
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/143119

Requena-Peris, R.; Vargas, M.; Chiralt A. (30-0). Eugenol and carvacrol migration from
PHBV films and antibacterial action
in different food matrices. Food Chemistry. 277:38-45.
https://doi.org/10.1016/j.foodchem.2018.10.093

https://doi.org/10.1016/j.foodchem.2018.10.093

Elsevier



 
 

 

 

 

Eugenol and carvacrol migration from PHBV films 
and antibacterial action in different food matrices 

 

Raquel Requena; María Vargas; Amparo Chiralt 

Institute of Food Engineering for Development, Universitat Politècnica de València, Valencia, 

Spain 

ABSTRACT 

The antibacterial effect of PHBV films with oregano or clove essential oil, or their main 

compounds, carvacrol (CA) and eugenol (EU), respectively, was analysed in food 

matrices (cheese, chicken breast, pumpkin and melon) and in in vitro test for Escherichia 

coli and Listeria innocua. The migration of CA and EU in the different food matrices was 

determined to analyse the food matrix effect on the film’s antimicrobial effectiveness. 

The antimicrobial activity in foods was less remarkable than in in vitro test. Despite the 

antilisterial effect in the in vitro test, this was not noticed in any food matrix. The most 

significant antibacterial effects against E. coli were observed in cheese and pumpkin, 

whereas the highest migration of both CA and UE took place in melon. This lack of 

correlation reflected that many compositional factors affect the active compound’s 

availability to exert its antibacterial action in a specific food. 

 

Keywords: PHBV films, essential oils, carvacrol, eugenol, migration, antibacterial 

activity, food applications. 

 

  



 
 

1. INTRODUCTION 

Nowadays, the microbial contamination of perishable products is the main reason for 

food spoilage and foodborne diseases, since they are transported and stored for a long 

time until consumption (Pavlath & Orts, 2009). In this context, active packaging has 

appeared as a novel strategy for the control of microbial growth, thereby increasing food 

quality and safety of the packaged foodstuffs (Wen et al., 2016). In turn, consumer 

demand is moving towards more natural foods containing lower amounts of synthetic 

preservatives. In this sense, naturally occurring compounds, such as essential oils (EOs) 

and their main compounds, which are considered as flavoring substances by the 

European Regulation 1999/217/CE and Generally Recognized As Safe (GRAS) substances 

by the Food and Drug Administration (FDA), have been widely studied as to their 

antimicrobial properties against spoilage and pathogenic microorganisms and constitute 

an effective alternative to synthetic preservatives (Jaiswal, & Jaiswal, 2015).  

EOs are complex mixtures of volatile compounds where two or three major components 

can constitute up to 85% of the oil, the phenolic compounds being mainly responsible 

for their antimicrobial properties. However, minor compounds are reported to have an 

important effect on the EO antimicrobial activity, possibly due to synergistic effects 

(Burt, 2004; Gutierrez, Barry-Ryan, & Bourke, 2008). Of the EOs, oregano (OR) and clove 

essential oil (CLO) are two of the most effective at inhibiting microbial growth of food-

borne pathogens and spoilage microorganisms (Burt, 2004) and much research has 

focused on the development of antimicrobial films containing these actives. Whey 

protein films containing OR have inhibited the microbial growth of Listeria innocua, 

Salmonella enteritidis and Staphylococcus aureus (Royo, Fernández‐Pan, & Maté, 2010), 

whereas starch-chitosan films with OR exhibited antimicrobial properties against 

Bacillus cereus, Escherichia coli, S. enteritidis and S. aureus (Pelissari, Grossmann, 

Yamashita, & Pineda, 2009). Likewise, Muppalla, Kanatt, Chawla, & Sharma (2014) have 

reported significant antimicrobial effects against S. aureus and B. cereus by 

incorporating CLO into carboxymethyl cellulose-polyvinyl alcohol films. Similar results 

were obtained with pectin films containing CLO for S. aureus, E. coli and Listeria 

monocytogenes (Nisar et al., 2018). The antimicrobial properties of both OR and CLO 

have mainly been attributed to their major compounds, carvacrol (CA) and eugenol (EU), 

respectively (Burt, 2004). Many in vitro studies with active biodegradable matrices 

containing CA (Requena, Jiménez, Vargas & Chiralt, 2016; Rojas-Graü et al., 2007) or EU 

(Narayan & Ramana, 2013; Requena et al., 2016) demonstrated their effectiveness as 

antimicrobial agents against a broad spectrum of microorganisms. However, 

significantly higher EO amounts are required to achieve similar antimicrobial effects 

when applied to food matrices, probably due to the interactions between the active 

compounds and different food components, which could limit their effectiveness as 

antimicrobials (Burt, 2004; Gutierrez et al., 2008). In this sense, some authors reported 

that high fat and protein contents in the food matrix can inhibit the antimicrobial activity 



