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Abstract: In this paper, an application for the management, supervision and failure forecast of a ship’s
energy storage system is developed through a National Marine Electronics Association (NMEA)
2000 smart sensor network. Here, the NMEA 2000 network sensor devices for the measurement
and supervision of the parameters inherent to energy storage and energy supply are reviewed.
The importance of energy storage systems in ships, the causes and models of battery aging, types of
failures, and predictive diagnosis techniques for valve-regulated lead-acid (VRLA) batteries used
for assisted and safe navigation are discussed. In ships, battery banks are installed in chambers
that normally do not have temperature regulation and therefore are significantly conditioned by the
outside temperature. A specific method based on the analysis of the time-series data of random
and seasonal factors is proposed for the comparative trend analyses of both the battery internal
temperature and the battery installation chamber temperature. The objective is to apply predictive
fault diagnosis to detect any undesirable increase in battery temperature using prior indicators of
heat dissipation process failure—to avoid the development of the most frequent and dangerous
failure modes of VRLA batteries such as dry out and thermal runaway. It is concluded that these
failure modes can be conveniently diagnosed by easily recognized patterns, obtained by performing
comparative trend analyses to the variables measured onboard by NMEA sensors.

Keywords: marine sensor system; NMEA 2000 network; ship networking technology; batteries;
predictive fault diagnosis

1. Introduction

Vessels are essentially floating complex systems, such as freighter ships, carrier ships, cruise ships,
ship factories, oceanographic research ships, and battle ships, etc. All of these vessels are equipped
with navigation, propulsion, power generation, distribution, and other systems of life support. For the
control and supervision of such systems, the existence of common standards of communication
networks would be desirable. As in other distributed control schemes, the transfer of data in ships is
done with networks of low-level control, of real-time features, and of critical natures, with temporary
response restrictions. They include less restrictive hierarchical networks not directly related to the
safety of the ship, up to supervision, planning, and business management systems.

Decision-making that affects the operation of the ship, involving safety, crew, passengers, cargo
and the environment, is generally performed on the bridge or other control centers. To make decisions
efficiently and carry them out requires access to many of the information systems on board. Systems of
special relevance can include navigation, weather forecasting, power generation and storage, engines
and machinery, data processing, messages and alarms, etc. The special risks involved in an aggressive
environment such as marine navigation require adequate levels of security, availability, redundancy,
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and latency of communications networks. Although local office-type networks can work at the same
speed, from the point of view of reliability they are unadvisable.

A large number of sensors, controllers, electronic devices and systems must be installed on
shipboard, and they generate a huge amount of data and information. Such information must be
exchanged reliably to aid system integration and safe navigation [1,2]. These devices necessarily feed
from power sources for their adequate operation. One of the most critical scenarios to face is the
temporary or permanent loss of power supply, which can lead to placing the ship and crew at risk.
In this context, redundant supply structures and predictive fault diagnosis techniques are concepts to
consider. The permanent supervision and trend analysis of the most critical elements can allow for
the detection of anticipatory symptoms—with adequate reaction margins—before reaching a point of
permanent failure.

Specifically, issues concerning power generation, status supervision, alarms, prognosis, and the
control of devices such as generators, alternators, hybrid inverters, and shore-power, are tasks to
be considered. In addition, electrical distribution tasks such as the delivery of power on vessels,
identification of loads, load sharing, and virtual breakers are important issues.

Ship navigation involves different critical operations where no uncertainty in decision making is
acceptable. Such uncertainty can subject crew, passengers, cargo, or the ship itself to conditions of
potential danger. A diagnosis of predictive failures is essential for a safe navigation. This diagnosis is
based on the permanent analysis of the health condition of the system, through the detection and analysis
of different symptoms that precede system’s failures. This analysis can be done using time-series data
of certain system parameters. These techniques for predictive diagnosis allow for generally adequate
margins or reaction capacities in the application of predictive maintenance operations.

In order to maintain a safe navigation, ships require that many systems are continuously available,
i.e., navigation, communication, and weather forecast equipment. If a failure of the storage and
power supply system affects the maneuvering system during a critical operation, the result can
be a serious accident [3]. Therefore, the energy supply system from the batteries must have a
monitoring availability [1]. Ships and aircrafts install redundant systems, especially for the most
critical components, so that no single fault can result in a general failure.

In ships, battery banks are installed in chambers that normally do not have temperature regulation
and that are therefore significantly conditioned by the outside temperature. In this paper, a specific
method based on the analysis of the time-series data of random and seasonal factors is proposed for the
comparative trend analyses of the internal temperature of batteries and the battery installation chamber
temperature. The objective is to apply a predictive fault diagnosis to detect any undesirable increase in
battery temperature due to a prior heat dissipation process failure, to avoid the development of the
most frequent and dangerous failure modes of VRLA batteries—such as dry out and thermal runaway.
It is concluded that these failure modes can be conveniently diagnosed by easily recognized patterns
obtained by performing comparative trend analyses to the variables measured onboard by National
Marine Electronics Association (NMEA) sensors.

The advantage of the diagnostic method based on the comparative trend analyses proposed in
this work is that it focuses on the assignable cause that precedes the dry out and thermal runaway
failures, which is the loss of the operating capacity of the heat dissipation process of the battery banks.
The heat dissipation process of battery banks in real navigation conditions does not have a specific
nature. It depends on the characteristics of the installation chambers (which do not remain invariable
in time), the materials used, the size of the heat dissipation areas, and the ventilation conditions, etc.
All these factors affect the batteries in a variable way, depending on the type of batteries and their
intrinsic aging conditions.

