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Ancient masonry arches and vaults strengthened with 

TRM and FRP composites: Numerical analyses 
 

Elisa Bertolesi, Gabriele Milani1, Francesca Giulia Carozzi, Carlo Poggi 

Department of Architecture, Built environment and Construction engineering ABC 

Technical University of Milan 

Piazza Leonardo da Vinci 32, 20133, Milan (Italy) 

Abstract 
The two arches and the three vaults experimentally described in [1] are here analyzed with a novel 

robust FE lower bound limit analysis code, suitable to predict active failure mechanisms, lines of 
thrust and collapse loads in absence and presence of TRM and FRP reinforcement. The approach 

relies into a discretization into rigid-infinitely resistant quadrilateral elements for masonry, interfaces 
between contiguous elements exhibiting limited strength and perfectly bonded rigid-plastic trusses 

representing the reinforcement. For masonry, a No Tension Material NTM model can be adopted to 
compare with classic Heyman’s results, but also a limited compressive and tensile strength with a 

cohesive frictional behavior in shear may be accounted for in a relatively simple fashion, i.e. in 

principle with the possibility to model shear sliding and compression crushing. Debonding and 

delamination of the reinforcement are considered in a conventional way, assuming trusses with a 

limited tensile strength derived from either experimental data available or consolidated formulas 

from the literature. With the knowledge of the exact position of the hinges provided by limit analysis, 

2D FE static analyses with non-linearity and softening concentrated exclusively on hinges are carried 

out, to simply extend the knowledge beyond collapse loads estimation towards a prediction of initial 

stiffness and ultimate displacements. In all cases, promising agreement with experiments is observed. 

 

Keywords: masonry; arches and vaults; Textile Reinforced Mortar TRM; Fiber Reinforced Polymer 

FRP; Steel Reinforced Grout SRG; numerical modelling; LOwer BOund Limit Analysis (LOBOLA) 

1 Introduction 
Decades before the diffusion of personal computers, thrust line approach combined with limit 

analysis was considered the only effective tool for a fast assessment of the stability of masonry 

arches [2][3]. The quick diffusion in common practice of computer assisted structural programs has 

not changed the leading role played by the lower bound theorem of limit analysis, because of its 

intuitiveness and implementation easiness [4]-[6]. Nowadays, it can be affirmed that limit analysis, in 

both the lower and upper bound versions, is still a useful alternative to expensive non-linear FE 

simulations [7][8], as demonstrated by its extensive utilization for the safety assessment of masonry 

arches and vaults in general subjected to different loading conditions [9]-[15]. Its success is basically 

due to its simplicity, because it requires only a reduced number of material parameters, providing 
limit multipliers of loads, failure mechanisms and, at least on critical sections, the stress distribution 

at collapse. After the application of innovative strengthening materials (like FRP) for the 
vulnerability reduction of curved masonry elements [16]-[21] (mainly in Italy at the end of the 90s, 

after the 1997-1998 Umbria-Marche earthquake), computer assisted limit state approaches have been 
formulated also in presence of FRP reinforcement strips [22]-[36], see among the others Caporale et 

al. [23][29]-[31] or Roca et al. [24]. Again limit analysis –especially the lower bound- appears much 
more effective than a classic incremental FE approach [7][37], because is much faster and provides 

immediately the line of thrust at collapse, helping to understand how the flow of forces is transferred 
                                                        
1
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from the external load to springing. On the other hand, non-linear complex damaging models [38]-

[40] should be used for the analysis of FRP–reinforced masonry, because FRP delamination from the 

support is brittle. To some extent such considerations also apply to FRCM, even if a sufficient 

amount of experimentation is still lacking. Brittle is also the tensile behavior of mortar joints, 

therefore limit analysis, which is based on the assumption of perfect plasticity with infinite ductility, 

is not strictly applicable. This notwithstanding, if masonry tensile strength is neglected (as it 

classically occurs in No Tension Material NTM models) and reinforcement delamination is precluded 

or suitably considered in a convention way that accounts for debonding phenomenon, the application 

of either the virtual powers principle (kinematic approach) or the line of thrust method (static 

approach) still remains fascinating and probably the most powerful analytical tools to quickly predict 

load carrying capacity and position of hinges forming the failure mechanism. The evaluation of the 

ultimate load carrying capacity is one of the key issues for such type of constructions, because 
deformability is quite moderate. Literature is again relatively abundant in this regard and there are 

also some quite sophisticated approaches dealing with double curvature FEs and mesh adaptation 
schemes [11][13][35][36], but according to authors’ knowledge, an in-situ experimentation combined 

with a FE lower bound limit analysis software for the prediction of failure loads and active failure 
mechanisms of reinforced arches is still lacking.  

This paper is aimed at filling the gap in this regard, and it deals with the discussion of a robust and 
efficient FE lower bound limit analysis code suitable for the analysis of masonry arches of any 

geometry and reinforced in various ways. The unreinforced arch discretization is done using 

quadrilateral rigid-infinitely resistant elements interconnected by segmental interfaces where all 

internal dissipation can occur. On interfaces, even a NTM can be considered to compare directly with 

classic Heyman’s results and check if the lines of thrust remain inside the thickness, but also a 

limited compressive and tensile strength with a cohesive frictional behavior in shear may be 

accounted for in a relatively simple fashion. It is therefore in principle possible to model both 

crushing in compression and sliding under shear loads. Reinforcement is modeled in a conventional 

but effective way by means of rigid-plastic trusses perfectly bonded to the underlying material, 

exhibiting an equivalent ultimate strength that suitably takes into account a debonding from the 

support and delamination, according to either consolidated literature in the field [38]-[41] or 

experimentation available [42]-[44]. 

The mathematical framework is therefore classic and collapse load, failure mechanism and thrust line 

can be estimated by means of a standard linear programming problem where failure multiplier is 
maximized, within the lower bound theorem of limit analysis, under equilibrium constraints and 

admissibility of the internal actions.  
One of the major advantages of the lower bound approach proposed is that the geometry is directly 

imported from common CAD software and meshed within the commercial code Strand7. From the 
exact position of the hinges provided by limit analysis, 2D FE static analyses with non-linearity and 

softening concentrated exclusively on such hinges are carried out, in order to have information non 
only at failure, but extend the knowledge on the entire loading process in a quite straightforward 

manner, collecting interesting information on initial stiffness and ultimate displacements. 

