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ABSTRACT 

 

In this work, the attention is focused on UVA-photosensitized reactions 

triggered by a DNA chromophore-containing lesion, namely 5-formyluracil. This is a 

major oxidatively generated lesion that exhibits an enhanced light absorption in the 

UVB-UVA region. The mechanistic study combining photochemical and 

photobiological techniques shows that irradiation of 5-formyluracil leads to a triplet 

excited state capable of sensitizing formation of cyclobutane pyrimidine dimers in DNA 

via a triplet-triplet energy transfer. This demonstrates for the first time that an 

oxidatively generated DNA damage can behave as an intrinsic sensitizer and result in an 

important extension of the active fraction of the solar spectrum with photocarcinogenic 

potential. Overall, this raises the question of an aggravated photomutagenicity of the 5-

formyluracil lesion. 
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The DNA of all living organisms is continuously damaged by endogenous processes as 

well as by exogenous genotoxic chemicals and physical agents ie. UV and ionizing 

radiation. The resulting chemical changes induce complex cell responses that can finally 

end in gene mutation and cancer development.1 

Oxidative processes are among the most frequently involved in DNA damage 

formation, 8-oxo-7,8-dihydroguanine being considered as the signature of such 

reactions. However, the importance of 5-formyluracil (ForU) should not be neglected, 

as it represents the major oxidation product of pyrimidine bases.2-3 Indeed, ForU is part 

of the most important lesions formed under γ-radiation, after those derived from 

guanine oxidation.2-4 ForU has also been obtained in significant yields as a result of 

UVA irradiation of DNA in the presence of Type I photosensitizers as menadione, 

benzophenone or a nitro substituted naphthalimide.3, 5 Interestingly, ForU is produced 

during endogenous processes as an intermediate of thymine oxidation catalyzed by 

thymine hydroxylase, an enzyme that belongs to the metabolic and catabolic 

dioxygenases found in a wide range of organisms including bacteria, yeast, plants, and 

humans.6  

The presence of ForU residues in the DNA molecule is not innocuous and 

induces miscoding during replication with a relatively high frequency.7-10 This has been 

attributed to the strong electron withdrawing formyl substituent at C5 that increases the 

acidity of N3 proton and thus affects the Watson-Crick interactions involved in base 

pairing.11 Moreover, ForU is able to form covalent cross-links with proteins through the 

particular chemistry of the aldehyde functional group with amino or thiol-containing 

amino acids.12-13 

 From a photochemical point of view, the presence of formyl group at C5 might 

be relevant because it is expected to affect the distribution and nature of the excited 
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 4

states by comparison with those of thymine having the unaltered C5-methyl group. This 

is of special interest in connection with our recent finding that the (6-4) photoproduct, 

obtained by direct DNA irradiation, is able to act as an intrinsic photosensitizer and to 

generate secondary photodamages in its neighborhood.14-15 In principle, other primary 

lesions could also play this role, but this would require that the initially formed damage 

fulfils the basic properties of efficient DNA photosensitizers, which include to exhibit a 

UVB/UVA absorption that extends to longer wavelength regions to allow selective 

excitation, and to generate a reasonably populated sufficiently energetic triplet excited 

state. With this background, we have investigated for the first time the potential of an 

oxidatively generated lesion, ForU, to behave as an internal DNA photodamaging agent. 

In this context, the photophysical study of ForU was run out focusing the attention on 

the two main relevant points for intrinsic photosensitizers, ie. extended UV absorption 

toward the UVA region and formation of a triplet excited state. 

As shown in Figure 1A, ForU presents a main absorption band in phosphate buffer (pH 

7.4) with maximum at ca. 297 nm and a tail that reaches up to almost 350 nm. Thus, 

ForU fulfils the first important characteristic as its absorption is red shifted in 

comparison with the characteristic UVC absorption of DNA, allowing for an extended 

action spectrum together with a selective excitation in the UVB/UVA region.  
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Figure 1. (A) UV-Vis absorption spectrum of ForU in PBS (green line) and 

phosphorescence emission spectrum in EtOH at 77 K (red line). Inset: chemical 

structure of ForU. (B) Phosphorescence emission spectra of ForU in PBS alone (black 

line) or in the presence of calf thymus DNA (1 mM in bases, pink line).  

