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Abstract

Virtual Screening (VS) methods can considerably aid clinical research by
predicting how ligands interact with pharmacological targets, thus acceler-
ating the slow and critical process of finding new drugs. VS methods screen
large databases of chemical compounds to find a candidate that interacts with
a given target. The computational requirements of VS models, along with
the size of the databases, containing up to millions of biological macromolec-
ular structures, means computer clusters are a must. However, programming
current clusters of computers is no easy task, as they have become hetero-
geneous and distributed systems where various programming models need
to be used together to fully leverage their resources. This paper evaluates
several strategies to provide peak performance to a GPU-based molecular
docking application called M ETADOCK in heterogeneous clusters of com-
puters based on CPU and NVIDIA Graphics Processing Units (GPUs). Our
developments start with an OpenMP, MPI and CUDA M ETADOCK ver-
sion as a baseline case of cluster utilization. Next, we explore the virtualized
GPUs provided by the rCU D A framework in order to facilitate the program-
ming process. rTCUDA allows us to use remote GPUs, i.e. installed in other
nodes of the cluster, as if they were installed in the local node, so enabling
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access to them using only OpenMP and CUDA. Finally, several load balanc-
ing strategies are analyzed in a search to enhance performance. Our results
reveal that the use of middleware like rCUDA is a convincing alternative to
leveraging heterogeneous clusters, as it offers even better performance than
traditional approaches and also makes it easier to program these emerging
clusters.

Keywords:
Virtual Screening, HPC, rCUDA, Metaheuristics, Heterogeneous
Computing

1. Introduction

Drug discovery and development may take more than a decade from
discovery of a candidate drug to patient treatment [1]. There are several
stages that a candidate drug must successfully go through. Among them,
we would highlight the basic research of drug discovery, pre-clinical stages,
clinical trials, and final review by associations like FDA (Food and Drug Ad-
ministration) in the USA. The use of Virtual Screening (VS) methods can
tremendously improve the drug discovery process, saving time, money and
computational resources [2].

VS methods are computational techniques that analyze large libraries of
small molecules (a.k.a. ligands) to search for structures most likely to bind
to a target drug, typically a protein receptor or enzyme [3]. These libraries
of chemical compounds may contain up to millions of ligands [4], given that
analyzing larger databases exponentially increases the chances of generating
hits. However, current VS methods, such as docking [5], fail to make good
toxicity and activity predictions, since they are constrained by their access
to computational resources; indeed, the fastest VS methods cannot process
large biological databases in reasonable times.

The use of high performance computing in order to enhance virtual screen-
ing methods is therefore necessary to fulfill pharmaceutical industry expec-
tations, and a lot of research is been carried out in this regard. Methods
like Autodock [6], Autodock VINA [7], Glide [8], LeadFinder [9], SurFlex
[10], ICM+ [11], FMD [12] or DOCK [13] use multithreading programming
at the node level in order to leverage multicore architectures, and some of
them even distribute their computations among the CPUs of several nodes by
means of the Message Passing Interface (MPI) library. However, we are cur-



rently witnessing a steady transition to heterogeneous computing systems
[14], with heterogeneity representing systems where nodes combine tradi-
tional multicore architectures (CPUs) with accelerators such as Graphics
Processing Units (GPUs). Programs such as BUDE [15], AMBER [16] or
BINDSURF [17] use GPUs to overcome this problem by dividing the whole
protein surface into independent regions (or spots). However, heterogeneity
may limit system growth as it can no longer be addressed in an incremental
way. Indeed, several computational challenges come up with such hetero-
geous systems [18], like scalability, programmability or data management, to
mention just a few.

In addition to the use of heterogeneous systems, virtualization techniques
may provide significant improvements, as they enable a larger resource uti-
lization by sharing a given hardware among several users, thus reducing the
required amount of instances of that particular device. As a result, virtu-
alization is being increasingly adopted in data centers. Some of the most
extended virtualization techniques are based on software solutions, such as
the VMware [19] (by VMware Inc.) or Xen [20] hypervisors. These solutions
virtualize the entire system, providing a whole virtual computer to each user.
However, although using virtual machines is appealing in many cases, even
for high performance computing, when the goal is to make use of GPUs, these
solutions introduce an unacceptable overhead due to the strong limitations
they present with respect to the shared use of accelerators. In this regard,
current virtual machine approaches are unable to concurrently share a GPU
among several virtual machine instances.! Therefore, instead of virtualizing
the entire computer, an altenative approach would be to virtualize specific
resources, such as the GPU.

rCUDA [21] is a framework that enables remote concurrent use of CUDA-
compatible GPUs. To enable remote GPU-based acceleration, this frame-
work creates virtual CUDA-compatible devices on machines without local
GPUs. These virtual devices represent physical GPUs located in a remote
host offering GPGPU (General-Purpose Computing on Graphics Processing
Units) services. Thus, all nodes in a cluster are able to access the whole set
of CUDA accelerators concurrently. Moreover, a single-node shared-memory

!'Notice that the GRID GPU by NVIDIA is designed to be shared among VMs. How-
ever, the shared usage of this GPU is limited to desktop virtualization. When GRID GPUs
are used as CUDA accelerators they cannot be shared among VMs.



application could access all the GPUs in the cluster without using the MPI li-
brary, which potentially reduces the programming complexity. Additionally,
given that real GPUs are concurrently shared among several applications,
energy would be saved at the same time that a lower hardware investment
is required. Furthermore, this approach would still deliver an acceptable
performance, as shown in [22].

In this paper, we analyze the current computational landscape by apply-
ing heterogeneous clusters based on NVIDIA GPUs and CPUs to a challeng-
ing problem such as molecular docking computational methodology, called
METADOCK [23], where the interaction between two molecules (a macro-
molecule known as receptor and a small molecule referred to as ligand) is sim-
ulated by minimizing a scoring function (affinity between the two molecules)
that models the chemical process behind molecular interaction. The META-
DOCK methodology has two main characteristics: (1) the user can configure
the optimization procedure at compile time from among a wide set of meta-
heuristics (i.e, algorithms like Genetic Algorithm, Scatter Search or local
search methods), and (2) the calculation of the computationally expensive
scoring function is offloaded to GPUs. With this in mind, major contribu-
tions of this paper include the following:

1. We develop a new version of METADOCK to perform large-scale
simulations on heterogeneous computer clusters based on CPUs and
NVIDIA GPUs. The implementation is developed using a traditional
approach based on MPI, OpenMP and CUDA.

