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On the maximum rank of totally nonnegative

matrices
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Valéncia, Spain.

Abstract

Let A € R™*™ be a totally nonnegative matrix with principal rank p, that is, eve-
ry minor of A is nonnegative and p is the size of the largest invertible principal
submatrix of A. We introduce the sequence of the first p-indices of A as the first
initial row and column indices of a p X p invertible principal submatrix of A with
rank p. Then, we study the linear dependence relations between the rows and
columns indexed by the sequence of the first p-indices of A and the remaining of
its rows and columns. These relations, together with the irreducibility proper-
ty of some submatrices of A, allow us to present an algorithm that calculates
the maximum rank of A as a function of the distribution of the first p-indices.
Finally, we present a method to construct n x n totally nonnegative matrices
with given rank r, principal rank p and a specific sequence of the first p-indices.

Keywords: Totally nonnegative matrix, irreducible matrix, maximum rank,
principal rank.
AMS classification: 15A03, 15A15, 65F40

1. Introduction

A matrix A € R"*" is called totally nonnegative if all its minors are nonne-
gative and it is abbreviated as TN, see for instance [1]-[5]. The TN matrices
have been studied by several authors due to its wide variety of applications in
algebra, geometry, differential equations, economics, and others fields.

In general, given a matrix A the principal rank of A, denoted by p-rank(A),
is the size of the largest invertible principal submatrix of A. In the class of
TN matrices the principal rank provides important information about some
properties of these matrices. For example, it is known that the principal rank of
a TN matrix A is the number of positive eigenvalues and n — p is the algebraic
multiplicity of its zero eigenvalue.
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Recall that a matrix A is an irreducible matrix if there is no permutation
matrix P such that B C
T
parn[2 €],
where O is an (n —r) X r zero matrix (1 <r <n—1). If A is an irreducible TN
matrix from now one we abbreviate it by Ir'TN matrix following the notation of
[5], where one topic of interest for the authors is characterizing all the triples
(n,rank(A), p-rank(A)), where n is the size of matrix A. We recall that a triple
(n,r,p) is realizable if there exists an Ir'TN matrix A € R"*™ with rank(A) = r
and p-rank(A) = p.
For irreducible matrices Fallat, Gekhtman and Johnson [3] prove the follow-
ing characterization.

Lemma 1 (Lemma 2.2 of [3]). Let A = [a;;] € R"™" be a TN matriz. Then
A is irreducible if and only if a;; > 0 for all i, j such that |i — j| < 1.

It is known that there exists a relation between the order n of an IrTN
matrix, its rank r and its principal rank p. By [4, Theorem 11] we have

Lemma 2. Let A = [a;;] € R™*" be an IrTN matriz with p-rank(A) = p and
rank(A) =r. Then

pgrgn—[n_p—‘. (1)
p

The concept of principal rank is useful in studying the dependence relations
between rows and columns of an Ir'TN matrix. In this case, it is interesting to
obtain the first principal submatrix A of A such that rank(A) = p-rank(A4) = p.
The following definitions introduce the sequence of the first p-indices of linearly
independent rows and columns of A.

Definition 1. Let A € R™™™ be a matriz with p-rank(4A) = p. We say that
the sequence of integers a = {i1,i2,...,ip} € Qpn is the sequence of the first
p-indices of A if for j =2,...,p we have

det(A[il, ig, N ,ij_l, 27]) 7’5 0,
det(A[il,ig, .. .,’ij_l,t]) = O, ij—l <t< ’LJ

We follow the notation of [1], that is, for p € {1,2,...,n}, Q, » denotes the
totality of strictly increasing sequences of p integers chosen from {1,2,...,n},
if Ais an m x n matrix, « € Qg m, 8 € Qi then A[e|S] is by definition the
k x | submatrix of A lying in the rows numbered by « and columns numbered
by 5. Besides Ala] := Alala].

Note that if A is TN matrix without null rows or columns, then i; = 1.
Taking into account this sequence, in Section 2 we study some linear dependence
relations between rows or columns of a TN matrix A. From these relations we
will transform A by similarity into an upper block matrix B. This matrix is
not Ir'TN but allows us to study properties about the rank of some powers



of A and we prove that the maximum rank of A associated with a realizable
triple (n,r,p) can be strictly less than the upper bound of (1). In Section 3 an
algorithm computes the maximum rank that A can reach when the sequence of
its first p-indices is known. This fact leads us to give the following new definition
of realizable triple, which generalizes the concept of triple realizable given by
Fallat and Johnson in [5].

Definition 2. A triple (n,r,p) is called (1,12, ...,1%,)-realizable if there exists
an IrTN matriz A € R™*™ with rank(A) = r, p-rank(A) = p, and {1,i2,...,4,}
18 the sequence of the first p-indices of A.

If a matrix A satisfies the conditions of Definition 2, then we say that A is
a matrix associated with the triple (n,r,p) (1,42,...,1i,)-realizable.

In Section 4 we present a procedure to construct an IrTN matrix associated
with a triple (n,7,p) (1,12, ... ,4,)-realizable. That procedure allows us to obtain
an I'TN matrix associated with a triple (n,r,p) realizable.

2. Linear dependence relations between columns or rows of TN ma-
trices

In this section we study some linear dependence relations between columns
or rows of a TN matrix A € R"*™ with p-rank(A) = p. For these dependency
relations we only need the irreducibility of one of the principal submatrices
of A instead of the irreducibility of A. Applying the obtained results we can
transform A by similarity into a block upper triangular matrix B, which is
not a TN matrix but it allows us to prove easily the result given by Fallat
and Gekhtman in [4, Theorem 10|, that they prove by using a combinatorial
approach based on the study of weighted planar diagrams associated with TIN
matrices.