 

 As regards the issue dealing with the possible generation of the ForU triplet 

excited state (3ForU), laser flash photolysis was performed in nitrogen flushed 

phosphate buffer (Nd:YAG, 266 nm). The obtained transient spectrum showed a broad 

signal from 320 to 560 nm with maximum at ca. 460 nm (Figure 2). This species was 

effectively quenched by oxygen (Figure 2, inset), with a lifetime of 1.75 µs under 

nitrogen atmosphere, 0.56 µs for air conditions and 0.15 µs when the solution was 

saturated with oxygen. The corresponding bimolecular rate constant kq(O2) obtained 

from the Stern Volmer plot was of ca. 4 x 109 M-1 s-1. Thus, this transient was assigned 

to the triplet-triplet transition of ForU. 

(A) 

(B) 
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Figure 2. Transient absorption spectra of a N2-bubbled solution of ForU (7.7 mM) in 

PBS obtained at different times after 266 nm laser excitation. Inset: Decays monitored 

at 460 nm under N2 (black), air (red) and O2 (blue) atmosphere. 

 

In addition, formation of singlet oxygen (1O2) as a result of 3ForU quenching was 

studied by means of EPR experiments, using TEMP (2,2,6,6-tetramethylpiperidine) as 

specific spin trap. The well-established triplet signal of TEMPO free radical (g=2.006, 

aN= 17.3 G) was observed after irradiation of a ForU aqueous solution in the presence of 

TEMP (see Figure 1S in Supporting Information).16 Thus, ForU can act as an DNA 

oxidative agent through generation of reactive oxygen species able to induce formation 

of 8-oxo-7,8-dihydroguanine.  

 Next, the 3ForU energy was determined by phosphorescence experiments 

performed in EtOH at 77 K. The spectrum exhibits a large band centered at 416 nm 

(Figure 1A, red line). A triplet excited state energy (ET) of ca. 314 kJ mol-1 was 

obtained from the wavelength corresponding to the 20 % of the emission intensity. 

Upon complexation with DNA, a small blue-shift was observed in the phosphorescence 

band (see Figure 1B); this is consistent with the observations recently reported for other 

photosensitizers and points to a slight increase of the triplet energy within DNA.17 This 

range of ET values is somewhat higher than that of isolated Thd in bulk solution (ET of 
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 7

ca. 310 kJ mol-1)18 but, it is more than 40 kJ mol-1 above that determined for Thy in 

DNA.17, 19 Thereby, the high ET value of 3ForU makes it a feasible energy donor for a 

triplet–triplet energy transfer to the thymine nucleobase, which once excited can react 

with a ground state counterpart to form the well-known cyclobutane thymine dimers 

(T<>T). 

 The occurrence of such a process was first investigated using a model dyad 

(Thy-Thy, Scheme 1) containing two covalently linked thymine units. The synthesis of 

this N-methylated thymine dyad was performed adapting the described protocol.20-21 A 

solution containing Thy-Thy (8.7 mM) and ForU (5.3 mM) was monochromatically 

photolyzed at λ=320 nm in a deaerated mixture of water:acetonitrile (1:1, v:v), and the 

kinetics of the reaction was followed by reverse phase HPLC. As shown in Figure 3, the 

irradiation gives rise to a clean photoreaction where the peak of Thy-Thy eluting at 22 

min decreases with irradiation time while only one product eluting at 12 min is formed. 

The photoproduct was assigned to the cis-syn cyclobutane thymine dimer of the dyad 

(Thy<>Thy, Scheme 1) by comparison with the synthesized compound (see Supporting 

Information). It is noteworthy that little if any photodegradation of ForU occurred 

during the employed reaction time. Control experiments based on irradiation of Thy-

Thy alone at the same wavelength showed a very slow degradation ruling out that 

significant formation of Thy<>Thy in the presence of ForU occurs by direct excitation 

(see Figure 2S of Supporting Information). 
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 8

 

Scheme 1. Model system used to study pyrimidine cyclobutane dimer formation.  

5 10 15 20 25 30

Retention time (min)

0

3h30'

    Thy<>Thy

Thy-Thy

 

Figure 3. HPLC chromatograms obtained for ForU:Thy-Thy (5.3 mM: 8.7 mM) in 

H2O:CH3CN (1:1, v:v)  irradiated from 0 to 3h30 at 320 nm. 

 

 The photoreaction was also followed by NMR spectroscopy in CD3CN:D20 (1:1, 

v:v) as solvent (Figure 4). Likewise, a clean process was observed with this technique. 