2. We evaluate rCU DA as a framework to leverage virtualized GPUs and
also to facilitate the programming. This implementation only requires
us to deal with OpenMP and CUDA APlIs.

3. Several load balancing strategies are also evaluated in both configura-
tions (virtualized and non-virtualized GPUs) to pursue the performance
into unprecedented levels.

4. Finally, we check whether the search for performance is translated into
an actual benefit in the quality of the results (reductions in execution
time do not necessarily mean a better affinity quality). In this paper,
the search procedure of M ETADOCK is configured to use three differ-
ent metaheuristics (genetic algorithm, scatter search and local search)
in order to analyze the evolution of the fitness along with the perfor-
mance improvements.



The rest of the paper is structured as follows. Section 2 includes the
background about Virtual Screening methods and the scoring problem we are
working on and describes some relevant knowledge about HPC architectures.
Next, our metaheuristic-based virtual screening technique is introduced in
Section 3. The parallel strategies used for the efficient application of these
techniques in heterogeneous clusters are explained in Section 4, whereas the
experimental results are presented and analyzed in Section 5. Related work
are reviewed in Section 6. The final section summarizes the conclusions and
gives some directions for future work.

2. Background

This section introduces the main characteristics of Virtual Screening meth-
ods and heterogeneous clusters to better understand the rest of the paper.

2.1. Virtual Screening methods

We draw on our description of Virtual Screening (VS), which was first
given in [17, 23]. VS methods are computational techniques used in several
scientific areas, such as catalysts and energy materials [24], and mainly drug
discovery [5], where experimental techniques can benefit from computational
simulation.

VS methods search for libraries of small molecules that can potentially
bind to a drug target, typically a protein receptor or enzyme, with high affin-
ity. They actually “dock” small molecules into the structures of macromolec-
ular targets. Moreover, they look for (i.e., score) the optimal binding sites by
providing a ranking of chemical compounds according to the estimated affin-
ity or scoring [25]. In general, VS methods optimize scoring functions, which
are mathematical models used to predict the strength of the non-covalent in-
teraction between two molecules after docking [26]. Indeed, these candidate
molecules will continue the drug discovery process road-map that goes from
in-vitro studies to animal investigations and, eventually, to human trials [27].

Although VS methods have been used for many years and have identi-
fied several compounds to be used in drugs, VS has not yet fulfilled all its
expectations. Neither the VS methods nor the scoring functions used are
sufficiently accurate to identify high-affinity ligands reliably. To deal with
large numbers of potential candidates (many databases comprise hundreds
of thousands of ligands), VS methods must be very fast and still they would
require hundreds of CPU hours for each ligand, and, according to [28], even



thousands of CPU hours for each ligand when simulation strategies are used
to compute absolute binding affinities.

2.2. Metaheuristics

A wide range of optimization problems, like VS methods, are NP-hard
and cannot afford to compute all possible solutions. In such scenarios, meta-
heuristics provide an abstraction layer for good enough solutions which are
found in a reduced search space focused just on promising areas [29]. Meta-
heuristics can be specially useful in VS methods.

Metaheuristics of interest to us fall into two prominent classes:

e Distributed metaheuristics. These metaheuristics search within the en-
tire solution space, and work with populations that are combined to
improve solutions progressively. Examples of this group include Ant
Colony, Particle Swarm Optimization, Genetic Algorithms and Scatter
Search.

e Neighborhood metaheuristics. These metaheuristics work with an ele-
ment in the solution space and search for better elements in its neigh-
borhood. Examples include Guided Local Search, Hill Climbing, Sim-
ulated Annealing, Tabu Search, Variable Neighborhood and GRASP
(Greedy Randomized Adaptive Search Procedures). GRASP is a meta-
heuristic close to one of the parameter configurations of the metaheuris-
tic later used in the experiments in this paper.

All the previous metaheuristics can be combined among them in order
to improve the quality of the methodology, although in this paper they will
not be combined. We will focus on separately using metaheuristics similar
to Genetic Algorithms, Scatter Search and GRASP.

Diversity in metaheuristics [30] is worth investigating. We can first define
a subset of alternatives, and then apply a tuning process which is fuzzy,
or even blind, for the effects of certain values in the experimental praxis.
This paper sheds some light on scenarios guided by computational criteria:
minimize execution time and fitness using parameters which give similar
results. Even so, the procedure may be different for each application area
and, hence, our experimental analysis (Section 5) focuses more on quantifying
potential gains. An artificial intelligent system or human expert can then use
our findings to complete the selection process with clear benefits.



Algorithm 1 A parameterized metaheuristic schema to generate several
types of Metaheuristics
Initialize(S,Paramlni)
while no End condition(S) do
Select(S,Ssel,ParamSel)
Combine(Ssel,Scom,ParamCom)
Improve(Scom,ParamImp)
Include(Scom,S,ParamInc)
end while

Many metaheuristics follow similar patterns, particularly those based on
populations share six basic functions (see Algorithm 1): Initialize, End con-
dition, Select, Combine, Improve and Include [31, 32]. These functions work
with several populations: S, Ssel and Scom. S represents the set of candidate
solutions, where some selected solutions (Ssel) are combined to generate a
new set of elements, Scom.

Within the above template, programmers can provide different instances
and/or implementations, and the final set of candidate solutions (S5) uses
population insights to guide the search. Local search metaheuristics are also
within the schema (|S] = 1).

Unified metaheuristic schemes can be enriched by introducing parameters
for each function [33, 34, 35] (see Param- prefixes in Algorithm 1), and hybrid
metaheuristic schemes can be considered too, with computational complexity
increasing continuously. In the benchmarks throughout this work, we use the
parameterized schema with two configurations of the parameters which give
metaheuristics close to Genetic Algorithms and Scatter Search.

2.3. Programming heterogeneous clusters

Since the early days, computer architects have relied on technology scal-
ing to provide increased performance. Heterogeneous architecture design is
now seen as the only solution to continue Moore’s law scaling through innova-
tion alone [14, 36], with systems where nodes combine traditional multicore
architectures (CPUs) and accelerators (mostly GPUs) [37].

Traditional parallel implementations are not always efficient when ported
to heterogeneous systems. They are often inherited from scalable supercom-
puters, where all nodes in the cluster have the same compute capabilities,
and they therefore lack the ability to distinguish computational devices with



asymmetric computational power and energy consumption. Differences are
not limited to fundamental hardware design (CPUs vs. GPUs), but also oc-
cur within the same family of processors. Therefore, programmers play a
fundamental role in this heterogeneous context as they have to deal with dif-
ferent programming models such as OpenMP [38], MPI [39] and OpenCL [40]
or CUDA [37] to fully leverage all computing resources in current clusters.
In this paper we address different programming models and techniques to
accommodate our VS application to an increasingly heterogenous underlying
hardware.

