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Abstract 

Helicobacter pylori is one of the most common causes of chronic bacterial infection in 

humans, and a predisposing factor for peptic ulcer and gastric cancer. The infection has 

been consistently associated with lack of access to clean water and proper sanitation. H. 

pylori has been detected in surface water, wastewater and drinking water. However, its 

ability to survive in an infectious state in the environment is hindered because it rapidly loses 

its cultivability. The aim of this study was to determine the presence of cultivable and 

therefore viable H. pylori in influent and effluent water from drinking water treatment plants 

(DWTP). A total of 310 influent and effluent water  

||samples were collected from three drinking water treatment plants located at Bogotá city, 

Colombia. Specific detection of H. pylori was achieved by culture, qPCR and FISH 

techniques. Fifty-six positive H. pylori cultures were obtained from the water samples. 



Characteristic colonies were covered by the growth of a large number of other bacteria 

present in the water samples, making isolation difficult to perform. Thus, the mixed cultures 

were submitted to Fluorescent in situ Hybridization (FISH) and qPCR analysis, followed by 

sequencing of the amplicons for confirmation. By qPCR, 77 water samples, both from the 

influent and the effluent, were positive for the presence of H. pylori. The results of our study 

demonstrate that viable H. pylori cells were present in both, influent and effluent water 

samples obtained from drinking water treatment plants in Bogotá and provide further 

evidence that contaminated water may act as a transmission vehicle for H. pylori. Moreover, 

FISH and qPCR methods result rapid and specific techniques to identify H. pylori from 

complex environmental samples such as influent water. 

 

Keywords: Helicobacter pylori; detection; culture; qPCR; FISH; Drinking Water Treatment 

Plants. 

  



1. Introduction 

 

Helicobacter pylori is a pathogenic bacterium which colonizes human gastric mucosa, and 

is known to affect >50% or the world population (Aziz et al., 2015; Khean-Lee et al., 2011; 

USEPA, 2015a, 2015b). According to Hooi et al. (2017) there were approximately 4.4 billion 

individuals with H pylori infection worldwide in 2015. Prevalence is highest in Africa (79.1%), 

Latin America and the Caribbean (63.4%), and Asia (54.7%). In contrast, HP prevalence is 

lowest in Northern America (37.1%) and Oceania (24.4%). In Colombia, 77-80% of the 

population is infected (Campuzano-Maya et al., 2007). Infection with this bacterium has 

been associated with the development of chronic gastritis, peptic ulcer disease, atrophic 

gastritis, intestinal metaplasia, B cell MALT lymphoma and gastric adenocarcinoma (Backert 

et al., 2016). In 1994, H. pylori was classified as a Group 1 carcinogen by the WHO 

International Agency for Research on Cancer (IARC, 1994). The clinical outcome of H. pylori 

infection has been associated with the presence of specific H. pylori virulence factors, 

including cytotoxin-associated gene A (CagA) and the vacuolating cytotoxin (VacA) (Winter 

et al., 2014). The Vacuolating cytotoxin A secreted by H. pylori enhances the ability of the 

bacteria to colonize the stomach and contributes to the pathogenesis of gastric 

adenocarcinoma and peptic ulcer disease.  

 

Currently, the route of transmission of H. pylori remains unclear, evidence supporting both 

the fecal-oral and oral-oral route (Leja et al., 2016). Several authors have suggested that 

fecal-oral transmission occurs through drinking water supplies, groundwater, recreational 

waters, freshwaters streams, and estuary and marine waters contaminated by sewage 

(Carbone et al., 2005; Cellini et al., 2004; Cunachi et al., 2015; Mazari-Hiriart et al., 2001; 

Moreno et al., 2003a; Santiago et al., 2015; Twing et al., 2011; Voytek et al., 2005). The risk 

of acquisition of H. pylori appears to be multifactorial and potentially contaminated 



environmental sources, such as local drinking water, swimming in rivers, or the ingestion of 

fecally contaminated vegetables have been reported as risk factors for H. pylori infection 

(Leja et al., 2016).   

 

At the moment, H. pylori is included in the U.S. Environmental Protection Agency (EPA) 

Contaminant Candidate List (CCL), which includes new chemicals and microorganisms 

contaminants that may pose risks for drinking water, based on information about known and 

suspected public health risk and the occurrence of the contaminant in water (USEPA, 2004, 

2015b).  