 
 

of the EOs, which was attributed to the protective action of these food components for 

the bacteria (Canillac & Mourey, 2004; Gutierrez et al., 2008; Higueras, López-Carballo, 

Hernández-Muñoz, Catalá, & Gavara, 2014; Kim, Ruengwilysup, & Fung, 2004; Shelef, 

Jyothi, & Bulgarellii, 1984; Veldhuizen, Creutzberg, Burt, & Haagsman, 2007). Thus, no 

significant antimicrobial activity has been reported against several foodborne pathogens 

after applying chitosan films with CA on chicken samples. The scavenging effect of 

chicken protein on the CA gave rise to a very low available active concentration 

(Higueras et al., 2014). Likewise, EOs were less effective in full-fat products than in their 

corresponding low-fat alternative, such as was observed in cheese (Smith-Palmer, 

Stewart, & Fyfe, 2001) or hotdogs (Singh, Singh, Bhunia, & Singh, 2003). One of the main 

hypotheses for the higher microbial resistance to EOs in high protein and fat foods, 

compared to in vitro tests, is the greater nutrient availability in the food, which allows 

bacteria to repair their damage faster than in the culture medium (Gill, Delaquis, Russo, 

& Holley, 2002; Veldhuizen et al., 2007). Some authors also suggested that, due to their 

lipophilic nature, EOs generally dissolve in the fat-lipid phase of food, thus being less 

available to interact with the bacteria present in the aqueous phase (Mejlholm & 

Dalgaard, 2002; Veldhuizen et al., 2007). Moreover, phenolic compounds, the main 

antimicrobial agents in EOs can react with fatty free radicals, resulting from autoxidation 

in fatty products, thus obtaining reaction products less effective than the original 

phenolic compounds (Kim et al., 2004). On the contrary, high salt and water levels in the 

food are reported to increase the bacterial sensitivity to EOs (Shelef et al., 1984). As 

regards the carbohydrate content of foods, Gutierrez et al. (2008) reported that EO 

antimicrobial activity was reduced at high starch concentrations, in contrast to that 

observed by Shelef et al. (1984). Therefore, it is clear that the development of active 

films for food packaging applications require antimicrobial in vivo tests performed with 

the specific microorganisms inoculated into the food matrix where the films containing 

EOs should be applied, in order to assess whether food safety requirements are met. 

As concerns film composition, the increasing environmental awareness advises the 

replacement of conventional plastic materials for more environmentally-friendly, 

biodegradable ones obtained from natural sources. In this context, biopolymers 

obtained from renewable resources through bacterial action, such as the 

polyhydroxyalkanoates (PHAs), are a promising option for food packaging applications, 

since they can be produced by 300 species of Gram-positive and Gram-negative bacteria 

as well as a wide range of archaea and are completely biodegradable (Laycock, Halley, 

Pratt, Werker, & Lant, 2013). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is 

one of the most common PHAs, since this biopolymer has physical properties 

comparable to some synthetic polymers, such as polypropylene and polyethylene, 

although PHBV leads to more brittle materials with lower elongation at break (Laycock 

et al., 2013). PHA films have been previously used as carriers of the different EO 

compounds to obtain biodegradable active materials, whose antimicrobial activity has 



 
 

been proved in in vitro tests (Narayan & Ramana, 2013; Requena et al., 2016; Xavier, 

Babusha, George, & Ramana, 2015). 

The aim of this study was to assess the antibacterial effect of PHBV films containing OR 

or CLO, as well as their main compounds, CA and EU respectively, in several food 

matrices of distinct composition, in order to determine the food matrix effect on the 

film antimicrobial properties. 

 

2. MATERIALS AND METHODS 

2.1. Materials and reagents 

PHBV (8% of hydroxyvalerate) was provided in pellet form by NaturePlast (Caen, France). 

The polyethyleneglycol 950-1050 Da (PEG1000) used as plasticizer, as well as carvacrol 

(CA) and eugenol (EU), and UV-grade methanol were supplied by Sigma-Aldrich 

(Steinheim, Germany). Oregano (OR) and clove essential oils (CLO) were obtained from 

Herbes del Molí (Alicante, Spain). Gas chromatography standard 2-pentanol was 

purchased from Sigma-Aldrich Corp. (St. Louis, MO). 

 

2.2. Film preparation 

PHBV monolayer films were prepared by melt blending and compression-moulding as 

described by Requena et al. (2016). Briefly, PHBV in pellet form was blended with 

PEG1000 (10% w/w) in a two-roll mill (Model LRM-M-100, Labtech Engineering, 

Thailand) at 180 oC and thermo-compressed by using a hot plate hydraulic press (Model 

LP20, Labtech Engineering, Thailand) at 10 MPa and 180 °C for 4 min.  Then, PHBV active 

films with different active compounds were obtained by spraying a constant amount 

(13% w/w, in the film) of each active compound (OR, CLO, CA or EU) as reported by 

Requena et al. (2016). To sum up, PHBV monolayers were sprayed with the 

corresponding active compound, covered with another PHBV sheet and compressed 

using the hydraulic press. Thus, five kinds of films were obtained: control films without 

active compounds (PHBV), and films with the corresponding active compounds (PHBV-

OR, PHBV-CLO, PHBV-CA, PHBV-EU). 

