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ABSTRACT 

Here we present the design of smart nanodevices capable of reading molecular information from 

the environment and acting accordingly by processing boolean logic tasks. As proof of concept, 

we prepared Au-mesoporous silica (MS) nanoparticles functionalized with the enzyme glucose 

dehydrogenase (GDH) on the Au surface and with supramolecular nanovalves as caps on the MS 

surface, which is loaded with a cargo (dye or drug). The nanodevice acts as an AND logic gate 

and reads information from the solution (presence of glucose and nicotinamide adenine 

dinucleotide (NAD
+
)), which results in cargo release. We show the possibility of co-

immobilizing GDH and the enzyme urease on nanoparticles to mimic an INHIBIT logic gate, in 

which the AND gate is switched off by the presence of urea. We also show that such 

nanodevices can deliver cytotoxic drugs in cancer cells by recognizing intracellular NAD
+
 and 

the presence of glucose. 

 

INTRODUCTION 

A novel and ambitious approach in the nanotechnology field is to design smart nanobots (or 

nanorobots). Research activities in nanobotics comprise an emerging interdisciplinary 

technology area with new scientific challenges and promising revolutionary advancement in 

medicine.
1
 Nanobots can be made by assembling abiotic and/or biological nanocomponents, and 

can be considered as a possible way to enable the required manufacturing technology to move 

toward a new generation of smart nanodevices for applications such as drug delivery or 

diagnosis.
2
 An appealing feature of such futuristic systems is their potential ability to read 

information from the environment (e.g., diseased tissues or interior of cells) and to act 

accordingly. Inputs can, for instance, be combinations of certain molecules which abnormal 
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levels can be indicative of a health disorder. As for macroscale devices, logic operators
3
 could be 

potentially used to control nanobots capable of processing (bio)chemical inputs and producing 

outputs, like drug delivery, inducing apoptosis, etc. Logic gates are operators used in electronics 

to process two binary inputs or more, and produce a single binary output.
4
 Current digital 

computers and electronic devices are programmed to process information inputs using 

algorithms based on logic gates. Although electronic logic gates cannot be incorporated into 

nanoparticles, one possible approach could be to use chemical systems that mimic the operation 

of their electronic counterparts.
5-8

 Transferring these computing capabilities to nanoscale 

machines in relation to reading information from the environment is a key step to build advanced 

biomedical nanobots capable of performing complex tasks in biological settings.  

From another point of view, stimuli-responsive delivery systems have recently gained much 

interest due to their potential application to develop better medical therapies and sensing 

protocols. Researchers are exploring the use of liposomes, metallic nanoparticles and polymeric 

and inorganic materials as potential drug carriers.
9-12

 Among them, mesoporous silica (MS) 

materials are appealing given their high loading capacity, stability, biocompatibility, and the 

possibility to functionalize them with molecular gates or nanovalves on their outer surface.
13-17

 

These molecular gates are molecular or supramolecular ensembles that prevent the cargo from 

being released until an external stimulus is applied. Gated mesoporous materials responsive to 

physical (such as light, temperature, magnetic fields)
18-20

 and chemical (such as pH, enzymes, 

redox agents and chemical species)
21-27

 stimuli have been reported. However, comparatively few 

materials respond to small molecules of biological interest and, when this is the case, it is usually 

the presence of a single molecule to which the system responds.
16

 In contrast, delivery 

nanodevices capable of reading information from the environment and delivering the cargo in 
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Boolean logic terms with more than a single input are rare. However, the conceptual design 

(Figure 1) of such systems is interesting since diseases usually produce abnormal levels of a 

combination of molecules.
28-29 

 

 

Figure 1. Conceptual representation of a smart nanodevice equipped with a biocomputing unit (capable of reading 

and processing molecular information from the environment and sending a chemical messenger to a responsive 

nanocarrier unit which can deliver a cargo (dye or drug)). 