Studies about the survival of H. pylori in the environment have shown that, under stress 

conditions, H. pylori acquires the coccoid form and enters the viable but nonculturable state 

(VBNC), in which the organism could be metabolically active and keeps most virulence 

genes (Bai et al., 2016; Hulten et al., 1998) but that cannot be cultured in vitro (Bode et al., 

1993; Nilius et al., 1993). Thus, in the VBCN state H. pylori could survive in water for several 

months (Bode et al., 1993; Percival and Suleman, 2014). Some authors have suggested 

that some cocci can revert to their original spiral, culturable shape (Cellini et al., 1994; She 

et al., 2003). It has been also reported that H. pylori is able to remain viable in water storage 

systems, possibly held in the biofilms (Percival and Suleman, 2014). This VBNC forms 

cannot be detected by culture, which means that the potential of acquisition through 

environmental reservoirs, as drinking water, may be undervalued (Azevedo et al., 2007). 

 

Thus, the main challenge when conducting environmental monitoring is to demonstrate the 

existence of viable H. pylori in water samples. Very few attempts to culture H. pylori from 

environmental waters have been successful (Al-Sulami et al., 2012; Bahrami et al., 2013; 

Degnan et al., 2003; Lu et al., 2002; Moreno and Ferrús, 2012; Santiago et al., 2015), which 



has led to the use of molecular methods to detect and identify the organism (Assadi et al., 

2015; Khadangi et al., 2017; McDaniels et al., 2005).  

 

Several authors have reported the use of conventional Polymerase Chain Reaction (PCR) 

and Quantitative Real-Time Polymerase Chain Reaction (qPCR) for the amplification of the 

vacA, cagA, ureA, glmM genes to detect H. pylori in different types of water, including 

drinking water, surface water, treated and untreated wastewater, marine water, ground 

water and biofilms (Bahrami et al., 2013; Fujimura et al., 2004; Lu et al., 2002; Moreno and 

Ferrús, 2012; Queralt et al., 2005; Santiago et al., 2015). Due to the high sensitivity of the 

qPCR reaction, a minimum amount of any inhibitory substance present in the sample can 

trigger a false negative or a low rate of detection (Schrader et al., 2012; Wilson, 1997). 

Inhibitors can come from the own sample or arise during the processing of the sample or 

extraction of nucleic acids (Schrader et al., 2012). Some approaches such as an enrichment 

step of the sample or Immunomagnetic Separation (IMS) have been proposed to avoid the 

qPCR inhibition due to substances present in the samples (Lu et al., 2002). 

  

Although qPCR and PCR techniques have a high sensitivity, they present the disadvantage 

of not being able to discriminate between viable and nonviable cells. To achieve the 

detection of viable cells by molecular methods, different methods have been developed, 

such as the use of the intercalating agent of DNA fluorophore propidium monoazide (PMA) 

(Santiago et al., 2015; Villarino et al., 2000). However, assessing bacterial viability 

using PMA-qPCR remains a challenge, as this technique only demonstrates membrane 

integrity and can lead to overestimation of the viable bacteria population under some 

inactivation conditions (Lee and Bae, 2017). 

 



Fluorescent In Situ Hybridization (FISH) with rRNA oligonucleotide probes has been used 

for detection and identification of H. pylori in water samples (Fernandez Delgado et al., 2016; 

Moreno et al., 2003a; Piqueres et al., 2006; Tirodimos et al., 2014). FISH method has the 

advantage of not being inactivated by sample inhibitors. FISH in combination with direct 

viable count incubation (DVC-FISH) has been recently reported as a complementary 

technique for successfully detecting viable cells of H. pylori in wastewater and drinking water 

(Moreno y Ferrús, 2012; Moreno-Mesonero et al., 2016; Piqueres et al., 2006). 

 

The objective of the present work was to determine the occurrence of H. pylori in influent 

and effluent water samples from three drinking water treatment plants (DWTP) from Bogotá, 

Colombia, by using a combination of enrichment culture, specific qPCR assays of vacA gene 

and Fluorescent in situ Hybridization (FISH). 

 

2. Experimental procedures 

 

2.1. Sampling sites 

 

Water samples were collected from three Drinking Water Treatment Plants (DWTP 1, 2 and 

3), located at north, south and northeastern of Bogotá city, Colombia. These plants receive 

water from various sources and apply conventional disinfection treatment consisting in pre-

treatment, coagulation-flocculation, sedimentation, down flow filtration and disinfection with 

chlorine. DWTP 1, located in northern Bogotá, takes the water from the Bogotá river shipside 

in which a sedimentation process is generated to reduce the microbial load. It treats an 

average flow of 10.5 m3/s and distributes the water to 8 municipalities and part of the north 

of Bogotá. DWTP 2, located in southern Bogotá, receives water from the upper Tunjuelo 

River basin, La Regadera reservoir and Chisacá. This plant treats an average flow of 1.6 



m3/s and distributes water to the southern sector of Bogotá. DWTP 3, located in northeastern 

Bogotá, receives water from Chingaza reservoir and the Teusacá River, which are 

connected in the San Rafael reservoir. This plant treats an average flow of 14 m3/s and 

distributes water to the municipality of the Calera and 70% of the city of Bogotá. 