 

2.3. Physicochemical analysis of raw materials 

Physicochemical properties of foods directly related with the microbial growth 

sensitivity, such as pH and water activity (aw), were analysed in each of the food matrices 

by using a pH puncture electrode (Seven EasyTM pH, Mettler Toledo, Switzerland) and an 

aw meter (Aqualab 4TE, METER FOOD, USA), respectively. The oBrix were also 



 
 

determined in fruit samples (pumpkin and melon), as ripeness indicator, by using a 

refractometer (ATAGOTM NAR-3T Abbe, Japan). For aw measurements, all samples were 

peeled and cut into small pieces, whereas for the determination of the total soluble 

solids in the fruit, the sample juice was obtained by liquefying. All measurements were 

taken in triplicate.  

 

2.4. Antibacterial effectiveness of active films: in vitro and in vivo tests 

2.4.1. Processing of food matrices 

The antibacterial activity of the different active films was tested in food matrices with 

high protein or fat content (fresh cheese and chicken breast) and high carbohydrate 

content (fresh-cut pumpkin and melon), in order to study the food composition effect 

on the film antimicrobial activity. All the food was purchased from a local market, 

transported to the laboratory immediately and handled in a laminar flow cabinet in 

sterile conditions. The chicken breasts were cut into thin fillets and the fresh cheese was 

prepared in slices. Both vegetable matrices were superficially disinfected by dipping 

them in sodium hypochlorite 1% (v/v) solution for 1 min, peeled and also cut into thin 

slices. 10 g samples of 55 mm in diameter were obtained from each food matrix and 

placed in petri dishes.  

 

2.4.2. Antibacterial activity assessment 

Listeria innocua (CECT 910) and Escherichia coli (CETC 101) lyophilized strains were 

supplied by the Spanish Type Culture Collection (CECT, Universitat de València, Spain), 

and stored at −25 °C with 30 % glycerol. Bacterial cultures on exponential growth phase 

were prepared by inoculating the microbial stock suspensions into TSB, followed by their 

incubation at 37 °C for 24 h. The inoculums were properly diluted to obtain bacterial 

suspensions of 106 CFU/mL. 

Tryptic Soy Agar (TSA, Scharlab, Barcelona, Spain) culture medium, used for in vitro tests, 

and the different food samples placed in petri dishes (55 mm in diameter) were 

inoculated with 100 µL of L. innocua or E. coli suspension and covered with the different 

active film samples of the same diameter. Both samples covered with active-free PHBV 

films and those non-covered were also tested as film control and inoculum control, 

respectively. Petri dishes were closed with their lids, sealed with ParafilmTM and 

incubated for 6 days. Incubation was carried out at 10 oC in all cases. TSA culture media 

and fresh cheese samples were also previously tested at 4 oC. Microbial counts in each 

sample were performed in duplicate after inoculation and after 6 incubation days. To 

this end, each sample was homogenized in buffer peptone water (Scharlab, Barcelona, 

Spain) for 3 min, by using a Stomacher Lab-blender (Masticator, IUL Instruments, 



 
 

Barcelona, Spain) and properly diluted. The plate counts of L. innocua were performed 

on Palcam agar base (Scharlab, Barcelona, Spain) containing Palcam selective 

supplement for Listeria (Scharlab, Barcelona, Spain), after incubation at 37 oC for 48 h, 

whereas the plate counts of E. coli were performed on Fecal Coliforms agar (Scharlab, 

Barcelona, Spain) dyed with 1% Rosolic acid solution (Scharlab, Barcelona, Spain) after 

pre-incubation at 37 oC for 2 h and transferred to 44 oC for 22 h. Counts were expressed 

as log CFU/g food matrix or TSA. 