In addition, the quick assessment obtained with limit analysis of both expected collapse mechanism 

and ultimate load carrying capacity of existing structures, opens the way to the application of e.g. 

Bayesian inference [45], to account for uncertainty in material properties. Such latter approach may 
allow practitioners to reduce a relatively big scatter in material properties when new observations 

become available. 
Experimental results presented in [1] are compared with those obtained by means of the present limit 

analysis approach, obtaining a satisfactory agreement on collapse loads in the unreinforced case, for 
both the arch and the vault. The assumption for masonry of a NTM hypothesis results slightly 

conservative, even if the prediction of the position of the hinges is fairly good. Sensitivity analysis 

are therefore conducted varying mortar tensile strength ft finding a perfect match with values sensibly 

small of ft. With such values of strength for mortar joints, additional sensitivity analyses are carried 
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out for the reinforced cases, varying the equivalent strength of the reinforcement Fb and masonry 

compressive strength fc. The aim is to find the conventional delamination strength of the 

reinforcement which allows a perfect match with the experimentally obtained collapse loads. Such 

procedure is useful to have an insight into the reliability of existing formulas on the maximum 

delamination strength (e.g. for FRP) and for an a-posteriori validation of future approaches, when 

they will become available (e.g. for FRCM). It is found that numerical collapse loads are generally in 

good agreement with experiments when literature data for the reinforcement strength are assumed.   

2 Lower bound limit analysis numerical validation 
As far as masonry arches and vaults (made by stones or solid clay bricks) are concerned, it can be 

affirmed that a sound theoretical background nowadays exists, see for instance Como [46] and Huerta 

[47], and that the modern theory of limit analysis of masonry structures, which has been developed 

mainly by Heyman [3][5] is the most reliable tool to understand and analyze masonry curved 

structures. For the sake of completeness, it is worth mentioning that the possibility of extending limit 

analysis theorems to no tension materials has been proved almost 20 years ago by Del Piero [48].  

According to Heyman [3][5], limit analysis theorems can be applied to masonry provided the 

following three paramount conditions are verified, namely (1) infinite compressive strength, (2) no 

sliding between contiguous bricks, (3) vanishing tensile strength. 

In the present paper, a lower bound limit analysis approach is proposed to deal with eventually 

reinforced masonry arches (Figure 1), where partially or all Heyman’s hypotheses are removed. In 

other words, it can occur that the material is assumed able to withstand small but non zero tensile 

stresses, with possible crushing in compression and sliding of the blocks (observed in case of 

reinforced arches). 
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-a 

 

-b 

Figure 1: Geometry of the unreinforced and reinforced arches (-a) and barrel vaults (-b) (dimensions 
in mm). 

 

2.1 The lower bound limit analysis approach proposed 

The lower bound approach proposed relies into a discretization made by infinitely resistant 

quadrilateral elements interconnected by interfaces where all plastic dissipation can occur, as 

schematically depicted in Figure 2.  
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Figure 2: Lower bound FE discretization with rigid quadrilateral elements rigid-plastic interfaces. 

 

If sudN  is the number of quadrilateral elements used to discretize the arch, then 1+sudN  are the 

transversal sections where internal actions (namely axial load N , shear V  and bending moment M

) must be evaluated. Total optimization unknowns, including the collapse multiplier, are therefore 

3( sudN +1)+1. 

2.1.1 Equilibrium equations for each FE 

Equilibrium equations must be written element by element. Considering the i-th element, the three 

equilibrium equations of each block can be written as follows: 
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where all the symbols have been already introduced in Figure 2. Here it is worth only mentioning 
that Eq. ( 1 ) (a), (b) and (c) represent respectively the horizontal, vertical and rotational equilibrium 

around element centroid iG .  

Eq. ( 1 ) can be easily re-written in a compact matrix notation as follows: 
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Eq. ( 2 ) can be further zipped as follows: 
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independent from the load multiplier action on the i-th elements, λ  is the collapse multiplier and if  

is the vector of unitary loads dependent on the load multiplier. 

 

2.1.2 Inequality constraints and strength domains for unreinforced interfaces 

Inequality constraints, securing admissibility of the equilibrated stress field in the framework of the 
lower bound theorem of limit analysis, should be written interface by interface. There are basically 

four cases that can be encountered in common numerical modelling, see also Figure 3, namely (A) 

tensile strength strictly zero and infinite compressive strength (pure NTM model), (B) tensile 

strength small but non-zero and infinite compressive strength, (C) small tensile strength and finite 

compressive strength and (D) a combination of the previous cases but with finite shear strength, 

obeying a Mohr-Coulomb law.  

In the first case, (Figure 3 Case A) limit equilibrium on active hinges is obtained with the axial load 

(i.e. the line of thrust) passing through the extremes of the interface, either at the intrados or at the 

extrados. This property, which reduces to a geometric constraint on the line of thrust, was made 

famous by Heyman [3][5], who was one of the first authors theorizing that the line of thrust must 

always lay inside the arch thickness, with four tangencies conditions in presence of incipient 

collapse. However, it is worth mentioning that such conclusion does not hold strictly in case of non-
zero tensile strength, i.e. for Case B. Case C is more complex, because the strength domain 

becomes non-linear in presence of finite compressive strength. Finally, Case D generalizes the arch 
problem to a lower bound limit analysis on a curved structure where also sliding is possible. 

Typically, sliding does not occur for unreinforced arches, but the application of a strengthening 
system could make such failure mode more probable. Whilst sliding would require the utilization of 

non-associated limit analysis, it has been shown that the prediction done by classic associated limit 

analysis on collapse loads and failure mechanisms active is technically acceptable.  

In the first case, (Figure 3 Case A) the eccentricity of the normal compressive force, intended as the 

ratio between M and N cannot exceed t/2, meaning that the interface strength domain boundary is 

constituted by two straight lines, symmetrically disposed with respect to the horizontal axis (where 

normal action N is represented). The strength domain is therefore represented by the following 
linear inequalities: 
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When a non-zero tensile strength is introduced (Figure 3 Case B), again two linear constraints per 

interface are obtained, but with the origin strictly inside the strength domain: 
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Such latter property is paramount to strengthen the stability of any LP solver, because in classic 
limit analysis the case of the origin on the boundary of the strength domain is in principle excluded. 

