 4.5: Sentinel-2: MTF"? and FW HM estimation results for Bands 2, 3, and 4.
Subindex = denotes across-track results, while subindex y denotes along-track values.

product, to FW HM, = 16.1 m in the L1C case; while the MTF is degraded from MTF;Y? =
0.241 to MTF;YY = 0.103.
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Figure 4.20: (a) Estimated across-track LSF' and (b) its corresponding M T'F, (c) estimated
along-track LSF and (d) its corresponding M T F'. Blue lines are for L1B results, while red
lines are for L1C estimations.

Therefore, the MTF' degradation due to the interpolation and resampling process applied to
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L1B products should be considered when analyzing the spatial performance of the optical instru-
ment, as it plays an important role on the final M T F response of L1C products delivered to final
users.
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Chapter 5

Conclusions

In this master thesis, two algorithms to perform estimations of the modulation transfer function
(MTF) of passive optical instruments have been developed. The MT'F represents the instrument
response as a function of the spatial frequency. Thus, it relates the input amplitude of a given
spatial frequency component with its output amplitude. The MTF of an instrument is usually
characterized in the literature by its value at the Nyquist frequency. As explained in previous
chapters, spatial frequencies higher than the Nyquist frequency will translate onto aliasing artifacts
at the final image. Thus, ideally, a low M T F value at this frequency should be required. However,
a narrower M T F' response translates in the spatial domain onto a wider point spread function
(PSF), which means that the spatial resolution decreases. Therefore, the estimation of the MT'F
response is an important task to assess the spatial quality of satellite images.

The implemented algorithms are able to estimate the M T F' using in-flight spectral images.
Both algorithms are developed in Python with Open Source libraries, and implement two different
MTF estimation techniques: the slanted edge method, and the pulse/double-pulse target method.
The estimation results obtained with the two methods have been compared, showing similar results.
However, in general, the slanted edge approach is preferred over the pulse/double-pulse target
method, as it avoids MT F estimation errors due to the target dimensions and it does not require
a high-resolution model of the target. The performance of the algorithms has been analyzed using
both ideal simulations and real data, with good accuracy and precision values. Sentinel-2 MTF
assessments are presented, which are in good agreement with the MT'F' values reported by the
ESA calibration and validation teams. Finally, the image degradation on spatial quality due to the
interpolation and resampling process used to obtain L1C products from L1C data of Sentinel-2
images is discussed.

Further improvements of the developed algorithms could be implemented in future work. For
instance, automatic slanted edge or pulse/double-pulse target detection could improve the usability
of the algorithms, as on its current version the target detection has to be configured manually.
Additional estimation methods could also be implemented, as, for instance, the frequency method
developed by ONERA at [12, 14]. Increasing the number of estimation methods can improve
significantly the robustness of the estimation results. Finally, the developed algorithms could be
adapted so that the could be included as a plug-in in the SNAP Toolbox of the ESA, allowing final
users to estimate the spatial quality of Sentinel-2 spectral images.
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