 

2.2. Water sampling and Helicobacter pylori concentration 

 

Sampling was carried out between July 2015 and August 2016 and included 155 influent 

and 155 effluent water samples: fifty-three samples were taken from DWTP 1; fifty-two 

samples were taken from DWTP 2 and fifty samples from DWTP 3. 

 

Three hundred mL of the influent samples were collected into 500 mL sterile bottles. Each 

water influent sample was centrifuged at 3000 x g for 20 minutes and the pellet was 

resuspended in 2 mL of phosphate-buffered saline (PBS 1X: 130 mmol/L sodium chloride, 

10 mmol/L sodium phosphate, pH 7.2).  

 

For the effluent samples, we used the “Moore swab” method (OPS/WHO, 2010). Briefly, a 

swab was kept in contact with effluent flow for 72 hours, removed and placed into a sterile 

bottle, held at 4°C and processed within a few hours. The swab was transferred to 200 mL 

of Brucella Broth (Becton Dickinson BBLTM, USA) supplemented (BBS) with 0,4% Isovitalex 

(Becton Dickinson BBLTM, USA) and 0,2% Dent (Oxoid, USA), shaken at 500 rpm for 30 min 

and finally incubated at 37°C under microaerophilic conditions (5% O2, 11% CO2, 85% N2) 

for 24 hours. After this pre-enrichment step, 150 mL of each sample was centrifuged at 3000 

x g for 20 minutes and the pellet was resuspended in 2 mL of PBS 1X. 

 



One mL of both, influent and effluent PBS suspension samples, were concentrated by 

Immunomagnetic Separation (IMS). Treatment of the beads for IMS was conducted 

according to Enroth y Engstrand protocol (Enroth and Engstrand, 1995). Briefly, 3 µl the 

polyclonal Rabbit anti-HP IgG (5.3 mg of protein per mL) (Dako, Denmark) was incubated 

with 500 µl of magnetic beads (6 to 7 x 108 beads per mL) precoated with sheep anti-rabbit 

IgG (DynabeadsTM M-280; Norvex by Life technologies, Norway) for 24 h at 4°C with gentle 

agitation.  

 

For the concentration of samples, 20 µl of coated beads were added to 1mL of PBS 1X 

suspension. The samples were gently agitated for 1 h at 4°C. With the aid of a magnet 

(MPC-s, Invitrogen Inc.) beads were separated from the rest of the sample and rinsed three 

times in 1 mL of PBS containing 0.1% bovine serum albumin (BSA) with gentle agitation 

(18rpm) at 4°C for 30 min. After the third washing, the beads-bacteria aggregates were 

resuspended in 1 mL PBS 1X and subsequently analyzed by culture, qPCR and FISH. 

 

One mL aliquots of PBS suspensions of each sample without IMS were also tested by 

culture. 

 

2.3. Helicobacter pylori culture conditions and bacterial strains 

 

Reference strains H. pylori 11637 NCTC and 11638 NCTC (National Collection of Type 

Cultures, UK), and the H. pylori strain 301A, isolated from gastric biopsy of a patient from 

Bogotá city, were cultured in Supplemented Brucella Agar (SBA): BBLTM Brucella agar 

(Becton Dickinson, USA), 5% defibrillated horse blood, 0,2% DENT Supplement (Oxoid, UK) 

and 0,4% Isovitalex (Becton Dickinson, USA). Plates were incubated under microaerophilic 

conditions (5% oxygen, 11% carbon dioxide, and 85% nitrogen) with 95% humidity (Bayona 



Rojas, 2013) in an anaerobic incubator (Thermo Scientific, USA) at 37 °C for 3 days. 

Reference strains were used as positive controls for culture, qPCR, and FISH. 