In case of finite compressive strength, see Case C in Figure 3, the domain is symmetrically bounded 
with respect to the horizontal axis by means of two parabolas. The resultant strength domain is 

therefore non linear and represented by the following two non-linear inequalities: 

( )

( ) tc

tc
ii

tc

tc

tc

i

tc

tc
ii

tc

tc

tc

i

ff

fft
MN

ff

fft

ff

N

ff

fft
MN

ff

fft

ff

N

+
≤−

+

−
+

+

+
≤+

+

−
+

+

222

222

22

22

 

( 6 ) 

Finally in Case D the Mohr-Coulomb finite shear strength must be added to previous equations, 

introducing two further inequality constraints as follows: 
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Where Φ  is the friction angle and c  the cohesion. 

Dealing for the sake of simplicity only with linear inequality constraints, then ( 4 ) and ( 5 ) can be 

again put in compact matrix notation as follows: 
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( 8 ) 

Where in

iG  is a 2x3 matrix that collects only some geometric features of the i-th block, in

ib  is a 2x1 

vector collecting inequalities right hand sides and all other symbols have been already introduced.  

From ( 3 ) and ( 8 ) the assemblage into global equality 
eqA  and inequality 

inA  matrices is very 

straightforward, being both block band matrices.  

The objective function is represented by the collapse multiplier λ , that, in the framework of the 

static theorem of limit analysis (lower bound), has to be maximized. In matrix notation, denoting 

with X  the 3( sudN +1)+1 column vector of global unknowns, and with bO  a 3( sudN +1)+1 column 

vector of all zeros except the last cell (=1), then the objective function is XO
T

b
. 
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Case A Case B Case C 

 
Figure 3: Different strength domains that can be adopted to analyze unreinforced masonry arches. 

Case A: infinite compression strength, zero tensile strength. Case B: infinite compressive strenght 

and finite tensile strength. Case C: finite compressive and tensile strength.  

 

 
Figure 4: Different strength domains that can be adopted to analyze masonry arches reinforced at 

the extrados. Case A: infinite compression strength, zero tensile strength. Case B: infinite 

compressive strenght and finite tensile strength. 

 

2.1.3 Inequality constraints in case of strengthening 

When a strengthening system is applied at the extrados surface, as in the case here analyzed, then 

the strength domain expands not symmetrically, as shown in Figure 4. In Figure 4 with 

fddreinrein
fAF =  we indicate the ultimate force that the reinforcement is able to transfer to the 

substrate, having denoted with reinA  the cross area of reinforcement and with fddf  the equivalent 

tensile strength, which eventually takes into account debonding phenomena. 
In case of non-zero tensile strength of the mortar joint (which comprises also the NTM model when 

tf  is set to zero), the two linear constraints per interface to write are the following: 
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2.2 The LP problem, related numerical issues and post-processing results 

The linear programming (LP) problem obtained is the following: 





≤

=

=

inin

eqeq

b

ts
bXA

bXA

XO

..

max λ

 

( 10 ) 

Where 
eqeq

bXA =  is a set of 3 sudN  equalities representing the equilibrium of the single elements 

and inin bXA ≤  is a set of 2( sudN +1) inequalities representing the admissibility of the internal 

actions.  

It is worth mentioning that LP problem ( 10 ) is a small/medium scale one, but sparse matrix 

technology and a classic interior point algorithm IP is preferred to reduce the computational time 

needed.  

In case of finite compressive strength of the joint, inequality constraints need to be linearized. One 

straightforward option is to use a piecewise linear approximation, as proposed by many authors in 

the past, see for instance [49][50]. Nowadays, codes are so efficient that IP algorithms can handle 

thousands of variables and constraints, therefore no particular problems arise, but the convergence 

of the solution obtained should be checked progressively increasing the number of planes of the 

approximation. An alternative, already proposed in [51] but in another context, is to use an iterative 

procedure based on the simplex method. As a matter of fact, simplex finds always the solution on a 

corner of the domain. Therefore, it is possible to use a very rough approximation of the strength 

domain in the starting step and refine the approximation of the strength domain only in the vicinity 

of the actual solution, as shown in Figure 5. The drawback is that the solution found is not strictly a 

lower bound, because strength domain is approximated with tangent planes. 
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Figure 5: Iterative algorithm used in case of finite compressive strength and step by step 

linearization of the non-linear inequalities.  
 

The identification of the line of thrust occurs point by point evaluating the eccentricity of the 

normal action on the i-th section as iii NMe /=  and connecting the dots. It is worth mentioning 

that, in the present work, we subdivided the arch into 100 sections before the point of application of 
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the load and 100 sections after. Such points have been adopted to construct the unreinforced and 

reinforced lines of thrust. 

The limits where the line of thrust can lay depend on the hypotheses done for the material and if 

reinforcement is present. We distinguish the following three cases: 

1) Unreinforced case, NTM model. From Eq. ( 4 ) the line of thrust must lay within arch 

thickness, i.e. 
22

t
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t
i ≤≤−  

2) Unreinforced case, model with non-zero tensile strength. From Eq. ( 5 ) the line of thrust 

must lay within arch thickness, i.e. 
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this case eccentricity upper and lower bounds depend on the local value of iN ; 

3) Reinforced case, model with non-zero tensile strength. From Eq. ( 9 ), it is straightforward 

to deduce that 
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. Again, eccentricity upper and 

lower bounds depend on the local value of iN . 

4) When a limited shear strength is assumed, the concept of thrust line partially loses its 

efficacy, because failure can be the result of a mechanization due to the presence of both 

flexural hinges and sliding interfaces. 

The identification of the plastic hinges and sliding interfaces can be done in two alternative 

manners, the first simply solving the dual of LP problem ( 10 ), the latter substituting the solution 

vector found in inin bXA ≤ and checking what are the inequality constraints active. 