 

2.6. CA and EU migration to the food matrices 

2.6.1. Quantification in the films by methanol extraction 

The active amount that migrated from the films to the different matrices during 

incubation time was estimated indirectly by determining the active compound 

remaining in the films after the contact time, through methanol extraction and 

subsequent spectrophotometric quantification. Thus, after 6 days at 10 oC and prior to 

the extraction, PHBV-CA and PHBV-EU films were detached from the different matrices 

and kept in phosphorus pentoxide (aw = 0) for 24 h to remove adsorbed water. Then, 

methanol extraction of the active compounds was carried out using 10 mg film in 1 mL 

solvent in contact for 72 h. The resulting extracts were filtered and properly diluted to 

obtain absorbance values between 0.2 and 0.8. In this way, CA and EU amounts in the 

extracts were quantified through absorbance measurements at 275 and 282 nm, 

respectively, by using an UV-visible spectrophotometer (Evolution 201, Thermo 

Scientific). PHBV bilayer films without active compounds in contact with samples for 6 

days and submitted to the same extraction procedure were used to obtain the 

background solutions. All the determinations were run in triplicate. CA and EU standard 

calibration curves were previously obtained to convert absorbance values to active 

content. The active amount that migrated from the active films to the different matrices 

was estimated by subtracting the active mass remaining in the films after the incubation 

from the initial active amount in the films, which was assessed using the same extraction 

procedure.  

 

2.6.2. Analyses in the food matrices by Gas chromatography–mass spectrometry (GC-
MS) 

The active compounds that migrated from the active films to the different food matrices 

were extracted by purge and trap thermal desorption (Perdones, Escriche, Chiralt, & 

Vargas, 2016). 100 µl of the internal standard 2-pentanol (10 mg/L) and 10 g of food 

purée, properly diluted with water, were placed into a purging flask and kept in a water 

bath under the extraction conditions shown in Table 1, previously optimized for each 



 
 

food matrix. Throughout the extraction time, purified nitrogen (100 mL/min) flowed 

through the glass frit at the bottom of the flask. Thus, volatile compounds were dragged 

by the nitrogen stream, which passed through the sample and were adsorbed in a 100 

mg porous polymer (Tenax® TA, 20–35 mesh) packed into a glass tube placed at the end 

of the system.  

 

Table 1. Optimum extraction conditions established for each food matrix for the purge and trap 

method. 

Matrix Sample:Water Time (min) Temperature (oC) 

Cheese 1:1 25 70 

Chicken 1:1 15 40 

Pumpkin  1:2 25 50 

Melon  1:0 25 50 

 

The adsorbed volatile extract was thermally desorbed by a direct thermal desorber 

(TurboMatrix TD, Perkin-Elmer TM, CT-USA). Desorption was performed under a 10 

mL/min helium flow at 220 oC for 10 min, and the volatiles were cryofocused in a cold 

trap at 30 oC. After 1 min, the cold trap was heated up to 250 oC (at a rate of 99 oC/min) 

and volatiles were directly transferred onto the head of the capillary column. The GC–

MS analysis was performed using a Finnigan TRACETM MS (ThermoQuest, Austin, USA). 

Volatile compounds were separated using a DB-WAX capillary column (1.0 µm x 0.32 

mm x 60 m, SGE, Australia). Helium was used as carrier gas at a constant flow rate of 1 

mL/min. The oven was kept at an initial temperature of 40 oC for 2 min. Then, the 

temperature was increased to 190 oC at a rate of 4 oC/min, maintained for 5 min and 

finally increased to 230 oC at 10 oC/min. The MS interface and source temperatures were 

250 and 200 oC, respectively. Electron impact mass spectra were recorded in impact 

ionisation mode at 70 eV and with a mass range of m/z 33–433. At least five extracts 

were obtained for each food sample. The identification of CA and EU was performed by 

comparing their mass spectra with spectral data from the National Institute of Standards 

and Technology 2002 library as well as the published retention indices. The CA and EU 

quantification was carried out after calibration following the standard addition method, 

in order to avoid the food matrix composition effect. 10 g of food purée, homogenised 

with 100 µl of internal standard 2-pentanol (10 mg/L) and 5 different concentrations of 

CA or EU were tested in quadruplicate, following the procedure already described. 

 



 
 

2.7. Statistical analyses 

Experimental data were analysed by analysis of variance (ANOVA) using Fisher's Least 

Significant Difference (LSD) test at 95 % confidence level. To this end, Statgraphics 

Centurion XVIs for Windows 5.1 (Manugistics Corp., Rockville, MD, USA) was used.  

 

3. RESULTS AND DISCUSSION 

3.1. Characterization of raw materials 

Moisture content is not directly related with the microbial spoilage of foods, since 

foodstuffs with the same moisture content can deteriorate to a different extent, 

whereas the water activity (aw), or free water available for the microbial growth, has 

been widely used as an indicator of microbial spoilage sensitivity. All foodstuffs are 

suitable substrates for bacterial development in terms of aw, since all matrices show aw 

values (Table 2) above the required threshold for bacterial growth (0.9) (Beuchat, 1981). 

The pH can also be used as a predictor of the bacterial growth, since it generally occurs 

optimally at pH values in the range 6-7 and falls as the pH moves away from this region 

(Adams & Nicolaides, 1997). Similarly to that reported for aw values, all the food 

products showed pH values in the optimal range for bacterial growth (Table 2). 