 

2.4. Culture methods for Helicobacter pylori isolation 

 

2.4.1. Preliminary assays 

 

For the isolation of H. pylori from water samples, different culture media were evaluated: 

Supplemented Brucella Agar (SBA), described above, HP agar (Degnan et al., 2003) and 

HP agar supplemented with different antibiotics (nalidixic acid, streptomycin sulfate and 

kanamycin). Aliquots of 0.1 mL of water samples spiked with the three reference strains, H. 

pylori NCTC 11637, NCTC 11638 and H. pylori 301A, were spread on the different agar 

media plates and incubated under microaerophilic conditions at 37 °C for 5-14 days, to 

determine the optimal bacteria growth time. In addition, 2 different pore sizes membrane 

filters (0,45 μm and 0,22 μm) were tested for filtration effectiveness. Reference strain E. coli 

ATCC 25992, from the American Type Culture Collection (ATCC) was used as a culture 

negative control. 

 

2.4.2. Helicobacter pylori isolation from water samples 

 

Based on the results of the culture preliminary assays above described (data not shown), 

three different strategies were used for the detection of H. pylori from influent samples: 1) 

0,1 mL of the suspension of samples in PBS 1X after centrifugation were directly spread 

onto SBA plates; 2) 0,1 mL of the concentrated IMS suspension were spread on to SBA 

plates and 3) 0,4 mL of concentrated from IMS were enriched in Supplemented Brucella 

Broth (BBS: BBLTM Brucella broth (Becton Dickinson, USA), 0,2% DENT Supplement 



(Oxoid, UK) and 0,4% Isovitalex (Becton Dickinson, USA)) for 24h at 37°C under 

microaerophilic conditions and centrifuged at 3000 x g/ for 20min. The pellet was then 

resuspended in PBS 1X, and 0,1 mL were spread onto SBA plates (Fig. 1A). 

 

To analyze water effluent samples, the procedures was as follows: 1) 20 mL of swab  pre-

enriched Brucella broth was filtered through a membrane filter of 0,22 µm pore size and the 

membrane was transferred on to SBA plates; 2) 0,1 mL of the PBS suspension containing 

the concentrated pre-enriched broth were directly spread onto SBA plates and 3) 0,1 mL of 

the IMS concentrated suspension were spread on to SBA plates (Fig. 1B).  

 

In all the cases, agar plates were incubated under microaerophilic conditions for 10 days at 

37°C and examined for the presence of characteristic colonies. Presumptive H. pylori 

colonies were subculture on SBA plates and biochemical tests (catalase, urease and 

oxidase) and Gram-stained were performed. When plates contained high amounts of non-

H. pylori bacterial growth, they were also analysed by collecting the whole surface content 

and examined this using FISH and PCR analysis (Moreno and Ferrús, 2012). Positive results 

obtained by PCR were confirmed by sequencing the amplified fragment of the vacA gene 

as described below. 

 

2.5. Detection of Helicobacter pylori using qPCR analysis and DNA sequencing 

 

DNA was purified from a 1mL aliquot of each IMS concentrated sample using the DNeasy 

Blood & Tissue kit (Qiagen, USA), according to the manufacturer’s instructions. Specific H. 

pylori qPCR based on SYBR green I fluorescence was conducted using VacA primers to 

amplify a 372 bp fragment (Table 1) in a LightCycler® 2.0 Instrument (Roche Applied 

Science, Spain). 



 

The final reaction volume of 20 µl contained: 2 µl of Light-Cycler® FastStart DNA SYBR 

Green I (Roche Applied Science, Spain), 1.6 µl of MgCl2 (50 mM), 0.5 µl of each primer (20 

mM) and 2 µl of DNA template. The amplification consisted of an initial DNA denaturation 

step at 95 °C for 10 min, followed by 40 cycles of: 95 °C for 10 s, 62 °C for 5 s and 72 °C for 

16 s; and finally, one cycle at 72 °C for 15 s and one at 40 °C for 30 s (Santiago et al., 2015). 

Amplifications were conducted in duplicate.  

 

DNA from H. pylori strain NCTC 11637 was used as a positive control and qPCR mix without 

DNA served as negative control in all the qPCR analysis. Two samples of DNA isolated from 

both, influent and effluent sterilized water, were inoculated with NCTC 11637 H. pylori DNA 

in order to use as controls of the presence of qPCR inhibitors in each reaction running. 

 

The melting temperature (Tm) for the VacA primers was 85°C (Santiago et al., 2015). Thus, 

we considered potential positive samples as those with Tm values ranging between 85.5 

and 84.5. For quantification, a standard curve was performed as previously described by 

Santiago et al. (2015), taking into account that there is only one copy of the VacA gene in 

the genome of H. pylori (Foegeding et al., 2016). Briefly, ten-fold serial dilutions of the DNA 

from H. pylori NCTC 11637 were prepared from 106 down to 10 genomic units (GU)/µL. An 

aliquot of 2 L was used for each qPCR reaction, by using VacA primers. Triplicate analyses 

were run for each DNA dilution. After the assays, the limit of quantification was established 

in 10 log genomic units or cells of H. pylori/reaction (data not shown). 