 

Given the potential benefits of developing nanodevices capable of sensing molecular 

information from the environment, we report herein the preparation of nanoparticles equipped 

with enzymatic logic gates that are able to perform biocomputing operations which result in the 

programmed delivery of an entrapped cargo. The systems consist of Janus nanoparticles with 

gold and MS on opposites surfaces. The MS surface is loaded with a cargo (a dye or a drug) and 

is functionalized with a pH-responsive β-cyclodextrin (β-CD):benzimidazole supramolecular 

nanovalve. The Au surface acts as a biocomputing unit and contains enzymes capable of 

“detecting” the simultaneous presence of certain biomolecules and transforming information into 

a local chemical messenger that is able to open the β-CD:benzimidazole nanovalve and induce 

cargo delivery. Based on this concept, nanoparticles that display AND or INHIBIT logic 

behavior are prepared (Figure 2). In particular, the AND system contains the enzyme glucose 
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dehydrogenase (GDH) and responds to the simultaneous presence of glucose and nicotinamide 

adenine dinucleotide (NAD
+
). Although several glucose-responsive delivery systems have been 

reported,
30-32

 they usually respond to the single presence of glucose which is found in both extra- 

and intra-cellular environments. NAD
+
 is found in the interior of living cells where it participates 

as a cofactor in a number of enzymatic reactions. Furthermore, both glucose uptake and 

NAD
+
/NADH ratio are increased in cancer cells.

33,34 
Thus, nanocarriers capable of performing 

AND logic analysis of glucose and NAD
+
 could be advantageous for the construction of more 

selective (glucose-responsive) delivery systems. Additionally, we also report the possibility of 

co-immobilizing GDH and the enzyme urease on nanoparticles to mimic an INHIBIT logic gate, 

in which the AND gate is switched off by the presence of urea. Urea is a key biomolecule which 

is synthesized in liver cells and transported in the blood to the kidneys. Programming 

nanocarriers with INHIBIT-logic functions could potentially be useful to design smart delivery 

systems that are switch off in particular regions or cells where certain biomolecules are 

expressed.  
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Figure 2. The nanoparticles reported in this paper. (A) General representation. (B) Nanoparticles S3 with an AND 

logic behavior. The combination of both inputs (glucose and NAD
+
) is recognized by the biocomputing unit 

resulting in cargo release from the mesoporous surface. (C) The TEM image of the Au-MS scaffold (S1). (D) The 

Boolean logic table and scheme for an AND logic gate, as used in computing and electronics. (E) Representation of 

nanoparticles S4 with an INHIBIT logic behavior. The system is switched off by the presence of urea. (F) The 

Boolean logic table and scheme for an INHIBIT logic gate, as used in computing and electronics.  
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RESULTS AND DISCUSSION 

Mesoporous silica nanoparticles (MSNPs) were synthesized by a standard procedure, which 

employs cetyltrimethylammonium bromide (CTAB) as a directing agent for the condensation of 

inorganic precursor tetraethyl orthosilicate (TEOS) in basic media. The as-synthesized MSNPs 

were calcined in air to remove the surfactant. Gold nanoparticles (AuNPs) were synthesized by 

reducing Au(III) with sodium citrate. In another step, MSNPs were confined at the interface of a 

paraffin-water emulsion to partially functionalize them with (3-mercaptopropyl)trimethoxysilane 

(see Supporting Information for details). AuNPs and MSNPs were then attached by the 

formation of S-Au bonds, which yielded the Janus Au-MS nanoparticles (S1). S1 was loaded 

with the fluorophore [Ru(bpy)3]Cl2 and the outer silica surface was functionalized with 

benzimidazole moieties by the nucleophilic substitution of the previously anchored (3-

iodopropyl)trimethoxysilane. The gold surface was functionalized with carboxylic groups by a 

treatment with 3-mercaptopropionic acid, which finally yielded S2. The resulting nanoparticles 

were capped with β-CD, which forms inclusion complexes (Kf = 104 M
-1

)
35

 with benzimidazole 

(S2-CD). Finally, enzyme glucose dehydrogenase (GDH) was linked to carboxylic groups on the 

gold surface by using N-hydroxysuccinimide and ethyl(dimethylaminopropyl) carbodiimide, 

which yielded the final nanodevice S3. Additionally, the co-immobilization of GDH and urease 

yielded the nanodevice S4. 