Therefore, the physicochemical properties of the foodstuffs did not hinder the bacterial 

growth in any case. As regards the soluble solid content of the plant foodstuffs, the 

melon samples showed higher values, which could mean more nutritious media for the 

bacterial development.  

 

Table 2. Water activity (aw) and pH values, and Brix level of the different food matrices. Mean 

value ± standard deviation. 

Matrix pH aw Brix level (o) 

Cheese 6.61±0.02 0.985±0.002 - 

Chicken  5.98±0.02 0.991±0.001 - 

Pumpkin  5.79±0.02 0.991±0.001 11.7±0.2 

Melon 6.17±0.04 0.988±0.001 12.7±0.2 

 

3.2. Antibacterial effect of active films at 4 oC 

Microbial counts of L. innocua and E. coli in TSA culture media performed at 4 oC are 

shown in Table 3. At this temperature, the lack of bacterial growth in the culture 

medium after incubation was remarkable for both bacteria, especially for E. coli where 

a decrease in the initial counts was observed. Likewise, no significant differences in the 

microbial counts of either bacteria were observed after 6 days of incubation for any 



 
 

sample covered with PHBV films without actives, in comparison with the non-covered 

samples (C6). Therefore, the antibacterial activity of the films with active compounds 

was attributed to the incorporation of active compounds. Both PHBV-CA and PHBV-OR 

films exerted a significant bactericidal effect against L. innocua, as reported by Requena 

et al., (2016) in TSB liquid media. However, no antilisterial activity of the PHBV-EU or 

PHBV-CLO films was observed, which agrees with the higher minimum inhibitory 

concentration (MIC) of EU for L. innocua (1.05 mg/mL) compared to the corresponding 

MIC value of CA (0.75 mg/mL) (Requena, Vargas, & Chiralt, 2018). However, the total 

inhibition of E. coli was observed with all the active films, excluding PHBV-CLO, despite 

the higher EU MIC value against E. coli (1.35 mg/mL) (Requena et al., 2018) compared 

to the corresponding value against L. innocua. This could be attributed to the different 

combined effect of the low temperature (4 oC) and actives on both bacteria: 

bacteriostatic for Listeria and bactericidal for E. coli. Although EU is the main compound 

in CLO, the EU content in the PHBV-CLO films could be below its MIC against E. coli at 

4oC (Burt, 2004).  

In contrast to the results of the in vitro test, significant microbial growth of L. innocua 

was observed in fresh cheese samples after 6 days of incubation at 4 oC (Table 3). This 

may be due  to the composition of the dairy product, which makes it very sensitive to 

the growth of Listeria (Gutierrez et al., 2008). In contrast with the Listeria’s capacity to 

grow at temperatures as low as 4 oC (Al-Nabulsi et al., 2015), the mesophilic status of E. 

coli did not allow its growth (Francis & O’Beirne, 2001). PHBV films containing active 

compounds did not show any remarkable effects on the growth of L. innocua and E. coli 

inoculated into fresh cheese samples, unlike the effects observed in in vitro tests; this is 

likely due to the combined bacteriostatic or bactericidal effect of the low temperature, 

which could mask the antibacterial action of the active PHBV films. Thus, additional tests 

were conducted at 10 oC in order better to reflect the role of the active compounds. 

 

Table 3. Microbial counts of Listeria innocua and Escherichia coli on inoculated TSA agar and 

fresh cheese (log CFU/g sample) after the film contact for 6 days at 4 oC. Inoculated, non-covered 

samples were also considered before (C0) and after the incubation time (C6).  

Matrix C0 C6 PHBV PHBV-CA PHBV-EU PHBV-OR PHBV-CLO 

 Listeria innocua 

Agar 3.2±0.1b 3.4±0.1a 3.3±0.1ab 2.8±0.1c 3.5±0.3a 2.6±0.2c 3.5±0.1a 

Cheese 3.6±0.1d 5.7±0.2a 5.3±0.2c 5.4±0.4bc 5.4±0.1abc 5.6±0.1abc 5.6±0.2ab 

 Escherichia coli 

Agar 3.6±0.1a 2.8±0.2c 2.8±0.2c nd nd nd 3.0±0.2b 

Cheese 4.7±0.1a 4.9±0.5a 4.1±0.2b 3.8±0.7b 4.6±0.1a 4.7±0.1a 4.6±0.1a 

a-c: Different letters in the same line show significant differences between film formulations (p < 0.05). 

nd: non-detected microbial growth.   

 



 
 

3.3. Antibacterial effect of active films at 10 oC 

Due to the potential combined antimicrobial effect of the low temperature, the 

antimicrobial tests were carried out at 10 oC, within the limits of cold preservation. The 

in vivo test was performed to obtain the microbial counts of L. innocua and E. coli in two 

kinds of high-protein foods (fresh cheese and chicken breast) and in two kinds of 

vegetable matrices (fresh-cut pumpkin and melon), previously inoculated and stored at 

10 oC for 6 days. No bacteriostatic effects were observed for L. innocua and E. coli at this 

storage temperature, whose population increased more than 4 log after 6 days in the 

TSA culture medium (Figure 1). The microbial growth of both bacteria was quite similar, 

with small differences depending on the foodstuff that are associated with the different 

food composition. 

