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Summary
In this Master Thesis, several alternatives are proposed in order to reveal offering prices
in a spot market. This proposal to obtain hidden information within a system is con-
sidered as a very powerful mean to acquire a competitive advantage when proposing a
market strategy.

Due to the opacity found in terms of methods to perform this exercise, the applica-
tion proposed in this project is considered novel. Many proposals related to carrying out
a strategic offering have been found although they result in nothing similar to what is
proposed in this project. Taking as reference some aspects of these works already done,
it is suggested as an improvement the use of a recursive filter.

For the purpose of obtaining of results, the modeling of a pair of representative elec-
trical markets has been developed. Through them, outcomes will be generated in order
to check if the suggested methods work properly. As a first step, an Inverse Optimization
Problem will be applied to an electric market with three nodes and two interconnections.
The outputs obtained through this methodology will be taken as a reference in order to
improve them along an algorithm with simpler formulation.

Further on, an Ensemble Kalman Filter will be applied with the objective of reaching
more feasible results than those obtained in the previous methodology. To do this, the
same market will be used but reduced to a single node, although with more participants.
In order to verify its robustness, three different situations will be proposed. In the first
scenario, the EnKF model will remain static, which will lead to a better understanding
of how the algorithm behaves. In the second scenario, the model will change to dynamic,
and its parameters will be updated depending on the needs of the market. Finally, a
third scenario will be proposed taking into account the formulation of the second scenario,
although with different market conditions. In order to study the changes in demand, such
as a failure in an interconnection or even a transition between year’s seasons, extreme
changes will be made between periods of simulation.
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Resumen
En este proyecto final de máster, se proponen varias alternativas con el fin de revelar
precios de oferta en un mercado del tipo spot. Esta propuesta de obtener información
escondida dentro de un sistema, se considera como un medio muy potente para poder
adquirir una ventaja competitiva al proponer una estrategia de mercado.

Debido a la opacidad encontrada en cuanto a la metodología se refiere para realizar
dicho ejercicio, la aplicación propuesta en este trabajo es considerada del tipo novel.
Muchas publicaciones relacionadas con optimizar una oferta estratégica se han encon-
trado aunque resulten en nada similar a lo propuesto en este proyecto. Tomando como
referencia algunos aspectos de estos trabajos ya realizados, se propone como mejora el
uso de un filtro recursivo.

Para la obtención de resultados, se ha realizado los modelos de un par de mercados
eléctricos representativos. Mediante ellos, se generarán resultados con el fin de poder
comprobar si los métodos sugeridos funcionan adecuadamente. En un primer lugar, se
aplicará un Problema de Optimización Inverso a un mercado eléctrico con tres nodos y
tres interconexiones. Los resultados obtenidos mediante esta metodología, se tendrán
como referencia con el fin de mejorarlos con una formulación mas sencilla y potente.

Finalmente, se aplicará un Ensemble Kalman Filter con el fin de encontrar resultados
más factibles que en los obtenidos en la metodología anterior. Para ello, se utilizará el
mismo mercado pero reducido a un nodo aunque con un mayor número de participantes.
Para poder comprobar su robustez, se propondrán tres escenarios distintos. En el primer
escenario el modelo del EnKF será estático, lo que conllevará a entender mejor como
funciona el algoritmo. En el segundo escenario, el modelo cambiará a dinámico, y sus
parámetros se actualizaran dependiendo de las necesidades del mercado. Finalmente,
un tercer escenario será propuesto teniendo en cuenta la formulación del escenario dos,
pero con unas condiciones de mercado diferentes. Con el fin de estudiar los cambios de
demanda, como puede ser un fallo en una interconexión o incluso un cambio de estación
del año, se le realizaran cambios bruscos entre periodos de simulación.
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Symbols
PARAMETERS FOR THE INVERSE OPTIMIZATION PROBLEM

Symbol Unit Definition

λG
dtnb e/MWh Price offer for power block of the strategic unit at node

n in time period t on day d.

λO
dtnb e/MWh Price offer for power block of the rival unit at node n

in time period t on day d.

λOtrue
nb e/MWh Marginal cost of power block of the rival unit at node

n.

λOini
dtnb e/MWh Initial estimation of the marginal cost of power block

of the rival unit at node n in time period t on day d.

λD
dtnk e/MWh Price bid of demand block at node n in time period t

on day d.

P Gmax
nb MW Upper bound of power block of the strategic unit at

node n.

P Omax
nb MW Upper bound of power block of the rival unit at node

n.

P Dmax
dtnk MW Upper bound of demand block at node n in time period

t on day d.

P Gini
dn MW Total power produced by the strategic unit at node n

in the time period (t=0) prior to day d.

P Oini
dn MW Total power produced by the rival unit at node n in

the time period (t=0) prior to day d.

P max
nm MW Transmission capacity of line n-m.



x Symbols

Symbol Unit Definition

Bnm S Susceptance of line n-m.

RGdwn
n MW/h Ramp-down limit of the strategic unit at node n.

RGup
n MW/h Ramp-up limit of the strategic unit at node n.

ROdwn
n MW/h Ramp-down limit of the rival unit at node n.

ROup
n MW/h Ramp-up limit of the rival unit at node n.

λMC e/MWh Marginal cost of each company used in the model.

VARIABLES FOR THE MARKET CLEARING PROBLEM

Symbol Unit Definition

P G
dtnb MW Power produced by block b of the strategic unit at node

n in time period t on day d.

P O
dtnb MW Power produced by block b of the rival unit at node n

in time period t on day d.

P D
dtnk MW Power consumed by block k of the demand at node n

in time period t on day d.

δdtn Radians Voltage angle of node in time period t on day d.

λdtn e/MWh LMP at node n in time period t on day d (dual vari-
able).

VARIABLE FOR THE INVERSE OPTIMIZATION PROBLEM

Symbol Unit Definition

λO
dtnb e/MWh Price offer of power block b of the rival unit at node n

in time period t on day d.



Symbols xi

PARAMETERS FOR THE SIMPLE KALMAN FILTER

Symbol Unit Definition

Mt - Constant which permits to propagate the initial state es-
timate variable into the a priori state estimate variable in
each time period t.

wt - White noise associated to the error committed when prop-
agating the initial state estimate variable in each time pe-
riod t.

Qt - Noise covariance of parameter wt.

Ht - Constant which permits to relate the a priori state esti-
mate variable with the measurement taken in each time
period t.

vt - White noise associated to the error committed when ob-
taining the measurement in each time period t.

Rt - Noise covariance of parameter vt

Kt - Kalman Gainer. Reduces the uncertainty in the a posteri-
ori state estimate variable and corrects the a priori state
estimate variable.

VARIABLES FOR THE SIMPLE KALMAN FILTER

Symbol Unit Definition

x̃t e/MWh The a priori state estimate variable in each time period
t. Collects offering prices in the forecasting step.

P̃t - Predicted (a priori) estimate covariance associated to
the previous variable in each time period t.

yt e/MWh Observation of the true state in each time period t.

x̂t e/MWh The a posteriori state estimate variable in each time
period t. Collects corrected offering prices in the up-
dating step.



xii Symbols

Symbol Unit Definition

P̂t - Updated (a posteriori) estimate covariance associated
to the previous variable in each time period t.

PARAMETERS FOR THE ENSEMBLE KALMAN FILTER

Symbol Unit Definition

Mt - Constant matrix which permits to propagate the initial
state estimate variable matrix into the a priori state esti-
mate variable matrix in each time period t.

wt - White noise associated to the error committed when prop-
agating the initial state estimate variable matrix in each
time period t.

Qt - Noise covariance of parameter wt.

Et - Parameter which reflects the mean values with respect to
each column given matrix in each time period t. Used
only with the a priori state estimate variable matrix.

At - Parameter which collects the result of subtracting to the
a priori state estimate variable matrix the Et matrix in
each time period t.

Ct - Parameter which collects the sample covariance matrix
regarding the a priori state estimate variable in each time
period t.

Ht - Constant matrix which permits to relate the a priori state
estimate variable matrix with the simulated measurement
matrix in each time period t.

vt - White noise associated to the error committed when ob-
taining the simulated measurement in each time period
t.

Rt - Noise covariance of parameter vt



Symbols xiii

Symbol Unit Definition

K̂t - Estimated Kalman Gainer. Reduces the uncertainty in
the a posteriori state estimate variable and corrects the a
priori state estimate variable.

VARIABLES FOR THE ENSEMBLE KALMAN FILTER

Symbol Unit Definition

x̃t e/MWh The a priori state estimate variable matrix in each
time period t. Collects offering prices in the forecasting
step.

ỹt e/MWh Simulated observation of the true state in each time
period t.

yt e/MWh Observation of the true state in each time period t.

x̂t e/MWh The a posteriori state estimate variable matrix in each
time period t. Collects corrected offering prices in the
updating step.