2.3.1. The rCUDA middleware

Client side | Server side

I Application | l
i !
___________ CUDAAPL | 1
: - ! server
client engine : engine CUDA Iibraries‘
Software_ ' _|
Hardware

Figure 1: Architecture of the rCUDA framework

Figure 1 depicts the architecture of the rCUDA framework, which follows
a client-server distributed approach. The client part of rCUDA is installed in
the cluster node executing the application requesting GPU services, whereas
the server side runs in the computer owning the actual GPU. The client side
of the middleware offers the same application programming interface (API)
as does the NVIDIA CUDA API. In this manner, the client receives a CUDA
request from the accelerated application and appropriately processes and for-
wards it to the remote server. In the server node, the middleware receives
the request and interprets and forwards it to the GPU, which completes the
execution of the request and provides the execution results to the server mid-
dleware. In turn, the server sends back the results to the client middleware,
which forwards them to the initial application, which is not aware that its
request has been served by a remote GPU instead of a local one.

rCUDA is binary compatible with CUDA 8.0 and implements the entire
CUDA Runtime and Driver APIs (except for graphics functions). It also
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provides support for the libraries included within CUDA (cuBLAS, cuFFT,
etc). Additionally, it supports several underlying interconnection technolo-
gies by making use of a set of runtime-loadable, network-specific communica-
tion modules (currently TCP/IP, RoCE and InfiniBand). Independently of
the exact network used, data exchange between rCUDA clients and servers
is pipelined in order to attain high performance. Internal pipeline buffers
within rCUDA use preallocated pinned memory, given the higher through-
put of this type of memory [41].

The InfiniBand communication module is based on the IB Verbs (IBV)
API. This API offers two communication mechanisms: the channel semantics
and the memory semantics. The former refers to the standard send/receive
operations typically available in any networking library, while the latter of-
fers RDMA operations where the initiator of the operation specifies both
the source and destination of a data transfer, resulting in zero-copy transfers
with minimum involvement of the CPUs. rCUDA employs both IBV mech-
anisms, selecting one or the other depending on the exact communication to
be carried out.

3. Population-based metaheuristics for Virtual Screening: META-
DOCK

METADOCK [23] is a virtual screening (VS) application that simu-
lates the interaction between two molecules. Indeed, it attempts to predict
non-covalent binding of molecules or, more frequently, of a macromolecule
(receptor) and a small molecule (ligand). This prediction is computationally
performed through an iterative procedure that tries to minimize a scoring
function that models such molecular interaction. Therefore M ETADOCK,
as a VS application, has two main ingredients. First, the optimization al-
gorithm is based on a metaheuristic schema (see Algorithm 1) to be able to
select a metaheuristic that will guide the search procedure. Second, the scor-
ing function calculation is offloaded to GPUs in order to speedup execution
time.

With this in mind, we now provide some details about METADOCK
and we refer the reader to [23] for further insights. M ETADOCK divides
the whole receptor surface into arbitrary and independent regions (or spots)
where the optimization process is performed independently. This enables the
so-called blind docking that offers the opportunity to find novel binding sites,
but drastically increasing the computational cost. The optimization at each



spot consists of looking for the best ligand conformation that interacts with
the lowest fitness value (it is a minimization problem). The fitness is given by
the scoring function that mathematically represents the chemical interaction
between the protein receptor and ligand conformation. In our case, the
scoring function is based on the relevant non-bonded potentials used in VS
calculations, which are the Coulomb, or electrostatic term, and the Lennard-
Jones potentials, since they describe very accurately the most important
short and long-range interactions between atoms of the protein-ligand system
[42]. The calculation of the scoring function requires the highest percentage
of the overall execution time, and it is ofloaded to the GPU to be accelerated.

The simulation starts by minimizing the value of the scoring function by
continuously making random or predefined perturbations of the initial pop-
ulation (5) at each spot. Particularly, each candidate solution is a confor-
mation ligand that differs in the application of some movement (translating
and/or rotating) with respect to a given region. Then, the new value of
the scoring function for each candidate solution is obtained, being eventually
accepted according to metaheuristic criteria.

Table 1: The seventeen metaheuristic parameters used in the unified parameterized meta-
heuristic schema for M ETADOCK.

Metaheuristic Description

Parameters
INEIni Number of initial ligand conformations.
PEIIni Percentage of the best conformations that are improved in the function Initialize.
1IEIni The intensification of the improvement in the function Initialize.

PBEIni Percentage of best conformations to be included in the initial set for the next iterations.
PWEIni Percentage of worst conformations to be included in the initial set for the next iterations.
PBESel Percentage of the best conformations to be selected for combination.

PWESel Percentage of the worst conformations to be selected for combination.

PBBCom | Percentage of best-best conformations to be combined.

PWWCom | Percentage of worst-worst conformations to be combined.

PBWCom | Percentage of best-worst conformations to be combined.

PMUCom | Percentage of best conformations of the combination to be muted.
IMUCom The intensification of the mutation of elements generated by combination.

PEIImp Percentage of best conformations of the combination to be improved.
IIEImp The intensification of the improvement of elements generated by combination.
PBEInc Percentage of best conformations to be included in the reference set.
NIREnd Maximum number of steps without improvement.

MNIEnd Maximum number of iterations with or without improvement.

As previously explained, M ETADOCK is able to configure the search
procedure at compile time. This is performed by setting values to different
parameters, which are listed in Table 1. These parameters are introduced in
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several functions of the general computational pattern (schema) that many
population-based metaheuristics have in common (see Algorithm 1). The
functions are briefly explained:

e Initialize returns an initial set of solutions. INEIni conformations are
generated randomly. In this first generation, conformations are created
with a different position and orientation around each spot. Then a per-
centage (PEIIni) of the initial conformations of each spot is improved.
The intensification of the improvement is indicated by IIEIni. This
improvement is a local search in which each conformation is modified
within its neighborhood in the solutions space; i.e., it is translated or
rotated with respect to its corresponding protein spot. Then, the scor-
ing function is calculated to evaluate those new conformations. Finally,
(PBEIni+PWEIni)*INEIni conformations from each spot are selected
for the execution of the subsequent functions. PBEIni and PWEIni rep-
resent the percentage of best and worst conformations according to the
scoring function. The best conformations are those with the best fit-
ness, and the “worst” conformations are randomly selected from the
remaining ones. M ETADOCK does not select only the best confor-
mations so as to diversify the search and prevent falling in local optima.

