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Abstract 

 

A web-based database of voltammograms is presented for characterizing artists’ 

pigments and corrosion products of ceramic, stone and metal objects by means of the 

voltammetry of immobilized particles methodology. Description of the website and the 

database is provided. Voltammograms are, in most cases, accompanied by scanning 

electron microphotographs, x-ray spectra, infrared spectra acquired in attenuated total 

reflectance Fourier transform infrared spectroscopy mode (ATR-FTIR) and diffuse 

reflectance spectra in the UV-Vis-region. For illustrating the usefulness of the database 

two case study involving identification of pigments and a case study describing 

deterioration of an archaeological metallic object are presented.  

 

Keywords: Voltammetry of immobilized particles; Database; Pigments; Corrosion 

products. 
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1. Introduction 

 

The elucidation of the composition of artist’s materials and their alteration products is 

an essential analytical target in archaeometry and conservation of cultural heritage. 

These analytical studies are particularly important in regard to pigments. Relevant 

information for authentication, dating and provenance studies, identification of 

repainting and testing deterioration degree can be obtained from the study of pigments 

present in paintings, polychromed sculptures and decorative elements [1,2]. Most 

coloring materials historically used by artists are natural products such as minerals, 

often chemically treated, and organic extracts and exudates from plants (more rarely 

from animals) rather than chemically pure substances. Accordingly, the interpretation of 

the analytical data provided by available instrumental techniques requires the disposal 

of a wide reservoir of case-sensitive standards. This has motivated the recent 

appearance of libraries containing UV-visible spectra, FTIR/Raman spectra and X-ray 

diffraction data for minerals and artist’s pigments [4-17]. 

 

On the other hand, available techniques for pigment analysis have been expended by the 

development of the voltammetry of immobilized particles (VIMP), a methodology 

developed by Scholz et al. prompting the electrochemical characterization of solid 

materials, early applied to minerals [18-21] and pigments [22]. As recently reviewed, 

the VIMP can be applied to the identification, mineralogical and oxidation state 

speciation and quantification of selected analytes in a variety of materials [23-25] and 

applied to the study of works of art [26-28] using amounts of sample in the microgram-

nanogram range. 

 

The special requirements of the analytical procedures when they are applied to works of 

art and archaeological artifacts makes VIMP particularly useful because of its inherently 

high sensitivity, requirement of minimal amounts of sample, no need of sample 

pretreatment and partial sample recuperation and use for multiple analysis. Since its first 

application for identifying inorganic pigments [29], the VIMP methodology has been 

increasingly used in the analysis of pigments in works of art [30-38], their alteration 

products [36,38], as well as metal corrosion products [40-44]. The scope of this 

technique in the archaeometric field has been enhanced by the use of ‘graphite pencil’ 

sampling [45-48], local [49,50] and layer-by-layer analysis [51]. The analytical 
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capabilities of VIMP have been expanded to provide relevant information for the 

authentication [52,53], tracing and dating [54-57] of archaeological metal. Hybrid 

inorganic-organic pigments of historical relevance such as Maya blue have also been 

studied by VIMP [58-64]. 

 

The purpose of the current report is to present a web-based database “Electrochemistry 

for Heritage” (ELCHER) covering the VIMP response of artist’s pigments and products 

of alteration of stone, ceramics, metals and pigments and discuss the capabilities and 

constraints associated to the same, illustrated by selected case studies. The 

voltammograms database is complemented with scanning electron microphotographs 

and x-ray spectra, IR absorption spectra obtained by ATR-FTIR and UV-vis diffuse 

reflectance spectra. A complementary set of data from SECM and AFM coupled to 

electrochemical measurements is presented. Such data are of interest for applying them 

in the conservation and restoration field where these analytical techniques have been 

recently applied for the localization of proteins in paint layers [65] and the identification 

of pigments and corrosion products at the nanoscopic scale [37,66]. 