Proposition 1. Let A € R™™™ be a TN matriz with p-rank(A) = p and let
{1,2,...,p} be the sequence of the first p-indices of A. If the principal submatriz
Alp,p+1,...,n] is irreducible, then rank(A) = p.

Proof. If rows p+1,p+ 2,...,n are linear combination of the first p rows
of A, then rank(A) = p. In other case, there exists at least one row from p + 1
to n that is not a linear combination of the first p rows. Suppose that the first
row linear independent is the (k + 1)-th row, with ¥ +1 > p + 1. Applying p
steps of the Neville elimination method we obtain A = L,U,, where U, is the
following TN matrix



[ w1 wie - Uip U1,p+1 e U1,k UL, k+1 o Uln i
0wz -+ wzy o U2pr1 v U2k Ug pt1  *0 Uzp
0 0 - Upp  Uppyr - Up, k Up,k+1 T Upn
0 0 0 0 0 0 0
_ 0 0 0 0 0 0 0
Up
0 0o .- 0 0 .. 0 0 ... 0
0 0 - 0 Upgipt1 ' Uk4lk Ukl Ccc Ukn
L 0 0 te 0 Un,p+1 ce Un,k Un,k+1 v Upn |

with u; > 0, for i = 1,2,...,p, because {1,2,...,p} is the sequence of the first
p-indices of A. We know that gy 1 = 0. In the other case

det(A[1,2,3, ..., p k +1]) =

= Z'Yegp+1,7t det(Ly[1,2,3,...,p, k+ 1|7]) det(Up[v]1,2,3,...,p, k + 1])
=det(Lp[1,2,...,p, k + 1]) det(U,[1,2,...,p,k +1])

= U11U22 * - UppUk+1,k+1 7 0,

which contradicts that p-rank(A) = p.

Since Alp,p+1,...,n] is irreducible then ay x+1 # 0. To obtain matrix U,
by applying p steps of the Neville elimination method, it is necessary that there
exists, at least, an entry a; r4+1 # 0, with j = 1,2,...,p. This implies that there
exists, at least, an entry u, ;41 # 0, with 1 < r < p. Since U, es TN we have
that up k41 7 0 and therefore up41,y =0, for g=p+1L,p+2,... k.

Now, if there exists j, K+ 1 < j < n, such that ug41,; > 0, since p-
rank(A) = p we have that

det(A[1,2,3,...,p,7]) =
= 2769p+1,n det(L,[1,2,3,...,p,j|7]) det(Up[v1,2,3,...,p,j])
=det(L,[1,2,...,p,7]1,2,...,p, k +1])det(U,[1,2,...,p,k + 1]1,2,...,p,5])
+ ZyeQp+1,n~{1,2,...,p,k+1} det(Lp[1,2,3,...,p,j|7]) det(Uyp[v[1,2,3,...,p, j])
=l kr1Ur1U22 - UppUky1,; + 5 =0,

which implies that S = 0 and [; ;1 = 0. Using that L, is TN, we have that

lig =0, fori=35,7+1,...,n,t=1,2,...k + 1. Furthermore, since U, is TN
we obtain that upg =0, for h=k+1,k+2,...,n,9g=p+1,p+2,...,5 - L



Hence,

aji—1 = l(‘j)'U,j,1 = [0 0...0 lj,k+2 . lj,jfl 10 ... 0] Uj—Lk+1 =0,

which contradicts that A[p,p+1,...,n] is irreducible. Therefore, the (k+ 1)-th
row is a linear combination of the first p rows of A. Using a similar argument
we obtain that rows k + 2,k + 3,...,n will be linear combination of the first p
rows of A. Then rank(A) = p. O

Remark 1. 1. In Proposition 1, A does not need to be irreducible, but the
principal submatriz Alp, p+1, ..., n] must be irreducible as we can see with
the following TN matrix

100 00
01 0 00
A=|10 0 0 1 0
0 0 0 01
00 0 0O

with rank(A) = 4, p-rank(A) = 2 and {1,2} as the sequence of the first

2-indices of A. If the principal submatriz A[2,3,4, 5] were irreducible then

by Proposition 1 we would obtain that rank(A) = 2 and this is not true.
2. By Proposition 1, we can describe an easy method to obtain an IrTN

matric A € R™ " with rank(A) = p-rank(A) = p, for all p with p =

1,2,...,n.

(a) First, we construct an IrTN matriz A, € RP*P with rank(A) = p.

For instance, let

1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
Ay = )
1 2 3 -+ p—1 p—1
123 - p-1 P

or A, can be the Vandermonde matriz corresponding to the first p
positive integers.



(b) Now, A € R"™ ™ is obtained as follows

Ap [ AGp) App) - Ay(p)
Ap(p,t) | Ap(p,p)  Ap(p,p) -+ Ap(p.p)
A= | A/:) | Ap(pp) Ap(p,p) Ap(p,p) | |
Ap(p.) | Ap(p,p) Ap(pip) -+ Ap(p,p)
where Ay (:,p) denotes the last column of A, and A,(p,:) denotes its
last Tow.

In general, the principal rank of A is not obtained with its first p rows and
columns, that is, {1,2,...,p} is not always the sequence of the first p-indices
of A. Nevertheless, we can also obtain conditions of linear dependence between
certain rows or columns of A as the following result proves.