In this study the operation and tests of the batteries have been made in real navigation conditions
using a NMEA 2000 sensor network. As stated before, the possibility of using refrigerated chambers
for battery installation is not feasible in most cases, nor from the economic point of view or from the
energy consumption point of view.
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In Section 2 of this paper existing standards of communication in the marine environment are
reviewed. Section 3 reviews the causes and models of battery aging, including the types of failures
and predictive diagnosis techniques for batteries used for assisted and safe navigation. In Section 4,
the NMEA 2000 network is partially described, and especially the part dedicated to the sensor devices
for the measurement and supervision of the parameters inherent to the energy storage and supply.
In Section 5, the proposed method for onboard battery supervision and predictive fault diagnosis is
presented. In Section 6, NMEA 2000 sensors and devices measurements, trends and registers, of the
main battery parameters and their interpretation are presented. Finally, in Section 7 some conclusions
about the advantages of the proposed method for fault identification by comparative trend analyses
are drawn.

2. Brief Review of Marine Network Communication Technologies and Standards

Before the year 2000, some attempts of standardizing communication networks in ships were
made. Various manufacturers developed different systems, however, differences in requirements made
it difficult to find one common standard for the networks used in the different parts of the ship. IEC
61162-1 defines about 50 talker identifiers for individual types of navigation and radio communication
equipment alone. In [4] approximately 130 different functions on were identified on board the ship,
with most of them associated with some type of computerized equipment that performs supervision
and control. This fact justifies that a data network standard must be able to support many different
systems and support easy interconnection.

With regard to maritime navigation, a new standard for linear network communication—NMEA
2000—was presented in 2001 by the National Marine Electronics Association (NMEA) [5,6]. It was
based on a Controller Area Network (CAN) network, as a solution to the growing expectations dealing
with data exchange among electronic ship devices. Previously, in March of 1983, NMEA 0183 was
introduced as a voluntary industry standard, which used a simple ASCII serial communications
protocol [7,8].

Some features of the data connection layer of the NMEA 2000, like in the physical layer, are
determined by the choice of CAN as the main network. The NMEA 2000 fully makes use of the
international standard of the ISO 11783-3 data connection layer, which is virtually identical to the SAE
J1939-21 standard (i.e., the specification of the CAN for lorries, delivery trucks and trailers). Additional
requirements contained in the NMEA 2000 ensured better copying, with special types of data and
formats transmitted through a navigational device and supported by the special construction of such
devices [9].

In 2007 CANopen as IEEE P1551.6 was proposed as belonging to the IEEE 1451 family of Smart
Transducer Interface Standards for sensors and actuators [10,11].

Concurrently, taking in mind mainly big ships, the Working Group 6 (WG6) of Technical
Committee 80 (TC80) of the IEC defined a set of IEC 61162 standards for “Digital interfaces for
navigational equipment within a ship”, divided into four parts [12]:

• Part 1: IEC 61162-1 single talker and multiple listeners (also known as NMEA 183).
• Part 2: IEC 61162-2 single talker and multiple listeners, high-speed transmission.
• Part 3: IEC 61162-3 serial data instrument network (also known as NMEA 2000).
• Part 450: IEC 61162-450 multiple talkers and multiple listeners–Ethernet interconnection

(also known as Lightweight Ethernet).

Subgroup TC80/WG6 specified the use of Ethernet for on-board navigation networks.
The specification was limited to the transport of NMEA sentences subject to the definition made in
61162-1 on IPv4. Due to the low amount of complexity of the protocol, it was called Lightweight
Ethernet (LWE), and was presented at the ISIS 2011 symposium [13].
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IEC 61162-460: 2015 (E) is a complement to the IEC 61162-450 standard, seeking the introduction
of higher security standards, and improving network integrity. The first edition was published in
08/2015.

Some of the first ship data network standards published were the US Navy’s SAFENET (Survivable
Adaptable Fiber optic Embedded Network) standards I and II [14] in 1988, and ATOMOS [15] from 1992
to 2001, developed through four European research projects. Both used token passing on the data-link
layer to get better real time performance and more deterministic latency from the network. Meanwhile,
due to constant advances in higher-level protocols, Internet Protocols (IP) became predominant with
higher speeds and advances, with Ethernet switches making the latency argument less relevant. Since
1990, Ethernet began to be considered as a more deterministic network, and, therefore more used.

In the period 1991–1993 a Norwegian research project, MITS (Maritime Information Technology
Standard) was developed and subsequently, between 1993–1996 the MITS protocol was implemented
on several ships, based on a single non-redundant Ethernet on the physical layer and TCP/IP protocols
up to the transport layer [16]; however, mainly due to its lack of standard redundancy support its
uptake was delayed.

Standard redundancy support and fully redundant network system based on dual Ethernets and
the IP protocols were specified in the project PISCIS (1998–2000), taken up and developed by the IEC
61162-400 series of standards [15].

The new work item 80/506/NP on an Ethernet based interface standard was proposed in 2007 by
Sweden to the IEC and accepted in March 2008. The IEC TC80/WG6 went to work on its development
and the final version was published in April 2011 as IEC 61162-450 [17].

This TC80/WG6 subgroup has specified with IEC 61162-450 and IEC 61162-460 standards the use
of Ethernet and safety security conditions for shipboard navigational networks, taking into account the
new developments in legislation that make it necessary to look closer at improved system integration
tools such as data networks [18,19].

Other contributions in the context of IT standards were made through major integration projects
such as Flagship, especially in the development of IEC 61162-450 and the final stages of ISO 28005 [4].

Currently, there are projects such as Signal K, which has been proposed as a solution of the next
generation for the exchange of marine data. It not only allows communication between instruments and
sensors aboard a single ship, but also aims to share data among several ships, navigation aids, bridges,
marinas and other land resources. It is designed to be easily used by web and mobile applications
and to connect modern ships to the concept of the Internet of Things. It uses a “Smart” Gateway that
converts existing NMEA data into Signal K, and its installation consists simply of wiring the gateway
to NMEA0183 and/or NMEA 2000 networks and plugging the gateway into a wireless router [20].