 

2. The ELCHER database 

 

The ELCHER database is available on the internet website: http://www.elcher.info. The 

website was developed using HTML 4.0, CSS 2.0, PHP 4.0 and JavaScript 

programming languages. The voltammograms as well as microphotographs, x-ray, IR 

and reflectance spectra are available online. The whole database has, at this moment, 

100 voltammograms, 30 x-ray spectra, 50 ATR-FTIR spectra (spectral range: 600-4000 

cm
-1

) and 50 UV-vis spectra (spectral range: 200-800 nm) of 70 different materials 

specifically used by artists from prehistoric times until nowadays.  

 

The home page contains a banner with graphs and photographs of a selection of 

pigments from the database. The web page is organized in seven areas (Fig. 1a). Tabs in 

the header allow the user to move from one major content area to another. The first area 

includes general information on the electrochemistry for heritage (ELCHER) research 

group (background, organization chart and facilities and equipments). The second area 

is a summary of the main results obtained by the ELCHER group in the last years (R+D 

projects, papers and books). The main results of a case study of relevance are shown in 

http://www.elcher.info/
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the fourth area. The fifth area contains the ELCHER database. The sixth to seventh 

areas are target frames containing all the links, news and contact information on the web 

page and the research group. Instrumentation and other details of voltammograms and 

spectra contained in the database may be obtained by clicking on “About Elcher 

Database” in the pull-down menu of the database tab in the main page. To start 

navigating through the database, users must click on the ‘‘search’’ button on the pull-

down menu of the database tab after ticking the box “accept terms of use and legal 

conditions” (see Fig. 1b). Access to the voltammogram and spectra of a specific 

pigment or mineral is possible by writing the name of the pigment in the keyword box 

(Figure 2a). Restricted search can be carried out by selecting the option “common 

name”, “material type” or “data type” in the box “search by”. Then the page of the 

material selected appears. This page contains the following: voltammogram, filename, 

the pigment’s common name in English and Spanish languages, supplier or provenance 

data, chemical composition, acquisition conditions of the voltammogram. If available, 

x-ray, backscattered electron photograph, IR and UV-vis spectra are shown (Figure 2b). 

To a magnified view of the desired voltammogram, spectrum or microphotograph, users 

must click on the ‘‘voltammogram’’ or spectrum box which then opens a pop-up 

window with the image requested.   

 

3. Experimental 

 

Reagents and reference materials 

Data presented here correspond to Kremer pigments (Aichstetten, Germany). Sodium 

acetate, acetic acid, hydrochloric acid (Panreac), acetone (Sigma) and Paraloid B72 

(Rhöm & Haas) were used as chemical reagents. 

 

Instrumentation 

VIMP experiments were performed at 298 K in a three-electrode cell under argon 

atmosphere using a CH I660C device (Cambria Scientific, Llwynhendy, Llanelli UK) 

and Ivium CompactStat (Ivium Technol. B.V., Eindhoven, The Netherlands) portable 

equipment. A platinum wire counterelectrode and a saturated calomel reference 

electrode (SCE) completed the three-electrode arrangement. Aqueous 0.25 M sodium 

acetate buffer and 0.10 M HCl were used as electrolytes after being deoxygenated by 

bubbling Ar during 15 min. Cyclic and square wave voltammograms (CVs and SWVs) 
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were obtained using conventional abrasive VIMP protocols [18,19]. Commercial 

graphite leads Staedtler, Alpino, Hoc-i-noor and Disnak, all of HB type (68 %wt 

graphite) were used. Importantly, the electrolyte solution was renewed after each 

electrochemical run to avoid contamination due to metal ions eventually released to the 

solution phase during electrochemical turnovers. Prior to the series of runs for each 

material or sample, a conditioning protocol was used to increase repeatability. The 

electrode surface was polished with alumina, rinsed with water and polished by pressing 

over paper. In conventional ‘scratching’ VIMP for reference materials, an amount of 1-2 

mg of the solid was previously powdered in an agate mortar and pestle, was extended 

on the agate mortar forming a spot of finely distributed material. Then the lower end of 

the graphite electrode was gently rubbed over that spot of sample and finally rinsed with 

water to remove ill-adhered particles. Sample-modified graphite bars were then dipped 

into the electrochemical cell so that only the lower end of the electrode was in contact 

with the electrolyte solution. 