 

Additionally, for confirmation of all the qPCR positive results, products were visualized in 2% 

agarose gel electrophoresis prepared with 0.01% GelRed (Biotium, USA). Moreover, the 

homology of the amplified sequences with the corresponding H. pylori vacA gene fragment 



was determined by sequencing, using the Sanger method (Macrogen, Korea). Sequences 

were compared to the sequences published in GenBank according to Altschul et al. (1997) 

using BLAST software alignment tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi).  

 

2.6. Detection of Helicobacter pylori by FISH 

 

For FISH analysis, H pylori presumptive colonies from mixed cultures in SBA were 

resuspended in 1 mL of PBS 1X and immediately fixed with three volumes of 4% 

paraformaldehyde for 2 hours at 4 °C. One mL aliquots of each influent and effluent water 

samples that were H. pylori positive by culture were also fixed. 

 

The fixed samples were centrifuged, washed with PBS buffer, and finally resuspended in 

1:1 PBS/ethanol (v/v) as previously described (Moreno et al., 2003a). Thereafter, slides 

were dehydrated by successive immersions in 50%, 80% and 100% ethanol for 3 min each. 

Then, each well was covered with 10 mL of hybridization buffer (0.9 M NaCl, 20 mM HCl-

Tris, 0.01% SDS and 30% formamide, pH 7.5) containing 50 ng of each probe. The reaction 

was carried out in the dark at 46 °C for 1.5 h. A combination of three EUB338 probes, 

complementary to a region of the Eubacteria domain 16S rRNA was used as a positive 

control (Amann et al., 1990; Moreno et al., 2003b). For H. pylori detection, a specific 16S 

rRNA LNA (Locked Nucleic Acid) probe designed by Moreno et al. (2003a) and synthesized 

by EXIQON (Exiqon A/S Vedvaek, Denmark) was used (Table 1). 

 

After hybridization, slides were washed in the dark at 48 °C for 15 min in 50 mL of wash 

solution (0.10 M NaCl, 0.02 M HCl-Tris, 0.01% SDS and 0.005 M EDTA). Finally, they were 

washed with distilled water and air-dried in the dark. Slides were mounted with FluoroGuard 

Antifade Reagent (Bio-Rad, Spain) between the coverslip and the slide and were visualized 

https://blast.ncbi.nlm.nih.gov/Blast.cgi


using an Olympus BX 50 fluorescence microscope with U-MWB, U-MWIB and U-MWIG 

filters. Images were taken using an Olympus DP-12 camera. A pure culture of fixed H. pylori 

NCTC 11637 cells was used as a positive control for the FISH process. 

 

3. Results 

 

3.1. Detection of Helicobacter pylori in influent and effluent water using culture 

 

Characteristic colonies were observed on SBA plates following direct samples, from 

enrichment samples and from the membrane filters. Nevertheless, in all cases, presumptive 

colonies were covered by a mass of other bacterial species (non-specific growth). Therefore, 

after performing Gram stain and biochemical test, the presence of H. pylori within the mixed 

culture was confirmed by amplification of vacA gen by qPCR and sequencing, as previously 

described. Sequencing confirmed the growth of H. pylori on the SBA plates (98–100% 

similar to H. pylori vacA gene sequence in GenBank) in 56 samples. 

 

Direct spreading of the centrifuged influent samples resulted in the detection of the highest 

percentage of H. pylori positive samples (14 samples, 9% of positive samples). Regarding 

effluent water samples, the culture strategy of membrane filtration after pre-enrichment of 

the sample (strategy 1) proved to be the best method (15 samples, 9.7%). (Table 2).  

 

In total, H. pylori was cultured in 26 of 155 (16.8%) of the influent water and 30 out of 155 

(19.4%) of the effluent water samples. 18.9% (10/53) of the effluent and 11.3% (6/53) of the 

influent samples from DWTP 1 were positive for H. pylori culture. In DWTP 2 H. pylori was 

cultured from 15.4% (8/52) of both types of water. In DWTP 3, 24% (12/50) of both, influent 

and effluent water samples were positive for H. pylori culture. (Table 3).  