Proposition 2. Let A € R™*"™ be a TN matriz and let {1,2,...,q,q+1t} be the
sequence of the first g+ 1-indices of A, 1 < qg<n—1and 1 < t. If the submatriz
Alg, q+1,...,n] is irreducible, then each row (or column) g+1,q+2,...,q+t—1
is a linear combination of the first ¢ rows (or columns) of A.

Proof. Since the principal submatrix A = A[1,2,...,¢,q+1,...,q+t—1],
whose principal rank is g, satisfies Proposition 1 we have that each row and
column indexed by ¢+ 1,g4+2,...,g+t—1 is a linear combination of its first ¢
rows and columns, respectively. As a consequence, applying ¢ iterations of the
Neville elimination process to matrix A we obtain A = L,U,, where Uy is the
following TN matrix

[ w11 w2 o0 Ug | Ulgr1 c Ulgte—1 Ul,q+t Uln
0 uge - Ugg | Uzgb1 Uil U2,q+t e (5
0 0 - Ugg| Uggt1 - Ug,q+t—1 Ug,q+t t Ugn

. 0 ) 0 0 Ugtigit - Ugiim
q - . .

0 0o .- 0 0 0 Ugpt—tqget - Ugri—im
0 0 - 0 | ugttgrr = Ugrtgrt—1 | Ugrtgrt 0 Ugrtn

L 0 0 tee 0 Un,q—i—l e un,q+t—1 un,q—i—t tee Unn a

Since det(A[L,2,...,q,q+1]) > 0, then det(U,[1,2,...,q,¢+1t]) > 0. There-
fore, there exits an index j, ¢ +1 < j < ¢+t such that u; 44 7# 0.

If j < g+t, since U, is a TN matrix, then usy, = 0, for s = g+t,q¢+t+1,...,n
and h=q+1,q+2,...,q+t—1. Thus, columns g+ 1,¢+2,...,q+t—1 are
linear combination of the first ¢ columns of A.



Otherwise, if j = g + ¢, since U, is TN, then upy = 0, for h = g+ 1,9 +
2,...,g+t—1land h = g+t+1,gq+t+2,...,n. In this case, each row
q+1,q+2,...,qg+t—1is a linear combination of the first ¢ rows. O

Remark 2. Note that in Proposition 2 we would need that A to be IrTN only
when iy =1 and is > 2, i.e., when det(A[1,2]) = 0.

The following example shows the linear dependence structure of rows and
columns of an IrTN matrix A with a given principal rank applying Propositions
1 and 2.

Example 1. Let A € R1*! be the following ['TN matrix with p-rank(A) =3
and {i; =1, io =5, i3 = 8} be the sequence of the first 3-indices of A,

all a12 a13 a14 ais a16 ayr aig a19 a1,10 a1,11
a21 a22 a23 24 a25 a26 az7 a28 a29 a2.10 a211
asi a32 as33 a34 ass a3e aszr assg asg asio @311
a41 42 43 Q44 Q45 Q46 Qy47 Q48 49 a4,10 G411
as] as52 as53 G54 ass as6 as7 asg as9 as,10 as5.11
A= ae1 a62 ae3 ag4 aes a66 ag7 aes ae9 ae,10  G6,11
ary ar2 ar3 Q74 ars are arr ars arg ario G711
agi ag2 ag3 ag4 ags age agy asgs agg ag 10 ag 11
agl a9z ag3 a94 ags a9e agr agg agg ag,10 G911
ajp,1 @10,2 @a10,3 @104 @10,5 @106 ai0,7 @108 @10,9 a10,10 @10,11
L ¢11,1 QG112 411,33 G114 Q115 Q116 4A11,7 A11,8 4119 aii,io 11,11

We study the linear dependence with respect to rows and columns 1, 5 and 8.

e First, consider the TN submatrix A3 = A[1,5,8,9,10,11]. Note that, p-
rank(As) = 3 and {1,2,3} is the sequence of the first 3-indices of Az. Since

As[3,4,5,6) = A[8,9,10, 11] is irreducible, by Proposition 1 we have that rank(As) =

3 and rows and columns 4, 5 and 6 are linear combination of the first 3 rows and
columns of As. We represent this fact in the following form

al ais aig a19 a1,10  a1,11
as] ass asg Q59 5,10 5,11
As = A[1,5,8,9, 10, 11] _ agl ags asgs agg ag,10 ag 11
agi ag 5 a9 agg a9, 10 ag 11
@10,1 Qaio,5 10,8 a10,9 10,10 @10,11
a1l Ay @118 Ari9  aiiio0 A11,11

where the green color indicates the linear dependence with respect to the first
3 rows and columns of As.

e Second, consider the TN matrix Ay = A[l,5,6,7,8,9,10,11]. Note that
{1,2,5} is the sequence of the first 3-indices of A5 and the submatrix As[2,3, ..., §]
A[5,6,...,11] is irreducible, therefore A, satisfies Proposition 2.