ADDITIONAL PARAMETERS FOR THE ENSEMBLE KALMAN FIL-
TER

Symbol Unit Definition

dt - Constant matrix which measures the risk taken by the last
company in a market clearing in each time period t.

jt - Constant matrix which extrapolates the risk taken by the
last company in a market clearing to the other partici-
pants in each time period t. This constant will multiply
matrix Ht
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Nomenclature
Symbol Definition

PCI Projects of Interest

OMIE Operator of the Iberian Energy Market

EPEX The European Power Exchange

GME Electricity Market Manager (Italy)

LMP Local Marginal Price

SMP System’s Marginal Price

S Strategic Producer

O Rival Producer

PQ (Bus) Load Bus

ISO Independent System Operator

KKT Karush-Kuhn-Tucker

EnKF Ensemble Kalman Filter

KF Simple Kalman Filter

PDF Probability Distribution Function

GPS Global Positioning System

CPU Central Processing Unit

MIBEL Iberian Electricity Market
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CHAPTER 1
Introduction

The current structure of electricity markets is a consequence of the liberalization of en-
ergy that took place in the middle nineties when the main framework was monopolistic.
The main utilities were owned by the respective states and were vertically-integrated
which means that the whole chain of activity regarding electrical power (generation,
transmission, distribution, and retail mainly) was driven by the same party. Despite
that situation, the monopolies were challenged to change the situation. It is considered
as a first step in this process the unbundling between generation and distribution, the
competition between producers or even the actual trading and pricing methods which
were conducted by the Chicago Boys in Chile during Pinochet dictatorship.

Meanwhile, in that context along Europe, some countries started to adopt this new
features in their electricity markets. First notions regarding liberalization were observed
in the UK with the release of the England and Wales electricity market in 1990 or in
Norway in 1991. USA, Australia and New Zealand followed this first movements in
the coming years. Moreover, as a general movement, the construction of the European
Union’s Internal Energy Market was released with the main purpose of making accessible
the benefits of liberalization to citizens and companies in terms of both affordable prices
and provision of primary services. It could be said that the most remarkable results,
leaving aside the liberalization of gas and electricity markets, were three: the first was
the regulation of the energy market in order to be able to monitor the development of
the network and markets, to investigate possible abuses and to apply penalties together
with the approval and collaboration of member states. This was intended to increase co-
ordination and to improve the transparency of gas and electricity prices that were being
charged to final users; The second notable result was the security of supply established
by measures such as levelling of interconnections between Member States or balances
between offers and demands; Finally, the last significant result was the establishment of
Trans-European energy networks identified as projects of common interest (PCI). These
projects carried out by the European Commission, are intended to assure the first two
points described before [1].

Therefore, the tendency in many of the European countries was to reorganize power
markets regulated in a way which results in an increment of competition between com-
panies and efficiency in power supply. Many structures were initially proposed in such
a way that the electricity market would be deregulated, being the pool the preferred
market (or day-ahead market). One of the reasons was the generation of liquidity in
the market as a consequence of obligations and incentives which motivate the majority
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of available generators to present offers in the market. In these types of markets, there
are companies that offer electricity and companies that buy in a continuous framework
of competition where the objective of each of them is to maximize their profits from
purely strategic bids. Some examples of organized markets can be found in all regions of
Europe such as OMIE in the Iberian Peninsula, Nord Pool Spot in the Nordic countries,
EPEXSpot in France, Germany and other Central European countries or even GME in
Italy among others [2].

Competition is a concept that goes hand in hand with the pool market and inevitably
linked to this competitiveness in these electrical markets, this is what is known as the
problem of ”potential exercise of market power” exercised by generation companies. This
problem is not exclusive to the electricity sector as it is common in all sectors open to
competition. But before making an analysis of the different situations that can occur
when a market power is carried out, it deserves special attention to clarify that this
action is not equivalent to accomplish an abuse of power. When the second option is
executed, the use of illegitimate information is presupposed in order to seek its own
benefit. Market power would be defined as the ability of a single company, or even a
set of them, to modify market prices or quantities offered for their own benefit. Some
bid prices per energy block can be altered so that they are below the price levels offered
by the competition and thus restrict bids that are above the market price at the equi-
librium point. In other words, speculate with the block price to push to the right of the
border where bid and demand marry most of the competition, generating more profits.
Another possibility is to speculate with the offering of some energy blocks so that they
are offered in a lower quantity but at higher prices. [3]

In order to reach a situation where a bid strategy is put together for the purpose
of obtaining a greater benefit in the market, a prior action is required: obtaining and
processing data from public sources. Without information of what is happening in the
system, the speculation in the offers of energy blocks or of the prices of these blocks,
will be a very complicated exercise in terms of obtaining continuous good results. The
premise is clear: the more valid information can be taken from the market, the more
accurate the modelling of the market can be and, as a result, the movements will be
more precise as it is desired to get a better return to the benefit of the market. It should
be emphasized that all this information should be consulted in public databases, such
as, for example, the price of energy in the spot market or even weather forecasts. In
addition, these data must be validated through a model and must properly represent
fairly the system that is being analyzed.

One of the options that is discussed in this document will be to disclose the offering
prices of the rivals in order to define an optimal strategy and thus achieve the maximum
performance to the market benefit. Although this option, a priori, is very ambitious
and laborious as it would be necessary to estimate all the marginal costs of each of the
generating companies that make up the market, nevertheless it can lead to interesting
results and a practical application could be feasible. To carry out this first option, a
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series of mathematical and statistical resources has been used, in addition to techniques
already carried out previously by other authors. To be more specific, there have been
two different alternatives with some variations that will be presented in the next four
chapters of this document.

In chapter 2, a brief review of the work conducted with respect to the objective of
the current project will be made. In addition, taking as reference what has already been
done, the motivation found to accomplish the work realized will be explained. Finally
in this same chapter, the model used for the application of the different methodologies
will be exposed, creating two versions of it. In chapter 3 the two methodologies applied
in the project will be presented. It will be explained what is the Inverse Optimization,
the Kalman Filter and the Ensemble Kalman Filter. In addition, the equations of the
model will be presented, due to they are part of the optimization problem, as well
as the formulation corresponding to the three alternatives along with graphs, tables
and examples. In chapter 4 the obtained results will be exposed. Based on them, an
explanation of the behavior in each methodology will be made and, specifically for the
application of the Ensemble Kalman Filter, three scenarios will be proposed with changes
both in the formulation and market conditions. Finally, in chapter 5, conclusions will
be drawn about what has been applied and obtained in the project.
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CHAPTER 2
Motivation & Electricity

Markets
It is known that few references are publicly available when looking for methods guar-
anteeing a strategic advantage. Notwithstanding the difficulties, in this chapter, it will
be reviewed some of the literature regarding the main scope of this project. Not all the
work already done in this field stands with revealing prices though its final purpose is
equivalent. That is why this following section contemplates tasks such as optimal offer-
ing without the prerequisite of using the same means to generate a strategic advantage,
as will be endorsed further on this document. In any case, it there have been found
good alternatives in an academic nature and hence, based on this work already done in
this leveraging field, it will also be exposed the motivation of how it could be improved
in many terms.

In addition, while examining whether a benefit is fulfilled in a system or not, some
model is required in order to verify it. Later, it will be seen that all these previous
applications relying on optimal bidding, avail of one depending on their desired results.
Based on this necessary aspect, the model used in this project will be also presented
in this section. Moreover, as the main solution suggested in this proposal is novel, a
model used in another application is taken as reference but presenting some streamlining
characteristics that bring some integrity on the suggested algorithm’s requirements. The
elected model will be an electricity market being the outcomes from their clearings in
several scenarios a contemplation of different market conditions. Some general aspects
regarding the electricity markets will be defined before disclosing the characteristics
of the model. The complexity when accurately representing its behaviour is a truism
and will not be faithfully represented, this is the reason why a preamble regarding
markets’ attributes is appended. A complete market composed by three nodes with
interconnections and rival players competing will be clarified as a first step. Next, as the
application does not require a great detail level under the point of view of this project,
this market will be technically shortened even then obtaining reasonable events.

2.1 Literature Review
As it has been well detailed in the introduction part, the main idea of this project is to
disclose offer prices corresponding to energy blocks from the different actors that offer
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electrical power in a given market. It is essential to highlight the delicacy that comes
with the issue of predicting prices from direct competitors since in this type of research,
carried out in the private spheres by the different electricity producers, it is the opacity
of their different methodologies what easily stands out. Due to the extreme importance
for a private entity of having information of direct rivals which supposes a competitive
advantage in the market, there is little public information on methodologies to accom-
plish this purpose. Therefore, it is common sense to understand that, in the case that
there is an effective alternative to apply a method that allows obtaining results that
reflect the behavior of the market to be studied, it is not made public so preventing
competitors to take advantage.

It can be said that the main issue that concerns the project is closely linked to obtain-
ing an optimization decision in the strategic offering for each of the bids in the market
within each temporary unit. This type of application is practiced in all companies, both
those that offer and those that buy energy. Inside this field, there is a long list of refer-
ences where the main purpose is to obtain a procedure that derives a maximization of
the benefits of an energy producer company. These types of techniques have been pro-
posed recently for their application in problems regarding decision making in electrical
markets. As an example, a multiperiod network-constrained market-clearing algorithm
is considered in [4] to obtain strategic offers based on a bilevel programming model
where the upper-level represents the maximization of the benefits of a given company
while the lower-level represents the market clearing which corresponds to the formation
of the corresponding prices. Similarly, [5] also proposes a bilevel programming model
for deriving offers of a strategic generator under uncertainty. In this case it differs from
the previous one in that the lower-level represents an economic dispatch problem and
thus Lagrange multipliers must be applied to linearize the constraints. Another example
is found in [6] where a multi-stage risk-constrained stochastic complementary model is
proposed to obtain optimal offering strategy from a wind energy company which par-
ticipates both in the day-ahead market and in the balancing market. Through the use
of mixed-integer linear programming programs, results are obtained from the different
models that represent productions of wind-power, market prices, demand’s bids and ri-
val’s offers.