 

1.2. Helicobacter pylori detection by qPCR analysis 

 

Among the 155 influent water samples analyzed, 35 samples (22.6%) were positive for H. 

pylori by qPCR (Table 3). For each sample, the amount of DNA or genomic units for vacA 

gene was calculated using H. pylori standard curve above described. The quantification of 

H. pylori cells was possible in 13 (8.4%) of the positive samples, with concentration between 

1.28x101 and 4.69x102 genomic units (GU). The remaining 22 positive samples were not 

quantified as the Ct values were above the reliability threshold (>35 cycles).  

 

Forty-two out of the 155 (27.1%) effluent water samples were positive for H. pylori (Table 3 

and 4). H. pylori could only be quantified in 20 (12.9%) of the positive samples, with 

concentration values ranging from 5.77 to 2.12x103 GU per sample. 

  

Results of the sequencing of all amplicons indicated that all of them were 98–100% similar 

to H. pylori vacA gene (GenBank accession numbers AF049653.1 – CP003904.1 

AJ438914.1 – U95971.1) (Complete results, see Supplementary materials). 

 

1.3. FISH analysis of water samples 

 

 Cultured H. pylori positive samples were analysed by FISH. Specific hybridization showed 

the presence of rod-shaped and coccoid forms of H. pylori cells in both, influent and effluent 

samples (Fig.2) (Complete results, see Supplementary materials). 

 

2. Discussion  

 



Over the past two decades many authors have suggested that water could be an important 

route of H. pylori transmission (Leja et al., 2016). However, demonstrating this issue is hard, 

as H. pylori is difficult to culture from aquatic environments. By PCR or qPCR H. pylori has 

been frequently detected in environmental samples such as river water (Flores-Encarnación 

et al., 2015; Fujimura et al., 2004; Moreno et al., 2003a), seawater (Cellini et al., 2004; 

Mazari-Hiriart et al., 2001), groundwater (Flanigan and Rodgers, 2003), sewage water and 

drinking water (Benson et al., 2004; Cunachi et al., 2015; Hulten et al., 1996; Moreno et al., 

2003a; Santiago et al., 2015). 

 

Cultural methods are extremely limited to recover H. pylori from water samples, mainly due 

to the absence of an optimal selective culture medium (Al-Sulami et al., 2012; Azevedo et 

al., 2004; Bahrami et al., 2013; Degnan et al., 2003; Lu et al., 2002). The fact that other 

bacteria present in the environmental samples are able to grow on the H. pylori selective 

media makes its isolation a mayor challenge. Given that in environmental samples H. pylori 

is commonly in the VBNC state, this makes its isolation even more difficult (Azevedo et al., 

2004; Fernández et al., 2007). 

 

In this study, several strategies of sample concentration and culture allowed us to recover 

H. pylori from influent and effluent water samples of three DWTP (Table 2). As we expected 

a very low concentration of H. pylori in the effluent samples, we used the Moore swabs 

method, and a pre-enrichment step to increase the effectiveness of detection. This method 

has proven to be useful for isolating Vibrio cholerae and enteric bacteria from low 

contaminated waters, such as Salmonella from surface (McEgan et al., 2012) and fountain 

water (Fernández-Escartin et al., 2002), E. coli O157 from soil and water (Ogden et al., 

2001) and V. cholerae from sewage (Barrett et al., 1980). Fernández et al. (2003) showed 

that samples recovered by “Moore swabs” yielded 24.3% of Campylobacter positive river 



samples compared to the 7.2 % of positive samples recovered by filtration. In this work, a 

greater number of positive samples were obtained from the effluent than from the influent, 

probably due to the use of this concentration method, the pre-enrichment of samples or both 

of them.  

 

According Enroth and Engstrand (1995), concentration by IMS was applied to PBS 

concentrates of both influent and effluent samples. This step allows, not only for recovering 

H. pylori based on its immunological properties, but also to eliminate contaminating 

substances that may interfere with detection tools. Nevertheless, this strategy was not as 

effective as expected, and it showed the lowest percentage of recovery of the 3 evaluated 

strategies. This fact could be due to the low concentration of H. pylori cells in the samples, 

as assessed by qPCR, and that probably they were in the VBNC form. Enroth and Engstrand 

(1995) reported a detection limit of 104 bacteria/mL in inoculated water samples when cells 

were recovered from old cultures. Nilsson et al. (1996) reported also a detection limit of 104 

cells/mL in inoculated faeces. Lu et al. (2002) obtained 23 H. pylori isolates from untreated 

municipal wastewater by using IMS, probably because a greater load of H. pylori in 

wastewater than in drinking water.  