 

For field emission scanning electron microscopy X-ray microanalysis,  cross-sections 

prepared from samples excised of paintings by embedding in polyester resin and polishing 

with SiC abrasive disks. Cross-sections were examined under a Zeiss model ULTRA 55 

field emission scanning electron microscope, which operated with an Oxford-X Max X-

ray microanalysis system. Image acquisition was done at the 3 kV accelerating voltage. 

The chemical composition of pigments was obtained at the 20 kV accelerating voltage 

and 6-7 mm was the working distance for the X-ray detector. Samples were carbon-

coated to eliminate charging effects. A semiquantitative microanalysis was carried out 

by the ZAF method to correct interelemental effects. The counting time was 100 s for 

major and minor elements alike. Element percentages were generated by the ZAF 

method on the Oxford-Link-Inca EDX software, which was performed to exclude C to 

avoid erroneous quantification because the signal detected for this element mainly came 

from the C coating applied to samples to suppress charge effects.  

 

4. Operating database 

4.1. Voltammetric response 

Generation of a practical database for artists’ pigments and corrosion products of art 

objects involves several analytical problems. The first one is the variability in the 

possible standard materials, because natural pigments or pigments prepared from natural 
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materials have been typically used until recent times. This means that materials with 

source-dependent composition rather than pure chemicals have to been tested. A second 

difficulty derives from the texture and composition of the base electrode to be used. 

Textural and chemical properties of the supporting graphite can influence the 

voltammetric response of the pigment, at least, in three ways: first, as a result of the 

different adherence and porosity of the graphite surface, thus yielding a more or less 

effective ‘contact’ and a more or less extensive three-phase particle/electrolyte/base 

electrode junction; second, by producing signals associated to oxygen (hydroquinone, 

phtalic anhydride and carboxylic, mainly) functionalities in the graphite surface [67,68]; 

third, as a result of the more or less extensive surface area exposed to the electrolyte, 

determining more or less intense resistive plus capacitive effects on the base line of the 

voltammogram. Home-made paraffin-impregnated graphite electrodes are preferentially 

used in VIMP literature, but, as demonstrated by an inter-laboratory trial on iron earth 

pigments [31], the voltammetric response is sensitive to changes in the carbonaceous 

material constituting the base electrode. The more or less conductivity, particle 

adherence, and the appearance of surface oxygen functionalities [67,68] can promote 

significant changes in the voltammetric response. Additionally, the amount of electrode 

modifier determines a slight shift in the peak potentials [7]. To face all these problems, 

it is convenient to adopt common, uniform chemical (electrolyte, base electrode, 

conditioning protocol) and electrochemical (sweep rate, etc.) conditions and define 

shape-dependent quantities to define pigment-characteristic parameters (vide infra). 

According to that and, in order to facilitate standardization, commercial graphite bars of 

uniform graphite content (HB type, see Experimental section) have been used in this 

database. The selection of the electrolyte is another important step in the 

electrochemical identification of pigments. The use of different electrolytes allows the 

introduction of additional criteria for identification [23-28]. Aqueous 0.25 M sodium 

acetate buffer and 0.10 M HCl were used as electrolytes in the ELCHER database.  

 

Figure 3 shows the CV of a malachite deposit on graphite bar immersed into 0.25 M 

HAc/NaAc, pH 4.75. This voltammogram is illustrative of the typical response of 

copper pigments (as well as lead and cadmium pigments) in that electrolyte, yielding a 

two-electron reduction of the parent copper compound to copper metal in the initial 

cathodic scan, followed in the subsequent anodic scan, by stripping peaks associated to 

the oxidative dissolution of the metal deposit electrochemically generated to Cu
2+

 (aq) 
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ions in solution phase. The electrochemical reduction of metal compounds to the 

corresponding metal can involve a topotactic reduction process via formation of an 

intermediate hydrated layer, as described by Scholz et al. for lead oxides [69], goethite 

[70] and silver halides and sulfide [71]. 