Then, we have two possibilities:



1. Rows 3 and 4 are linear combination of the first 2 rows of Ay. That is,

As

s

2. Columns

A[1,5,6,7,8,9,10,11]

this case

As,

A[1,5,6,7,8,9,10,11]

3 and 4 are linear combination of the first 2 columns

ail ais a16 a7 aig a19 ai,10 a1,11
as] ass a56 as7 asg a59 as5,10 5,11
ae1 aes aee aeg7 aegs ag9 as,10 06,11
ari ars are arr ars arg ario a7l
agi ags ase asr ags asyg ag 10 as 11
ag1 ags age agr agg ag9 ag,10 9,11
aip,1 @10,5 | @10,6 @a10,7 | @10,8 | @10,9 @10,10 @10,11
L d11,1 Q11,5 | A11,6 Q11,7 | @11,8 | @11,9 @A11,10 Q11,11

of Ag.

an als ai16 ai7 aig a19 ai1,10  A1,11
as] ass a56 as7 asg a59 5,10 as5,11
ae1 65 466 ag7 ags a9 6,10 46,11
a7l a7y Q76 Q77 a7 Q79 a7.10 ar11
agy ags age agr agg agg ag, 10 ag 11
ag1 ags ag9e agr agg ag9 ag 10 ag 11
aio,1 Q10,5 | @10,6 Q10,7 | @410,8 | @10,9 A10,10 @10,11
L @11,1 4115 | G116 A11,7 | 11,8 | A11,9 @11,10 QA11,11

In

The green color indicates the linear dependence with respect to the previous

rows or columns, and the red color entries represent independent variables.

e Finally, the submatrix A1 = A is I'TN and satisfies Proposition 2 because
det(A1[1]) > 0, det(A1[1,5]) = 0, for j = 2,3,4, and det(A;1[1,5]) > 0, then
rows or columns 2,3 and 4 are linear combination of the first 2 rows or columns
of Ay, respectively. Therefore, depending on whether the rows or columns are
linearly dependent and if we start with the matrix Ao or A, , we have the
following four matrices:

(1) Ay, =
[ an @12 @13 Q14 als 16 Q17 ajg @19 1,10 ai il
a21 a22 a23 a24 a25 26 a27 A28 a29 a210 a2 11
asi a32 a33 a34 ass ase asr asg asg as; 10 as ;i1
(2251 Q42 @43 Q44 Q45 Q46 Qa7 Q48 Q49 Q4,10 a4,11
as1 a52 as3 54 ass ase asy asg asg as,10 G511
aesi ae2 ae3 (07571 (07315 66 g7 a8 a9 6,10 ae,11
ar7q a72 ars a74 ars aze a7y arg arg ari1o G711
agi asg2 ass ag4 asgs ase asr asgs asg ag,10  asg11
ag1 a92 ags ag4 ags age agr agg agg ag,10  a9,11
aio,1 | @10,2 @10,3 @a10,4 | @10,5 | @10,6 @10,7 | @10,8 | @10,9 @10,10 A10,11
L d11,1 | G11,2 @11,3 Q11,4 | A11,5 | G11,6  A11,7 | @11,8 | @11,9 @11,10 @11,11




[ an a12 a13 14 ajs a16 air arg a19 1,10 1,11
a21 a22 a23 24 azs 26 a7 a28 a29 a210 a211
asy a32 as33 34 ass ase asy ass asg as, 1o @311
41 42 43 44 45 a46 Q47 A48 a49 4,10 411
as] as52 as3 54 ass as56 as7 asg a59 5,10 as.11
a1 a2 ag3 ae4 aes a66 ae7 ag8 a9 6,10 6,11
a1 a2 ars a4 ars a76 ar7 arg a9 a7.10 a7.11
agi ag2 ag3 ag4 ags age agy ags agy ag 10 ag 11
agi ag2 ags ag4 95 96 ag7 @98 @99 9,10 ag 11
aio,1 | @10,2 @10,3 @104 | @10,5 | @10,6 @10,7 | @10,8 | @10,9 @10,10 @10,11

L d11,1 | 11,2 @11,3 Q11,4 | 4115 | G11,6  QA11,7 | @11,8 | @11,9 Q11,10 a11,11

(3) A, =

[ ap a12 a13 a14 ais a16 aiy aig a9 a1,10 a1.11
azi a2 a3 a4 a25 a26 a27 @28 @29 @210 az 11
asy a32 as33 aszq ass ase asy ass asg as.io @311
41 42 43 44 a45 a46 Q47 a48 a49 a4.10 411
as1 as52 a53 a54 ass as56 as7 asg a59 5,10 5,11
aeg1 62 ag3 g4 aes aes6 aet ags aeg9 ae,10  Gg,11
a7l a2 ars a4 ars a76 ar7 ars a9 a7.10 a7.11
asi ag2 ag3 agq ags age agy ags agy ag 10 ag 11
agi ag2 ags ag4 95 @96 ag7 @98 @99 9,10 ag 11
aio,1 | @10,2 @10,3 @104 | @10,5 | @10,6 @10,7 | @10,8 | 10,9 G10,10 @10,11
ai1,1 | A411,2  @11,3 4114 | G115 | A11,6  @11,7 | @11,8 | @11,9 A11,10 Q11,11

(4) Ay,
ajj ai2 a3 ai4 ais a16 a17 aig a19 1,10 ai,11
a2 22 23 24 25 a26 g7 @28 a29 az10 G211
asy a32 a33 34 aszs ase asy a3s asg as.1o @311
41 42 43 (44 a45 a46 Q47 A48 a49 a4.10 411
as1 as2 as3 as4 ass a56 as7 asg a59 5,10 as 11
ag1 a62 ag3 64 aes ae6 aer ags aeg9 ae,10 0,11
a7 a72 ars 74 ars are ary ars arg ario  Gr11
agi ag2 ag3 ag4 ags age agr ags agy ag 10 ag 11
agi ag2 ags3 ag4 95 @96 ag7 @98 @99 9,10 ag 11
aio,1 | @10,2 @10,3 Qai04 | 10,5 | @10,6 @10,7 | @10,8 | @10,9 @10,10 @10,11
| 11,1 | @112 @G11,3 Q11,4 | G115 | A11,6 Q11,7 | @11,8 | @11,9 11,10 Q11,11

These are all different possibilities with respect to the linear dependence
structures of rows and columns of A. Since the red color entries represent
independent variables and p-rank(A) = 3, we have that 3 < rank(A4) < 8

depending on the values that we assignee to these variables.