The prepared materials were characterized by standard procedures. The TEM images of Janus 

nanoparticles S1 showed spherical MSNPs (ca. 100 nm) attached to AuNPs of ca. 20 nm (Figure 

2-C and Figure S1). The as-synthesized AuNPs showed an absorption maximum at 523 nm, 

which was red-shift in Au-MSNPs (S1) to 533 nm due to the change in the refractive index 

around the gold nanospheres because of the MS attachment (Figure S3). The powder X-ray 
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diffraction (PXRD) patterns of the starting MSNPs and S1 showed the characteristic (100) 

reflection peak of mesoporous silica around 2.4° (Figure S4). The preservation of this typical 

peak in S2 confirmed that the cargo loading and surface functionalization processes did not 

damage the mesoporous scaffolding. Characteristic cubic gold peaks were observed at high-angle 

PXRD for S1 and S2, which thus confirmed the presence of gold nanoparticles in these 

materials. From the N2 adsorption-desorption isotherms (Figure S5), the total surface area of the 

starting MSNPs was 1018.70 m
2
·g

-1
, which diminished to 846.10 m

2
·g

-1
 for S1 and to 123.24 

m
2
·g

-1
 for S2. Pore size and pore volume were calculated by applying the BJH model to the 

adsorption band of the isotherm, and are summarized in Table S2. From the elemental analysis 

(Table S3 and S4), the contents of benzimidazole, cargo and β-CD in mmol per gram of S2-CD 

were determined as 0.28 (3.3 wt%), 0.08 (4.3 wt%) and 0.10 (11.2 wt%), respectively. The 

activity of immobilized enzyme on S3 was determined as 1.25 U·mg
-1

, which corresponds to 

17.91 mg of GDH per g of solid (Figure S6). TEM-EDX mapping of the final nanodevice S3 was 

also carried out (Figure S2). 

 

Figure 3.  Normalized cargo release from S3 determined by measuring [Ru(bpy)3]Cl2 fluorescence at 595 nm (λexc = 

453 nm) versus time in aqueous solutions at pH 7.5: (black) in the absence of any input (0,0); (blue) in the presence 

of glucose (1,0); (green) in the presence of NAD
+
 (0,1); (red) in the presence of both NAD

+
 and glucose (1,1). 

Substrates added at 1 mM concentration. Error bars as σ from three independent experiments. 
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Figure 4. Normalized cargo release from S3 in the presence of NAD
+
 and different saccharides (glucose (Glu), 

fructose (Fru), galactose (Gal), mannose (Man), sucrose (Suc) and lactose (Lac)) at 1 mM concentration after 60 

min. Error bars as σ from three independent experiments. 

 

 S3 was designed to monitor the environment and to deliver the cargo in the presence of 

glucose and NAD
+
 following an AND logic behavior. In a typical experiment, S3 was brought to 

1 mg·mL
-1

 concentration in an aqueous solution at pH 7.5 upon the application of different 

conditions: absence of glucose and NAD
+
 (0,0), presence of both (1,1), and presence of only 

glucose (1,0) or only NAD
+
 (0,1). Aliquots were taken at the scheduled times, centrifuged to 

remove nanoparticles, and the cargo release was evaluated by measuring the emission band of 

[Ru(bpy)3]Cl2 at 595 nm (λexc = 453 nm). The obtained payload delivery kinetics are shown in 

Figure 3. In the absence of both inputs (0,0), and in the presence of only glucose (1,0) or only 

NAD
+
 (0,1), S3 was capped and the cargo release was lower than 10% after 2.5 h. However, 

when S3 sensed the presence of glucose and NAD
+
 (1,1) a subsequent remarkable cargo delivery 

took place. This was attributed to GDH recognizing both substrates (glucose and NAD
+
). GDH 

catalyzed the reaction between glucose and NAD
+
 to give glucono-1,5-lactone and NADH. 

Glucono-1,5-lactone hydrolyzed in water to give gluconic acid (pKa = 3.6) (internal chemical 

messenger), which induced the protonation of the benzimidazole groups (pKa = 5.55)
36

 on the 
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MS surface, and the dethreading of the supramolecular nanovalve finally resulted in cargo 

delivery. NADH formation from glucose and NAD
+
 in the presence of S3 was confirmed (Figure 

S5). Moreover, it was also confirmed that the cargo delivery from S3 in the presence of NAD
+
 

was observed only with glucose, but not with other saccharides, such as fructose, galactose, 

mannose, sucrose and lactose (Figure 4). 