3. Supervision and Predictive Fault Diagnosis of Batteries

If properly designed, built, and maintained, a battery can provide many years of reliable service.
A new battery might not initially provide 100% capacity. The capacity typically improves over the first
few years of service, reaches a peak, and declines until the battery reaches its life limit. A reduction
to 80% of the rated capacity is usually defined as the end of life for a lead-acid battery. Below 80%,
the rate of battery deterioration accelerates, and it is more prone to sudden failure resulting from a
mechanical shock or a high discharge rate. Note that even under ideal conditions, a battery is expected
to eventually wear out [21].

With the objective of maximum availability of the energy storage system, the storage capacity
and the useful life of the batteries depends to a large extent on a suitable management of their
use [22]. Overloading excessively as well as under-charging or over-charging a battery can deteriorate
it. Condition monitoring devices can adjust the use of batteries to extend their life. In addition, they
can estimate the amount of energy stored in the batteries to plan power usage and charging cycles, and
they can control the condition of batteries allowing to apply predictive maintenance techniques to
determine when to replace them [23,24].
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The dynamic behavior of battery operation has been studied by a large number of researchers [25].
The models developed years ago with lead-acid batteries [26–28] keep some similarities with
nickel-cadmium batteries, and lithium batteries. Nickel-cadmium (NiCd) chemistry is similar in some
respects to lead-acid in that there are two dissimilar metals in an electrolyte. However, in NiCd
batteries the potassium hydroxide (KOH) does not enter the reaction like sulfuric acid does in lead-acid
batteries. The making is similar to lead-acid in that there are alternating positive and negative plates
submerged in an electrolyte [29]. A review of mathematical models of both lithium and NiCd batteries,
developed at the University of South Carolina, is presented in [30]. The dynamic models of lithium
batteries have been extensively developed by many authors. These range from simple models with a
resistance (R) or a capacitor-resistance (RC) in parallel [31–33], to more complex models where phase
change elements and coils are introduced [34,35]. The researchers modus operandi was mostly the
same: Placing these elements in series and incorporating particularities to achieve higher levels of
adjustment in the electrical behavior of the battery [36,37].

In addition to these electrical models, other mathematical models have been developed to estimate
the parametric variations depending on the values associated with the time of use/disuse and variations
of the temperature of the battery [38]. These models are completed by adding the effects of aging to
determine the rest of useful life (RUL) of the battery. The main factors that affect accelerate battery aging
mechanisms are: Temperature (T), depth of discharge (DOD), state of charge (SOC), and discharge
velocity (C-rate) [39–41].

To monitor the useful life of batteries, the aging phenomenon must be analyzed. Batteries age both
when they are stationary (calendar ageing) and when they are subjected to a cyclic operation (cycling
ageing) [25]. In the first case, apart from the passage of time itself, there are mainly two factors involved
in aging: The temperature and the SOC. The temperature affects according to an exponential relation
that is explained by the Arrhenius equation [42], while the SOC does so linearly [43,44]. On the other
hand, in aging due to cycling, the DOD and the C-rate also intervene [45]. The first one does it by means
of a logarithmic relation whereas the C-rate does it by means of a second-degree polynomial [46,47].

In practical terms, these effects translate into two repercussions: An increase in the internal
resistance of the battery and a loss of capacity [48]. Although there are also effects on the RC elements,
they only act on the instantaneous response of the battery to sudden changes in the current. For practical
purposes, a correlation can be established between the loss of capacity of the battery and its aging
which, although it happens imperceptibly, will occur constantly.

The most visible consequence of the aging of a battery is the gradual loss of its capacity, which is
established through the parameter of the state of health of the battery (SOH). The SOH is calculated as
the quotient between the current capacity (Cap) of the battery and the initial capacity (Capini) according
to Equation (1).

SOH = Cap/Capini (1)

The SOH will serve to determine the limit of its operation, that is, it is the parameter that defines
the end of life of a battery in each application. In the literature on this subject, there are experimental
tests carried out in laboratories where programmed tests have been performed under specific conditions
and patterns to analyze the aging of batteries and other related parameters [49–53].

In many cases, when considering the actual operating conditions of batteries, the determination
or estimation of aging parameters through the measurement of their internal variables may be
inaccessible to sensors. Measurements can be very difficult, expensive, or intractable, and therefore the
mathematical models obtained in the experimental laboratory conditions do not conveniently adapt to
the random conditions of complex degradation associated with the actual operating regime to which
batteries are subjected in maritime navigation conditions. In such conditions the gradual degradation
of the batteries occurs due to cumulative effects of multi-parametric character where the degree of
contribution of each of them is very difficult to quantify. Under real operating conditions, on-line
techniques of trend analysis to monitor the true SOH of batteries are more appropriate [54].
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One of the important aspects of diagnosis is to determine the end of the useful life of the batteries
with the possibility of proceeding to an adequate maintenance in time and form. However, it is
also necessary to consider risks associated with certain typical failures of catastrophic nature, whose
consequences can be manifested in the short term. These types of failures are named and defined in
the next section.

Failure Modes of VRLA Lead-Acid Batteries

It is known that batteries have different failure modes depending on their technology [55].
Nowadays, one of the most used type of batteries in maritime navigation are those of the VRLA type,
due to their comparative benefits and relative low cost in both installation and maintenance, energy
density, and safety. For these kind of batteries, the associated characteristic failure modes are those
described below [56,57].

• Dry out (loss-of-compression)
• Plate sulfation
• Soft and hard shorts
• Post leakage
• Thermal runaway
• Positive-grid corrosion

Some of the failure modes listed above, especially dry out, positive-grid corrosion and thermal
runaway, are strongly dependent on the increase in the internal battery temperature Tin, which in turn
depends under normal conditions largely, but not exclusively, on the external temperature Tex due to
weather conditions. The outside temperature, Tex, is “filtered” by the battery installation chamber and
becomes the ambient temperature Tamb.