 

As far as the inorganic pigments consist usually of oxides, hydroxioxides, sulfides, etc., 

for identification purposes, cathodic signals should be used preferentially. This can be 

combined with stripping peaks due to the oxidative dissolution of metals, but these 

latter cannot, in principle, be used to differentiate between different pigments of the 

same metal. Such cathodic signals are dependent on the composition of the pigment and 

the electrolyte but are also dependent on the characteristics of the base graphite 

electrode and the amount of solid abrasively transferred to the electrode surface.  

 

Square wave voltammetry (SWV was systematically used by its inherently high 

sensitivity and reluctance to capacitive effects [72]. SWV experiments at low frequency 

carried out with pigments produced, in general, the better results in terms of 

compromise between sensitivity and peak resolution. This aspect is of particular interest 

keeping in mind the application of this methodology for the analysis of real pictorial 

samples, where micro- or nanograins of pigment are accompanied by other components 

such as bindings, preparative supports, varnishes and/or alteration products. This can be 

seen in Figure 4 where SWV of malachite transferred abrasively to four different 

graphite bars immersed into acetate buffer are shown. Anodic stripping peaks are much 

less sensitive to changes in the base electrode. In several cases, overlapping stripping 

oxidation signals appear, which are attributable to the superposition of different deposits 

of the same metal [73,74]. It should be noted, however, that co-electrodeposition of 

metals can produce distorted voltammetric responses as a result of the formation of 

intermetallic compounds. 

 

From the electrochemical point of view, apart from the above family of pigments, those 

reducible to metals, a second important group of pigments is constituted by those 

experiencing reductive or oxidative dissolution processes [23-25]. The most 

representative example is that of iron oxide-based or earth-type pigments, an extensive 

family of natural and artificial pigments displaying reductive dissolution processes 

[30,31,36]. The rate of such processes is driven by the detachment, via ion diffusion or 
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complexation reaction, of metal centers from the reduced metal sites in the surface of the 

solid particles. As a result, the position and shape (roughly, peak width) of the 

voltammetric peaks depend on the average particle size and the homogeneity of the 

particle size distribution [75,76]. Figure 5 compares the SWV response of four commercial 

pigments, Bohemian green, umber, Sienna raw and French ochre immersed into 0.10 M 

HCl. Although this electrolyte provides better discrimination between different iron 

oxide-based pigments than acetate buffer, the voltammograms of ochres from different 

provenances were quite similar, so that chemometric methods are needed for 

identification purposes [36]. 

 

The third important group of pigments is constituted by those displaying solid-state ion 

insertion (or de-insertion) processes, the typical case being the Prussian blue [23,24,77-

79], whereas much organic pigments experience solid state redox processes involving 

proton insertion/release [32-35,80,81]. This type of processes would be also involved in 

the electrochemistry of organic-inorganic hybrid materials [58-65,82]. 

 

Finally it is pertinent to note that: i) application of VIMP in the fields of archaeometry 

and conservation of heritage is complementary to the existing techniques; in general 

multi-technique approaches are needed for properly elucidating the composition of work 

of art samples; ii) the presented database can be viewed as a flexible tool for aiding to 

other more conventional in the identification of pigments; ‘historical’ pigments, 

however, can have a composition differing from their contemporary counterparts of the 

same nominal composition; iii) data analysis should take into account that pigment 

association to supports and bindings can distort the voltammetric response, as recently 

studied by the case of Egyptian blue in wall paintings [83]. 

 

4.2. Application of ELCHER database to problem solving 

 

To illustrate the suitability of the ELCHER database for analyzing pictorial samples, it 

is shown the analyses of a blue-greenish sample from the canvas painting “La 

Degollación de los Inocentes” painted by the Valencian painter Miguel March (17
th

-18
th

 

century) (Fig. 6) and the analyses of a red sample from the canvas painting 

“Desposorios místicos de Santa Margarita” painted by the Italian painter Girolano 

Francesco Maria Mazzola (Il Parmigianino) (1503-1540) (Fig. 7). Cross-section 
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obtained in the first sample shows a paint layer of blue-greenish color applied over a red 

earth ground. X-ray spectra obtained by means of spot analyses performed with 

FESEM-EDX in different grains (see Fig. 1S-4S in supplementary electronic material) 

enabled identification of a copper blue pigment (probably azurite), white lead and, 

present at lesser extent, lead-tin yellow.  