 

When an enrichment step was applied to the influent samples analysis, the percentage of 

positive results was much lower than that obtained by direct spread. It could be due to the 

massive growth of competitive microbiota in the samples because of the lack of specificity 

of the enrichment broth (Fernández et al., 2007).  

 

In summary, the most effective method for the influent samples was spreading directly 0,1 

mL of the PBS suspension from the centrifuged samples. The most effective method for 



recovering H. pylori from the effluent water samples was the membrane filtration of the pre-

enriched sample.  

 

Culturable H. pylori cells were detected in 26 out of 155 (16.8%) influent samples and in 30 

out of 155 (19.4%) effluent water samples (Table 3). Due to the different methods used to 

detect H. pylori, results about prevalence of H. pylori in both types of samples cannot be 

compared. Moreover, the fact that we just focused on three distribution plants from a 

restricted geographical area is limiting the comparability of the presented work to broader 

international context. Other studies have shown that H. pylori is rarely isolated by culture 

from environmental water samples. For example, Al Sulami et al. (2012) reported the 

isolation of H. pylori only in 2% of 198 drinking waters. Fernandez et al. (2007) detected 3 

positive mixed cultures from seawater samples, confirming the identification of the bacteria 

by specific PCR, although H. pylori isolation was unsuccessful.  

 

In this work, water samples positive for H. pylori yielded also positive results by qPCR and 

FISH. To detect small concentrations of a pathogen, usually it is necessary to concentrate 

large volumes of water, which can lead to the simultaneous concentration of qPCR inhibitors 

(Moreno et al., 2003b). However, the controls of inhibition included in our analysis indicated 

that samples seem not to contain inhibitor substances that interfered with the qPCR reaction. 

By qPCR, 35 out of 155 influent water samples (22.6%) and 42 out of 155 effluent water 

samples (27.1%) were positive (Table 3). Concentration of H. pylori cells could only be 

quantified in 13 (8.4%) influent samples, with concentrations between 1.28x101 and 

4.69x102 genomic units (GU)/reaction, what means levels from 102 to 103 H. pylori cells/mL 

in these water samples. For effluent samples, although we were able to quantify the amount 

of cells in 20 (12.9%) samples, these results do not represent the actual level of 

contamination of the waters, as the sampling method included a pre-enrichment step.  



 

Although qPCR technique has been used previously to detect H. pylori in drinking water in 

the United States (McDaniels et al., 2005) and in drinking water or reclaimed wastewater in 

Spain, Costa Rica and Japan (Horluchi et al., 2001; Montero-Campos et al., 2015; Santiago 

et al., 2015; Yáñez et al., 2009), to our knowledge, no study has successfully reported the 

detection of H. pylori by qPCR in both influent and effluent water of different DWTP. Our 

results show that qPCR is more sensitive than culture to determine the presence of H. pylori 

in water samples This finding may be related to the fact that qPCR does not differentiate 

between viable, viable but non-culturable (VBNC) and non-viable cells. 

 

It is suggested that H. pylori persists in the environment in a viable but nonculturable coccoid 

form (Nayak and Rose, 2007; Saito et al., 2003). However, the infectious capability of H. 

pylori under environmental conditions is controversial. Wang et al. (2004) showed that the 

VacA gene sequence and expression in the coccoid forms coincides with that of H. pylori 

helical forms. Saito et al. (2003) reported that the coccoid forms of H. pylori are not passive 

cells since they were able to infect actively the gastric epithelial cells of man, showing that 

these non culturable cells are infective forms.  

 

Some authors have detected the presence of H. pylori DNA only, but not cultivable cells, in 

drinking water (Khan et al., 2012; Watson et al., 2004). Santiago et al. (2015) used specific 

techniques as PMA-qPCR and DVC-FISH, for detecting H. pylori viable cells in drinking 

water samples. Their results showed the presence of viable H. pylori cells, which could not 

be detected by culture, in 25% of samples. They also were able to culture H. pylori from one 

sample, confirming that cultivable H. pylori can be present in drinking water distribution 

systems. 

 



In this study, the FISH technique was used for definitive identification of presumptive 

colonies in mixed cultures. It was also applied to culture-positive samples, in order to 

observe the morphology of H. pylori cells present in the samples. Apart from the current 

study, few groups were capable of detecting H. pylori in non-inoculated water samples using 

FISH technology (Braganca et al., 2007; Moreno et al., 2003a; Piqueres et al., 2006). The 

detection of H. pylori by FISH can enable rapid analyses of water and sewage, thus 

improving its safety and quality, and contributing to elucidate the role of fecal contaminated 

water in the transmission of H. pylori infection (Moreno et al., 2003a). 