¢ End condition determines the stop criteria for METADOCK, which is
either MNIEnd (maximum number of iterations), or NIREnd (maximum
number of steps without improvement of the best solution among all
the spots).

e Select chooses working conformations for subsequent phases. A per-
centage of the best (PBESel) and worst (PWESel) conformations relative
to each spot are selected.

e Combine mixes conformations in pairs depending on their scoring.
Three parameters represent the percentage of best-best, worst-worst
and best-worst conformations to be combined: PBBCom, PWWCom and
PBWCom, respectively. Combinations are performed among conforma-
tions at the same spot. In each combination, two conformations are
generated with a different orientation and located on the line connect-
ing the two elements to be combined.

e Mutation maintains the diversity of conformations after the Combine
stage. For those conformations affected by the mutation, their position
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in the space or its orientation is modified randomly around the spot
they are associated to. Two parameters are involved in this function:
PMUCom, to define the percentage of conformations that the mutation
procedure receives as an input, and IMUCom, the intensification of im-
provement of the elements obtained by mutation.

e Improve performs a local search within the neighborhood of some of
the conformations previously generated by Combine. As in the im-
provement after initialization, two metaheuristic parameters are con-
sidered for each spot: PEIImp, for the percentage of conformations the
local search is applied to, and IIEImp, for the number of trials for the
local search. Hence, METADOCK can generate hybrid metaheuristics
with different degrees of intensification.

e Include updates the reference set for the next iteration of the schema.
Here, PBEInc establishes the percentage of best conformations associ-
ated to each spot to be included in its reference set. The remaining
conformations in the reference set are randomly selected and contribute
to diversify the search, so avoiding stalling in local minima.

4. Targeting heterogeneous clusters

This section introduces the parallelization strategy of our docking method-
ology presented in Section 3 for a heterogeneous cluster based on CPUs-
GPUs. First, our algorithm defines an MPI process for each existing node in
the cluster where we run our simulation. The number of spots is sent to each
node, where supporting data structures are also created to avoid communi-
cation overhead. Then, each MPI process creates as many OpenMP threads
as GPUs are available at the node, which is easily obtained by querying the
GPU properties at runtime using cudaGetDeviceCount.

Algorithm 2 shows the parallelization schema we use to leverage het-
erogeneous nodes with shared-memory multiprocessors and multiple GPUs.
OpenMP is used to manage several CPU threads, where each thread is re-
sponsible for controlling a GPU (lines 2 and 3). The targeted GPU for the
actual CPU process is selected (line 4) and, from that point, all operations
will be related to a different GPU. Some functions in Algorithm 2 work
with various sets or populations (Rhost and Rdevice). These sets represent
the receptor molecule on the CPU and GPU memories respectively. Line 5
copies Rhost into each GPU’s device memory. Note that the whole receptor
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Algorithm 2 Scoring function computation for multiGPU on each node

1: omp_set_num_threads(number_GPUs)

2: #pragma omp parallel for

3: for i=1 to number_GPUs do
Select_device(Devices]i].id)
Host_To_GPU(Rhost,Sdevice)
Conformations=Devices][i].conformations
threads=Devices][i]. Threadsblock
stride=Devices|i].stride
Calculate_scoring<Conformations/threads,threads>
(Rdevice+Devices[i].stride)
10 GPU_To_Host(Rhost,Rdevice)
11: end for

molecule is copied in all GPU memories. Although the computation of the
scoring function at each spot is distributed among the different GPUs, all
atoms of the receptor are needed to calculate the Lennard-Jones potentials
(see [23]). Moreover, an additional structure, called Devices, is created to
manage several configuration parameters. This structure stores, among other
things, the number of conformations (line 6) assigned to each GPU; i.e., the
number of different ligand configurations that will be executed at each spot.
Deuvices also includes information about the ligand compound and, with that
information, the different ligand conformations will be generated (translating
or rotating this information) on the GPU. Devices also have some GPU run-
time parameters such as memory, grid size, maximum threads per block (line
7), stride on set of population (line 8) and so on. Then, each GPU calculates
the scoring function (line 9) for a set of conformations (i.e., candidate solu-
tions). In our homogeneous implementation, those conformations are equally
distributed among GPUs in form of CUDA thread blocks. Actually, we asso-
ciate each conformation to a CUDA warp, and warps are grouped into blocks
depending on the CUDA thread block granularity.

Parallel runs do not incur any communication overhead, and the final
solution is chosen from all the independent executions, given the stochastic
nature of metaheuristics. The execution time of each independent execu-
tion can differ, as it depends on (1) the underlying GPU each metaheuristic
instance runs on, which is actually unknown at compile-time, and (2) the
number of conformations (the same in principle for each computing unit, but
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the execution time is affected by GPU heterogeneity). Given that the slowest
GPU will determine the overall execution time, our mission in the next steps
is to make use of the idle time offered by the most powerful GPUs. This
requires the implementation of a load balancing strategy that can somehow
distribute a higher number of conformations to the most powerful GPUs.
Indeed, there is a trade off between performance and overhead introduced
in the design of this load balancing strategy. Here, we propose two different
alternatives. A load balancing strategy based on the features offered by the
manufacturer for each device ( Theoretical Distribution) and a load-balancing
strategy that explores the application performance on each GPU before the
computation is actually carried out. Indeed, the former is straightforward
as peak performances provided by manufacturer are under “ideal” condi-
tions but it does not require an additional computational time. The latter,
however, would introduce an overhead but it will theoretically obtain better
application performances. This overhead is mainly due to a warm-up phase
where you can get the real performance of each GPU for our problem. This
phase is common for all metaheuristics, and it is done to establish perfor-
mance differences among all targeted GPU by running the scoring function
for a few simulated solutions. This phase measures the execution time of a
small number of iterations in order to detect these differences. Importantly,
at this stage, the algorithm is not trying to solve the docking problem in any
meaningful sense (five to ten iterations are not enough to do this), but these
runs do allow us to calculate the performance differences between GPUs. The
execution times in this warm-up phase in all GPUs are reduced to obtain the
maximum value using mpi_Reduce. Each node then calculates the number of
conformations to deal with based on this information.

5. Evaluation

This section shows an experimental evaluation of our three different vir-
tual screening strategies running on a heterogeneous cluster based on Intel
CPUs and NVIDIA GPUs. First of all, we briefly introduce the hardware
and software environment where the experiments are carried out. Afterwards,
three different studies are carried out: (a) two different runtime environments
are evaluated, namely the traditional MPI based programming approach and
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the rCUDA approach?; (b) different load balancing strategies are also ana-
lyzed in order to get peak performance of the system; (c) we carry out an
analysis of the quality of our applications in terms of fitness.