 

Figure 8 depicts the voltammograms corresponding to the blue-greenish layer of sample 

S1 from the painting “La Degollación de los Inocentes”. In the negative-going potential 

scan, a cathodic signal at 0.10 V precedes a prominent signal at 0.55 V. Such signals 

are typical of copper and lead pigments, respectively, whose presence was confirmed by 

the appearance of stripping peaks at 0.50 V (lead) and +0.10 V (Cu). The shoulders at 

ca. +0.40 V recorded in both voltammograms can be attributed to the presence of tin, 

suggesting the presence of the pigment lead-tin yellow. This was confirmed upon 

comparing the profile of the lead-centered signal with that of the pigment, shown in 

Figures 9a,b. The copper pigment in the blue-greenish paint layer was identified as 

azurite, as denoted upon comparison with the corresponding reference material, 

subsequently confirmed by means of the Tafel analysis of the voltammetric curves 

[42,47]. The detail of such voltammograms are depicted in Figures 9,c,d. It is of worth 

mention that X-ray microanalysis was unable to identify this mineral as this technique 

provides the elemental composition of the pigment. 

 

In the red sample (S2) of the painting “Desposorios místicos de Santa Margarita”, a 

mixture of lead white and vermilion, was identified by VIMP and FESEM-EDX (see 

Fig. 5S-7S in supplementary electronic material) [29]. This combination of pigments is 

frequently used by painters in flesh and in the lighted up parts of the draped red robes. 

The presence of lead white was denoted by the characteristic profile of the cathodic 

signal at ca. 0.55 V (Figures 10a,b) whereas vermilion was detected by the anodic 

signal between 0.0 and +0.2 V which can be seen in Figures 10c,d. 

 

The application of the database to the study of metals and alloys and their corrosion 

products is illustrated in Figure 11, where the voltammograms of golden and silver 

bracelets from the Camí de la Bola archaeological site of the caliphal period (Xàtiva, 

Spain) are shown. Remarkably, this study was performed using a portable equipment 
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(see Experimental section). To detect the presence of gold, HCl media was preferred 

due to the favorable oxidation to AuCl4

 [84]. On comparing the SWV of a sample from 

a golden bracelet (Fig. 11a) and a polycrystalline gold electrode (Fig. 11b); one can see 

that the gold-characteristic signal at ca. +1.0 V is accompanied by signals at +0.45, 

0.10 and 0.40 V representative of the stripping peaks of silver, copper and lead, 

respectively, denoting the complex composition of the sample. In the case of the 

negative-going scan voltammogram for a silver bracelet depicted in Figure 11c, now 

recorded in contact with acetate buffer, the reduction of AgCl at ca. 0.0 V is 

accompanied from that of silver tarnish (Ag2S) at more negative potentials, thus 

denoting the presence of both alteration products. The first signal is overlapped with the 

reduction of any copper corrosion products ,as denoted by the positive-going scan 

voltammogram (Fig. 11d), where the stripping of copper at +0.10 V is accompanied by 

two Ag stripping signals at +0.25 and +0.45 V, a feature previously observed in Ag 

coins [48]. 

 

4. Conclusions 

 

The VIMP methodology can be used for identifying electroactive pigments and 

minerals in art and archaeological objects. Attachment of microsamples of commercial 

pigments and minerals to commercial graphite leads and aqueous electrolytes provide 

well-defined voltammetric responses under conditions accessible to conventional 

equipment. The ELCHER database, which includes voltammograms and ATR-FTIR, 

diffuse reflectance and X-ray spectral data, is presented as a tool for facilitating 

practical application of the VIMP in the domain of conservation and restoration of 

heritage as a technique that complement the non-electrochemical methodologies more 

extensively used in this field. 
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Figures 

 

Figure 1. a) Main menu of the web site ELCHER; b) Main menu of the ELCHER 

database with the description of the ELCHER voltammogram database initiative, terms 

of use and legal conditions. 