3 Discussion of the numerical results obtained 
In this Section, a comprehensive discussion of the numerical results obtained applying the FE LB 

limit analysis approach previously presented is reported. Particular emphasis is given to the value of 

masonry tensile strength to assign in the unreinforced case and the equivalent ultimate strength of 

the strengthening system in the reinforced case to fit perfectly experimental collapse loads. 

Obviously such approach would make much more sense in case of different tested replicates, a 

scenario difficultly obtainable for in-situ experimentation, where samples are typically a few or 

even unique.  

3.1 Unreinforced arch U_A 

Line of thrust obtained for the unreinforced arch U_A at progressively increased values of masonry 

tensile strength ( tf  from 0.001 MPa, an excellent approximation of the NTM model, to 0.1 MPa) 

with position of the plastic hinges and the admissible region of the thrust line is shown in Figure 6 

from –a to –h. In Figure 7-a the same line of thrust in case of no-tension material is compared with 

that obtained with a refined 2D elasto-plastic FE model. In Figure 7-b a precise identification of 

hinges position as a function of angle 180°-α  is provided, whereas in subfigure –c the 

corresponding failure mechanism is depicted. As can be noted from an analysis of both figures, the 

line of thrust is all contained within the arch thickness in case of the NTM hypothesis, whereas the 

bounds progressively go outside for higher values of tf . Especially for tf =0.1 MPa it is particularly 
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evident the dependence of such bounds on the value of normal action found in the equilibrated 

solution. Not surprisingly, also, the position of the four hinges forming the mechanisms remains 

unaltered.  

Figure 8-a shows a sensitivity analysis of the collapse load progressively increasing tf , assuming 

for masonry an infinite compressive strength. As expected, the increase is linear, because the 

strength domain proportionally grows increasing tf  (and compressive strength is infinite), but it is 

interesting to notice that the exact experimental collapse load is obtained with an tf  equal to 0.0077 

MPa, which is certainly a very low tensile strength but not enough to consider reliable the NTM 

model, because it allows an increase of the collapse load from 1.725 to 2.3 kN. Figure 8-b shows 

the same results, but with different values for the assumed compressive strength. As expected, it is 

necessary to make the hypothesis of quite low strength in compression (lower than 2 MPa) to obtain 

results deviating in a perceivable manner from those obtained with infinite resistance. 

In order to have a further insight into the role played by tf , several elasto-plastic analyses with the 

commercial code Strand7 are performed, assuming the arch elastic everywhere and concentrating 

non linearity on the four hinges with position found with limit analysis. Cutoff bars with elasto-

plastic behavior in tension are used at this aim, setting for them different tensile strengths for the 

different cases analyzed (namely tf =0.007, 0.015 and 0.02 MPa). In order to lock shear lability on 

plastic hinges, shear elastic elements are also added, having the same elastic properties of the 

surrounding masonry. Stress-strain relationships for cutoff bars, masonry plate and shell elements 

and eventually trusses representing the reinforcement are schematically depicted in Figure 9. The 

results obtained are shown in Figure 10-a. As expected, collapse loads found with limit analysis are 

quite accurately reproduced, but it is also possible to estimate rather quickly and with sufficient 

accuracy the deformability of the arch, an information not achievable with limit analysis. Another 

important result is the knowledge of the sequence of hinges formation, summarized in Figure 10-b 

and in more detail in Figure 11. Such information may be particularly useful when dealing with the 

reinforcement of partially damaged arches, i.e. where the expected increase of the load carrying 

capacity cannot be evaluated with limit analysis on an undamaged structure. In this regard, 

therefore, limit analysis can be quite useful only to set mechanical parameters at failure and to 

roughly predict the position of the plastic hinges. With such information, simple FE codes, basically 

elastic everywhere exception made for the plastic hinges can be used to predict quickly and 

efficiently displacements near failure and compare with the overall experimental force-displacement 

curves. 
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tf  =0.001 MPa 

  
-a -b 

tf  =0.005 MPa
 

  
-c -d 

tf  =0.05 MPa
 

  
-e -f 

tf  =0.1 MPa 

  
-g -h 

Figure 6: Unreinforced arch U_A. –a, –c, –e, –g: lines of thrust at different vaules of masonry tensile strength. 

–b, –d, –f, –h: identification of hinges position as a function of angle 180°-α . 
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NTM 

 

-a 

 

-b 

 

-c 

Figure 7: Unreinforced arch U_A in case of no-tension material. –a: line of thrust at different vaules 
of masonry tensile strength. –b: identification of hinges position as a function of angle 180°-α  and 

corresponding failure mechanism (–c). 
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-a -b 

Figure 8: Unreinforced arch U_A: sensitivity analyses on the collapse load changing masonry 

tensile strength. –a: infinite compressive strength. –b: finite compressive strength. 
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Figure 9: Stress-strain relationships adopted in the FE Strand7 model for cutoff bars, masonry 

elements and reinforcement 
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-a -b 

Figure 10: Unreinforced arch U_A: utilization of an elasto plastic FE approach with plastic 
hinges located on positions found by LA. –a: comparison with experimental data; –b: steps of 

formation of the hinges. 
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A 

Scale factor: 200 

B 

Scale factor: 200 

-b -c 

C 
Scale factor: 150 

D 
Scale factor: 50 

 

-d -e 

  
  

Figure 11: Unreinforced arch U_A. –a: FE discretization and LVDTs position. From –b to –e, 
sequence of formation of the hinges. 

 

3.2 Unreinforced barrel vault U_V 

The same sensitivity analyses are repeated here for the unreinforced tile barrel vault U_V. The 

resultant lines of thrust at different values of masonry tensile strength, with an indication of the 

hinges, the lower and upper bounds for the thrust lines and the collapse loads are summarized in 

Figure 12 from –a to –h. Even more clearly than in the previous case (a consequence of the very 

limited thickness of the vault), the variability of the collapse load is extremely high, with a ratio of 

about 3.5 on collapse loads (919 N vs 261 N) passing from a masonry tensile strength equal to 0.1 

MPa to a quasi no tension material (0.001 MPa). Thrust-line, position of the hinges and active 
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failure mechanism in case of no-tension material, are shown in Figure 13, where results are again 

compared with those obtained with a refined 2D elasto-plastic FE discretization. Sensitivity 

analyses depicting collapse loads obtained varying either masonry tensile strength (subfigure –a) or 

both tensile and compressive strength (subfigure –b) are reported in Figure 14. In this case the best 

fitting of the experimental collapse load is obtained for a tensile strength equal to about 0.02 MPa, 

see Figure 14-a. It is also interesting to point out that, apart from the extremely low load carrying 

capacity of such vault in presence of low strength mortar joints, the underestimation of a Heyman’s 

approach is around 30%, highlighting once again that sometimes the NTM hypothesis, whilst 

always on the safe side, can provide results affected by a scatter outside the common range of 

acceptability. As in the previous case, the position of the hinges does not change increasing tf . 