5.1. Hardware environment and Benchmarking

Hardware and software environment: Experiments have been conduc-
ted in a cluster based on five 1027GR-TRF Supermicro nodes. Each
node contains two Intel Xeon E5-2620 v2 processors, and has a Mel-
lanox ConnectX-3 VPI single-port InfiniBand adapter (FDR Infini-
Band). The nodes are connected by a Mellanox switch SX6025 with
FDR compatibility (a maximum rate of 56Gb/sec). Two different
GPUs, NVIDIA Tesla K20m and NVIDIA Tesla K40m, are available for
acceleration purposes at nodes K1 and K2. In nodes Gtx1l and Gtx2
one GeForce GTX 590 with 2 GPUs is available in each one. Addi-
tionally, one SYS7047GR-TRF Supermicro server, referred to as node
K3 with identical processors is available with 4 NVIDIA Tesla K20m
GPUs and 128 GB of DDR3 SDRAM memory at 1600MHz. The Cen-
tOS 6.4 operating system and the Mellanox OFED 2.4-1.0.4 were used
at the servers along with the NVIDIA driver 346.96 and CUDA 7.0.
The rCUDA version is 15.10 and the MPI configuration is based on
MVAPICH2 2.0.

Table 2 gives insights about each GPU architecture found on these
nodes. The experimental environment is summarized in Tables 3 and 4.
The former shows each GPU location and Device Identifier. In other
words, Table 3 shows the node where each GPU is located and the
identifier assigned to each computational component. Table 4, however,
shows the tag used in the experiments. For instance, the simulations
performed with 2 GPUs use devices 0 and 1, which means K40m and
K20m in the node K1, while simulations with 4 GPUs involve 0, 1, 2
and 3 GPUs, which means two nodes (K1 and K2).

Metaheuristics: Three different configurations of our metaheuristics are

2Remember that the rCUDA approach consistis of providing the application GPUs
located anywhere in the cluster. In this way, the application is programmed as a shared-
memory application without having to use MPI in order to make use of the GPUs located
in other cluster nodes. Furthermore, the application code does not need to be specifically
designed for rCUDA but it is just designed to use multiple GPUs.
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Table 2: GPU architectures involved in the experimental study.

Feature GTX 590 K20m K40m
GPU generation Fermi | Kepler | Kepler
Year released 2011 2013 2014
Raw computational power

Number of cores 512 2496 2880
Core frequency (MHz) 1215 706 745
Peak processing (GFLOPS) | 2x 1244 3520 4290
CUDA Compute Capability 2.0 3.5 3.5
Memory

Size (GB) 2x 1.5 5.2 12
Frequency (MHz) 2x 1215 | 2x 2600 | 2x 3004
Width (bits) 384 320 384
Bandwith (GB/s) 163.8 208 288
Cache

Shared memory / multipr. 48 KB | 64 KB | 64 KB
L2 cache 768 KB | 1.5 MB | 1.5 MB

Table 3: Hardware location and models of the experimental environment.

Device | Model | Node Device | Model Node
0 K40m | node K1 6 K20m node K3
1 K20m | node K1 7 K20m node K3
2 K40m | node K2 8 GTX 590 | node Gtx1
3 K20m | node K2 9 GTX 590 | node Gtx1
4 K20m | node K3 10 GTX 590 | node Gtx2
5 K20m | node K3 11 GTX 590 | node Gtx2

Table 4: Relation between experiment tag and hardware location shown in Table 3.

Tag (Number

Devices used

Tag (Number

Devices used

of GPUs) (IDs from Table 3) of GPUs) (IDs from Table 3)

2 GPUs 0,1 8 GPUs 0’1’§’§’4’5
0,1,2,3,4,5

4 GPUs 0,1,2,3 10 GPUs 6.7.8.9.10

6 GPUs 0,1,2,3,4,5 12 GPUs 0.1,2,3:4,5

6,7,8,9,10,11,12
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under study (referred to as M1, M2 and M3 in Table 5). The first
hybrid metaheuristic (M1) is close to a Genetic Algorithm with a pop-
ulation of 2048 individuals for each spot. Elements are selected from
the best ones for combination, and half of the resulting elements are
mutated. This metaheuristic does not include local search to improve
the conformations. The second metaheuristic (M2) is also an evolution-
ary method but, in this case, it is closer to a Scatter Search algorithm
with a population of 512 individuals. In this case, all the elements
are improved after the initial generation and the combination, and the
improvement is a local search in the neighborhood of each element
to obtain better solutions. The last metaheuristic (M3) is a method
of search in the neighborhood. A local search is carried out at each
spot by changing position and orientation of the conformations. No-
tice that we have used different population sizes for our metaheuristics
because we are interested in the scalability of our system and, there-
fore metaheuristics are designed to have different populations, which
means having different computing intensity. All individuals are consid-
ered for selection and combination to perform the algorithm previously
explained in Section 2.2.

Table 5: Metaheuristics used for experimentation.

COMBINATIONS

M1 | M2 | M3
INFEIni 2048 | 512 | 2048
PEIIni 0 100 | 100
IIEIni 0 20 100
PBEIni 100 4 0
PW EIni 0 4 0
PBESel 2 50 0
PW ESel 0 50 0
PBBCom 100 | 100 0
PWWCom 0 100 0
PBWCom 0 100 0
PMUCom 50 0 0
IMUCom 20 0 0
PEIImp 0 100 0
IIEImp 0 20 0
PBEInc 100 | 70 0
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Databases: A set of benchmark instances from the well-known Directory of
Useful Decoys (DUD) [43] was used for testing. Surface screening was
performed on proteins GPB, SRC and COMT and their corresponding
crystallography ligands. Table 6 shows the size of each complex protein-
ligand, with the number of atoms of each component and the number
of spots of the receptor. They have different sizes to test the scalability
of the methods implemented.

Table 6: Size of receptor and crystallography ligand (number of atoms) used for perfor-
mance comparison, and the number of spots for each receptor.