Tin has a strong influence on aging, grid-corrosion rates, and rates of water loss (dry out) due
to evaporation or hydrogen evolution at the negative plates (self-discharge), which all increase with
increasing temperature. On the other hand, a (moderate) temperature increase may improve service
life in applications involving severe cycling [58].

Dry out is a phenomenon that occurs and is accelerated due to excessive heat (lack of proper
ventilation or in other words, heat accumulation inside the battery due to a prior failure from the heat
dissipation process) and over-charging, which can cause elevated internal temperatures, high ambient
(installation chamber) temperatures, and contributes decisively to grid corrosion. Up to 82–85% of
the failures exhibit signs of dry out [57]. It is often a secondary result of some failure modes and
special inducer of others, such as thermal runaway. Under normal operating conditions the typical
failure mode for a VRLA battery is negative-strap corrosion, whereby the loss of electrolyte will be
gradual. At elevated internal temperatures, the sealed cells will vent through the pressure relief valve
(PRV). When sufficient electrolyte is vented, the glass matte is no longer in contact with the plates, thus
increasing the internal impedance and reducing battery capacity.

In turn, the causes of the increase in the internal temperature of the battery are the ambient
temperature Tamb, the Vfloat current, and the ripple current effect.

Thermal runaway is a condition in which the battery temperature increases rapidly resulting
in extreme overheating of the battery, therefore the battery can melt, catch on fire, or even explode.
Thermal runaway can only occur if the battery is at a high-ambient temperature and/or the charging
voltage is set too high [59,60]. Although a runaway failure is less frequent, it can have serious
consequences of a critical nature. Thermal runaway occurs when a battery’s internal components
melt-down in a self-sustained reaction. As the battery accepts current, its internal temperature
rises. The rise in temperature reduces the battery impedance, causing it to accept more current from
the charger. The higher current further heats the battery. Thermal runaway begins when the heat
produced by the reaction, that increases exponentially, exceeds the heat removed, that increases linearly.
The surplus heat raises the temperature of the reaction mass, which causes the rate of reaction to
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increase. This in turn accelerates the rate of heat production. An approximate rule of thumb suggests
that reaction rate—and hence the rate of heat generation—doubles with every 10 ◦C rise in temperature
causing the battery temperature to “runaway”. An upper limit of 126 ◦C [57] will eventually be reached
when the electrolyte starts to boil, but once the electrolyte has boiled away, the temperature can climb
even further to the point of plastic meltdown and possible fire [56].

Different batteries can be affected by the float voltage and the ambient temperature Tamb in
different ways. Among diverse batteries of different make and model, there are significant differences
in the float voltages that can cause different aging periods. The following factors contribute to the
response variation in each battery behavior: Chemistry of the battery and construction, age of the
battery, and especially chamber conditions where batteries are installed [61].

If the process of heat generation produced internally in the battery reaches an advanced
uncontrolled phase, violent boiling will occur together with a rapid generation of gas causing in turn
over-pressurization, which if not detected in time can cause catastrophic damage due to emissions
of hydrogen, oxygen, hydrogen sulfide gas (an irritant), and atomized electrolyte. This process can
cause a fire or explosion in the installation chamber [62]. In this scenario, the crew can be dangerously
subjected to emissions of particles, liquids, and hot and toxic gases, with the risk of serious accidents.

Ripple current is another contributor for battery inner temperature increase. Battery manufacturers
recommend that under normal float-charge conditions, battery ripple RMS (root mean square) voltage
must be limited to <0.5% of the Direct Current (DC) voltage applied to the battery. This ensures that
the instantaneous cell voltage will not fall below the open cell voltage or rise above the maximum
float-charge voltage. It also eliminates the consequential battery heating that would occur from
constantly cycling the battery through discharging and recharging states. Many early laboratory and
real-world studies of lead acid (Pb) have shown that Alternating Current (AC) ripple may cause the
cell to experience shallow discharge cycles, that in turn may lead to gassing, grid corrosion and internal
heat generation [63,64].

It is well known that high temperature is the “killer” of all batteries, and that its effect varies
depending on the manufacturer and model or the type of technology used in its manufacture. Lead acid
at 95 ◦F (35 ◦C) will experience a 50% shortened life, while Ni-Cd will have a 16%–18% shortening of
life [56,62]. For every 18 ◦F (10 ◦C) increase in battery temperature, battery life is halved. The increased
temperature causes faster positive-grid corrosion as well as other failure modes. By holding a lead-acid
battery at a temperature of 95 ◦F (35 ◦C) instead of the designed 77 ◦F (25 ◦C), a 20-year battery will
last only ten years, a ten-year battery only five years, and so on. Increase the temperature by another
18 ◦F to 113 ◦F (45 ◦C), and a 20-year battery will last only five years. Therefore, in predictive trend
analysis, the most important parameter to consider is the internal temperature of the batteries [56].

At the other end, the low-temperature range slows down the internal chemical reactions in any
battery. The degree of reduced performances vary according to the technology also. For example, at
temperatures around freezing, a VRLA may need capacity compensation of 20%. The lead-calcium cell
using 1.215 specific gravity acid will require a doubling of capacity, while the Ni-Cd will need about an
18% increased capacity.

Under ideal conditions, the trend analysis of certain battery parameters, especially temperature,
impedance, capacity, and SOH, would be an excellent tool to observe how the batteries degrade over
time, and when a decision can be made to replace them. However, as mentioned above, easy access to
all of these parameters is not always available [65–67].