In line with the in vitro results at 4 oC, PHBV films with CA or OR significantly reduced 

the microbial counts of L. innocua and E. coli, thus showing an antibacterial effect against 

both bacteria, although those counts were always higher than the initial inoculum (grey 

dotted lines). Both bacteria were more affected by PHBV films containing CA than by 

those containing OR, as reported by Rojas-Grau et al. (2007) in in vitro studies for 

alginate-apple puree films and E. coli, since the OR antimicrobial activity has been mainly 

attributed to CA, which only represents 46 % of this EO (Perdones, Tur, Chiralt, & Vargas, 

2016). In contrast with that obtained in the in vitro test at 4 oC, PHBV-EU and PHBV-CLO 

films significantly reduced both bacterial growths, with no significant differences 

between formulations. Similar reductions were reported at 10 oC for L. monocytogenes 

and E.coli by Alboofetileh, Rezaei, Hosseini, & Abdollahi (2014) with alginate films 

containing CLO. 

 

3.3.1. Antibacterial effect of active films in high-protein food 

The microbial counts of L. innocua and E. coli obtained in fresh cheese and chicken 

breast samples coated with the different films are shown in Figure 1. It is remarkable 

that no significant growth reduction of L. innocua was observed in fresh cheese samples 

with any film formulation, in contrast with that obtained in the in vitro test (Figure 1). 

This lack of antilisterial activity could be due to the protective effect of the fats and 

proteins present in the cheese exert on bacteria, which inhibited any potential 

antimicrobial effect of the EO compounds, as reported by several authors (Canillac & 

Mourey, 2004; Gutierrez et al., 2008; Higueras et al., 2014; Kim et al., 2004; Shelef et al., 

1984; Veldhuizen et al., 2007). Smith-Palmer et al. (2001) and Singh et al. (2003) 

reported significantly greater antilisterial effect of the EO on low-fat cheese and hotdogs 

than in the corresponding full-fat products. However, all the active film formulations 

exhibited significant antimicrobial activity against E. coli, in line with the greater 

sensitivity of E. coli to these active compounds (Raybaudi-Massilia, Mosqueda-Melgar, 



 
 

& Martin-Belloso, 2006; Requena et al., 2018; Teixera et al., 2013). However, despite 

the higher sensitivity of E. coli to CA compared to the other studied actives (Burt, 2004; 

Pei, Zhou, Ji, & Xu, 2009), the PHBV films containing CA gave rise to the lowest microbial 

reduction (1.5 log), followed by PHBV-OR (2.5 log).  As reported by several authors, the 

whole EOs are often more effective than their pure main compounds; this is because 

there are some other minor compounds that could be critical in the antimicrobial activity 

(Gill et al., 2002; Mourey & Canillac, 2002), which, to a different extent, can also be 

affected by the presence of the cheese components. Notwithstanding the lower 

antimicrobial effect of EU against E. coli when compared to CA and OR (Burt, 2004; Pei 

et al., 2009), PHBV films containing EU or CLO inhibited the microbial growth by 3 log, 

with no significant differences between either. The different behaviour observed for 

active films in cheese with respect to that exhibited in the in vitro test suggests that the 

antimicrobial activity of OR and CA could be inhibited by the interaction with the fats or 

proteins present in the cheese, whereas EU and CLO could be more available in the fatty-

protein matrix to act against bacteria. Therefore, as reported by Glass & Johnson (2004), 

higher amounts of antimicrobials are often required when they are applied to real 

systems, since some compounds present in the foodstuffs can interfere with both the 

microorganism’s viability and the potential antimicrobial activity of the active 

compounds.  

Significant differences were observed in the L. innocua counts for chicken breast 

samples incubated with and without active PHBV films, although without any 

remarkable reductions in practical terms (> 1 log). Nevertheless, the PHBV-EU films 

resulted in significant growth inhibitions of E. coli (2 log) in chicken samples. Likewise, 

PHBV films containing CLO or CA also led to significant bacterial growth reductions, but 

to a lesser extent, whereas no antimicrobial activity was observed by applying PHBV-OR 

films. In the same way, Shekarforoush, Nazer, Firouzi, & Rostami (2007) reported a 

significant antimicrobial effect of OR against E. coli in in vitro studies, but no effect was 

observed when this EO was applied to roast chicken. Differences between the in vitro 

and in vivo tests in chicken samples could again be explained by the scavenging effect of 

the protein matrix on the active, probably due to their high chemical compatibility 

(Higueras et al., 2014).  