In order to maximize benefits through an optimal strategic offer, other types of prac-
tices apart from optimization problems can be used by private entities. One among
many alternatives to achieve this optimal state is when revealing or estimating the offer-
ing prices of the different generating units that are in competing with a given company
in an electricity market. The set of offering prices assemble what is known as the upward
sloping supply curve. If the price of the rivals is predicted with certainty, a very complete
model can be achieved through which a maximization of profits would become greater
as this results in a real important competitive advantage. Such an example is in [7],
where is proposed the revelation of the appointed supply curve by applying a Bayesian
Inference approach to a model that represents the uncertainty of the system. The pro-
posed algorithm is based on Markov Chain Monte Carlo and Sequential Monte Carlo
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methods and the results are really adjusted to market data outputs and therefore repre-
senting a real situation. A similar case when revealing offering prices is obtained from
[8] whence, instead of applying methods related with inference and advanced statistics,
the determination of the optimization of an Inverse Problem is proposed. An electricity
market is presented where marginal production costs are known, and through the strong
duality theorem becomes the problem to be solved in a linear programming scope, thus
turning it into a quick problem in terms of computing. Starting from the basic idea that
is applied from the point of view of a private company which is striving in a competitive
market and, as a consequence and in principle, has non-public information related to
energy quantities and number of offered and demanded accepted blocks, offered prices
are revealed from its rivals.

Yet, none of the aforementioned studies provided how to get all the required infor-
mation in order to insert the required parameters in a model to reflect a real application
and then apply each algorithm. Most of them, take as reference data that is supposed to
be known when there are no public verified sources if thinking in real world data. This is
one of the main drawbacks found in this type of applications: the need for technical data
to be able to create a basic model through which results in an approach to a real situa-
tion. This issue is difficult to avoid as there is a need of model verification, nevertheless,
in this project some alternatives will be presented to deal with this. Moreover, in some
applications there are also needed market outcomes as it is, for instance, the accepted
energy blocks from both generators and buyers companies. The presented models are
composed by a number of technical parameters, i.e. ramping constraint of generators,
related to each of the supply energy opponents that are competing in the market. This
can result in a recursive problem because the electrical market model which is used, takes
as reference, to generate results, these technical data and therefore, when verifying the
results with the proposed model again, as a consequence, a limited applicability to a
real situation is obtained. As it can be seen, this problem is important in this project
and that is why alternatives are proposed in order to avoid the use of information that
can not be contrasted and thus be able to present the option of applying the method
in a situation that is as close as possible to a realistic environment. Another issue is
the idea of revealing offering prices instead of marginal prices. In the project, it will
be assumed that, nowadays, a marginal cost is able to be calculated as it is exposed in
[9]. However, it is also proposed an alternative preventing the unfamiliarity with the
proposed methods.

In this document, the work done in [8] has been reproduced as a starting point. Based
on the results obtained, alternatives will be proposed to correct the problems encoun-
tered. As already mentioned, there are no references that propose alternatives when
revealing offering prices. As a consequence, throughout the project, several methodolo-
gies belonging to machine learning have been tested to attack the problem, not having
success in all of them. Although it does not appear in this report, apart from the pro-
posed methodologies, the use of unsupervised neural networks, multi-target regression
through random forests, polynomial regressions together with recursive filters and even
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a Simple Kalman Filter in parallel with an Ensemble Kalman Filter has been tested.
Filter. Due to the poor results obtained, more attention has been paid to the algorithms
presented in this project.

2.2 The Electricity Market

2.2.1 Main Features of Electricity Markets
Electricity is considered an essential resource for the present-day society since it meets
the basic needs of both residences and industry. On account of the importance of the
supply in a reliable and profitable way, there exist electric markets to carry it out.

There are several types of markets depending on the type of contract through the
actors and on the term of the signed contracts between them. Generally, trading is
developed through pools or bilateral contracts. Regarding the temporary factor, short-
term transactions are carried out in a daily market (day-ahead market) which is made
up of producers, retailers and large consumers. This type of markets will be the refer-
ence for its modeling in this project. These participants submit bids for the purchase
and delivery of electricity for the next day. Specifically, in this type of market there
are 24 buying and other selling offers corresponding to each of the hours that make
up the day. It should be noted that not all day-ahead markets operate on an hourly
basis, being presented in some countries with a greater frequency, such as the example
of New Zealand where there are 48 bids a day. All offers depend on a price related to
an amount of energy so that the market operator can determine the supply and demand
market curves. To carry out this exercise, the selling offers are ordered according to the
increasing prices and the buy offers in decreasing direction, this is what is known as the
merit order. If the market has interconnections to other electricity markets or nodes in
the case of an US market, they will also be taken into account for market compensation
and thus get the equilibrium point for each hour. The equilibrium point will dictate the
accepted buying and selling offers: the selling offers whose price is not greater than the
price at the equilibrium point will be accepted and viceversa, the buy offers whose price
is not lower than the price at that point will be accepted.

Finally, it is worth mentioning that there are other types of markets with longer
and shorter terms, for instance to match production and consumption at real-time in
the latter case. Although these types of markets are outside the scope of this project,
it is clear that intra-day, balancing and reserve capacity markets are considered short-
term and, options and derivatives long-term contracts are named forward (also called
long-term financial contracts) [10].
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2.2.2 The day-ahead Market
The pool-type market offers a platform where all producers and consumers meet to
establish 24 balance points for a given day, instead of making bilateral contracts between
producers and consumers. Although these types of markets are not the most used option
in terms of the exchange of basic products, in the case of electricity, the operation of
large energy systems works correctly from the beginning of the liberalization of energy
so as to maintain the competitiveness and security of supply. There are many variations
within this type of market, although fundamentally they work in the following way and
with the following actors: [11]

• Generating companies: For a considered period of time, they present quantities of
energy at a price. The set of offers made by all the generators will form what is
known as the market supply curve. The energy quantities are ordered according
to the rising price and are represented as a function of their price.

• Demand: Similar to the generation companies, the demand curve will be formed by
offers that specify a certain amount of energy demanded at a given price. Contrary
to the previous ranking method, these offers will be ordered according to the
decreasing price, with the most expensive buying offers being those closest to
the origin of coordinates. In addition, it should be mentioned that the demand
is usually very inelastic, this indicates that the variations in the price have a
relatively small effect on the quantity demanded of the electricity and therefore
can be treated as a fixed value. For this reason, the demand curve is often treated
as a vertical line instead of a stepped curve. In the present project, for the inverse
optimization problem it will not be necessary to treat it as a straight line because
it is computationally feasible. On the other hand, for the rest of the markets used
to apply the rest of the alternatives, the demand will be treated inelastically.

• By intersecting the two supply and demand curves, the equilibrium point is ob-
tained so that the offers from generators and retailers that are on the left of said
point will be accepted.

• The price corresponding to the equilibrium point is called the system’s marginal
price (SMP). Generators are paid according to this price for each MWh produced
and consumers pay according to this price for each MWh they consume. If consid-
ered the congestion component and the marginal component of the price, it will
be used the Locational Marginal Cost (LMP).

As can be seen, this type of market does not adopt the pay-as-bid scheme. If this
were the case, the prices paid to the winning suppliers will be based on their actual
offers, rather than the higher-priced supplier’s offer. Yet, this would no occur since
the generators would offer energy at a price that would never reflect marginal cost of
production per MWh and would present offers very close to the SMP. As there is a
great uncertainty regarding the market price in each resolution, the generators slightly
increase the price of their production cost to have profits and just enough to avoid the
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risk of staying out of the market. Here is the reason why, an algorithm that allows a pri-
vate generating company to know what the market price is going to be, is so important.
Nevertheless, the scope in this project is more ambitious by going further and generate
an even greater competitive advantage by getting the prices of the closest rivals to the
SMP. This not only makes the company increase its profits, but also allows it to push
rivals out of social welfare and make their profits go down. It permits total control of
the critical area where the market usually resolves.

Hereafter, the electrical markets used in this project will be presented. The first will
be a market composed by 3 nodes and with restrictions in the interconnections between
them. It is a very complete market that can reflect the results of a real market although
all the necessary data for the preparation of the same should be confirmed. Then a
second, simpler market will be described in order to generate results with respect to a
single market but with more generating companies.

2.2.3 The 3-Node Electricity Market

2.2.3.1 Layout of the Market

Figure 2.1: 3-Node Electricity Market Overall.

In this section, it will be described the market together with its modeling which will
be used for the application of the first alternative, the inverse optimization problem.
There are 3 nodes communicated among them through 3 interconnections lines. As in
this first perspective it is the strategic company that wants to take advantage, it will
be distinguished in the group of energy generating companies the strategic producer (S)
and its rival producer (O), presented in the following sections. It will be considered
that all the data of the strategic producer in each node is known because the problem is
solved from the point of view of the private company and not from a global perspective.
Therefore, both offer price and block size are known. In addition, the marginal costs of
the rival producer are also known and will be used as the base price to generate their
offering price. Each node is composed of a demand and the two generating companies
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that offer at different prices, creating a direct competition between them. The demands
will be different, being node 3 the most demanding one creating imbalances in some
periods and thus creating a good sweep in the outputs of the market clearings. For
further clarification, figure 2.1 shows a global scheme where the basic structure of the
market can be visually understood.