4. NMEA 2000 Network for Onboard Supervision and Fault Diagnosis

In the data connection layer of the NMEA 2000 network, the main functions of the CAN interface
are: Generating the linear stream of bits, controlling the access to the network, as well as the controlling
of errors and automatic transmission of error messages.
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The CAN network is a linear, bit-orientated main. To avoid collisions and errors of transmission,
the CSMA/CA method of the access to the main is applied, which determines that the reaction time of
all drivers must be less than the transfer time of a bit [68].

NMEA 2000 consequently inherited these limitations that initially conditioned its use in large
vessels. Some of these limitations were the length of the main speed versus transmission speed; since
all the CSMA/CA devices have to work with the same speed and in long lines, differences of a signal
due to delays, may appear. Currently, this restriction can be solved by using NMEA 2000 network
segments with devices such as network bus extenders (NBE) [69].

NBE100 devices were developed to be able to extend the maximum node count up to 250, as well
as the limit network trunk length and the cumulative drop length of a NMEA 2000 network. Without
extenders a single network has a maximum of only nodes allowed, a network trunk length of 200 m,
and a maximum cumulative drop length of 78 m.

In 2001, NMEA published its NMEA 2000 standard and was also adopted as an IEC 61162-3
standard. More than 140 renowned companies belong to the manufacturer’s list of NMEA 2000
developer members. NMEA 2000 has had a great penetration de facto in medium and small length
vessels. Later in 2012, NMEA announced the project OneNet [70] to develop a common infrastructure
to transport NMEA 2000 messages over Ethernet establishing standard gateway rules and supporting
high-bandwidth applications such as video data transport, which is not possible using the NMEA
2000 network. OneNet does not replace NMEA 2000 using the physical and network layer standard
based on the IEEE 802.3 Ethernet Standard, but complements the NMEA 2000 Standard and preserves
existing and future NMEA 2000 messages (PGNs). OneNet should provide greater bandwidth, with up
to 1 gigabit or faster transfer speed directly to the OneNet devices (400 times the speed of the NMEA
2000 CAN bus). It also provides greater scalability, as OneNet backbones may exceed 100 Mbps using
other standard Ethernet physical layers such as Gigabit Ethernet and fiber optics supporting up to
65,024 physical devices, versus CAN bus 50 devices, allowing the creation of larger and more complex
networks. With Power Over Ethernet (PoE) it allows each physical device to be separately powered by
up to 15.4 watts directly from the Ethernet switch. OneNet is not recommended for real-time critical
data, because the NMEA 2000 Controller Area Network (CAN) enables prioritization and guarantees
that the message transmitted will always get through to certified devices. IEEE 802.3 cannot provide
the same guarantee of message delivery.

The structure of NMEA 2000 is shown in Figure 1. A typical NMEA 2000 vessel distribution is
shown in Figure 2.
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In the NMEA 2000 network, devices are available for the measurement, monitoring, supervision
and data processing of parameters from the navigation system, as well as graphical displays for the
analysis of short-term trends. There are also devices for the registration of such data, such as the
Voyage Data Recorder (VDR). These devices are reviewed in the following sections.

4.1. Module and Sensor DCM100 Monitor Specifications

Maretron’s DCM100 (Figure 3) is a sensor device designed to operate within the harsh demands
of the marine environment. It is able to monitor, by proper configuration, different DC power sources,
such as batteries, alternators, convertors, solar cells, and both wind and marine turbines, transmitting
data over the NMEA 2000 network. Figure 4 shows the hall effect current sensor and the DCM100
monitor module connection diagram.
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If “Battery” type is selected, many battery-related options become available [72], where different
types of batteries can be selected such as “Flooded/Wet”, “Gel”, “AGM”, and “Other”. A wide range
of battery parameters can be selected and monitored:

• Battery Voltage
• Battery Current
• Ripple Voltage
• Battery Case Temperature
• State of Charge
• Time Remaining
• Battery Capacity
• Battery Types
• Charging Inefficiencies
• Charge Efficiency Factor (CEF)
• Discharging Inefficiencies
• Peukert Exponent
• Charge Efficiency Factor Calculation

4.2. Temperature Sensors

The PB200 Weather-Station instrument is designed to output time series of data of weather
parameters instantaneous values. Additionally, it is equipped with temperature and barometric
pressure sensors that help to make trend analyses and forecasts on changing weather patterns (Figure 5).
This weather-station is very complete and combined with the internal heading sensor, most of
navigation parameters are provided if needed [73]. In this work, the integrated temperature sensor
PB200 was used for the outside temperature time-series measurements [74].
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Maretron’s TMP100 module measures the temperature for up to 6 temperature probes and reports
the information over an NMEA 2000 network (Figure 6). The TMP100 supports up to four thermistor
probes and two high-temperature thermocouple probes (Figure 7). Optional thermistor probes (−20 ◦C
to 80 ◦C, or −4 ◦F to 176 ◦F) cover a wide range of applications including cabin air temperature, engine
room air temperature, refrigerator/freezer temperature, under bolt temperature (inverters, charges,
pumps, motors, etc.), tank temperatures (live well bait, hot water, etc.), and air duct temperatures.
In these tests, the TP-AAP-1 TMP100 ambient air temperature probe (−20 ◦C to 80 ◦C or −4 ◦F to 176 ◦F)
has been used for batteries installation chamber temperature measurements. A TR3K-Ring terminal
probe (−20 ◦C to 80 ◦C or −4 ◦F to 176 ◦F), connected to the negative battery terminal has been used by
DCM100 module to monitor inner battery temperature Tin [75].
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4.3. NMEA 2000 Data Logging Capabilities

The Vessel Data Recorder VDR100 (Figure 8) is a kind of “black box” that records all types of data,
which circulate through the NMEA 2000 network associated with the navigation activity. The VDR
works in solidarity with an associated N2KExtractor software [76], which is capable of recovering and
monitoring historical data from a flash memory connected to the VDR100, and which can additionally
select and export parameters in comma delimited files (CSV) for statistical and trend analysis purposes.
The VDR device is equipped with three ports, one for connection to the NMEA 2000 network, another
for connecting a flash memory, and the third for connecting to an Ethernet LAN. The VDR has been
designed to support recording periods longer than one year [77].
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Additionally, this activity can be shown in the form of the time series of data of all the parameters
that the DCM100 is able to monitor. In turn, the NMEA 2000 network has the ability to display on-line
mobile windows of up to 1-week amplitude, and integrates the ability to perform treatment of alarms
and emergencies. The N2KView software [78] or a Maretron DSM150/DSM250 display [79] can be used
(Figure 9) to carry out the complementary activities of monitoring, treatment of alarms, messages and
analysis of short-term trends.
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Figure 9. N2KExtractor workplace screen.