 

3.3.2. Antibacterial effect of active films in plant food 

Antimicrobial studies were also performed on two matrices with high carbohydrate 

content and low fat and protein content in order to compare the antimicrobial activity 

of the active films depending on the food matrix composition. Figure 1 shows the 

microbial counts of L. innocua and E. coli in inoculated fresh-cut pumpkin and melon, 

incubated for 6 days at 10 oC, in contact with the different films. The initial population 

of L. innocua increased 4 log in both products, whereas the microbial growth of E. coli 

https://www.linguee.es/ingles-espanol/traduccion/notwithstanding.html


 
 

was food matrix-dependent; counts increased 5 log in pumpkin samples and less than 3 

log in melon samples, highlighting the importance of the food matrix in the bacterial 

growth.  

As regards the antimicrobial activity of the active films, no film formulation led to 

important growth inhibitions (> 1 log) of L. innocua in either of the two vegetable 

matrices. Similarly, no antilisterial activity was observed in fresh broccoli packaged in 

plastic bags containing an active trilayer film based on a mixture of organic acids, extract 

of rosmarinic acid and Italian or Asian EO (Takala et al., 2013). However, all the active 

films had a significant antimicrobial effect against E. coli in fresh-cut pumpkin samples, 

but not in fresh-cut melon samples, in all likelihood because of the active interaction 

with some of the melon components.  

The growth inhibition effects of the studied active films on the different food matrices, 

in terms of the reduction in log CFU, with respect to the corresponding inoculum control, 

are shown in Table 4. In in vitro studies with TSA culture medium, a significant growth 

inhibition of both bacteria was observed (between 1 and 4 log depending on the film 

formulation), whereas in in vivo tests, the antimicrobial effects were less remarkable in 

every case with the exception of the antimicrobial effect against E. coli of PHBV-EU and 

PHBV-CLO films, which were more effective in cheese, chicken meat and pumpkin 

samples. The greater antimicrobial effect of these actives in the food matrices suggests 

that the presence of some matrix compounds strengthen the mechanism of 

antibacterial action. The most significant antimicrobial effects against E. coli were 

obtained in fresh cheese and fresh-cut pumpkin. PHBV-EU and PHBV-CLO films were 

more effective in cheese, while PHBV-CA and PHBV-OR films exerted a greater effect in 

pumpkin samples. Despite the antilisterial effects observed in the in vitro tests, 

particularly in the case of CA, these were not noticed in any of the food matrices studied 

(< 1log). The presence of nutrients that have a protective, nutritious effect on bacteria, 

as well as the interactions of the actives with the food compounds, significantly 

decreased their potential antilisterial effect. In this sense, noteworthy results were 

obtained for the plant foods, where, despite the low content of fat and protein in the 

matrix, a marked reduction in the antilisterial activity was observed for all the films. In 

this sense, Gutierrez et al. (2008) also reported that starch concentrations of 5 % and 10 

% had a negative effect on the OR efficacy against L. monocytogenes. In general, the 

active compound was more effective against E. coli than L. innocua when applied to the 

food matrices, as well as in the culture medium, which may also be attributed to the 

higher MIC values of the active compounds for Listeria, which, in turn, will be affected 

by the substrate of growth (Pei et al., 2009; Raybaudi-Massilia et al., 2006; Requena et 

al., 2018; Teixera et al., 2013). The lack of any significant antibacterial effect of active 

films on melon is remarkable, where very low values of growth inhibition were observed 

for both E. coli and L. innocua.  Likewise, no inhibition of the L. innocua growth was 

observed in cheese samples. 



 
 

 

Figure 1. Microbial counts for Listeria innocua and Escherichia coli, obtained  after 6 days of 

incubation at 10 oC in TSA culture media (in vitro test) and different food matrices covered with 

films containing carvacrol (CA), eugenol (EU), oregano (OR) or clove essential oil (CLO) and 

without actives (C). Dotted lines show the microbial count of the inoculum before (grey) and 

after 6 days of incubation (black). Different letters above the error bars of the histogram show 

homogeneous sample groups (p < 0.05). 
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3.4. Cuantification of CA and EU migration to the food matrices 

The total migration of actives from the films to the food systems was analysed to better 

understand the differences in their antibacterial effect. This was carried out for CA and 

EU in the case of PHBV-CA and PHBV-EU films. In this sense, the remaining CA and EU 

content in the active films was analysed after 6 days in contact with each matrix, under 

the same conditions given in the antimicrobial assays, as well as the active content 

present in the respective food matrix, as described in section 2.6. Table 5 shows the 

contents of CA and EU in the film after 6 contact days, and the estimated amount 

delivered (% respect to the initial content in the film: 107 ± 7 mg CA/g film or 61 ± 6 mg 

EU/g film) to the food system, as well as the content determined in the food matrix, 

using both the data obtained from the remaining content in the films (1 subscript) and 

that quantified in the food matrix (2 subscript). Although the amount of actives released 

into the food matrices by both methods did not coincide completely, the tendencies 

observed were quite coherent; this is except for the case of EU in chicken meat samples, 

where no significant release was detected through the analyses of the remaining 

content in the films. Nevertheless, a direct analysis in the food matrix would offer more 

reliable values since film manipulation throughout the extraction process could imply 

uncontrolled losses of the actives.  