Targets | Number of Receptor size Crystallography ligand size
spots | (number of atoms) (number of atoms)

GPB 813 13,261 52
SRC 452 7,158 67
COMT 214 3,419 29

5.2. Runtime evaluation

This section shows the performance evaluation of our VS methodology
on a heterogeneous cluster based on CPU+GPU. We compare our MPI +
OpenMP + CUDA version to leverage the heterogeneous cluster, which re-
quires a larger programming effort, with an OpenMP + CUDA version that
uses TCUDA as underlying runtime system. We ensured that simulations
in both systems featured the same starting point by setting the seed in the
random number generator. The idea after this comparison is that four GPUs
are actually the maximum number of GPUs that are physically installed
within the same node in our cluster. Therefore, the only way to use all
GPUs in the cluster would be to use libraries like MPI. This introduces an
extra programming effort to access all the available computational resources.
Another way to do that, bypassing the MPI requirement, is to use a run-
time system such as rCUDA that transparently “brings” all GPUs available
in the cluster to a given node where the computation is carried out. The
question that comes up here is if there is any overhead related to the use
of runtime systems like rCUDA instead of a hand-made MPI code. Figure
2 shows the execution time of M ETADOCK using both alternatives. In
particular, we use a GRASP metaheuristic (/3) The number of the overall
number of GPUs is incremented on the X-axis and different protein-ligand
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conformations are simulated (see Table 6) to analyze the system scalability.
Indeed, the M ET ADOC K performance increases with the number of GPUs.
As previously explained, the metaheuristic runs simultaneously at each spot
and the spots are equally distributed among GPUs. These results justify the
use of multiple GPUs to speedup our simulations. Execution times of the
MPT and rCUDA versions are very close. Actually, a small performance gain
is reported in the rCUDA version.

GPB MPI
GPB rCUDA
%2eed SRC MPI
SRC rCUDA
COMT MPI
COMT rCUDA

Time in Seconds

SOl
ofote

A Y

303
[Se2e%e

/ S8 % 1 =
2 GPUs 4 GPU 6 GPUs 8 GPUs
Number of GPUs

Figure 2: Execution time (in seconds) with COMT, GPB and SRC complexes from two
to twelve GPUs with M3 for our MPI + OpenMP + CUDA implementation vs. OpenMP
+ CUDA with rCUDA middleware.

The reason for the performance gain with rCUDA is the following. In
a classical approach, programming interfaces like MPI are used to involve
several nodes to solve a given problem. In contrast, rCUDA avoids the use
of MPI, which eases the development and avoids the MPI runtime overhead
by using a very efficient communication pipeline between client and server
nodes [21]. In addition to make the program more complex from the pro-
gramming point of view, MPI also presents a non-negligible overhead when
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dealing with exchanged messages. This means that a shared-memory ap-
plication may present a better performance than an MPI one for the same
amount of leveraged CPU cores. As a result of the combination of both fac-
tors, our application provides better performance when it accesses GPUs in
other nodes of the cluster by using rCUDA instead of MPI.

5.8. Load-balancing strategy evaluation

Table 7: Workload (in percentages) for each GPU with two distributions (Homogeneous
and Theoretical) for COMT, GPB and SRC complexes.

Homogeneous Theoretical
Numbers ., . . . . .
of GPUs Distribution Distribution
device / workload | device / workload
2 GPUs | 0-50% 1-50% 0 - 55% 1 - 45%
0-25% 2 - 25% 0-275% | 2-27.5%
4GPUs | osor 1 3-25% | 1-225% | 3-22.5%
0-16.6% | 3-16.6% | 0-19.3% | 3-15.3%
6 GPUs |[1-16.6% | 4-16.6% | 1-15.3% | 4-15.3%
2-16.6% | 5-16.6% | 2-19.3% | 5-15.3%
0-125% | 4-125% | 0-14% 4-12%
1-125% | 5-125% | 1-12% 5-12%
8GPUs | ) 195% | 6-125% | 2-14% | 6-12%
3-125% | 7-125% | 3-12% 7-12%
0-10% 5-10% 0-13% 5-11%
1-10% 6 - 10% 1-11% 6-11%
10 GPUs | 2 - 10% 7-10% 2-13% 7-11%
3-10% 8-10% 3-11% 8 - 4%
4-10% 9-10% 4-11% 9-4%
0-83% |6-8.3% 0-12% 6-10%
1-83% | 7-8.3% 1-10% 7-10%
2-83% |8-8.3% 2-12% 8- 4%
12GPUs | 3 g0 | 9-83% | 3-10% | 9-4%
4 - 8.3% 10-83% | 4-10% 10 - 4%
5-8.3% 11-83% | 5-10% 11 - 4%

The existence of different families of GPUs (see Table 2) in the same
cluster requires to adapt the amount of work to be carried out by the dif-
ferent kernels to the different computing power of the devices in the cluster.
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Table 8: Workload (in percentages) for each GPU with heterogeneous distributions for
COMT, GPB and SRC complexes.

CcCOoOMT GPB SRC
Numbers Heterogeneous Heterogeneous Heterogeneous
of GPUs Distribution Distribution Distribution

device / workload | device / workload | device / workload
2 GPUs | 0-55.7% [ 1-44.3% | 0-551% | 1 -44.9% | 0-55.5% | 1 - 44.5%
4 GPUs 0-281% |2-274% | 0-271% | 2-274% | 0-27.7% | 2 - 27.9%
1-21.9% | 3-22.6% | 1-22.6% | 3-229% | 1-223% | 3-22.1%
0-191% | 3-153% | 0-189% | 3-15% | 0-18.7% | 3-15.3%
6 GPUs | 1-151% [4-15.7% | 1-159% | 4-159% | 1-15.8% | 4 - 15.7%
2-183% | 5-165% | 2-179% | 5-16.4% | 2-182% | 5 - 16.3%
0-144% | 4-118% | 0-15% |4-11.1% | 0-14.7% | 4 - 11.5%
1-121% | 5-11.9% | 1-11.8% | 5-11.9% | 1-11.7% | 5 - 11.7%
2 - 15% 6-11.7% | 2-14.6% | 6 - 11.8% | 2-14.8% | 6 - 11.9%
3-11.6% | 7-11.5% | 3-121% | 7-11.7% | 3-11.9% | 7 - 11.8%
0-141% [ 5-105% | 0-14% |5-11.2% | 0-13.9% | 5 - 11.0%
1-11.6% | 6-10.7% | 1-11.2% | 6 - 10.6% | 1 - 11.1% | 6 - 10.7%
10 GPUs | 2-14.1% | 7- 11% 2-143% | 7-104% | 2-14.1% | 7- 10.8%
3-11.1% | 8-32% |3-10.8% | 8-31% |3-10.9% | 8-3.4%
4-10.6% | 9-3.1% 4-11% | 9-34% | 4-10.8% | 9-3.3%
0-13% 6-10.1% | 0-13% |6-10.4% | 0-12.8% | 6 - 10.3%
1-105% | 7-10.7% | 1-10.6% | 7-10.8% | 1 - 10.6% | 7 - 10.5%
2-131% | 8-25% | 2-131% | 8-2.6% |2-129% | 8-2.7%
3-104% 19-29% |3-103% | 9-29% |3-104% | 9-3.0%
4-10.2% [ 10-3.1% | 4-102% | 10-2.8% | 4 - 10.3% | 10 - 3.0%
5-10.6% | 11-2.9% | 5-10.6% | 11-2.7% | 5-10.7% | 11 - 2.8%

8 GPUs

12 GPUs
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We have adapted M ETADOCK to work with heterogeneous architectures
and massively parallel techniques applied to areas of intensive computing,
distributing the work onto all the available devices. The independence of
a conformation with respect to the others when calculating their potential
makes it easier to take advantage of the heterogeneity by dividing computa-
tion.