Maretron’s SMS100 short message service (Text) module is a mobile or cellular modem dedicated
to sending alerts or alarm messages to selected phone numbers (Figure 10). This device works jointly
with sensors (specially DCM100) and software of the NMEA 2000 network. It provides cellular network
coverage for warnings about battery failures and other alarms including the vessel’s position, bilge
status, shore power voltage, wind speed, inside and outside temperature.
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5. Fault Diagnosis Method

Trend analysis is a quantitative technique that can be used to identify potentially hazardous
conditions based on past empirical data obtained from time series of data. A trend analysis can reveal
a movement toward unacceptable, undesirable, or dangerous reliability, safety, or levels of assurance.
Its application dramatically decreases uncertainty and emergency replacements allowing to make
adequate decisions for maintenance planning [54]. In addition, if the particular trend model has
a significant quantitative fit (for example, linear, quadratic, exponential), future predictions can be
made [49,80–82].

In this work, a scenario under real weather conditions of navigation has been considered. This
scenario is one in which a set of batteries are affected in terms of the dynamics of the temperature variable,
by a set of numerical values associated with a time series of a stochastic process of seasonal character.

One way of describing time series is based on the idea of decomposing the variation of a series into
several basic components, which becomes especially interesting when in the series a certain tendency
or certain periodicity is observed [58]. This descriptive approach consists of finding components that
correspond to a long-term trend, a seasonal behavior and a random part. Of the three components
reviewed, the first two are deterministic components, while the last one is random. Thus, the model of
a time series can be denoted as:

Xt = Tt + St + It (2)

where Tt is the trend, St is the seasonal component, and It is the noise or random part.
In these conditions, a battery will experience changes associated with a dynamic in the form of

random seasonal time series, that is, the temperature of the banks batteries will oscillate in successive
diurnal warm-ups and nocturnal cooling, with higher average values in summer and lower in winter.

The damage caused to a battery due to exposure to high temperatures is not reversible, even if
subjected to a subsequent cooling. For example, the corrosion effect of the positive grid cannot be
eliminated and occurs at all temperatures, which is simply a matter of the speed at which the corrosion
process occurs. The only solution is to try to control and avoid as far as possible the causes involved in
the increase of the temperature in batteries, with the criteria of economic profitability against the risks
of failure [56].

From a general point of view, the method developed in this work is based on the performance of a
comparative analysis of the behavior of the parameters presented in Figures 11 and 12, based on laboratory
tests. In these tests [61], a regulatory control of the battery installation chamber temperature Tamb is made.
Figure 11 shows a normal operating behavior of the battery, and Figure 12 shows a runaway phenomenon.
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A difference introduced in the currently presented work is that the operation and tests of the
batteries have been made in real navigation conditions, where the possibility of using refrigerated
chambers for batteries installation is not feasible in most cases, from an economic point of view or
from an energy consumption point of view.

One of the first characteristics observed in the analysis of the series recorded in the tests is the
important influence that the external temperature Tex has on the dynamics of the internal temperature
Tin of the batteries, and also on the tendency of the battery installation chamber’s ambient temperature
Tamb. Both show a behavior whose dynamics are associated with random seasonal time series,
influenced by the external temperature Tex, as can be verified by a cross-correlation analysis between
the lagged series.

Note that Tin increase is due to the superposition of a set of parameters that overlap their effects
as heat sources that increase the internal temperature of the battery.

The first parameter to consider is the external temperature Tex whose source lies in the existing
weather conditions. The second parameter is the ambient temperature Tamb, which results from
the “filtering” effect caused by the installation chamber on Tex. The third parameter is due to the
contribution to the temperature increase produced by the ripple current (AC), whose source comes
from the power electronics of the battery charger specifically associated to the aging of its components
(diodes).

The float input current (Ifloat) contributes to the increase in temperature and the reduction of the
internal impedance of the battery, which in turn causes the battery to accept even more current, that
is able to trigger a process of thermal runaway instability after a previous and accelerated dry out
process [57]. The observation of a significant increase in its value in a trend analysis can be considered
as a redundant indicator of the runaway failure event occurrence.

Therefore, there are clear indicators associated with measurable parameters that redundantly
predict the development of first a dry out failure, followed by a runaway process, such as the associated
behavior of the Tin and Tamb temperatures on the one hand, and the Ifloat current. It should be noted
that the selected parameters, Tex, Tamb, Tin, Vfloat, and Ifloat are easily accessible, taking into account
that they are available in the equipment described above in the NMEA 2000 network.

Under normal operating conditions, the internal temperature Tin of the batteries and the
temperature Tamb of the corresponding installation chamber will have a dynamic tracking behavior
affected by a certain delay, with respect to the external environment temperature Tex. That is, Tin and
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Tamb will maintain a certain lagged correlation with Tex, which is justified due to the thermal inertia of
the batteries and the installation chamber [56,83].

A correlation analysis between the internal temperature of the battery Tin and the ambient
temperature Tamb could be made for each battery or bank of batteries in order to check if the first
follows the second, or is influenced by an additional cause of failure that affects the correlation of the
two series.