The [2+2] photocycloaddition reaction results in saturation of the C5-C6 double bond 

and provokes characteristic changes of the proton signals. Differences were observed 

not only for the protons of the nucleobase but also for those of the methylene bridge. 
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 9

Concerning the thymine moiety, the diagnostic H6 proton moves from 7.75 to 4.35 ppm 

while the signal of the methyl group protons at C5 is shifted from 2.25 to 1.80 ppm 

(signals at 3.3 ppm, 2.2. ppm and 1.6 ppm correspond to the protons of the trimethylene 

bridge). The integral of both signals was used, as a double check, to monitor the 

reaction course, reaching after 7 h of irradiation a chemical yield for Thy<>Thy 

formation of ca. 60 %.  
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 10

 

Figure 4. 1H NMR spectra in D20:CD3CN (1:1, v:v) (A) pure Thy-Thy (red line) and 

Thy<>Thy (green line). Equimolar mixture of Thy-Thy and ForU (7x10-3 M) irradiated 

4h (B) or (C) 7 h. 

 In addition, a dyad containing two cytosines (Cyt-Cyt, Scheme 1) was also 

synthesized and irradiated monochromatically at 320 nm in the presence of ForU. The 

kinetics of the reaction, followed by HPLC (Figure 5), showed that Thy-Thy reacts 

much faster than Cyt-Cyt. These data are in agreement with the triplet excited state 

energy of the two bases, as 3Cyt lies ca. 20 kJ mol-1 above 3Thy.22 Formation of the 

uracil homodimers after deamination was revealed through UPLC-HRMS experiments 

(see Figure 3S in Supporting Information), which allowed detection of the exact mass 

m/z 265.0929 corresponding to the formula C11H13N4O4. 
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Figure 5. Time-dependent photodegradation of Thy-Thy (black) and Cyt-Cyt (red) in 

the presence of ForU (λirr=320 nm). 

 

The obtained results revealed that ForU is able to photosensitize the dimerization 

of pyrimidines in bulk solution. Thus, the next step was to confirm the occurrence of 

this process when the whole DNA molecule is the target. For this purpose, experiments 

were carried out on a plasmid DNA using agarose gel electrophoresis. This technique 

allows a rapid detection of single strand breaks (ssb) that induce the conversion of 

native supercoiled form I into the circular form II. Quantitation of the cleaved 

proportion of DNA is performed by densitometry taking advantage of the different 

electrophoretic mobility of both forms. A limitation of this technique relies on the 

preferential detection of lesions, mainly resulting from an oxidative pathway, that end in 

ssb formation. However, treatment with selective enzymes, which specifically recognize 

the damage and cleave the DNA backbone at its site, brings a reliable solution to this 

problem. In this context, T4 endonuclease V was used to reveal the photosensitization 

of cis-syn cyclobutane pyrimidine dimers (Pyr<>Pyr) by ForU. 

 A first experiment consisted of the estimation of ssb obtained by UVA 

irradiation of ForU (25 or 50 µM) in the presence of plasmid DNA (pBR322, 38 µM in 

bp). As shown in Figure 6, the presence of ForU induced a concentration and dose 

dependent formation of ssb, reaching after 15 minutes of irradiation values of 30 and 
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 12

50 % for 25 and 50 µM, respectively. These DNA backbone ruptures should result from 

sugar oxidation through formation of radicals derived from ForU excitation. Next, 

formation of Pyr<>Pyr was studied using a ForU concentration of 40 µM that provided 

a good balance between relevant Pyr<>Pyr formation and low ssb. The obtained results 

are shown in Figure 6B, which demonstrate that ForU can indeed act as a triplet energy 

donor to generate Pyr<>Pyr (mainly Thy<>Thy) in DNA. 

 

 

 

 

 

 

 

 

Figure 6. (A) Agarose gel electrophoresis for single strand break (ssb) formation of 

UVA-irradiated samples of pBR322 (38 µM in bp) alone or in the presence of ForU (25 

or 50 µM). (B) Quantitation of ssb formation for UVA-irradiated samples of pBR322 

(38 µM in bp) alone or in the presence of ForU (25 or 50 µM in black and grey, 

respectively). Inset: Quantitation of cyclobutane pyrimidine dimer formation for UVA-

irradiated samples of pBR322 (38 µM in bp) in the presence of ForU (40 µM). 