Using the permutation matrix P = [1,5,8,2,3,4,6,7,9,10, 11] and different
similarity transformations 7., Ty, T¢r and Ti., matrices Aq_, A;
A;,. can be transformed, respectively, into the matrices

Alcr and




Bn| O O O
_ o7 | O] O O O [Bun O]
Br’r - PTT"I“AlrrTT‘T‘ Pt = 0] B32 0 0 - 0 B2 7
i [0) By, By O J
— Bll o) ) 0] 1
_ 1pr_ | O |O Bas Bay | _ | Bu O
B,. = PTrcAlrcT’r‘C P = o lo o) 0) B | O By |’
| O |O By O
[(Bu| O O O ]
_ —1pT _ 0 O 0O O [ B O
Bcr - PTCTAlchCT P - O B32 O B34 a o O B2 ’
| O | B O O
[ B |O O O ]
_ ipr_ | OO By By | _ [ Bu O]
Bcc — PTCCAlccTCC P - O O O 334 a L O B2 -
o |lo o o |

In all cases, these matrices are partitioned into blocks in the following form
p+(ig —ip — 1) + (i3 — iz — 1) + (n — i3),

where By; denotes an invertible matrix in the four cases, and By represents a
nilpotent matrix with index of nilpotency less than or equal to p = 3, depending
on the submatrices of Bs.

Note that, each matrix B,.., B,. and B, can be transformed by transposition
or permutation similarity into a matrix of type B...

BL|O O O P

gr_| 010 By B | i2—i—1

r 0|0 O BL| izg—ix—1
o |0 O O n — 13
311‘0 O O p

B~ @) O 324 B23 7:272.171

re O |O O By n—iz '
o |0 O O i3 —ig — 1
Bu|O O 0 P

B | O]0 Bi B | iz—iz—1

er O O 0 B34 TL*Z.3
o]0 O O ig —ip — 1

Since A is similar to one of them, the index of nilpotency implies that
rank(A?) = p. This result is given in the following Theorem and it was proved
in [4, Theorem 10] by Fallat and Gekhtman using weighted planar diagrams
associated with TN matrices.
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Theorem 1. Let A € R™*" be an IrTN matriz with p-rank(4) =p, 1 <p < n.
Then rank(AP) = p-rank(A) = p.

Proof.  Let {1,i2,i3,...,ip} be the sequence of the first p-indices of A.
By Propositions 1 and 2, under similarity transformation 7', the permutation
similarity P = [1, 42, 93, ..., 9p, 2, ... 02 — L, da + 1,...,4p, — 1,4, + 1,...,n]
and after transposition or permutation similarity, A can be transformed into
the matrix

Bi1]0O0 O o - 0]
O |O B3 By -+ Boyppr
B { By, O ] B O |0 O By -+ Bspp
L O By | S B : :
0lo 0o 0 - Bya
L olo o o o |

where By; € RP*P is invertible and Bs is nilpotent with index of nilpotency less
than or equal to p. The block partition of Bs in rows and columns is given by
a permutation of indices i3 —4; — 1, i3 —ip — 1, ..., i, —ip—1 — 1 and n — 4.

Since A is similar to B, we have that rank(A?) = rank(BP) = p. O

3. Maximum rank

In this section we recall equation (1) of Lemma 2,

p<r<n-— {n_pw,
D

with n, r and p are the entries of a realizable triple (n,r, p).

Now we consider a triple (n,r,p) (1,42,...,i,)—realizable. It is clear that
the lower bound of (1), p < r, holds but what happen with the upper bound?
Next example shows that the upper bound of (1) is not always reachable, that
is, given a sequence of the first p-indices (1,49,...,4p), it is possible that the

triple <n,n — Flp—‘ ,p) is not (1,1g,...,1%,)-realizable.
p
Example 2. Consider the Ir'TN matrix A,

ajl ai2 a3 aiq ais aie air aig aig 1,10 aiil
a21 a22 a23 24 a2s5 a26 az7 a28 a29 210 @211
asy as2 ass as4 ass ase asr ass asg 3,10 as 11
Q41 42 43 (44 45 Q46 [£2%4 48 Q49 4,10 G411
as1 as52 as53 a54 as55 a56 as7 as58 as59 as5,10 as5.11
A= ae1 a62 ae3 a64 ags ae6 ag7 ags aeg9 ae,10 06,11
a7y ar2 ars 74 ars are arr ars arg ario G711
asi asg2 ass ag4 ass ase asgr ass asg as,10  asg,11
agl a92 ag3 a94 a9s5 a96 ag7 a98 a9,10 9,11
aijp,1 @10,2 @10,3 @G10,4 aio,5 @106 @a10,7 aio0,8 a10,9 a10,10 @10,11
L 11,1 @112 @11,3 Q11,4 A11,5 A6 A11,7 Aa11,8  Ail9  Aaii0 Ari,a1
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with p-rank(4) = 3 and {i; = 1, i = 3, i3 = 9} as the sequence of the first
3-indices of A.