Comparing for instance Figure 12-b and Figure 12-h, it can be noted that the position of the hinges 

is exactly the same, two at the abutments, one under the concentrated load and the other at 97° from 

the left abutment. In analogy with computations done for the unreinforced arch, some elasto-plastic 

analyses with Strand7 are carried out, assuming again the arch elastic with concentrated plasticity 

on hinges found with limit analysis. The results obtained, compared with experimental load-

displacement curves in Figure 15-a, show once again that the utilization of FE codes with 

concentrated plasticity in combination with limit analysis can provide pretty good results, predictive 

of initial stiffness, ductility and load carrying capacity. The sequence of hinges formation is finally 

shown in Figure 15-b and Figure 16. The knowledge of the exact sequence of formation is 

paramount when a strengthening intervention on an already damaged arch (e.g. for a seismic 

upgrading) must be carried out.  
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Figure 12: Unreinforced vault U_V. –a, –c, –e, –g: lines of thrust at different vaules of masonry tensile strength. –b, –

d, –f, –h: identification of hinges position as a function of angle 180°-α  . 
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NTM 

 

-a 

 

-b 

 

-c 

Figure 13: Unreinforced vault U_V in case of no-tension material. –a: line of thrust at different 

vaules of masonry tensile strength. –b: identification of hinges position as a function of angle 180°-

α . –c: corresponding failure mechanism. 

 

  
-a -b 

Figure 14: Unreinforced vault U_V: sensitivity analyses on the collapse load changing masonry 
tensile strength. –a: infinite compressive strength. –b: finite compressive strength. 
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Figure 15: Unreinforced vault U_V. –a: utilization of an elasto plastic FE approach with plastic 

hinges located on positions found by LA. –a: comparison with experimental data. –b: sequence 

of formation of the hinges. 
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A 

Scale factor: 200 

B 

Scale factor: 200 

 
-b -c 

C Scale factor: 100 D Scale factor: 50 

  
-d -e 

Figure 16: Unreinforced vault U_V. –a: FE discretization and identification of the LVDTs position. 

From –b to –e: sequence of hinges formation. 

 

3.3 SRG reinforced arch (SRG_A) 

Among the possible different choices of masonry tensile strength to adopt, in absence of a 

comprehensive characterization of the materials available, we assume a tensile strength for masonry 

tf  equal to about 0.077 MPa, which -as already discussed- allows to optimally fit the collapse load 

in the unreinforced case. With such value a priori fixed, it is possible to repeat some sensitivity 

analyses in the reinforced case varying 
reinf

σ , the ultimate equivalent tensile strength of the 

reinforcement. The ultimate tensile force per meter to assign to trusses representing the 

reinforcement is therefore rein reinfaF d σ= , where ad  is the depth of the arch. The numerical value of 

reinf
σ  which minimizes the difference between experimental and numerical collapse loads can be 

then compared with previous experimental characterization on the bond behavior, if any, or with 

simplified formulas provided by codes of practice.  

For SRG_A, the resultant lines of thrust at different values of 
reinF , with an indication of the hinges, 

the lower and upper bounds for the thrust lines and the collapse loads are summarized in Figure 17 

from –a to –h. As it is possible to notice, the lower bound line of thrust shifts progressively 

downwards (blue thick dotted line) and for a 
reinf rσ σ= =172 MPa the experimental collapse load is 

approximated in an optimal way, see Figure 18-a, assuming also cf → ∞ . The experimental range 

of reinfσ , with indication of T1σ , uσ  and the debonding strength envelope are also indicated. As 

discussed in the companying paper [1], where the reader is referred to further details, 
T1

σ  indicates 

the stress when debonding between masonry and reinforcement occurs, whereas uσ  refers to 

reinforcement tensile failure. Such values are assumed according to specific literature in the field, as 

explained in [1]. The same sensitivity analyses are carried out assuming different values of masonry 

1

2

3 - 4
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compressive strength and the results are depicted in Figure 18-b, obtaining a similar trend, but with 

a better experimental values fitting. Clearly, assuming an infinite masonry compressive strength, an 

overestimation of the load carrying capacity is obtained, even assuming for trusses an ultimate 

strength equal to 
T1σ  (which seems the most realistic mode of failure for the reinforcement 

according to experimental evidences). The agreement is improved when a low compressive strength 

is assumed, i.e. in case of masonry crushing, see Figure 18-b, which is usually observed in case of 

reinforced arches, but an optimal match is obtained only with unrealistic small values of 

compressive strength. Apart issues related to the limited compressive strength, such an outcome can 

be justified remembering that Heyman’s assumptions exclude sliding between blocks, with failure 

due to the formation of a four-hinges mechanism (see Figure 19, where it is also visible that the 

position of the hinges remains in practice unaltered with respect to the unreinforced case). Such 

model, which indeed does not allow to eventually reproduce shear failures of the masonry material, 

is quite limited for the reinforced cases, where a mode I detachment with sliding at the springing is 

not reproducible. For this reason, in Figure 20 simulations are repeated with a possible shear sliding 

of the interfaces, assuming different values of the friction angle Φ  and a cohesion almost vanishing 

(equal to tf ). Figure 20-a and –b show the collapse loads so obtained varying Φ  and reinfσ , 

whereas Figure 20-c depicts some meaningful collapse mechanisms obtained in the simulations. As 

it can be observed, for low/medium friction angles, an increase of 
reinf

σ  results in an activation of a 

sliding failure, mainly concentrated on abutments or under the point load. The activation of sliding 

is also visible from the trend of the collapse load, which reaches a plateau at progressively increased 

values of 
reinf

σ . This means that failure is totally independent from the reinforcement strength, i.e. 

collapse mechanism does not involve reinforcement trusses rupture.  