This section evaluates three different load-balancing techniques:

e In the Homogeneous Distribution all the devices receive the same work-
load.

e In Theoretical Distribution the workload received by each device is cal-
culated from the theoretical peak performance provided by the manu-
facturer.

e In the Heterogeneous Distribution the workload is established through
a warm-up phase, previously explained in Section 4.

Tables 7 and 8 show the homogeneous, theoretical and heterogeneous
distribution used for three protein-ligand complexes, varying the number of
GPUs. In Table 7, the first and second columns show the percentage assigned
to each device with the homogeneous distribution, and the percentages with
the theoretical distribution are shown in columns three and four. With the
homogeneous distribution the workload is equally distributed among all the
GPUs, independently of the relative performance of the devices. The theoret-
ical distribution uses the device performance provided by the manufacturer
to obtain the percentages. In this case, Kepler GPUs are assigned more
workload than Fermi GPUs. Table 8 shows the distribution obtained for the
three complexes with the heterogeneous distribution. In this case, a higher
percentage of workload is assigned to the GPUs that offer better performance
for our problem. Some conclusions are drawn: (1) The theoretical distribu-
tion for the Kepler family is close to the heterogeneous distribution which
actually explores the real computational differences among GPUs. (2) The
workload for the three complexes in the heterogeneous distribution is very
similar and does not depend on their sizes.

Table 9 shows the execution time for the warm-up phase using MPI. The
warm-up phase in the MPI case explores the computational capabilities and
distributes the work within each node; i.e. an MPI process is launched to
each node where the warm-up phase is performed. Therefore, this is done
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Table 9: Execution time (in seconds) of the warm-up phase for the MPI + OpenMP +
CUDA implementation with three complexes (COMT, GPB and SRC).

Number | b5 | 4aPUs | 6 GPUs | 8 GPUs | 10 GPUs | 12 GPUs

of GPUs

COMT 253 2.49 251 3.36 5.28 5.55
GPB 513 511 5.06 5.08 6.91 6.87
SRC 8.28 8.45 8.35 8.36 9.08 9.79

Table 10: Execution time (in seconds) of the warm-up phase for the OpenMP + CUDA
implementation with rCUDA middleware for three complexes (COMT, GPB and SRC).

Number | ) b5 | 4GPUs | 6 GPUs | 8 GPUs | 10 GPUs | 12 GPUs

of GPUs

coMT 1.08 2.21 3.42 5.57 8.01 10.823
GPB 2.07 3.62 121 6.34 971 1251
SRC 2.26 194 171 7.19 11.25 14.43

in parallel at each node, and thus the execution time reported in Table 9
corresponds to the slowest node in computing this warm-up stage. The slow-
est GPUs targeted (GeForce GTX 590) are involved in the execution for 10
and 12 GPUs (see Tables 3 and 4), and they determine the overall execu-
tion time. Table 10 shows the execution time for the warm-up phase using
rCUDA. Here, all the GPUs are virtually on a node and so the warm-up is
not parallelized like in the MPI case. The progressive increase in execution
time with the number of GPUs reflects this idea. The warm-up phase intro-
duces an overhead in both cases, that is higher for rCUDA whenever many
GPUs are targeted. After evaluating the workload percentages assigned to
each GPU, we observe in Table 8 that small and large complexes have sim-
ilar workloads. This leads us to think about a clever strategy to reduce the
overhead. The warm-up phase could be executed once at the installation
stage, when compounds of several sizes could be evaluated, so storing meta
information for future executions. It is important to bear in mind that, when
solving a real problem, many iterations are carried out so representative val-
ues are obtained, and the overhead incurred in the warm-up phase is less
significant.

23



30

tzzzzz MP1 Homogeneous Distribution
rCUDA Homogeneous Distribution
Ezz MPI Theoretical Distribution

B rCUDA Theoretical Distribution
MPI Heterogeneous Distribution
rCUDA Heterogeneous Distribution

7 7

Time in Seconds
&

6 GPUs 8GPUs 10 GPUs 12 GPUs

Number of GPUs

7% e % %
2 GPUs 4 GPUs

Figure 3: Execution time (in seconds) with COMT complex and M1 for different distri-
butions with MPI + OpenMP + CUDA and OpenMP + rCUDA implementations.
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Figure 4: Execution time (in seconds) with GPB complex and M1 for different distributions
with MPI + OpenMP 4+ CUDA and OpenMP + rCUDA implementations.
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Figure 5: Execution time (in seconds) with SRC complex and M1 for different distributions
with MPI + OpenMP 4+ CUDA and OpenMP + rCUDA implementations.

Figures 3, 4 and 5 show the execution time in seconds for the load-
balancing strategies considered (homogeneous, theoretical and heterogeneous),
using MPI and rCUDA versions for the COMT, GPB and SRC protein-ligand
complexes. We use only one metaheuristic (M1) for clarity, but the results
are representative of the other metaheuristics experimented with. For low
experimentation times, the results correspond to only one step of the meta-
heuristic, with a single execution of each function. The scalability is com-
pared for the different complexes and implementations. In all the cases the
homogeneous distribution obtains worse results, which are particularly no-
ticeable when Fermi GPUs are introduced (10-12 GPUs case). The reason is
clear, we introduce a GPU that offers a lower theoretical peak performance
and the same workload is assigned to each GPU. On the contrary, the theo-
retical distribution has a similar behavior to the heterogeneous distribution,
increasing the difference between MPI and rCUDA as the complex is bigger
(see Figures 4 and 5). The heterogeneous distribution obtains the best per-
formance. However, these execution times do not include the warm-up stage,
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which may be representative, as previously commented. For a real applica-
tion where many steps are needed, the overhead would be less important.
Furthermore, the application of the warm-up at installation stage would hide
overhead.