 

Our work not only demonstrates the presence of H. pylori in drinking water in a viable, 

culturable stage, but also shows that water treatment in DWTP is not totally effective to 

eliminate H. pylori. Information on the chlorination agent and its concentration in the 

treatment process as well as before discharge into the distribution system, or on the 

processing time in each facility was not provided to us. Despite this limitations of the study, 

our results show that H. pylori is present in a high percentage of effluent water samples even 

after chlorination. Previous studies have reported that H. pylori loses its cultivability in 

contact with chlorine for short periods of time (1–5 min), although it remains potentially 

pathogenic in the VBNC state (Moreno et al., 2007). Our findings are in accordance with a 

number of other studies reporting that H. pylori can survive disinfection practices commonly 

used in drinking water plants (Johnson et al., 1997; Santiago et al., 2015). 

 

3. Conclusions 

 

Currently, there are no reports of studies evaluating the presence and survival of H. pylori 

in DWTP after disinfection treatment of water. Our study is the first to show the presence of 

cultivable H. pylori cells in DWTP from Bogotá, Colombia. 



 

Both, FISH and qPCR methods are rapid and specific techniques to identify this pathogen 

in raw and drinking water samples. The combination of a culture procedure with a molecular 

method, such as qPCR and/or FISH, is a very specific tool for the detection, identification, 

and direct visualization of cultivable H. pylori cells from complex mixed communities such 

as water samples from DWTP. 

 

Our findings demonstrate that cultivable H. pylori cells are present in influent and effluent 

water samples from DWTP and contribute to elucidate the role of drinking water in 

transmission of H. pylori. 
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Table 1 

Sequences of probes and primers used for FISH analysis.  

Probes/ 
Primers 

Sequence Target Reference 

LNA-HPY 5´-CTG GAG AGA C + TA AGC CC + T CC-3´ 16S rRNA of H. pylori  
Moreno et al., 
20003b 

EUB338-I 5´-GCTGCCTCCCGTAGGAGT-3´ 
16S rRNA of 
Eubacteria domain  

Amann et al., 1990 

EUB338-II 5´-GCTGCCTCCCGTAGGAGT-3´ 
16S rRNA of 
Eubacteria domain 

Amann et al., 1990 

EUB338-
III 

5´-GCT GCC ACC CGT AGG TGT- 3´ 
16S rRNA of 
Eubacteria domain 

Amann et al., 1990 

VacA 
VacF: 5´-GGC ACA CTG GAT TTG TGG CA- 3´  
vacR: 5´-CGC TCG CTT GAT TGG ACA GA- 3´ 

372 bp fragment of 
VacA gene 

Nilsson et al., 2002 

 

 

  



Table 2 

Summary of positive H. pylori results in influent and effluent samples of the DWTP by culture 

strategies. 

 

2a: Results in influent samples  

Strategy Positive samples % (n) 

1. Direct culture after 
centrifugation 

9% (14/155) 

2. IMS 
5.2% (8/155) 

3. IMS + enrichment 
3.9% (6/155) 

                             n (n positive samples /n total samples) 

 

2b: Results in effluent samples*.  

 

 

 Strategy Positive samples % (n) 

1. Membrane filtration 
9.7% (15/155) 

2. Direct culture after 
centrifugation 

7.5% (10/155) 

3. IMS 
7.1% (11/155) 

     n (n positive samples /n total samples)  

 

  *For all methods, samples were submitted to a previous concentration and pre-enrichment steps. 

 

  

 

  



Table 3 

Summary of positive H. pylori results in influent and effluent samples by culture and qPCR. 

 

Type of water Positive H. pylori 

cultivation  % (n) 

Positive H. pylori 

qPCR % (n) 

Positive H. pylori 

qPCR quantification 

% (n) 

Influent water 16.8 (26/155) 22.6 (35/155) 8.4 (13/155) 

Effluent water 19.4 (30/155) 27.1 (42/155) 12.9 (20/155) 

TOTAL 18.1 (56/310) 24.8 (77/310)  10.6 (33/310) 

 

n (n positive samples /n total samples)  

 

  



Fig. 1.   

Workflow of detection of H. pylori using culture methods. A. Workflow from influent samples. 

B. Workflow from effluent samples.  

 

 

 

 

  



Fig. 2.  

Detection of H. pylori by FISH in an influent water sample (1000X). 4A. H. pylori hybridized 

with specific H. pylori LNA/rRNA probe. 4B. The same sample hybridized with EUB 338 mix 

of probes 
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