Assuming shear sliding, a perfect agreement with experimental data is obtained, with friction angles 

between 20 and 22.5°. 
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reinF = 4 kN/m 

  

-a -b 

reinF = 20 kN/m 

  

-c -d 

reinF = 28 kN/m 

  

-e -f 

reinF = 60 kN/m
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Figure 17: Reinforced arch SRG_A. –a, –c, –e, –g: lines of thrust at different vaules of reinforcement 

ultimate force reinF . –b, –d, –f, –h: identification of hinges position as a function of angle 180°-α  . 
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-a -b 

Figure 18: Reinforced arch SRG_A, sensitivity analyses on the collapse load changing reinfσ . –

a: infinite compressive strength, –b: finite compressive strength. 

 

 
Figure 19: Reinforced arch SRG_A: deformed shape at collapse obtained with the LB LA 

code.  
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-a -b 

formation of four hinges 

 

formation of three hinges and a sliding interface 

 
formation of one hinge and three sliding interfaces 

 
-c 

Figure 20: Reinforced arch SRG_A, sensitivity analyses on the collapse load changing 
reinfσ  

assuming infinite compressive strength. –a and –b: collapse loads (-a detail at small reinfσ ). –c 

indication of the failure mechanisms active in some meaningful cases. 
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3.4 FRP and TRM reinforced barrel vaults (FRP_V and TRM_V) 

In analogy to what was done for the reinforced arch, a sensitivity analysis is carried out on the FRP 

and TRM reinforced barrel vaults (FRP_V and TRM_V), again varying in a wide range the value of 

the conventional ultimate strength of the reinforcement 
reinf

σ . In the numerical model, there is 

obviously no distinction between the different typologies of failures occurring as a consequence of 

the different reinforcing system, therefore sensitivity analysis results reported in Figure 21 hold for 

both the FRP_V and TRM_V case. As can be seen, in analogy with the case discussed for arches, 

the lower bound for the thrust lines progressively shifts downward at increasing values of 

reinforcement conventional tensile strength. Values of 
reinfσ =

rσ  that make the LA model fitting in 

an optimal way the collapse loads found experimentally are sketched in Figure 22-a (FRP_V) and 

Figure 22-c, along with a sensitivity analysis on collapse loads obtained varying 
reinf

σ . For FRP, 

Figure 22-a, the debonding strength evaluated according to CNR DT-200 [41] is also indicated with 

a vertical dotted line. For TRM, Figure 22-c, the expected experimental range for 
reinfσ , with 

indication of 
T1σ , 

uσ  and the debonding strength envelope are also indicated for the sake of 

comparison. 
r

σ  turns out to be equal to 187 and 386 MPa for FRP and TRM reinforcing systems, 

respectively. Whilst the numerical prediction for TRM appears very satisfactory, with almost 

perfect match for 
reinfσ =

T1σ , FRP vault seems to experimentally collapse far before that CNR DT-

200 [41] debonding strength is reached. In order to investigate if the reason is linked to masonry 

crushing, sensitivity analyses are repeated at progressively decreased values of compressive 

strength and results are shown in Figure 22-b and Figure 22-d for FRP and TRM respectively. As 

expected, collapse load slightly decreases, but from the results obtained, it appears clear that to take 

into account masonry crushing does not change the situation drastically. As a consequence, FRP 

case still exhibits quite large deviations, whereas TRM matches even better experimentation. Again 

the collapse mechanism is ruled by the formation of four plastic hinges, Figure 23, in the same 

positions found for the unreinforced case. 

It is interesting also to notice that the lowest rσ  numerically found among the three tested 

strengthening systems is the FRP one, meaning that failure occurs unexpectedly much more 

prematurely than in the other two cases. A possible cause can be therefore, in analogy with the arch, 

a shear sliding, again typically observed at springing. Simulations are therefore repeated with 

limited shear strength, assuming again different values for the friction angle Φ  and a cohesion 

almost vanishing (equal to 
t

f ). Results of the sensitivity analysis in terms of obtained collapse 

loads are summarized in Figure 20 (subfigure –a refers to FRP and –b to TRM). In agreement with 

arch results, experimental collapse load is reproduced quite well assuming CNR DT-200 [41] 

debonding strength for FRP and 
reinf

σ =
T1

σ  for TRM, accounting for possible sliding with friction 

angle of the interfaces ranging between 17.5 and 20°. 
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Figure 21: Reinforced barrel vaults (FRP_V and TRM_V). –a, –c, –e, –g: lines of thrust at different vaules 

of masonry tensile strength. –b, –d, –f, –h: identification of hinges position as a function of angle 180°-α . 
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-a -b 

  
-c -d 

Figure 22: Reinforced barrel vaults sensitivity analyses on the collapse load changing reinfσ . –a: 

FRP_V, infinite compressive strength, –b: FRP_V, finite compressive strength, –c: TRM_V, infinite 

compressive strength, –d: TRM_V, finite compressive strength. 

 

 
Figure 23: Reinforced barrel vaults (FRP_V and TRM_V): deformed shape at collapse 

obtained with the LB LA code.  
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-a -b 

Figure 24: Reinforced barrel vault FRP_V (-a) and TRM_V (-b), sensitivity analyses on the collapse 

load changing ������ assuming infinite compressive strength and with sliding allowed. 

4 Conclusions 
After a comprehensive in-situ experimentation on two masonry arches and three tile barrel vaults 

reinforced in various ways and with different materials, the present paper has presented a simple 

lower bound FE limit analysis code which accounts for masonry a possible finite tensile and 

compressive strength as well as shear failure, ruled by a Mohr-Coulomb law. 

From a final analysis of the numerical results obtained by means of comprehensive sensitivity 

analyses properly discussed in the paper, the following considerations can be drawn: 

1) For the unreinforced case, a deeper insight -especially in tension- into the mechanical 

properties of the constituent materials (mortar and bricks), would be needed. As a matter of 

fact, classic NTM modelling appears too conservative in the unreinforced case and taking 

into account the actual masonry tensile strength would help in predicting better the 

experimental collapse load, which can be sensibly higher (more than 30%). 