2.2.3.2 Technical Data from the Grid
By simulating the market, productions and demands accepted blocks in each node will
be obtained, resulting in 3 market prices per hour. But the market price will also
depend on technical restrictions of the network. All transmission lines between nodes
will be identical with a capacity (expressed in terms of active power) of 100 MW and a
susceptance of 1000 p.u. The node 1, will be the slack bus or reference bus and therefore
its angle will be forced to be the reference (0º) and the angle of the rest of the buses will
oscillate between -180º and 180º. Buses or nodes 2 and 3 are considered to be PQ type.
In addition, it will be seen later that a high demand peak in node 3 together with the
interconnection and ramping limits of the generators will also create unsatisfied demand,
a result that in principle is not of interest for the method but that helps understanding
on how the market behaves.

2.2.3.3 Strategic and Rival Generating Companies
Leaving aside the technical aspects of the network, the details of the two generating
companies will be presented. To facilitate the generation of data and the understanding
of the market, the marginal costs of energy production by the strategic producer will
be the same in all three nodes. These costs will represent the minimum bid price and,
although the cost will be the same in each node, the corresponding offer will not be the
same as the added price will vary (see equation 2.1). Even so, both the block size and
its marginal price will not vary between nodes.

Nodes Block Marginal Cost [e/MWh] Block Size [MW]
1-3 1 10 100
1-3 2 15 100
1-3 3 20 100
1-3 4 25 100
1-3 5 30 100
1-3 6 35 100
1-3 7 40 100
1-3 8 45 100

Table 2.1: Strategic Producer Data.
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In the table 2.1, the data representing this strategic company is collected. On the
other hand, the same does not happen with the rival company since its marginal costs
will vary depending on the node, although its block size does remain at 100 MW as
happens with the strategic company. These prices are not going to be those of supply
but the minimum price on which to base the same as before. In the equation 2.1 it is
indicated how the offer prices are generated by the two companies. The additive part
to the cost will vary for each node, block, hour and day. In the same way, the costs and
size of the rival company’s block are left in the table 2.2.

B. M. C. Node 1 [€/MWh] M. C. Node 2 [€/MWh] M. C. Node 3 [€/MWh] B. Size [MW]
1 12 15 13 100
2 17 17 16 100
3 20 21 23 100
4 24 22 25 100
5 29 30 27 100
6 33 31 31 100
7 41 38 42 100
8 47 45 48 100

B. = Block. M. C. = Marginal Cost

Table 2.2: Rival Producer Data.

Taking the marginal costs as base values, the following equation will be used when
generating offering prices. Being λMC the marginal cost per MWh, λ

S/O
dtnb the final offering

price and Ωdtnb a random number between [0,1]:

λ
S/O
dtnb = λMC(1 + 0.1 Ωdtnb) (2.1)

Figure 2.2: Strategic Producer Offer Curve.
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The production of the companies are subdivided into 8 energy blocks in both cases.
This way of presenting offers is very common in today’s electricity markets because it
facilitates the versatility in the combinatorial when creating a strategy and thus maxi-
mize profits. As blocks are accepted, the marginal price increases in both cases. This
order of ascending prices can be seen more graphically in the figure 2.2 for the strategic
company and in the figure 2.3 for the rival company.

Figure 2.3: Rivals Producer Offer Curves.

In addition to these aspects related to generators, ramping constraints are also taken
into account, which will be limited to 1000 MW/h in both directions when increasing and
a decreasing the production. The blocks will be used to limit the maximum production,
therefore P Gmax

nb = P Omax
nb = 100 MW due to all supply blocks are equal. The initial

value of production will be null: P Gini
nb = P Oini

nb = 0 MW, data to be taken into account
for the ramping in the first simulation period of every day because they are different
auctions.

2.2.3.4 Demand
Since the inverse problem deals with the demand in an elastic way, it is presented by
blocks together with the associated prices as occurs in the generating companies. In
cases where is desired to treat the demand as a single value, a simple calculation by
adding the resulting accepted blocks is done and together with the energy offered the
market is cleared and thus it is obtained the market price. As shown in the table 2.3, the
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blocks are no longer all equal being the last four a half of the rest in terms of size. Al-
though having two more blocks of demand (10 in total), if compared with the number of
blocks by the generators, the final computation of energy supply and demand per actor
is the same. In addition to the table, its curves have also been illustrated in the figure 2.4.

Block Price [€/MW] Block size (N1&N2) [MW] Block size (N3) [MW]
1 50 100 400
2 45 100 400
3 42 100 400
4 40 100 400
5 35 100 400
6 30 100 400
7 25 50 200
8 20 50 200
9 15 50 200
10 10 50 200

N = Node

Table 2.3: Demand Data.

Figure 2.4: Demand Bidding Curves.

It is well known that demand varies according to the time of day, the day of the week
and the month of the year. The same energy is not consumed at 2 a.m. that at 13 p.m.
and activity in both households and industries is different on a Tuesday compared to
a Sunday, for instance. Due to these changes, the electricity tariff also varies in price
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depending on the hour of the day and on the day of the week. As a result of this behavior,
three types of day have been represented with some associated factors. The factors to
be multiplied by the demand are represented in the figure 2.5: base, shoulder and peak.
Thanks to these three factors, the demand throughout the day varies so that the spoken
behaviors are represented. In addition, there are special days where the demand is more
demanding or less, that is why the base and peak factors are considered.

Figure 2.5: Demand factor per hour for three representative days.

2.2.3.5 Equations
As the equations describing this market are part of the inverse problem, the model is
left at the reader’s disposal in the section 3.1.2. The model corresponds with the primal
formulation of the problem. However, in the next section it is left some results from a
market clearing in order to have some reference of the order of magnitude of them.

2.2.3.6 Outcomes from Clearings
Even though the formulation regarding market clearing will be presented further in
section 3, some results are presented here to have an order of magnitude. By simulating
the market in a random period, in this case day 1 and hour 6, some results are obtained
as showed below. In node 1 for a demand of 866.66MW the offers reflected in table 2.4
are accepted together with their respective prices. The market price will be 30.46 €/MW
in this case and all the demand will be fulfilled thanks to the transmission of 33.33 MW
through the interconnection from node 2 to node 1. These results depend on all the
parameters that make up the market, a priori unknown, as are the ramp restrictions of
generators for instance. Although the results have been presented for one hour in a given



16 2 Motivation & Electricity Markets

node, this market will be simulated for the 30 days that make up a month resulting in
several circumstances when applying alternative 1.

Block Strategic’s A. P. [MW] S. Off. Price [€/MW] Rival’s A. P. [MW] R. Off. Price [€/MW]
1 100 10,401 100 12,901
2 100 15,168 100 18,214
3 100 20,592 100 21,749
4 100 26,476 100 25,983
5 33,333 30,463 100 29,790
6 0 36,575 0 36,005
7 0 41,174 0 41,687
8 0 48,951 0 48,055

A.P. = Accepted Production; S. Off. Price = Strategic Offering Price; R. Off. Price = Rival Offering Price

Table 2.4: Market Outcomes in Node 1 for day 1 and hour 6.

2.2.4 1-Node Electricity Market
2.2.4.1 Layout of the Market
On account of the analysis that is to be applied in this project implies a single market,
it is decided to reduce the previous market to a single node by eliminating their respec-
tive connections and varying their components just a little. A market consisting of 9
generating companies with a single demand is proposed, as shown in the figure 2.6.

Figure 2.6: 1-Node Electricity Market Overall.

Currently, not all generating companies have an associated marginal cost since their
production depends on a natural resource such as it is solar radiation, wind or even tides
among others. As a consequence, it is considered convenient to introduce to the market a
wind farm with 100 % clean production which will represent all the production methods
which have a lack of production cost. This leads to a more realistic supply curve where
the first stretch of the curve will be formed by offers at cost 0 and therefore the staggering
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will begin shifted to the right resulting in lower prices compared to the previous nodes.
Figure 2.7 shows a market clearing indicating how the renewable energies are integrated
in the forenamed curve. It will be showed later in section 3.1.2, the figure 3.1 where will
be presented the case that zero-cost generators are not taken into account and therefore
the price is higher if it is compared.

Figure 2.7: Market Clearing for the 1-Node Electricity Market.

2.2.4.2 Generating Companies
As mentioned in the previous section, wind power (W) represents the renewable part
of production. On the other hand, each of the remaining 8 generators will represent
different production methods such as nuclear, hydroelectric or gas, among others. There
are also changes in the way of offering the energy since it has been considered that there
is no more than one block per company. In the end, the inclusion of blocks per generator
can be considered as entering more generators in the market. That is why companies
are presented instead of blocks and, moreover, since the objective is to reveal prices, it
is considered irrelevant for a didactic application to distinguish a company from a block
since in the end a revealed price will be associated with an offer. Table 2.5 collects the
data formulated in the two following points where are described the generation groups:

• Wind Power Company (W): By having a completely renewable production, its
marginal cost will be set at zero and therefore it will offer at zero cost its produced
energy in the market. As the nominal production capacity of wind turbines is small
compared with traditional methods of energy generation, such as a nuclear or coal
power plant, 8 blocks of 30 MW will be established, thus being an integration of
around 25% of renewable energies in the market. This parameter can be changed
depending on the real characteristics of the real market. This Wind Power com-
pany will represent the total amount of free-cost energy production as it is only
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remarkable how is the price pushed in relation with the total renewable energy
block. Moreover, it is possible to collect the renewable production of Denmark
from public data so this would be a known parameter in a real application.