This work focuses on proposing a specific method for the comparative trend analysis of the
internal temperature of the batteries (Tin) and battery installation chamber temperature (Tamb). The
objective is to apply predictive fault diagnosis using early detection of the failure or loss of capacity of
the battery heat dissipation process to prevent any undesirable increase in temperature, in order to
avoid the development of failure modes such as dry out and thermal runaway. Taking into account
that dry out is often a prior effect to other failure modes such as grid corrosion [57], this diagnosis
method deals directly or indirectly with the failure modes with the highest percentage of occurrence,
in addition to the most dangerous failure modes.

The advantage of the diagnostic method based on the comparative trend analysis proposed in this
work is that it focuses on the assignable cause that precedes the dry out and thermal runaway failures,
which is the loss of operating capacity of the heat dissipation process of the battery banks. The heat
dissipation process of battery banks in real navigation conditions does not have a specific nature, but it
depends on the characteristics of the installation chambers (which do not remain invariable in time),
the materials used, the size of the heat dissipation areas, and the ventilation conditions, etc., and that
affects the batteries in a variable way depending on the type of batteries and their intrinsic aging
state condition.

If an increasing divergence through an additional comparative trend analysis of both Tin and
Tamb is observed, it becomes a prior indicator that the battery is not being able to dissipate normally
the heat generated inside. In other words, this first failure diagnosis of the heat dissipation process
becomes a predictive indicator to avoid possible dry out and eventual thermal runaway failures.

6. Results and Discussion

The results of the parametric measurements made and their interpretation are shown in this
section. Figure 13 shows an example of the evolution of some of the battery parameters that are
supervised in the N2KExtractor software display. In Figures 14 and 15, the time series of the parametric
values of the internal temperatures of batteries corresponding to the house battery bank, bow thruster
battery bank, engine battery bank, and the external temperature Tex are shown. In the dynamic
behavior of the time series, it is easy to recognize their seasonal and random nature, especially in the
case of the external temperature series. In both Figures, the temperatures of the battery banks are
compared to the outside temperature, observing a follow-up with a certain time delay.
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Figure 13. Data series of house battery bank parameters: State of Charge SOC (dark blue), Time
Remaining TR (green), DC current (red), and DC Voltage (clear blue).

It should be realized that battery temperature Tin and external temperature Tex have certain
differences in their appearance, mainly due to the higher frequency components of Text, while, Tin shape
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is smoothed. This is due to the large thermal inertia of the battery. It takes time for the battery to
absorb temperature and it takes time for the battery to relinquish temperature. In addition, the daily
cyclic behavior of all data series is completely evident.
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In Figure 17, the Tin temperature series of the three battery banks are shown, where maximum
coincidence in the dynamic evolution of the house and engine banks exist, because in this case, they
share the same installation chamber, while the bow thruster battery bank are installed in a different
chamber in the bow vessel area. In all cases, it is evident that the thermal inertia and the enclosures of
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the installations act as smoothing filters of the battery inner temperature series, notably suppressing
the high-frequency random component observed in the outdoor temperature series (Tex) in Figures 14
and 15.
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The peaks of energy demand (in green, Figure 20) are also clear contributors to the increase in
the internal temperature of the batteries (in blue), whose response is manifested by rising ramps
in the corresponding curve, especially due to the charging currents that are subsequently supplied.
This justifies the convenience of monitoring the consumption and not subjecting the system to
unnecessary overloads.



Sensors 2019, 19, 4480 18 of 24

Sensors 2019, 19, x 18 of 25 

 

The peaks of energy demand (in green, Figure 20) are also clear contributors to the increase in 
the internal temperature of the batteries (in blue), whose response is manifested by rising ramps in 
the corresponding curve, especially due to the charging currents that are subsequently supplied. This 
justifies the convenience of monitoring the consumption and not subjecting the system to 
unnecessary overloads. 

 
Figure 20. Peaks of energy demand versus temperature increases. 

Figure 21 shows the effects of load demand peaks on the Tin and Tamb temperatures of the house 
battery. In conditions of normal operation it is observed that the curve of the installation chamber 
temperature Tamb is lifted upwards from the curve of the internal temperature Tin of the house battery. 
This is explained by the activation of the heat dissipation process from the inside of the battery to the 
outside in the installation chamber, which increases Tamb. Later when the current demand stops, Tamb 
tends to overlap progressively with the internal temperature Tin. 

 
Figure 21. Peaks of energy demand versus temperature increases. 

Figure 22 shows the scatter diagram of battery temperatures Tin and Tamb, with a high correlation 
index and with a barely significant delay between both curves. 

 
Figure 22. Scatter diagram of house battery temperature Tin and installation chamber temperature Tamb. 

Figure 20. Peaks of energy demand versus temperature increases.

Figure 21 shows the effects of load demand peaks on the Tin and Tamb temperatures of the house
battery. In conditions of normal operation it is observed that the curve of the installation chamber
temperature Tamb is lifted upwards from the curve of the internal temperature Tin of the house battery.
This is explained by the activation of the heat dissipation process from the inside of the battery to the
outside in the installation chamber, which increases Tamb. Later when the current demand stops, Tamb

tends to overlap progressively with the internal temperature Tin.

Sensors 2019, 19, x 18 of 25 

 

The peaks of energy demand (in green, Figure 20) are also clear contributors to the increase in 
the internal temperature of the batteries (in blue), whose response is manifested by rising ramps in 
the corresponding curve, especially due to the charging currents that are subsequently supplied. This 
justifies the convenience of monitoring the consumption and not subjecting the system to 
unnecessary overloads. 

 
Figure 20. Peaks of energy demand versus temperature increases. 