By Propositions 1 and 2, and using similarity transformation we transform
A into the following block matrix

BH‘O O O
O | O B3 By :[Bn 0}

B=1 0olo 0 By 0 B,

OO0 O O

where Bi; € R3*3 is invertible and its entries are known, and By € R8*® is
nilpotent with index of nilpotency less than or equal to 3 and partitioned into
blocks in the three following possible forms.

O B3 By 1 O By3 By 1 O B3 Bo 2
O O Bsy 5 O O B 2 O O By 5
O O 0] 2 O O 0] 5 O O O 1

Since the entries of blocks Bss, Bss and Bsz4 are variables to be determined
depending on the rank that we want to obtain, it is not difficult to see, in all
cases, that the maximum rank that B can reach is 6. Since rank(A) = rank(B)
we have that 3 < rank(A) < 6, that is, the maximum rank of A is strictly
less than 8, which is the upper bound of (1). Then, the triple (11,8,3) is not
(1,3,9)-realizable.

However in Example 1, where A is an I'TN matrix with p-rank(A4) = 3 and
{iy =1, ix = 5, i3 = 8} is the sequence of the first 3-indices of A, the maximum
rank of A reaches the upper bound of (1).

These two examples show that the maximum rank of an IrTN matrix with
p-rank(A) = p depend on the sequence of the first p-indices of A. In this section
we present an algorithm that calculates the maximum rank of IrTN matrix A,
represented by 7,42, as a function of the sequence of its first p-indices. This
algorithm is based in the following procedure.

Procedure 1. This process obtains the maximum rank, denoted by rmax, of a
block matrix B given as follows,

Bi1 | O O o --- 0 o ny

O |O Bys By -+ By Byt Ny

B { By O } | O |0 O By - By Bspn n3
L O By | | o : : : :
olo 0 0 - 0 Byl m

L ojo 0 0 -« 0 0 |,

where p = ny, By € R™*™ g jnvertible and its entries are known, while the
entries of the remaining nonzero blocks are variables that will be determined to
achieve the maximum possible rank of B

12



o We denote by 7(,),... the maximum rank of By 11, then
T (D) = MIN{7p, 72 41}
If np, < npt1, we define s, = npy1 —ny,. In other case s, = 0.

(Note that, s, is the number of columns of the submatriz Byy+1 that we
do not use for increasing the rank of B.)

e Foreachj=p—1,p—2,...,2, consider the submatriz
BJVJ+1 B],]+2 e B‘]’p+1
O Bjyij+2 -+ Bjyiph
S; = . .
(0] (0] ... Bpph

and we denote by r(j),... its maximum rank. Then,

T(j)max = r(j+1)max + K’

where
K= min{nj7 UZES] + Sj+1}.

If Uz S Tj4+1 + Sj+1, then

K = nj
8j = Sj41 T Njp1 — Ny
[f n; > Njt1+ Sj+1, then

K= UZES] + Sj+1
Sj = 0

o Finally, rmax = n1 +17(2)

The result given in Procedure 1 is the same if we have a similar block
partition, but we change the size of blocks of By by a permutation of indices
N2, M3, ..., Nptr1. Thus, from now on, and without loss of generality, we can
consider Ir'TN matrices with principal rank p, any sequence of the first p-indices,
and with linearly dependent columns instead of rows. Under this assumption
and by Procedure 1 we give an algorithm to compute the maximum rank of an
I'TN matrix A, with p-rank(4) = p and 1 < ip < i3 < ... < iy < n, as its
sequence of the first p-indices and i, > 0. Note that,

1. If i, = p and the submatrix A[p, p+1, ..., n] is irreducible, by Propositionl
we have that rp.c = p.

13



2. If 45 = 7, but 4,41 > j + 1, with 1 < j < p, and the principal submatrix
Alj,j+1,...,n] is irreducible, then

'rmax(A) = (] - ]-) + rmax(B)a

where B = A[j,j+ 1,...,n] is I'TN with p-rank(B) = p — (j — 1) and
1<y, <y <o <ig,__,, as sequence of the (p — j + 1)-first indices
of B, with iy, =ijon1—(j—1),h=2,3,....,p—(j — 1.
Therefore, in the following algorithm we assume without lost of generality that
1o > 2 and the TN matrix A is irreducible.

Algorithm 1 (Mazimum rank of A) Let A € R™™"™ be an I'TN matrix with
prank(A) = p. Let 1 < iy < i3 < ... < i, < n, the first p-indices of A with
19 > 2. This algorithm obtains the maximum rank of A, ryax.

Require: n, p, i1 = 1,42,93,...,%p,ip41 =n+ 1, A € R**"
1 k=p s=0
2: for j =pto 2 do

3 f:ij—ij,1—1

4 C:ij+1—ij—1+5
5: if f <cthen

6: k=k+f

7: s=c—f

8 else

9: k=k+c

10: s=0

11: end if

12: end for
13: return 7. =k, p < rank(A) < rpax

Remark 3. If the final value of s in Algorithm 1 (sy in Procedure 1) is greater
than 0, then the maximum rank of A isn — (ia —2) —s =n+2— (ia + 5),
that is, the number io + s — 2 is the total number of columns that we can not
use to increase the rank. Therefore, the maximum rank of A will be the highest
possible when s = 0. It is not difficult to see that this occurs when the indices
i; are distributed along the matriz A equidistantly (although it is not the only
case, it is the most obvious). Let’s see what is the mazimum rank of A when
the indices i; are equidistant.