 

Figure 5. The INHIBIT-like behavior of S4. Normalized cargo release from S4 in the absence of inputs (0,0,0); in 

the presence of glucose and NAD
+
 and absence of urea (1,1,0); and in the presence of glucose, NAD

+
 and urea 

(1,1,1) after 150 min. Substrates added at 1 mM concentration. 

In another next step we aimed to prepare a nanodevice capable of reading from the 

environment three different molecules that control cargo delivery. In this scenario, we 

constructed nanodevice S4, in which GDH and the enzyme urease were co-immobilized on the 

gold surface (Figure 2E). The amount of GDH immobilized on S4 lowered to 9.87 mg·g
-1

 

(compared to 17.91 mg·g
-1

 for S3) as a result of urease co-immobilization (Figure S6). 

Nanodevice S4 mimicked an INHIBIT logic gate in which the AND gate was switched off by 

urea. In Boolean logic terms, an INHIBIT gate is represented as shown in Figure 2-F; input C 

(urea) disables the gate (no output signal) even if input A (glucose) and B (NAD
+
) are present. 

However, in a 0 state (absence) of the inhibit input C (urea), the gate is enabled and the output is 
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1 (cargo delivery is observed) when both input A (glucose) and input B (NAD
+
) are in state 1 

(present). INHIBIT gates are used when logic signals are needed to be either enabled or 

inhibited, depending on certain control inputs. In order to demonstrate the nanodevice’s 

INHIBIT-like behavior, the release of S4 suspensions (1 mg·ml
-1

) in the presence of (i) no 

inputs, (ii) glucose and NAD
+
 and (iii) urea, glucose and NAD

+
 after 150 min was evaluated. As 

seen in Figure 5, whereas a remarkable release occurred in the presence of glucose and NAD
+
 

(1,1,0), dye delivery became negligible when urea was also added (1,1,1). This was ascribed to 

the presence of urease on S4, which catalyzed the transformation of urea into CO2 and two 

equivalents of NH3. The produced ammonia induced an increase in pH in the microenvironment 

of the nanoparticles and neutralized the effect of gluconic acid, thus, inhibiting the release from 

the nanoparticles. With S3, addition of urea had no effect on the release (Figure S8), which 

indicated the key role played by urease in S4. 

Encouraged by these findings, we aimed to demonstrate that such nanodevices can also read 

information, and act accordingly, in complex biological settings, such as cells. To this end, we 

prepared S3DOX (similar to S3, but loaded with the cytotoxic drug doxorubicin) and tested its 

performance in human cervix adenocarcinoma (HeLa) cells. For these experiments, glucose was 

added as an external input, whereas the NAD
+
 naturally produced in the cell interior was 

expected to be the second input. Controlled doxorubicin release from S3DOX was studied by 

confocal microscopy by tracking doxorubicin-associated fluorescence, and also by cell viability 

assays. For confocal microscopy experiments, HeLa cancer cells were incubated with 50 mg·mL
-

1
 of S3DOX for 30 min, washed to remove non internalized nanoparticles and were further 

incubated with and without glucose (25 mM) for 24 h. Representative images of the doxorubicin 

release (red), DNA marker Hoechst 3342 (blue) and merge for HeLa cells under different 
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conditions are shown in Figure 6-I. In the presence of glucose (and intracellular NAD
+
), a 

significant doxorubicin release was observed (Figure 6-Ib). In marked contrast, in the absence of 

glucose the doxorubicin release became negligible (Figure 6-Ic). Additionally, the WST-1 cell 

viability assays correlated well with the confocal microscopy studies. As seen in Figure 6-II, 

treating HeLa cells with S3DOX in the presence of both glucose and intracellular NAD
+
 led to cell 

viability considerably diminishing due to the doxorubicin release. When no glucose input was 

applied, no reduction in cell viability was observed. Therefore, these results confirmed that 

nanodevice S3DOX is able to read conditions in competitive media (presence of glucose and 