Figure 21 shows the effects of load demand peaks on the Tin and Tamb temperatures of the house 
battery. In conditions of normal operation it is observed that the curve of the installation chamber 
temperature Tamb is lifted upwards from the curve of the internal temperature Tin of the house battery. 
This is explained by the activation of the heat dissipation process from the inside of the battery to the 
outside in the installation chamber, which increases Tamb. Later when the current demand stops, Tamb 
tends to overlap progressively with the internal temperature Tin. 

 
Figure 21. Peaks of energy demand versus temperature increases. 

Figure 22 shows the scatter diagram of battery temperatures Tin and Tamb, with a high correlation 
index and with a barely significant delay between both curves. 

 
Figure 22. Scatter diagram of house battery temperature Tin and installation chamber temperature Tamb. 

Figure 21. Peaks of energy demand versus temperature increases.

Figure 22 shows the scatter diagram of battery temperatures Tin and Tamb, with a high correlation
index and with a barely significant delay between both curves.

Sensors 2019, 19, x 18 of 25 

 

The peaks of energy demand (in green, Figure 20) are also clear contributors to the increase in 
the internal temperature of the batteries (in blue), whose response is manifested by rising ramps in 
the corresponding curve, especially due to the charging currents that are subsequently supplied. This 
justifies the convenience of monitoring the consumption and not subjecting the system to 
unnecessary overloads. 

 
Figure 20. Peaks of energy demand versus temperature increases. 

Figure 21 shows the effects of load demand peaks on the Tin and Tamb temperatures of the house 
battery. In conditions of normal operation it is observed that the curve of the installation chamber 
temperature Tamb is lifted upwards from the curve of the internal temperature Tin of the house battery. 
This is explained by the activation of the heat dissipation process from the inside of the battery to the 
outside in the installation chamber, which increases Tamb. Later when the current demand stops, Tamb 
tends to overlap progressively with the internal temperature Tin. 

 
Figure 21. Peaks of energy demand versus temperature increases. 

Figure 22 shows the scatter diagram of battery temperatures Tin and Tamb, with a high correlation 
index and with a barely significant delay between both curves. 

 
Figure 22. Scatter diagram of house battery temperature Tin and installation chamber temperature Tamb. Figure 22. Scatter diagram of house battery temperature Tin and installation chamber temperature
Tamb.

In Figure 23 the ripple levels of the three battery banks are shown as a result of the measurements
made in the tests. As can be seen in the graph, values exceeding 1 V are shown, which exceed the
recommended referenced values of the DC voltage applied to the battery (ripple voltage smaller than
half the normal float-charge conditions).
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Figures 24 and 25 shows the four parameters involved in a possible dry out and runaway
phenomenon in real operating conditions based on random seasonal series dynamics. They are the
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In Figure 24 the convergence shown by the Tin and Tamb temperature curves is significant, whereby
the heat dissipation process of the battery bank is working adequately, taking into account the specific
characteristics and conditions of the type of battery and the installation chamber.

Figure 26 shows a limited partial overload test with two batteries of the vessel’s house battery
bank, in order to cause a battery bank overheating. Partial overload is used for safety reasons due to
the extreme proximity of the battery bank with a fuel tank. The test was carried out using a battery
charger, an inverter connected to the batteries under test, and different AC loads connected to the
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inverter. This allowed the battery bank to be subjected to successive charges and discharges that
reached values of 50 amps.
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Figure 26. Test for divergent comparative trend analysis of Tin (blue) and Tamb (red), where the heat
dissipation capacity is being exceeded prior to dry out and eventually to thermal runaway failures.

Initially Figure 26 shows a test period in which the batteries are not subjected to any special
overload from 17:42 to approximately 18:30. In this period, the two temperature series involved respond
normally by drawing two parallel curves with a distance between them of approximately 0.4 ◦C. Being
the internal temperature Tin is lower than Tamb, and Figure 26 shows that the dissipation process of the
battery heat is working properly. When the current overload is activated, the temperatures parallel
behavior is modified and a change in the ROC occurs in both curves, with a greater slope in the Tin

curve. This results in the crossing of the curves and an increasing divergence between Tin and Tamb.
In this case, the progressive divergence of the two curves shows that the heat dissipation process

capacity is being exceeded and, if this condition persists, the development of the dry out phenomenon
and eventually the thermal runaway occurrence is predictable.

7. Conclusions

For safe maritime navigation, having a monitoring system based on observing the actual
condition of use and specific technical characteristics of the ship’s energy storage system is especially
important and critical. The NMEA 2000 network—together with intelligent sensor devices for battery
monitoring, temperature measurements, ship data logging, and associated software developed for
data processing—allows for obtaining time series of data and for the application of trend analysis for
better management of alarms, in order to face the appearance of incipient and/or sudden failures.

The predictive diagnostic method proposed in this study does not depend on a temperature
threshold value, but on the previous failure of the heat dissipation process. This behavior demonstrates
that the working hypothesis proposed in the comparative trend analysis can be used as a recognition
pattern for the predictive diagnosis of eventual dry out and thermal runaway failures.

In the opinion of the authors, the equipment that is usually installed for the supervision of battery
banks in navigation applications offers sufficient information on the most important parameters of
battery operation. However, from the point of view of the implementation of predictive diagnostic
techniques, the information they offer is not always easy to analyze by potential users who are largely
not experts in the field, and much of its information potential is lost.

For truly useful decision making in critical situations, it would be desirable that the information is
oriented toward the mode of failure and displayed with multi-parametric high level integration. In that
way, comparative trend analyses and correlation of the involved parameters could be applied. Even
more, this information should be given in the form of patterns of immediate or easy recognition, that
reliably allow the detection of an assignable cause such us a failure of the heat dissipation heat process
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useful for predictive dry out and thermal runaway fault diagnosis. It is concluded that these failure
modes can be conveniently diagnosed by easy recognized patterns obtained performing comparative
trend analysis to the variables measured onboard.
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