Suppose that n is a multiple of p. In this case, the best way to have the
indices 1; distributed is

i1 =1, 22221—&—;, 23221—&—257 e dp=i1+(—-1)—

and the maximum rank of A is equal to

p+(p—1)(”—1>:”(p_1)_1:n_n—p

p p p

14



If n is not a multiple of p, the best way to choose the mazimum number of

n
columns to increase the rank is to follow the previous pattern but with {—‘

Suppose that n = kp + s, with s < p, then {n-‘ = k + 1, with the indices i;
p

distributed as follows
i1 =1, i =1+ [Pw =1+(k+1), ..., ip =191+(p—1) [PW =1+(p—-1)(k+1)

and the mazimum rank of A is equal to

prin([2]-1) e

Note that in both cases we get the same maximum rank. As a consequence,
if Ais an Ir'TN matrix with p-rank(A) = p and if we do not consider any
condition on the sequence of the first p-indices of A, we obtain the result given
in Lemma 2.

p+(@—2k+n—(0+@-1FE+1)

n—k=n-— [n—p—‘.
p

4. Triple (n,r,p) (1,%2,...,%p)-realizable

We have seen in the previous section that the maximum rank of an IrTN
matrix A with p-rank(A) = p depends on the sequence of its first p-indices.
So, in this section we consider Definition 2 of triple (1, 4o, ..., 4,)-realizable and
we give a method to construct Ir'TN matrices associated with these realizables
triples. As a consequence, an IrTN matrix associated with a triple (n,r,p)
realizable is obtained for all r, with p <r <n — {n ; a

Procedure 2. We consider a triple (n,r,p) (1,iz,...,1,)-realizable. This pro-
cess constructs an IrTN matriz A € R™™™ with rank(A) = r, p-rank(A) = p,
and {1,is,...,ip} as the sequence of the first p-indices of A, with iz > 2.

1. We construct a TN matriz U € R™*™ with rank(U) = r in the following
form: U is in upper block form with p echelons of width i; — i;_1, for
J=23,...,p+1, i1 = n+1, and height i; —i;_1, j = 1,2,...,p,

15



io = 0, and the submatriz Uli, + 1,4, +2,...,n|1,2,...,n] = O, that is,

* e * | e * | . .- * 2
010 -+ O|1 % -+« % |-+ |*x|%* -+ =% 3
00 0]1]x * * | * * ig — 1
00 0 * * * | * * 19
U=10]0 0700 0 1| x * tp—1+1
00 0ololo 0 1]« o | dpor +2
0|0 0700 0 1| * 1, — 1
00 0100 0 1]« " iy
00 0700 0 0 0 ip+1
L 0[0 -~ 0[0[0 -+ O]~ ]0|0 -+ O n

where x denotes a positive number such that U will be TN and rank(U) = r.
Obviously, p-rank(U) = p.

2. Now, we construct a lower triangular TN matriz L = [l;;] € R™*"™ with
lij =1, fori>j,1<1i,j <n. Using MatLab notation, L = tril(ones(n,n)).

3. Let A = LU. Note that A is TN because U and L are TN, rank(A) =
rank(U) = r, and by Lemma 1 A is irreducible. We only need to prove
that p-rank(A) = p.

Proposition 3. Let A be a matrixz given by Procedure 2, then p-rank(A) = p.

Proof. Note that det(A[1]) # 0. For j =2,3,...,p, we have

det(A[L,dg,...,i]) = Y det(L[L iz, ..., i;|y]) det(U[y|1,da, ... ,i;])
YEQjn

= det(L[L,is,...,i;]) det(UL, iz, ..., i;]) +

+ > det(L[1, iy, . . .,i;]y]) det(U[y|1, iz, . . . ,4;]) > 0,
YEQ i n~{1,i2,....45}

then p-rank(A) > p.

Now, for j = 2,3,...,p and for any ¢, with 7;_; <t < 7;, we have

det(A[l,ig,...,ij_l,t]): Z det(L[l,ig,...,ij_l,t|'y])det(Uh|1,i2,...,ij_l,t})
’YEQj,n
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Since L is a lower triangular matrix, we have that
det(L[1,42,...,%5-1, /71,72, - -, Vj=1,7%]) # 0,
if the following relation holds
M=1< 7 <ip <y <iz<--- < <75 <,
but in this case, since U is an upper echelon matrix, it is verified that
det(U[1,7v2, .-, vj—1,7%|1, %2, .., ij—1,t]) = 0.
Thus, for j = 2,3,...,p, and for any ¢, such that i;_; <t < ¢;, we have
det(A[l,49,...,4j-1,t]) =0, i1 <t<ij
Finally, if ¢ > i, applying a similar reasoning as in the previous case to obtain

det(A[l,49,...,ip,t]) = 0. Therefore p-rank(A) = p. O

Remark 4. If io = 2 to obtain matriz A we construc U in the following way:
1. If iy, = p matriz U is given by

11 ... 1 11 ... 1 1

0 1 ... % *|* ... % 2

U= 0 0 1 % | % * p—1
100 0 1|« * D
0 0 0 00 0| p+1

L0 0 ... 0 0{0 ... 0| n

where x denotes a positive number such that U will be TN.
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2. Ifij =3, but ij4q > 5+ 1, with 1 < j <p, then U is given by

1 1 1tl1 -« 1l1l1 -~ 1!---1111 -+ 1 1
0 1 x| % v Kk lx|x v Kl x| x e %

0 0 1| % * * * * | * * ZJ

00 0 0]0 0]1]x% * * | % * ij+1
0O 0 0 010 O0|1]|x * * | % * ij+2
0O 0 0 010 01|~ * * | * * Q41— 1
00 0 O0}0 0]1]~ * * | * * 41

U:

00 0 0]0 0]01]0 0 1| * * ip—1 +1
00 0 0]0 0]101]0 0 1| * tp—1+2
00 0 0]0 0]01]0 0 1| * * i, — 1
00 0 010 01010 0 1| x * ip

00 0 0]0 0]01]0 0 0 0 i, +1
|00 0 0]0 0]01]0 0 010 0 | n

Example 3. Applying Procedure 2, we obtain a matriz associated with the triple
(11,7,3) (1,5, 8)-realizable.