• Non-Renewable Companies (C1-C8): Together with the Wind Power Generator,
eight more non-renewable generators will be found in order to have marginal costs
when producing. These companies will be able to offer one block each of which
will be of 100 MW. The marginal costs of the blocks will be ascending in all the
companies although their prices will be different if a given block is compared. With
this, it is achieved variety in the offerings and also each company will represent
a method of generating energy. In order to create competitiveness apart from
obtaining different market clearings in each of the simulations, to the marginal
costs will be added an amount which will represent the profit of each electricity
company. It will be assumed that, when a block is available, it will be fully offered,
what is known in the electrical market as an all-in, and its starting price will be
bounded between the marginal cost and a maximum of five more added euros. That
is, if the block of Company C1 has a marginal cost of 10€, then its offering price
will oscillate randomly in each time frame between 10 € and 15 €. Overlapping
in the offers is achieved and therefore some variety in the market clearing results.
With this, it is assumed to be a little closer to the reality of the market behaviour.
Finally, the added part to the marginal cost is considerable when compared with
the 3-Node Market and therefore is more difficult to reveal its price due to its
spectrum. In equation 2.2 it is left how these prices are generated.

Number of blocks Block size [MW] M. C. [e/MW] Offering Price [e/MW]
Wind Power (W) 8 30 0 0
Company C1 1 100 10 10-15
Company C2 1 100 15 15-20
Company C3 1 100 20 20-25
Company C4 1 100 25 25-30
Company C5 1 100 30 30-35
Company C6 1 100 35 35-40
Company C7 1 100 40 40-45
Company C8 1 100 45 45-50
M.C. = Marginal Cost

Table 2.5: Market Data.

Again, taking the marginal cost as base values, the following equation will be used
when generating offering prices.Being λMC the marginal cost per MWh, λG

dtnb the final
offering price and Ωdtnb a random number between [0,1]:

λG
dtnb = λMC + (5 Ωdtnb) (2.2)
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2.2.4.3 Other specifications of the Market
The fundamental part of the changes in the supply part between the two markets are
reflected in the previous section. As for the demand taking as reference the curve of node
1 and the indices of the three representative days, data is generated for a whole year.
Because bid prices sweep a greater range of values, there is a high variability of results
when market clearing is done. For the resolution of the market, the same equations will
be used as in the previous market with some caveats:

• The demand is treated in a non-elastic way: the values of each block that enters
the market will be taken and multiplied by the corresponding factor depending on
the type of day. Once said calculation is made, the final result of each block is
added and the demand is treated as a single value.

• As there are no nodes, there are no interconnections and therefore there are no
capacity restrictions of the transmission lines. There is also no reference node and
therefore it is not relevant to force the only node to be the slack bus.

• Since the calculated demand is presented as a single value and also does not have
nodes, the equations that describe the market will vary with respect to the formu-
lation of 1-Node Market. These equations are described in the following section.
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CHAPTER 3
Methods

Many applications could be considered when getting hidden data from a model given
available information. The reviewed literature is an example of how by means of a cor-
rect formulation which reflects some behaviour, this exercise can be attained.

By cause of its simplicity and authenticity, the first part of this project will be a
reproduction and an analysis carried out in [8]. In this section the Inverse Optimization
equations are presented and explained. Together with the algorithm, the formulation of
the model, which is a market clearing, is also exposed.

Finally, as an alternative to the previous method, the Ensemble Kalman Filter is
explained taking as reference the Simple Kalman Filter. In this last section all steps are
analyzed and come along with graphs and representations.

3.1 Inverse Optimization Problem

3.1.1 Introduction
Since the late 1980s, the Inverse Problem has been an object of research in various
fields of science. Its application in recent years has been focused more on geophysics,
medical imaging or even on traffic balance problems, although other applications of the
algorithm are found in other fields such as engineering. Actually, in order to apply
an inverse optimization problem, a physical system is required which must be modeled
and which also may produce observable values. This type of problem is described as a
forward problem because it identifies the values of the observable parameters given the
values of the parameters of the model or, in other words, infers in the values of the model
parameters given the values of the observed parameters or optimal decision variables [12].

For the presented application in this section, as applied in [8], the model will be
an electrical market through which values of the observed parameters will be obtained
and will be the results of the market clearing. Therefore, the appointed model will be
constituted by a series of equations representing a market clearing, bearing in mind that
the same results could be obtained by applying an optimization problem of the economic
dispatch type as it is done in [13].
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It will be considered a strategic producer that offers electricity in a given market,
taking into account that all the parameters related to the named producer are known
as a reference company is needed to make a strategy with respect to some competitors.
As a priori information, aspects of the network will also be taken into account, such as
the technical parameters regarding the interconnection between nodes. Although this
information is generally not directly available from the strategic producer, for the appli-
cation of the problem the marginal production costs of each of the competitors’ supply
blocks will be used. On the other hand, accepted blocks of generation and demand after
each market clearing will be also considered as available data.

Therefore, through this application of the Inverse Optimization Problem, it will be
possible to reveal bid prices of competitors that in some of the study periods have been
marginal and that, as a consequence, have also had an impact on the results of the
market clearing such are prices in each node and both production and demand accepted
blocks.

In the following section, the equations of the model to be treated and the subsequent
application of the Optimization problem will be presented.

3.1.2 Market Clearing Model
As has been well presented previously, the model to which the parameters are to be
inferred is a market clearing. The notation of the problem is left for the reader’s knowl-
edge in the chapter symbols. As a clarifying note regarding the symbols used in this
section, if a parameter depends on variables and then in the formulation they are not
found, it is because their value depends on these forgotten variables. In addition, in one
case it will be had a variable that will also behave as a parameter: this will be explained
throughout the formulation.

Finally, and before presenting the model, contrary to what is proposed in [12], KKT
conditions will not be applied to obtain results. Taking advantage of the fact that the
model is linear, the strong theorem of duality will be applied resulting in satisfactory
results.

3.1.2.1 Primal Problem Formulation
Considering a market of the pool type, which has a very similar behavior in the different
markets of both Europe and the USA, the following linear problem is presented which
will seek to maximize the social welfare of the forenamed market. For this purpose, it
will be needed an offer and a demand. On the supply side, a set of strategic and rival
producers are considered, which will offer different amounts of energy represented by
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energy blocks at different prices. It should be emphasized that the strategic company
will be differentiated in the formulation being all the data known and from the rival
company as the final objective is to reveal its hidden information. On the demand side,
it will also be represented by blocks of energy that vary in their quantity and price. The
maximization problem will allow the basic concept of the electricity market to be applied,
which is to order both offers and demands through the merit order ranking, that is: the
offers where the price of energy is cheaper and the bids where the price of energy is
more expensive, they will be taken as priority in the calculation of the equilibrium point.
Figure 3.1 shows how the resolution of a market clearing would be as a consequence of
a maximization of the social welfare.

Figure 3.1: Market Clearing.

This equilibrium point will be calculated by the independent system operator (ISO),
which will solve the market and fix the quantities accepted by the related actors and
the final price. This problem is applied every hour and the formulation is decomposed
independently from day to day, which will give pertinent results to 24 time blocks in a
single day period. Therefore, problems can be treated in a broken manner but always
taking into account that the smallest temporal period is a day as shown by the equations
3.1a - 3.1l.
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dtnb
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dtnb
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dtnk
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dtnkP D

dtnk (3.1a)
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subject to:[∑
b

P G
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∑
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]
−
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nb : µOmin
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Bnm(δdtn − δdtm) ≤ P max
nm : νmax

dtnm ∀t, n, m ∈ Θn (3.1j)

− π ≤ δdtn ≤ π : ξmin
dtn , ξmax

dtn ∀t, n (3.1k)

δdtn = 0 : ξ1
dt ∀t, n = 1 (3.1l)

The equation to optimize (1a) is the minus social welfare which is the difference
between supply and demand. Instead of maximizing the left region a minimizing problem
is applied to its right one. The network is represented through a dc linear model, and the
power balance at every node is enforced by equation (1b). This means that if there is a
surplus when producing or demanding there will be a difference and will result in a power
flow through the transmission line between nodes that must respect the saturation limits
imposed by the technical aspects in the interconnections. Equations (1c-1e) represent
the generation limits of each of the companies, which will be equal to the size of the block
that corresponds to them. Indeed, this constraint controls the block size depending on
the actor. Equations (1f-1i) define the ramp time restrictions between the initial period
and the first period as well as between periods for both the generators and the demands.
This constraint deals with generators technical limitations which are considered to be
known in this model. Equation (1j) fixes the interconnection in order to not overload the
limit capacity of the line. Constraint (1k) indicates that the phase angle of the voltages
in each node will be between 180º and -180º and constraint (1l) fixes the angle of the
voltage in node 1 to 0 so that we have the bus as a reference and so the rest of angles
take values with respect to mentioned bus.
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3.1.2.2 Dual Problem Formulation
As can be seen in the previous formulation, each restriction is related to a dual variable.
This is because this inverse optimization problem will use the strong duality theorem as
a constraint instead of KKT (Karush-Kuhn-Tucker) conditions. It is recalled that the
strong duality theorem ensures that if a Linear Programming (Primal) problem has an
optimal solution, then the corresponding Dual problem also has an optimal solution, and
their respective values in the objective function are identical. Taking this into account,
the dual formulation of the previous market clearing is left:

Maximize
Ξd

−
∑
tnb

P Gmax
nb µGmax

dtnb −
∑
tnb

P Omax
nb µOmax

dtnb −
∑
tnk

P Dmax
dtnk µDmax

dtnk +
∑

n

µGdwn
d1n (P Gini

dn − RGdwn
n )

−
∑

t>1,n

µGdwn
dtn RGdwn

n −
∑

n

µGup
d1n (RGup

n +P Gini
dn )−

∑
t>1,n

µGup
dtn RGup

n +
∑

n

µOdwn
d1n (P Oini

dn −ROdwn
n )

−
∑

t>1,n

µOdwn
dtn ROdwn

n −
∑

n

µOup
d1n (ROup

n + P Oini
dn ) −

∑
t>1,n

µOup
dtn ROup

n −
∑
tnm

P max
nm νmax

dtnm

−
∑
tn

πξmin
dtn −

∑
tn

πξmax
dtn (3.2a)

subject to:

λdtn −λG
dtnb +µGmin

dtnb −µGmax
dtnb +µGdwn

dtn −µGdwn
d(t+1)n −µGup

dtn +µGup
d(t+1)n = 0 ∀t < T, n, b (3.2b)

λdtn − λG
dtnb + µGmin

dtnb − µGmax
dtnb + µGdwn

dtn − µGup
dtn = 0 t = T ∀n, b (3.2c)

λdtn −λO
dtnb +µOmin

dtnb −µOmax
dtnb +µOdwn

dtn −µOdwn
d(t+1)n −µOup

dtn +µOup
d(t+1)n = 0 ∀t < T, n, b (3.2d)

λdtn − λO
dtnb + µOmin

dtnb − µOmax
dtnb + µOdwn

dtn − µOup
dtn = 0 t = T ∀n, b (3.2e)

− λdtn + λD
dtnk + µDmin

dtnk − µDmax
dtnk = 0 ∀t, n, k (3.2f)∑

m

Bnm(λdtm −λdtn)+
∑
m

Bnm(νmax
dtmn −νmax

dtnm)+ξmin
dtn −ξmax

dtn +(ξ1
dt)n=1 = 0 ∀t, n (3.2g)

µGmin
dtnb , µGmax

dtnb , µOmin
dtnb , µOmax

dtnb , µDmin
dtnb , µDmax

dtnb , µGdwn
dtn , µGup

dtn , µOdwn
dtn , µOup

dtn , νmax
dtmn,

ξmin
dtn , ξmax

dtn , ξ1
dt > 0 ∀t, n, b, k (3.2h)

where:

Ξd =
{
λdtn, µGmin

dtnb , µGmax
dtnb , µOmin

dtnb , µOmax
dtnb , µDmin

dtnb , µDmax
dtnb , µGdwn

dtn , µGup
dtn , µOdwn

dtn , µOup
dtn ,

νmax
dtmn, ξmin

dtn , ξmax
dtn , ξ1

dt

}
are the dual variables.
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Remark that, contrary to the inverse problems which use as a model a unit commit-
ment optimization problem, this market clearing has the advantage of not considering
discrete decisions variables. Taking this into consideration, the formulation becomes
linear and thus not convex, helping to derive its associated dual problem. Moreover, it
will be required less computation running time if compared and it could be said that
it reflects fairly how the current European markets behave from an external point of view.

Both problems primal and dual will be used in the following section when formulating
the inverse optimization problem.

3.1.3 Inverse Problem Formulation
For the resolution of the Inverse Problem, a prior market clearing must be carried out, in
order to obtain data such as the accepted production of the strategic producer and that
of each rival, as well as the accepted demand blocks and the market clearing price in
each node. Once this data set is obtained, it is proceeded to the first version formulation
of the Inverse Problem:

Minimize
Λ

∑
tnb

|λO
dtnb − λOini

dtnb | (3.3a)

subject to:
(3.1a) = (3.2a) ∀d (3.3b)

(3.2b) − (3.2h) ∀d (3.3c)

where:

Λ =
{
λO

dtnb, µGmin
dtnb , µGmax

dtnb , µOmin
dtnb , µOmax

dtnb , µDmin
dtnb , µDmax

dtnb , µGdwn
dtn , µGup

dtn , µOdwn
dtn , µOup

dtn ,

νmax
dtmn, ξmin

dtn , ξmax
dtn , ξ1

dt

}
are the variables of the above problem.

The main objective of the previous optimization problem is to bring as close as pos-
sible the different values of offer prices to an initial estimate given for each price. Note
that the initial estimate will change throughout simulations. Restriction (3.3b), as dis-
cussed above, applies the strong theorem of duality by forcing the solution vector of
the objective function of the primal problem to be equal to the solution vector of the
objective function of the dual problem. In addition, and previously solving the problem
(3.3a), it has been necessary to make use of solutions of the market clearing problem and
thus the restrictions of the primal problem are not necessary to constraint the problem
of inverse optimization.

Once the inverse problem has been raised, the last qualification in relation to the
formulation must be clarified. The problem must be linearized in order to be able to
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apply a solver for a linear programming and in this sense reduce computation time. By
means of a simple linearization method, the following problem will be considered as the
definitive one as exposed in [12]:

Minimize
Λ,αdtnb,βdtnb

∑
dtnb

(αdtnb + βdtnb) (3.4a)

subject to:
λO

dtnb − λOini
dtnb = αdtnb − βdtnb ∀d, t, n, b (3.4b)

αdtnb, βdtnb ≤ 0 ∀d, t, n, b (3.4c)

(3.3b) − (3.3c). (3.4d)

The solution to the previous problem will be collected in the variable λ∗O
dtnb, which will

indicate the offering price of each of our rivals depending on the calculation period and
energy block. Analyzing the formulation of the problem, it can be observed that when
a supply price that is at the same time marginal in the market clearing and therefore
generates a market price in a given node for a given period, the initial estimate made
λOini

dtnb will not influence the result. However, having initial estimates for each of the rival
blocks, when a price is not shown, it will be forced to have the optimal value equal to
our assumption. Therefore, if there are offers of rivals which are not marginal, that is,
if they are part of the accepted production and are always below the equilibrium point
whatever the period, it will be forced to an initial estimate value without its value being
proven.

3.2 Ensemble Kalman Filter

3.2.1 Introduction
The Ensemble Kalman Filter (EnKF) is a recursive filter which is used as a computa-
tional technique in order to inference models composed by state variables that change
in a given Euclidean space. This structure of space is presented within this technique
because for the representation of the different states of the variables it will be needed
a vector gathering all the associated values (that correspond to a Probability Density
Function) and will be represented in a given region of the mentioned space. As there
are recursive transitions within each time step, two dimensions of the Euclidean space
will be used to get the final result given by the algorithm and will be used to advance
throughout the remaining dimension into the next application forward in time. This
behaviour could be arduous to follow without a graphic representation, for this reason
figures will come along when exposing equations to clarify each evolution of the variables.
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Unlike the simple Kalman Filter, the EnKF works with an ensemble of vectors ap-
proximating a state distribution whatever its nature. In the following sections, it will
be seen that in order to make an estimation of a variable, its values must first mature
along a propagation and update of states following some model and observations. This
representation through ensembles allows a reduction of the dimensions due to the prop-
agation of a small part of the ensemble instead of all the values if it is necessary, making
use of the partial covariance matrix of the sample (called sample covariance). When
the initial guess of the state variable is propagated or updated, functions that represent
its behavior as a function of time are needed and, one of the advantages offered by this
method is that it does not require a linear propagation function or a model composed
by non-Gaussian distributions, besides that the degree of dimensionality of the variables
is not a hindrance when applying this method [14].

This filtering method has been used since the mid 90’s when Geir Evensen applied it
to the field of geophysics. Since this period, it has had considerable repercussion within
the scope of science due to its small formulation and its wide range of application. A
quite popular implementation is found in data assimilation processes for meteorological
problems, where it must be applied for large amounts of data obtaining good results in
terms of computational requirements when compared with other similar methods with
more sophisticated objectives [15]. Besides, other applications apart from data assimila-
tion are found. Such one example regarding estimating parameters between known states
is suggested in [16] where atmospheric methane concentrations are calculated thanks to
reliable observations from anthropogenic and biospheric sources. As commented, not all
the applications seek the same outcome. In [17], the EnKF is used to adjust a given
model by recalculating its previous parameters and perform what is known as history
matching. This work has more to do with model validation. Taking as reference these
examples, it is identified different applications in several fields of studies that succeeded
supporting the versatility when applying this algorithm. Further in the following section,
the basic formulation respecting the Kalman Filter is stated as a starting point.