NAD
+
) and to deliver a cytotoxic drug to reduce cell viability. In addition, in order to confirm 

that the decrease in cell viability was due to doxorubicin release from S3DOX and not to the acidic 

pH induced by the generated gluconic acid, we carried out additional viability experiments with 

S3Blank (a solid similar to S3DOX but without doxorubicin). Unlike S3DOX, S3Blank did not produce 

any reduction in cell viability in the simultaneous presence of glucose and intracellular NAD
+ 

(Figure S9). On the other hand, although assessing the concentration of these elements in the 

body is difficult, it has been reported that glucose intracellular concentration is between 0-1 

mM,
37,38

 and that the ratio between free NAD
+
 and NADH in the cytoplasm is about 700,

39,40
 

with an estimated NAD
+
 concentration of 0.3 mM.

41,42
 However, it is known that in cancer cells 

glucose uptake is considerably increased
33

 and the redox ratios NAD
+
/NADH and 

NADP
+
/NADPH are about 5-10 times higher.

34
 In this scenario, advanced nanobots 

functionalized with targeting agents and capable of performing glucose-NAD
+
 logic sensing 

could be an interesting tool as therapeutic agents. 
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Figure 6. Experiments in cellular media. Top (I): confocal microscopy images of HeLa cells showing the controlled 

doxorubicin release from nanodevice S3DOX. a) HeLa cells with no treatment; b) HeLa cells treated with 50 µg·mL
-1

 

of S3DOX in a medium containing glucose (25 mM); c) HeLa cells treated with 50 µg·mL
-1

 of S3DOX
 
in the absence 

of glucose. From left to right: doxorubicin fluorescence, DNA marker (Hoechst 3342) fluorescence and combined 

(merge). Bottom (II): cell viability assays of HeLa cells treated with different S3DOX concentrations (0, 50 and 100 

µg·mL
-1

) in the absence (black bars) or presence (red bars) of glucose (25 mM). Data shown as m±σ. 
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CONCLUSIONS 

In conclusion, we show here the design of smart nanodevices capable of reading information 

from the environment (presence of glucose, NAD
+
 and urea) and performing basic boolean logic 

tasks that result in the programmed delivery of an entrapped cargo. Nanoparticles with AND or 

INHIBIT logic behavior were prepared. The Au-MS nanoparticles functionalized with the 

enzyme GDH on the gold surface and with supramolecular pH-responsive nanovalves on the MS 

surface mimicked an AND logic gate and required two biomolecules (glucose and NAD
+
) to 

trigger cargo release. Specificity was due to the incorporation of GDH, which transformed 

glucose and NAD
+
 into gluconic acid and NADH. Gluconic acid acted as a local chemical 

messenger that induced the protonation of benzimidazole in the nanovalve, which disrupted the 

supramolecular complex and induced cargo delivery. We also found that two enzymes (GDH and 

urease) can be combined in a single nanodevice to display a more complex behavior. When 

urease and GDH were co-immobilized, the system acted as an INHIBIT logic gate, in which the 

AND gate was switched off and on by the presence or absence of urea. We also showed that the 

nanoparticles can deliver a cytotoxic drug in cancer cells after “detecting” the presence of 

glucose and intracellular NAD
+
 in the environment. Given that multiple small biomolecules are 

altered in diseased cells and the number of enzymes that can be tested, we hope that our results 

inspire the development of smart programmed nanobots for medical applications such as drug 

delivery. We believe that the systems reported herein could allow advances to be made in our 

knowledge of how molecular information recognition (via simple chemical or biochemical 

reactions) can be converted into specific actions of nanodevices.
43,44

 The idea of having 

nanodevices capable of sensing the environment and acting accordingly (processing logic tasks) 

embraces an enormous potential for the design of more advanced complex nanoscale systems 
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governed by the presence of multiple (bio)molecules and it could a promising first step to enable 

future nanoprocessors with increased complexity. Inspired by how biological communities sense 

the environment and act,
45

 developing such nanodevices may open up new directions in 

nanobotics with a number of applications in different areas. 
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