2) For the reinforced case, a comprehensive characterization of the bond behavior in the 

different reinforcing systems appears crucial, even if requires extensive experimentation 

which goes beyond the aims of the present paper. As a matter of fact, the exact knowledge 

of the bond behavior is paramount to estimate the conventional tensile strength of the 

reinforcement, which is needed in limit analysis computations to predict properly the 

expected increase of the load bearing capacity. The limit analysis code proposed, thanks to 

its stability and computational efficiency, helps in quickly performing comprehensive 

sensitivity analyses, changing conventional tensile strength of the trusses representing the 

reinforcement, assuming a limited compressive strength (to figure out if crushing occurs) 

and a limited shear strength for the masonry elements. In case of reinforcement, indeed, the 

strength of the reinforcement is so high that sliding near abutments activates and a good 

match with experimentation is hardily obtainable with “à la Heyman” approaches.  
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3) The extensive comparisons with experimental evidences reported highlight that, in case of 

FRP and SRG reinforcement, to account for sliding is crucial in order to obtain a good 

match with experimentation, even if the hypothesis of associated plasticity is not removed 

for the sake of simplicity. TRM case appears on the contrary well reproduced even with a 

model that disregards shear failure and masonry limited compressive strength, i.e. follows 

the classic thrust-line approach. 

4) The sensitivity analyses carried out exhibit a relatively wide scatter of optimal data to arrive 

at solutions reproducing experimental evidences. This in turn suggests to assume strength 

parameters as random variables and opens the way for stochastic analysis, e.g. in the 

framework of Bayesian inference to improve the prior quite vague knowledge of the 

strength parameters and narrow then the original scatter when more measurements become 

available [45]. 

5 Acknowledgements  
T.C.S. S.r.l. took of care the in situ application of the reinforcement systems and prepared the 

samples.  

The materials characterization was performed at the Testing Laboratory for Materials, Structures 

and Constructions of Politecnico di Milano. Their financial support is gratefully acknowledged.  

Part of the analyses were developed within the activities of Rete dei Laboratori Universitari di 

Ingegneria Sismica – ReLUIS for the research program funded by the Dipartimento di Protezione 

Civile. 

Eng. Maurizio Acito is gratefully acknowledged for having put at disposal a licensed version of 

Straus7. 

 

6 References 
[1] Carozzi F.G., Poggi C., Bertolesi E., Milani G. Ancient masonry arches and vaults 

strengthened with TRM and FRP composites: Experimental evaluation. Composite 

Structures, Under review (2017). 

[2] Kooharian A., Limit analysis of voussoir (segmental) and concrete arches. J. Am. Concrete 

Inst., 49 (12) (1952), 317-328. 

[3] Heyman J., The safety of masonry arches. International Journal of Mechanical Sciences, 43 

(1969), 209–224. 

[4] Livesley R.K., Limit analysis of structures formed from rigid blocks. Int. J. Numer. 

Methods Eng., 12(12) (1978), 1853–1871 

[5] Heyman J., The masonry arch. Ellis Horwood, Chicester, (1982). 

[6] Oppenheim I. J., The masonry arch as a four-link mechanism under base motion. 

Earthquake Engineering and structural dynamics, 21 (11) (1992), 1005-1017. 

[7] Bertolesi E., Milani G., Fedele R., Fast and reliable non-linear heterogeneous FE approach 

for the analysis of FRP-reinforced masonry arches. Composites Part B: Engineering, 80 

(2016), 189-200. 

[8] Lucchesi M., Padovani C., Pasquinelli G., Zani, N., On the Collapse of Masonry Arches, 

Meccanica, 32(4) (1997), 327–346. 

[9] O’Dwyer D., Funicular analysis of masonry vaults. Computers & Structures, 73 (1–5) 

(1999), 187–197. 

[10] Gilbert M., Limit analysis applied to masonry arch bridges: state-of-the-art and recent 

developments. In Proc. 5th Int. Conf. Arch Bridg., Madeira, Portugal (2007). 



  

Revised version, modifications highlighted in color YELLOW 

[11] Milani E., Milani G., Tralli A., Limit analysis of masonry vaults by means of curved shell 

Finite Elements and homogenization. International Journal of Solids and Structures, 45 

(20) (2008), 5258-5288. 

[12] Betti M., Drosopoulos, G. A., Stavroulakis, G. E. (2008). Two non-linear finite element 

models developed for the assessment of failure of masonry arches. Comptes Rendus 

Mécanique, 336(1-2) (2008), 42–53. 

[13] Milani G., Upper bound sequential linear programming mesh adaptation scheme for 

collapse analysis of masonry vaults. Advances in Engineering Software, 79 (2015), 91–

110. 

[14] Sacco E., Some aspects on the statics of masonry aches. Masonry structures between 

mechanics and architecture, Springer International Publishing, Cham, 265–290 (2015). 

[15] Chiozzi A., Milani G., Tralli A., A Genetic Algorithm NURBS-based new approach for 

fast kinematic limit analysis of masonry vaults, Computers & Structures, 182 (2017), 187–

204. 

[16] Faccio P., Foraboschi P., Siviero E., Masonry vaults reinforced with FRP strips (in Italian). 

L’Edilizia, 7-8 (1999), 44–50. 

[17] Valluzzi M.R., Valdemarca M., Modena C., Behavior of brick masonry vaults strengthened 

by FRP laminates. J Compos Constr ASCE, (2001), 163-169. 

[18] Foraboschi P., Strengthening of Masonry Arches with Fiber-Reinforced Polymer Strips. J 

Compos Constr ASCE, 8(3) (2004), 191–202. 

[19] Borri A., Castori G., Corradi M., Intrados strengthening of brick masonry arches with 

composites materials. Composite Part B: Engineering, 42 (5) (2011), 1164-1172. 

[20] Oliveira D. V., Basilio I., Lourenço P. B., Experimental behaviour of FRP strengthened 

masonry arches. Journal of Composites and Constructions, 14 (2010), 312-322. 

[21] Rovero L., Focacci F., Stipo G., Structural behavior of arch models strengthened using 

fiber-reinforced polymer strips of different lengths. Journal of Composites for 

Construction, 17 (2013), 249-258. 