3.2.2 Basic formulation

3.2.2.1 Kalman Filter
Before introducing the EnKF equations, it is valuable to understand first how a Simple
Kalman Filter (KF) works. Point that the mechanism of both the Ensemble and the
Simple is the same, being the first used when the systems are high-dimensional and the
calculation of the covariance matrix is not computationally feasible. The KF is wide
used in signal processing and assumes that all the state variables follow a Gaussian dis-
tribution. Its equations are split in a prediction and a correction part, being inferred
recursively. This means that a process is estimated and then corrected by using a feed-
back control thanks to some measurements [18]. In the following figure, it is described
how the algorithm progress in each time step and which could serve as a reference for
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the later formulation.

Figure 3.2: The ongoing discrete Kalman Filter cycle.

In a first step, it is assumed that a distribution of the variable is hold which will
be called initial estimation of the state variable and will come from the previous time
step. If prior information is not available, initial values for its mean and variance are
associated without matter their magnitude. Therefore, it is had an initial information of
the estate (x̂t−1, P̂t−1) which will be used throughout a couple of expressions to calculate
the first guess of its new estate. For this purpose, it is required a model or a relation of
the state between time steps. In equations 3.5 and 3.6 it is suggested to have a linear
relation represented by the Mt matrix. This constant will be used to propagate the
mean value and the covariance, resulting in x̃t and P̃t. The prediction equations can be
formulated as follows:

x̃t = Mt x̂t−1 (3.5)

P̃t = Mt P̂t−1 MT
t + wt, wt ∼ Nn(0, Qt) (3.6a)

or

P̃t = Mt P̂t−1 MT
t + Qt (3.6b)

Here, the resulting parameter is what is known as a priori estimation of the state vec-
tor in the following time period t. As assumed before, there is a linearity between states
but this relation will depend on how the state vector behaves along time. Furthermore,
the value of Mt should vary in time if the model behaves dynamically. To the resulting
covariance, it is added a random error in this first estimation which will follow a normal
distribution with a null mean and some Qt standard deviation (also called white error)
adding uncertainty to the resulted distribution. This can be graphically observed in
figure 3.4.

As this first step is a prediction, it is required some measurement regarding the
parameter to obtain an accurate final distribution as a result of an uncertainty reduction.
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Accordingly, this measurement will infer in the a priori state estimate together with the
Kalman Gainer which will been obtained based on the relation between both values.
Being yt an observation or measurement of the true state and assuming that there is a
relationship between this observed value and the first estimation, the equation will be:

yt = Ht x̃t + vt, vt ∼ Nn(0, Rt) (3.7)

The matrix Ht will give a linear relationship between both variables along with an as-
sociated error. Here is again assumed to have a proportional between variables although
it will depend on the nature of the model. This added error will have the same attributes
as the one in equation 3.6a, being both of them independent. As yt is an observation
that comes from a measurement, it is supposed that an error is committed when getting
the value. As happens with Ht, the process noise covariance Qt, the measurement noise
covariance Rt and the Ht matrix will change over time steps, that is why their subscript
indicates a time dependence.

Once the observation is presented, it will serve by means of the Kalman Gainer (or
blending factor) to correct the a priori state estimate represented by the results in
equations 3.5 and 3.6. This constant will bring the mean of the first estimate towards
the mean of the observation distribution as well as conceiving a reduction of the resulting
final state estimate standard deviation. Assuming another time that an error will be
associated and that will be exactly the same held in the previous equation, its formulation
will be:

Kt = P̃t HT
t (Ht P̃t HT

t + Rt)−1 (3.8)

This equation is considered to be the first one in the update step and its value will
vary depending on how accurate is the a priori estimation. See that if the measurement
noise covariance remains null, then the optimal state estimate will be equal to the mea-
surement. On the other hand, if the a priori covariance P̃t yields to zero then the optimal
state estimate would be the same the a priori state estimate. Here are found the bounds
between which the Kalman Gainer is correcting the final result. One last remark, which
comes from the last statement, is that if the a priori estimate error covariance is consid-
erable, the value of the gainer will be higher to reduce it (see their proportional relation).

Finally, with the gainer already calculated, the correction of both the covariance error
and mean value of the state estimate is achieved by applying the following equations:

x̂t = x̃t + Kt(yt − Ht x̃t) (3.9)

P̂t = (I − Kt Ht) P̃t (3.10)
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As this method is recursive, after each time step will be a new measurement and
therefore the process will be applied again following the presented equations. The nota-
tion on the subscripts will vary as an indicator of a step forward.

As the equations describing this process require some graphical guidance to deeply
understand how the data flow is evolving along them, some figures are left below. In
figure 3.3 it can be seen both predictive and update state along with their corresponding
equations. In addition, some representative Gaussian distributions are plotted in figure
3.4 which will help to appreciate how the covariance errors are minimized. As appointed
at the beginning of this section, the main application of this recursive filter is on signal
processing as are the GPS systems. In this type of applications what is wanted, apart
from an accurate result, is the reduction of the uncertainty that is already presented in
the a priori estimation. In figure 3.4, this predicted state estimation has a PDF that
follows a normal distribution with a mean value of 7 and a standard deviation of 1.
Depending on the application, the value of the standard deviation may be acceptable
or not but always is a good exercise to reduce it as it means that the distribution has
lower error covariance and thus more credibility. Then, assuming that the measurement
represent a lower erratic value and thanks to the correction conducted by the effect of the
Kalman gainer, what results is an optimal state estimate with a lower error covariance
if compared with the initial predicted state estimate. Even if the uncertainty in yt is
larger than the first predicted estimate which means that its associated R is large, the
value of the Kalman gainer will absorb this particularity in each time step and the error
will be mitigated along updates [19].

Figure 3.3: Steps in the KF cycle.
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Figure 3.4: Optimal State Estimator Algorithm.

Some problems can come up depending on how the measured value is obtained. In
these sample applications, it is supposed that a sensor takes some values about the po-
sition however, some interpretation is required when the measurement is a single value
with a null Rt. This type of drawback is presented when extrapolating this algorithm to
the purpose of this project and it will be analyzed properly. In any case, the Ensemble
Kalman Filter will be exposed firstly taking as reference the algorithm above.

3.2.2.2 The Ensemble Kalman Filter
As took place with the KF, the Ensemble Kalman Filter behaviour is also based on the
Bayesian update problem which uses the Bayes theorem. This implies that a PDF of
a posteriori state variable can be obtained from a priori PDF taking into account its
likelihood function. Bayesian update problem or Bayesian inference, calculates the a
posteriori probability according to Bayes’ theorem:

P (A | B) = P (B | A) P (A)
P (B)

(3.11)

It is also often said that the Ensemble Kalman Filter is a consequence of the Kalman
Filter if considering Monte Carlo approximations which rely on random sampling to
obtain numeric results. By analyzing the following formulation, it will be appraised that
both Bayesian Inference and Monte Carlo approximation have influence on the algorithm
[20]. On the part of Bayesian Inference, as seen in the previous section, it will be the
observation the distribution which will behave as the likelihood function to infer the pre-
vious guess. Monte Carlo methods will be applied when desired to generate ensembles
from a given distribution. Thanks to this method, a simulation of results accounting for
variability of its factors or inputs will be reached. Setting aside this first introduction,
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in the following paragraphs the formulation of this algorithm is presented.

From this point, the Gaussian distributions for each state variable will be formed
from numbers which are known as realizations and that, when gathered, compose an
ensemble. This means that the mean and variance of each PDF is no longer taken into
account to calculate shifted values neither error covariance matrices. Instead, matrices
will collect ensembles and the forecasting and update steps will be realized with them
attaining to a great variability. Therefore, the initial state estimate will be constituted
by a matrix which its row’s dimension (n) will represent the number of individual initial
states estimate x̂

(i)
t−1 and its column’s dimension (N) the number of samples gotten from

each state variable. For instance, if it is had four temperatures in four different locations
with a hundred samples for each one, the dimension of the matrix will be (4, 100). A
fair representation could be the following:

x̂t−1 =


x̂11 x̂12 x̂13 . . . x̂1n

x̂21 x̂22 x̂23 . . . x̂2n

... ... ... . . . ...
x̂N1 x̂N2 x̂N3 . . . x̂Nn


t−1

(3.12a)

x̂
(ij)
t−1 ∼ Nn(µ̂t−1, Σ̂t−1), i = 1, 2, ..., N. j = 1, 2, ..., n. (3.12b)

The previous matrix will be named the initial state estimation ensemble. The values
conforming the columns of the matrix are directly related with the distribution depicted
in equation 3.12b and therefore, the covariance error it is implicit in the values and that
is the reason why only one equation is required. As it was proceeded with the KF, the
a priori state estimation will be calculated by relating the presented ensembles with a
given relation matrix, Mt also in this case, and with some added error wt. The following
formulation reflects the relationship.

x̃t = Mt x̂t−1 + wt, wt ∼ Nn(0, Qt) (3.13a)
x̃

(ij)
t ∼ Nn(µ̃t, Σ̃t), i = 1, 2, ..., N. j = 1, 2, ..., n. (3.13b)

The resulting matrix will have the same dimensions as the initial guess matrix, there-
fore the dimension of Mt must be (N, N). Moreover, this relation matrix is important in
the formulation as with its diagonal the individual propagation of the variables can be
controlled. However, what is more, thanks to its square dimension every state variable
can be correlated with each other when tuning properly the upper and lower triangles
of the matrix.