5.4. Metaheuristic evaluation

In sections 5.2 and 5.3 we have verified that using a greater number of
GPUs reduces the execution time. In this section we show that: (1) different
metaheuristics have different behavior for the same compound; (2) paral-
lelism contributes to better fitnesses, with larger number of GPUs enabling
more evaluations, and consequently better results, in the same execution
time; (3) for the same reason, the exploitation of heterogeneity also con-
tributes to better fitnesses. rCUDA is used in the experiments.
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Figure 6: Comparison of fitness with the COMT complex and 12 GPUs on rCUDA for
three metaheuristics at different time-steps.
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Figures 6, 7 and 8 show the evolution of the fitness with the time of the
different metaheuristics and complexes considered with rCUDA. As com-
mented, the behavior of the metaheuristics is different depending on the
complex and no metaheuristic offers the best results with all the complexes.
The worst results are obtained with metaheuristic M1 (close to a Genetic
Algorithm). With COMT and SRC complexes, M2 (close to Scatter Search)
obtains the best fitness (minor value), while for GPB, with a greater number
of spots to look for and more individuals per spot, the behavior of the local
search metaheuristic is better. Metaheuristic M3 is used in the following
experiments to analyze the influence of the workload distributions in Section
5.3 on the fitness.
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Figure 9: Comparative fitness for homogeneous distribution with GPB complex on 4, 8
and 12 GPUs on rCUDA with metaheuristic M3 and time-limit.
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Figures 9, 10 and 11 analize the quality of the solution with the number
of GPUs with the three distributions (homogeneous, theoretical and hetero-
geneous). In Figure 9 we observe that with homogeneous distribution the
fitness with 12 GPUs is worse than with 8, which is due to the same work-
load for Fermi and Kepler GPUs. This makes the execution slower and the
number of steps is smaller than if only Kepler GPUs are used. Figures 10 and
11 show the behavior with the theoretical and heterogeneous distribution, in
this case the quality of the fitness increases with the number of GPUs.

6. Related work

This section analyzes different docking techniques from a computational
point of view. Widely-used docking programs like Autodock [6] and Autodock
VINA [7] are CPU-based. They accelerate their computations by means of
the OpenMP runtime to fully leverage multicore architectures. Other CPU-
based docking programs are LeadFinder [9], Glide [8], SurFlex [10], ICM+
[11], DOCK [13] or FMD [12]. These applications use OpenMP, and some
of them also use the MPI library in order to distribute their computations
across the CPUs of several nodes of the cluster.

Moreover, there are other docking applications that use the GPU to of-
fload the computational intensive parts of the computation. BUDE [15] is
a software for molecular docking that leverages the heterogeneity of CPU-
GPU systems. This software is programmed using OpenMP and OpenCL
for portability to different architectures like NVIDIA and AMD GPUs, but
it does not consider the use of the MPI technology. AMBER [16] also uses
GPU acceleration. However, the possibility of using multiple GPUs requires
using OpenMP or MPI, and therefore it cannot be directly compared with
our environment. BINDSURF [17] is fully developed in GPU, although it
does not support MultiGPU or MPI to extend the computation to several
nodes in a cluster.

7. Conclusions and Future work

Virtual screening methods are computational techniques that aid the drug
discovery process. They are very computational demanding applications, and
the use of clusters combining multicore CPUs and several GPUs contribute
to accelerate their solution. However, these are heterogeneous systems, and
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heterogeneity may limit application performance unless programmers: (1) de-
velop smart applications to control those features wisely on the road towards
an optimal performance or (2) use middleware tools that manage these com-
puting issues efficiently and transparently. This paper analyzes both options
by developing initially an MPI, OPENMP and CUDA based Virtual Screen-
ing application and also by using rCUDA with only OpenMP and CUDA
counterpart version of the same application. rCUDA offers an easy-to-use
framework to develop data-intensive applications that use several remote
GPUs transparently. We have not noticed any substantial pay off in terms
of performance; actually some slightly improvements are reported in some
cases, thanks to an efficient implementation of memory transfers through
pinned buffers on rCUDA.

Virtual Screening requires the analysis of large data-bases of chemical
compounds. Those compounds are independent of each other and, therefore,
a load-balancing technique is necessary to distribute the workload efficiently
among all GPUs, which can be from different generations. Here, three dif-
ferent load-balancing techniques are studied. Our baseline technique is a ho-
mogeneous distribution among GPUs which is not efficient as long as there
are notable computational differences between GPUs. The theoretical dis-
tribution, based on the peak performance reported by the manufacturer, is
a good option as it does not require extra computation and it determines
relatively well performance differences between GPUs.

The best performance is achieved by our load balancing technique based
on a warm-up strategy. The execution time of the warm-up phase largely
increases as long as the number of GPUs does so. In particular, the virtualiza-
tion offered by rCUDA avoids parallelization at the warm-up and therefore
the execution time can increase notably. Anyway, the warm-up times re-
ported are affordable in real applications where the number of steps of the
metaheuristics for solutions of high quality is large, or when the warm-up is
carried out for representative metaheuristics and sizes during the installation
of the docking method for a computational system.

In summary, the main conclusions are that: (1) population-based meta-
heuristics hybridized with local search methods give satisfactory results for
our docking problem; (2) parallelism can help to reduce both the execution
time of this computationally demanding problem and the quality of the solu-
tions; (3) a virtual system as rCUDA eases the exploitation of heterogeneous
systems for the problem in hand; (4) to fully exploit this type of systems the
heterogeneity should be considered for workload distribution, with a result
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in the improvement of the solutions as a consequence of the reduction of
execution times.

For future work, and in order to deal with larger problems or for better
solutions with limited execution times, it could be convenient to adapt our
virtual screening method to even more complex systems, with other types of
accelerators and with accelerators of various types and at different speeds in
the same node. Energy efficiency should also be considered.

In this paper, GPU virtualization has been proved as a very promising
technique, and, therefore, we will follow this path, including multi-tenancy
at a GPU level, by running several instances of our program in the same
physical GPU to increase the overall throughput. Indeed, an energy effi-
ciency evaluation in this context will be a very interesting subject of study,
which will also comprise the usage of other system architectures like 64-bit
ARM-based systems. Moreover, virtual screening is still at a relatively early
stage, and we acknowledge that we have tested a relatively simple variant of
the algorithm. But, with many other types of scoring functions still to be
explored, this field seems to offer a promising and potentially fruitful area of
research.
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