[22] Baratta A., Corbi O., Stress analysis of masonry vaults and static efficacy of FRP repairs. 

International Journal of Solids and Structures, 44 (2007), 8028-8056. 

[23] Caporale A., Luciano R., Rosati, L., Limit analysis of masonry arches with externally 

bonded FRP reinforcements. Computer Methods in Applied Mechanics and Engineering, 

196(1) (2006), 247–260. 

[24] Roca P., López-Almansa F., Miquel J., Hanganu, A. Limit analysis of reinforced masonry 

vaults. Eng. Struct., 29(3) (2007), 431–439. 

[25] Briccoli Bati S., Rovero L., Towards a methodology for estimating strength and collapse 

mechanism in masonry arches strengthened with fibre reinforced polymer applied on 

external surfaces. Materials and Structures/Materiaux et Constructions, 41 (2008), 1291-

1306. 

[26] Marfia S., Ricamato M., Sacco E., Stress analysis of reinforced masonry arches. 

International Journal of Computational Methods in Engineering Science and Mechanics, 9 

(2008), 77-90. 

[27] Milani G., Milani E., Tralli A., Upper bound limit analysis model for FRP-reinforced 

masonry curved structures. Part II: Structural analyses. Computers and Structures, 87 

(2009), 1534-1558. 

[28] Cancelliere I., Imbimbo M., Sacco E., Experimental tests and numerical modeling of 

reinforced masonry arches. Engineering Structures, 32 (2010), 776-792. 



  

Revised version, modifications highlighted in color YELLOW 

[29] Caporale A., Luciano R., Limit analysis of masonry arches with finite compressive 

strength and externally bonded reinforcement. Composites Part B: Engineering, 43 (2012), 

3131-3145.  

[30] Caporale A., Feo L., Luciano R., Limit analysis of FRP strengthened masonry arches via 

nonlinear and linear programming. Composites Part B: Engineering, 43 (2012), 439-446. 

[31] Caporale A., Feo L., Luciano R., Penna R., Numerical collapse load of multi-span masonry 

arch structures with FRP reinforcement. Composites Part B: Engineering, 54 (2013), 71-

84. 

[32] Drosopoulos G.A., Stavroulakis G.E., Massalas C.V., FRP reinforcement of stone arch 

bridges: Unilateral contact models and limit analysis. Composites Part B: Engineering, 38 

(2007), 144-151. 

[33] Briccoli Bati S., Fagone M., Rotunno T., Lower bound limit analysis of masonry arches 

with CFRP reinforcements: A numerical method. Journal of Composites for Construction, 

17 (2013), 543-553. 

[34] Baratta A., Corbi, O., Closed-form solutions for FRP strengthening of masonry vaults. 

Computers & Structures, 147 (2015), 244–249. 

[35] Chiozzi A., Milani G., Tralli A., Fast kinematic limit analysis of FRP-reinforced masonry 

vaults. I: A general Genetic Algorithm NURBS-based formulation. ASCE Journal of 

Engineering Mechanics, 143(9) (2017), Paper #04017071. 

[36] Chiozzi A., Milani G., Tralli A., Fast kinematic limit analysis of FRP-reinforced masonry 

vaults. II: Numerical simulations. ASCE Journal of Engineering Mechanics, 143(9) (2017), 

Paper #04017072. 

[37] Elmalich D., Rabinovitch O., Masonry and monolithic circular arches strengthened with 

composite materials - A finite element model. Computers and Structures, 87 (2009), 521-

533. 

[38] Fedele R., Milani G., A numerical insight into the response of masonry reinforced by FRP 

strips. The case of perfect adhesion. Composite Structures, 92 (2010), 2345–2357. 

[39] Fedele R., Milani G., Three-dimensional effects induced by FRP-from-masonry 

delamination. Composite Structures, 93 (7) (2011), 1819-1831. 

[40] Fedele R., Milani G., Assessment of bonding stresses between FRP and masonry pillars 

during delamination tests. Composites Part B: Engineering, 43(4) (2012), 1999-2011. 

[41] CNR-DT200. Guide for the design and construction of externally bonded FRP systems for 

strengthening existing structures. C.N.R., National Reaserch Council, Italy, Revision 8 

March 2012. 

[42] D’Ambrisi A., Mezzi M., Feo L., Berardi V.P., Analysis od masonry structues 

strengthened with polymeric net reinforced cementitious matrix materials. Composite 

Structures, 113 (1) (2014), 264-271. 

[43] Alecci V., Misseri G., Rovero L., Stipo G., De Stefano M., Feo L., Luciano R., 

Experimental investigation on masonry arches strengthened with PBO-FRCM composite. 

Composites Part B, 100 (2016), 228-239. 

[44] De Santis S., Roscini F., de Felice G., Retrofitting masonry vaults with basalt textile 

reinforced mortar. Key Engineering Materials, 747 (2017), 250-257. 

[45] Sejnoha M., Janda T., Melzerova L., Nezerka V., Sejnoha J., Modeling glulams in linear 

range with parameters updated using Bayesian inference. Engineering Structures, 138 

(2017), 293–307. 

[46] Como M., Statics of Historic Masonry Constructions. vol. 1. Berlin, Heidelberg: Springer 

Berlin Heidelberg (2013). doi:10.1007/978-3-642-30132-2. 



  

Revised version, modifications highlighted in color YELLOW 

[47] Huerta S. The Analysis of Masonry Architecture: A Historical Approach. Archit Sci Rev 

(2011). 

[48] Del Piero G., Limit analysis and no-tension materials. Int. J. Plasticity, 14(1-3) (1998), 

259-271. 

[49] Sloan S.W., Kleeman P.W. ,Upper bound limit analysis using discontinuous velocity 

fields. Computer Methods in Applied Mechanics and Engineering (1995), 127 (1-4), 293-

314. 

[50] Olsen P.C., The Influence of the linearisation of the yield surface on the load bearing 

capacity of reinforced concrete slabs. Computer Methods in Applied Mechanics and 

Engineering (1998), 162, 351-358. 

[51] Milani G., Lourenço P.B., Tralli A., Homogenised limit analysis of masonry walls, Part 1: 

Failure surfaces. Computers & Structures (2006), 84: 166-180. 