Melon was the food system in which the highest migration of both CA and UE occurred, 

whereas the pumpkin samples and the culture medium exhibited the lowest content of 

actives. Likewise, except for the pumpkin samples, the percentages of released CA and 

EU led to active contents in the food matrices higher than the MIC (CA: 0.75 mg/mL for 

L. innocua  and 0.70 mg/mL for E. coli; EU: 1.05 mg/mL for L. innocua and 1.35 mg/mL 

for E.coli; Requena et al., 2018). However, no remarkable antimicrobial effects were 

observed on the melon samples coated with PHBV-CA or PHBV-EU films, which could be 

attributed to a scavenging effect of the melon components on the actives or to their fast 

diffusion into the internal tissue, provoking a dilution effect on the sample surface 

where the bacteria grow. In contrast, despite the scarce CA and EU migration into the 

pumpkin samples, it was sufficient to reduce the microbial growth of E. coli by 2.8 or 2.3 

log, respectively. Likewise, very low CA or EU concentrations were estimated in the agar 

medium, when compared to food matrices, while the most significant antibacterial 

effect was obtained in this culture medium. This suggests that both CA and EU were 

more concentrated at the sample surface, with minor internal diffusion, which allowed 

for a more effective antibacterial action. On the other hand, although no significant 

differences between the migration of CA and EU into the chicken or cheese samples 

were observed, the migration values were higher in the chicken breast. However, a more 

marked growth inhibition of E. coli was observed in the cheese samples for both active 

compounds. 
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The lack of coherence between the active migration from the films into the food 

matrices and the antibacterial action observed in the different cases make a specific 

antimicrobial analysis necessary for each food to prove the effectiveness of a 

determined antimicrobial material. Many factors affect the availability of the potentially 

active compounds to exert their action. The interactions of actives with the food 

components, which can provoke a scavenging effect of the compound (Higueras et al., 

2014), their specific diffusion into the internal part of the food matrix and the 

subsequent dilution effects on the contaminated surface or the reinforced vitality of 

bacteria induced by food components, compromise the antimicrobial effectiveness of 

the potentially active compounds included in a determined packaging material.  On the 

other hand, a study of the release kinetics of the active compounds in food simulants 

did not give the same values of compound migration than those obtained in real foods 

or culture medium. Previous studies (Requena et al. 2017) with the same films 

containing CA or EU in food simulants A (10% ethanol aqueous solution) and D1 (50% 

ethanol aqueous solution), which could emulate less fatty foods (chicken breast, melon 

and pumpkin samples or agar culture medium) and more fatty systems (cheese), 

respectively, would permit the estimation of the migration values of these components 

in the less and more fatty systems. The estimated values were 1.8 and 7.7 mg CA/g 

matrix and 3.8 and 7.4 mg EU/g matrix, respectively, for less and more fatty systems. 

These values differ noticeably from those obtained in the real foods, where specific 

components play an important role in both the active compound migration and 

availability and the bacterial vitality. Then, studies into the real foods are required to 

ensure that the potential antibacterial material can exert adequate protection against 

bacterial proliferation.  

 

4. CONCLUSION 

PHBV films with active essential oil compounds were highly effective against L. innocua 

and E. coli in in vitro tests, but they were much less effective in the real foods tested, 

with the exception of the effect against E. coli in cheese samples coated with PHBV-EU 

or PHBV-CLO films. No antilisterial effect was observed in any food matrices. The most 

significant antimicrobial effects against E. coli were observed in fresh cheese, for PHBV-

EU and PHBV-CLO films, and fresh-cut pumpkin, for PHBV-CA and PHBV-OR films. In 

general, although the percentages of CA and EU migration led to active contents in the 

food matrices that were higher than their MICs, they were not always effective.  The 

highest migration of both CA and UE took place in melon, whereas the lowest migration 

was quantified in pumpkin samples and in the culture medium. In contrast, no significant 

antimicrobial activity of the films was observed in melon, while they were very effective 

against E. coli in the culture medium and the pumpkin samples. The lack of correlation 



 
 

between the amount of active that migrated to the food and the antibacterial effect 

observed in the different matrices reflected the fact that many compositional factors 

affect the active compound’s availability to exert its antibacterial action on a specific 

food composition, which, in turn, has a different nutritious/protective effect on the 

bacteria.  Therefore, antimicrobial analyses are required that are specific to the food in 

question to ensure the effectiveness of a particular antimicrobial packaging material.  
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