 

 In summary, the present work has demonstrated that 5-formyluracil can be 
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 13

excited in the UVB-UVA region, to give a highly energetic (>314 kJ mol-1) triplet 

excited state. This species is characterized by its low temperature phosphorescence 

emission in solid matrix (λem ca. 415 nm), as well as by laser flash photolysis in 

solution at room temperature (λmax ca. 460 nm). Triplet-triplet energy transfer from 

ForU to thymine, both in a model dyad and in isolated DNA, leads to formation of 

cyclobutane pyrimidine dimers. This constitutes the first example of an oxidatively 

generated lesion acting as internal photosensitizer for pyrimidine dimerization in DNA. 

In principle, the closely related 5-formylcytosine, derived from hydroxyl radical and 

one electron oxidation of the epigenetic mark precursor 5-methylcytosine, might also 

present remarkable photosensitizing properties; this possibility is currently being 

investigated. 

 

METHODS 

Reagents and solvents 

5-Formyluracil (ForU), thymine (Thy), cytosine, TEMP, sodium hydride, iodomethane, 

1,3-dibromopropane, agarose, phosphate-buffered saline (PBS) tablets, ethanol and 

acetonitrile were purchased from Carbosynth and Sigma-Aldrich, and used as received. 

Acetonitrile was dried with a SPS system. DNA pBR322 was obtained from Roche and 

T4 endonuclease V from Werfen. 

Characterization 

The 1H and 13C NMR spectra were measured with a 300 MHz instrument, and CDCl3 

was used as solvent for all the spectra of synthesized compounds. The solvent signal 

was taken as the reference using a chemical shift (δ) of ca. 7.26 ppm and 77.16 ppm for 

1H NMR and 13C NMR, respectively. Coupling constants (J) are given in Hz. 
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Exact mass values were determined by using a Waters ACQUITY™ XevoQToF 

spectrometer (Waters Corp.) connected to the UPLC system via an electrospray 

ionization (ESI) interface. The ESI source was operated in positive or negative 

ionization mode with the capillary voltage at 3.0 kV. Leucine-enkephalin was used as 

the lock mass generating an [M+H]+ ion (m/z 556.2771) or [M-H]- ion (m/z 554.2615) at 

a concentration of 500 pg/mL and a flow rate of 20 µL/min to ensure accuracy during 

the MS analysis. For Cyt-Cyt experiments, an Acquity UPLC HSS T3 column (150 mm 

× 2.1 mm, 1.8 µm) was employed with an injection volume of 1 µL. The mobile phase 

was increased from 95% water (acidified with 0.1% formic acid) and 5% acetonitrile 

(acidified with 0.1% formic acid) to 100 % of acetonitrile (acidified with 0.1% formic 

acid) in 10 min, during all the gradient a flow rate of 0.3 mL min-1 was used. 

Photophysical instrumentation  

UV-Vis absorption. UV absorption spectra were registered on a Cary 50 

spectrophotometer (Varian) using a quartz cuvette of 1 cm of optical path and 3 mL 

capacity.  

Steady-state photolysis. Monochromatic irradiation (λirr= 320 nm) experiments were 

carried out with a Xenon lamp (150 W for HPLC experiments and 75 W for NMR) 

equipped with a monochromator from Photon Technology Instruments (model 101). 

The dimerization of the model dyad Thy-Thy was performed with Thy-Thy (8.7 mM) 

and ForU (5.3 mM) in a mixture (1:1, v:v) of milliQ water : acetonitrile. 

For experiments with plasmid DNA, a multilamp Luzchem photoreactor equipped with 

355 nm lamps was used as irradiation source. The UVA dose received for t = 5, 10 and 

15 min was 2.3, 4.5 and 6.8 J/cm2, respectively (ie. irradiance of 7.5 mW/cm2).  

Page 14 of 22

ACS Paragon Plus Environment

ACS Chemical Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 15

EPR trapping measurements. The measurements were performed in a Wildman 

Suprasil/aqueous quartz-ware flat cell (volume 150 µl, length 60 mm) with a Bruker 

EMX10/12 EPR spectrometer, using the following parameters: microwave power, 20 

mW; modulation amplitude, 1.0 G; and modulation frequency, 100 kHz. Aerated water 

solutions of 10 mM TEMP containing a 0.35 mM of ForU were irradiated at 290 nm 

using the monochromatic system described above. 