1. First, we construct a TN matrix U € R**! in upper block form with

3 steps of width 4, 3, and 4, and height 1, 4 and 3. The submatrix
U[9,10,111,2,...,11] = O, and rank(U) = 7. Note that with these
conditions p-rank(U) = 3 and {1, 5, 8} is the sequence of the first 3-indices
of U.

G

I
O OO0 OO0 O O
O OO Ooo O O
O OO O OO OO
O OO OO0 OO
O OO O O = ==
O OO0 O N
O OO0 OoO oW WN -
O Ol =R W N ==
O O OINN N W DN |
O OWWN WD P~
O OWWN W N P

o
o
o
o
o
o
o
o
o

2. Now, we construct a lower triangular TN matrix L = tril(ones(11,11).
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3. Finally, A = LU is an I'TN matrix associated with the triple (11,7, 3)
(1,5, 8)-realizable:

1 1
2 2
4 4
A A G (R
10 11 11 11 11
13
10 13 15 16 16
10 14 17 19 19
10 14 17 19 19

10 14 17 19 19
10 14 17 19 19

b

I

S

Il
O i Sy e Sy S S S
e e e e e
e T e T e T e T o S SO SO
e T i S e e e N = W
UL O O O O O U i W N =
CO OO OO OO OO 0O OO0 Oy = N

—_

(an)

—_

[N}

—_

w

—_

w

If we consider a realizable triple (n,r, p) but we do not know the sequence of
the first p-indices, then the relations between n, r and p are given by equation
(1). Now, we construct an Ir'TN matrix A € R"*™ associated with a triple

(n,r, p) realizable for all r, with p <r <n — {n —Py

By Remark 3, if the sequence of the first p—indizes is equidistantly distributed
along the matrix A, then for any integer r the equation (1) holds and we can
apply Procedure 2 to obtain an Ir'TN matrix A associated with the triple (n, r, p)
realizable.

Example 4. Construct an IrTN matriz associated with the triple (11,r,3) rea-
lizable with 3 <r < 8.

By Remark 3, the sequence of the first 3-indices is {i; = 1, ia = 5, i3 = 9}.
Therefore, we construct the following matrix

171 1 1)1 1 1 1 1 1 1

0j0 0 01 1 1 1 1 1 1
010 0 O|1|use wusyr wusg|usg | U310 U311
010 0 O]1]|use uar Usas | Udg | Ug,10 U4 11
010 0 O]1]|use usy Usg | Usg | Us,10 Us,11
U.=1010 0 0|0] O 0 0 1 | us10 ue11
00 O O0]0] O 0 0 1 Juri0 wrn
00 0 0|0] O 0 0 1 |ugi0 wus11
00 O O0]0] O 0 0 1 | ug10 wug11

0[O0 O 00| O 0 0 0 0 0

L 0]0 0 0(0] O 0 0 0 0 0

1. If r = 3, we consider

] 1, i=3,4,5
Yii =1, i=6,7,8,9, j=10,11



then, rank(Us) = 3 and A3 = LUs, with L = tril(ones(11,11)), is an I'TN
matrix associated with the triple (11,3, 3).
2. If r = 4, we consider

1, i=3,4,5 j=6,7,...,11
u; =4 1, i=6,7,8 j=10,11
2, i=09, j=10,11

then, rank(U,) = 4 and Ay = LUy is an Ir'TN matrix associated with the
triple (11,4, 3).
3. If r =5, we consider

1, i=3,4,5 j=6,7,...,11

1, i=6,7, j=10,11
u; =4 2, i=38, j=10,11

2, i=09, =10

3, i=09, j=11

then rank(Us) = 5 and Ay = LU; is an I'TN matrix associated with the
triple (11,5, 3).
4. If r = 6, we consider

, i=3,4, j=6,7,...,11
i=5  j=6,7,...,11
i=6,7, j=10,11
i=8,  j=10,11

, i=9, =10

, i=9, j=11

WNN - DN

then rank(Us) = 6 and Ag = LUs is an I'TN matrix associated with the
triple (11,6, 3).
5. If r =7, we consider

, i=3, j=6,7,...,11
. i=4, j=6,7,...,11
, i=5 j=6

i=5  j=T1,8,...,11
i=6,7, j=10,11
i=8,  j=10,11
i=9, =10

i=9, =11

WM~ W NN~

then rank(U7) = 7 and A7 = LUz is an IrTN matrix associated with the
triple (11,7, 3).
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6. If r = 8, we consider

2, i=3,

9, i=4,

3, =4,

92, i=5,

) 3, i=s5,

Wii =\ 4, =5,
1, i=6,7,

92, i=8,

2, i=09,

3, i=09,

j=6,7,...,11
j=6
i=18,...,11
j=6

i=7
j=8,...,11
j=10,11
j=10,11
j=10
j=11

then rank(Ug) = 8 and Ag = LUg is an IrTN matrix associated with the

triple (11,8, 3).
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