 

Figure 2. a) Main menu of the ELCHER database; b) Record card of azurite pigment 

with the voltammogram, IR spectrum, UV-vis spectrum, backscattered electron image 

and x-ray spectrum as seen on the online ELCHER database. 

 

Figure 3. CV of a malachite (K10300) deposit on graphite bar (Staedtler) immersed 

into 0.25 M HAc/NaAc, pH 4.75. Potential scan initiated at +0.75 V in the negative 

direction. Potential step increment 4 mV; square wave amplitude 25 mV; frequency 5 

Hz. 

 

Figure 4. SWV of malachite (K10300) deposits on a) Alpino, b) Staedtler, c) Disnak 

and d) Hoc-i-Noor graphite bars immersed into 0.25 M HAc/NaAc, pH 4.75. Potential 

scan initiated at +0.85 V in the negative direction. Potential step increment 4 mV; 

square wave amplitude 25 mV; frequency 5 Hz. 

 

Figure 5. SWV of: Bohemian green (K17800); b) Umber (K40610); c) Sienna 

(K40451); d) French ochre (K40090) on Alpino lead in contact with 0.10 M HCl. 

Potential scan initiated at +0.85 V in the negative direction. Potential step increment 4 

mV; square wave amplitude 25 mV; frequency 5 Hz. 

 

Figure 6. a) “La degollación de los Inocentes” painted by the Valencian painter Miguel 

March (17th-18th century, belongs to the Basílica de la Virgen de los Desamparados 

canvas collection (Valencia, Spain)). b) Cross-section of the sample blue-greenish taken 

in the point marked with a spot: (1) paint layer, (2) ground. 

 

Figure 7. a) “Desposorios místicos de Santa Margarita” painted by the Italian painter 

Girolano Francesco Maria Mazzola (Il Parmigianino) (1503-1540) exhibited in the Hall 

town of Malaga, b) Cross-section of the sample red R: (1) paint layer, (2) ground. 
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Figure 8. SWVs of sample S1 from “La degollación de los Inocentes” on graphite lead 

(Staedtler) in contact with 0.25 M HAc/NaAc, pH 4.75. Potential scan initiated at a) 

+1.05 V in the negative direction; b) 1.05 V in the positive direction. Potential step 

increment 4 mV; square wave amplitude 25 mV; frequency 5 Hz. (Tly: tin lead yellow; 

Az: azurite). 

 

Figure 9. Detail of two potential regions in the SWVs on graphite lead (Staedtler) in 

contact with 0.25 M HAc/NaAc, pH 4.75 for: a) sample S1; b) lead-tin yellow; a) 

sample S1; b) azurite. Potential scan initiated at +1.05 V in the negative direction. 

Potential step increment 4 mV; square wave amplitude 25 mV; frequency 5 Hz. 

 

Figure 10. Detail of the SWVs on sample S2 from “Desposorios místicos de Santa 

Margarita” attached to graphite lead (Staedtler) in contact with 0.25 M HAc/NaAc, pH 

4.75 for: a) sample S2; b) lead white; c) sample S2; d) vermilion. Potential scan initiated 

at 1.05 V in the positive direction. Potential step increment 4 mV; square wave 

amplitude 25 mV; frequency 5 Hz. 

 

Figure 11. SWVs of: a) sample from a golden sculpture; b) gold electrode; c,d) silver 

bracelet from the Camí de la Bola archaeological site recorded using a portable 

equipment. a,c,d) samples taken using the ‘one-touch’ procedure at Staedtler graphite 

bars. Electrolytes, aqueous a,b) 0.10 M HCl; c,d) 0.25 M HAc/NaAc, pH 4.75, 

solutions. a, b, d) Positive-going scans; c) negative-going scan. Potential step increment 

4 mV; square wave amplitude 25 mV; frequency 5 Hz. 
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Figure 1. 
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Figure 2 
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Figure 3 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11. 
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