Laser flash photolysis (LFP). Experiments were carried out with a pulsed Nd:YAG 

(L52137 V  LOTIS TII) laser system instrument setting 266 nm as excitation 

wavelength. The pulse duration was of ca. 10 ns and the energy was adjusted at 26 mJ 

pulse−1. The apparatus is composed of a pulsed laser, a Xe lamp, a 77250 Oriel 

monochromator and a photomultiplier. The output signal from a Tektronix oscilloscope 

was transferred to a personal computer. The transient spectra were recorded at room 

temperature employing quartz cells of 1 cm optical path length. Experiments were 

conducted in PBS solutions with a ForU concentration of 7.7 x 10-5 M.  

Phosphorescence emission. The phosphorescence experiments were performed on 

solutions of ForU in ethanol with an absorbance of 0.8 at the excitation wavelength of 

320 nm (value determined for a 1 cm optical path). Samples of ForU (A320 of ca. 0.8) in 

PBS in the absence or in the presence of calf thymus DNA (1 mM bases) were also 

prepared. Then, the solution was transferred to a quartz tube of 5 mm diameter. The 

emission was measured at 77 K, gate time 50 µs, delay 500 µs.  

HPLC analysis 

The irradiated mixtures were analyzed by reverse phase HPLC using a Varian ProStar 

instrument equipped with a diode array detector which covers a detection range from 

200 to 400 nm. For Thy-Thy experiments, a Mediterranea Sea C18 column (250 mm × 
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4.6 mm, 5 µm) was employed with an injection volume of 10 µL (removed from the 

cuvette at different irradiation times). The mobile phase was an isocratic mixture of 

80 % water and 20 % acetonitrile and a flow rate of 1 mL min-1. For Cyt-Cyt 

experiments, a Synergi Polar-RP 80 Å column (150 mm × 4.6 mm, 4 µm) was 

employed with an injection volume of 10 µL (removed from the cuvette at different 

irradiation times). The mobile phase was an isocratic mixture of 98 % aqueous 

ammonium acetate (20 mM) and 2 % acetonitrile and a flow rate of 1 mL min-1. All the 

analysis were run with a monitoring wavelength λ=240 nm, which allows detection of 

all the compounds. Their respective concentrations were determined from calibration 

curves obtained from the pure compounds.  

The samples were prepared using a mixture of H2O:acetonitrile (1:1, v:v) as solvent, 

flushed with N2 and irradiated with monochromatic light at 320 nm. Three experiments 

were carried out: 1) Thy-Thy dyad and ForU mixture (8.7 mM: 5.3 mM), 2) control 

experiment of Thy-Thy dyad irradiated alone (7.7 mM) and 3) control experiment of 

ForU irradiated alone (6.4 mM).  

1
H NMR Kinetic study of thymine dimer formation from Thy-Thy model dyad. 

A mixture of Thy-Thy model dyad and ForU (1:1) (7 mM) were dissolved in 

D2O:CD3CN in a 1:1 ratio (v:v) and monochromatically irradiated at 320 nm (with 75W 

Xe lamp system). The irradiation was followed by 1H NMR spectroscopy after 0, 2, 4 

and 7 hours. The signal of D2O was used as reference with a chemical shift δ of ca. 4.79 

ppm. The yield of formation was determined from comparing the integral of the singlet 

signal at 4.35 ppm that corresponds to two protons for the CPD product (Hdim) and the 

singlet at 7.75 ppm which integrated for 2 protons of the model dyad Thy-Thy (HThy-
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Thy); as well as the integral of methyl group at C5 at δ 2.25 and 1.8 ppm for Thy-Thy 

and Thy<>Thy, respectively. 

Plasmid DNA damage - Agarose Gel Electrophoresis 

Samples containing 5 µL (9 nM, 38 µM in base pair) of supercoiled circular DNA 

(pBR322, 4361 base pairs) in absence or presence of ForU (from 25 to 50 µM) were 

employed in the electrophoresis experiments. The samples were irradiated using a 

multilamp photoreactor with fluorescent tubes emitting in the 300-400 nm range with a 

maximum at 355 nm. For measurement of pyrimidine dimer formation, the samples 

were next incubated for 1 h at 37 ºC with an excess of T4 endonuclease V. Finally, the 

samples were loaded on a 0.8 % agarose gel containing SYBR Safe. After 

electrophoresis, the relative abundance of supercoiled DNA (form I) and relaxed DNA 

(form II) was quantified by densitometry. The mean data were obtained from the results 

of three independent experiments. 
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This includes  the synthesis of the model dyads Thy-Thy, Thy<>Thy and Cyt-Cyt, the EPR 

spectra obtained in the presence of TEMP, the HPLC and UPLC analysis and, NMR spectra of 

the synthesized compounds. 
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