Continuing with the formulation, as this is a forecast that must be inferred consid-
ering a measurement yt in each time step, an update based on this value will be carried
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out. It is worthy to mention that two options are applicable when updating the first
predicted ensemble: stochastically or deterministically. In this project, the updating will
be done in a stochastic point of view as it is more logical for the nature of the model. To
justify this decision, some differences between them are exposed below. Furthermore at
the end of this section an example of the algorithm will be showed with a deterministic
update to fully understand the main disadvantage.

When applying deterministic updates:

• There is no need of generating a simulated observation. The simulated observation
is an initial guess of the measurement that will be corrected afterwards by the real
one. This simulated parameter helps to control the shape of the final PDF which is
valuable in the case of this project. Moreover, the observations in the application
will not represent all the state variables collecting only one measurement per time
step. Therefore, this matrix will also complete the estimation of all the variables
without really seeing them. In next chapter all this formulation features will be
properly explained.

• Before obtaining posterior draws of the state variable, it is required to apply two
more steps called standardize and ”unstandardize”. This additional part comes also
with a Trochowski decomposition when computing results with large ensembles,
leading this alternative to be computationally unfeasible when applying to a large
number of time steps which is the case.

Following the stochastic update and taking into consideration the result of equation
3.13a, the covariance sample matrix is calculated. Remind from the introduction part
of this section that, the representation of the states by means of ensembles permits
propagation making use of the partial covariance matrix of the sample. Hence, all
realizations will be taken into account when reaching x̃t but not with the covariance
matrix calculation as it is recommended an approximation which makes the algorithm
CPU viable. From the a priori state estimation ensemble, the mean value of each column
is determined and thus conforming the matrix Et(x̃) as can be observed:

Et(x̃t) = 1
N

N∑
i=1

x̃ij (3.14)

This matrix will contain the average value for each of the individual state variable
represented in each column and its dimension will be (1, n). As it is desired to subtract
each related mean value to all the realizations that form an state ensemble, the resulted
Et matrix will be resized to a (N, n) dimension as can be seen in equation 3.15 through
multiplying in the left side by an eye matrix. Additionally in this equation, the men-
tioned subtraction is done obtaining the At matrix that will be used to calculate the
covariance sample matrix St as can be seen in equation 3.16. Note that the values of
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this covariance matrix will be used as the Ct matrix in order to compute hereinafter the
Kalman Gainer.

At = x̃t − (eNx1Et(x̃t)) (3.15)

St = AtA
T
t

N − 1
= Ct (3.16)

Here, the last step to update the initial guess is presented. One such difference from
the KF is considered in this algorithm. Instead of using the a priori predicted state
estimate ensemble x̃t as a reference to infer its value with the measurement, a simulated
observation is calculated previously from this parameter. This step can be done or not
depending on how important is the measurement for the process. Indeed, is identical to
calculating the a priori matrix assuming a couple of associated errors. In any case and
following all theoretical aspects from the formulation, it is showed in the next equation
how this simulated measurement is obtained.

ỹt = Htx̃t − vt, vt ∼ Nmt(0, Rt) (3.17)

Note that this gainer, apart from minimizing the error Rt, it also minimizes the error
committed when simulating previously the measurement. Once the relation between ỹt

and x̃t is known and, taking into consideration the covariance sample matrix, the Kalman
Gainer can be calculated. This gainer has a special approximation as the dimension of
the matrices are huge becoming in unfeasible simulations. This is the reason why instead
of calculating the standard Kalman gain, it will be replaced by an estimated Kalman
gainer based on the forecast ensemble which formulation is done in this way:

K̂t = CtH
T
t (HtCtH

T
t + Rt)−1 (3.18)

Once all the variables for the last equation are attained, the update step will be as
presented in equation 3.19a with the associated distribution given in 3.19b. See that the
covariance error matrix of this a posteriori state estimate ensemble is calculated from
the other covariance error matrices as showed in 3.19c. This equation is useful when
calculating variances separately and it is used in the deterministic update.

x̂t = x̃t + K̂t(yt − ỹt) (3.19a)

x̂
(ij)
t ∼ Nn(µ̂t, Σ̂t), i = 1, 2, ..., N. j = 1, 2, ..., n. (3.19b)

var(x̂t) = var(x̃t)+var(K̂tỹt)−2cov(x̃t, K̂tỹt) = Σ̃t + K̂tHtΣ̃t −2K̂tHtΣ̃t = Σ̂t (3.19c)

Finally, and after presenting all the equations that represent this algorithm, it is
valuable to gather all the expressions by steps so the correct understanding of the appli-
cation can be achieved. Thus, and as done with the KF, the steps in the EnKF cycle
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are left above. Moreover, an example using deterministic updating is left to the reader
in order to justify numerically the decision done previously.

Figure 3.5: Steps in the EnKF cycle.

Example: Forecast a given temperature

Statement of the problem

• Temperature at time t1 is T1 and then at t2=t1+∆t is T2, being
T2=∆tT1+T1

• The a posteriori estimate at time t1 will follow this normal distri-
bution: N (Tu, t=t1, σu, t=t1). This distribution is represented given
a number of ensembles which provides a sample. In figure 3.6 are
produced some representative ensembles although it will be more
in a realistic case. From these points, the normal distribution
will be drawn as it can be observed with its mean and standard
deviation.

• The a priori estimate at time t2 will follow a normal distribution:
N (Tp, t=t2, σp, t=t2)
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Example: Forecast a given temperature

• The observation will also follow a likelihood normal distribution
being seen at t = t2: N (To, σo)

• Finally, the updated distribution will be named the a posteriori
estimate according to this normal distribution: N (Tu, t=t2, σu, t=t2)

Figure 3.6: A posteriori state estimate in t=t1.

Step 1: Calculation of the a priori state estimate

Then, first step will be to advance each element to the following time
period given a linear relation of temperatures in this case: T2,n= L(T1,n)
being n the number of ensembles. This step can be visualized in figure
3.7.

Figure 3.7: A priori state estimate in t=t2.

See that, as well as performed in the a posteriori estimate, from the
ensembles generated, a sample is given and therefore a new Gaussian
distribution will be fitted to this sample.
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Example: Forecast a given temperature

Step 2: Calculation of the a posteriori state estimate

Recall that with an stochastic update, previous to the computation of
the posterior PDF, it was possible to generate a simulated measurement
from the a posteriori estimate when applying equation 3.17. But, as
this is a deterministic update example, there will not be a Ht neither
a Rt matrix. Hence, the observation likelihood distribution is gotten
as shown in figure 3.8 and assimilating this observation, a shift will be
applied to the ensembles as a first step.

Figure 3.8: Non-corrected a posteriori state estimate ensembles.

Then the variance must be adjusted applying basic statistics as follows:

σu =
√

(σ−2
p + σ−2

o )−1 (3.20)

When applying the formula to the ensembles, a linear contract is
achieved which must be equal to the a posteriori variance. This result
is displayed in figure 3.9.

Figure 3.9: A posteriori state estimate.
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Example: Forecast a given temperature

Comments and conclusions

Better results must be obtained if a stochastic update is applied.
Instead of separating mean and variances from the sample, equations
are applied directly to each ensemble. Much more relations are done
between single values and consequently a greater collection of results is
obtained from which a PDF is possible to be drawn. When applying
the equations from this point of view, there is no need of applying
equation 3.20 and less computation time is required.

This example updates in a deterministic way with a ”standardize-
unstandardize” calculation perspective, and it is solved according to
this alternative to show that if compared with the stochastic update is
worthless when relieving the scope of this project. The relation between
ensembles in the model presented in last section is not linear and thus
the contraction done in the last part of this example becomes really
arduous.

Moreover, the simulated observation is not presented in the determinis-
tic update and will be a key parameter in the strategy proposed further
in this document.

3.2.3 Implementation for revealing prices
As commented in the prior sections, this algorithm is versatile and if tuned properly can
be applied to different purposes. Moreover, the case of study when revealing prices is
novel and therefore some of the variables must be treated in the best way, according
to their attributes to acquire logical results. One such example are the observations, in
compliance with the formulation an error is added to the value assuming a disturbance
in the measurement sensor. But what if the nature of the observation is discrete and
100% correct as it can be a market price? This will be studied in the following section
comparing results when simulating under different assumptions.

Another issue which has to do with the formulation is the propagation of the ensem-
bles. It is clear that computation becomes easy in case of calculating estimated state
variables shifting means and updating variances. Nevertheless, a great order of magni-
tude is advisable when generating realizations and this is achieved by relating all the
realizations of the ensembles.



40 3 Methods

These two issues will be taken into consideration regarding the formulation. Along
next chapter, all changes or assumptions made will be explained.



CHAPTER 4
Results

Once the methodology is presented, the results obtained will be shown. In the case of
the Inverse Optimization Problem, a simple equation that will serve as a filter to obtain
marginal costs will be presented prior to the results. In the case of the Ensemble Kalman
Filter, some steps prior to the methodology will be carried out in order to have an initial
state of the variables. Once exposed, the algorithm will be applied to three different
cases. Because the current application of this method varies from the one applied in this
project, it requires special treatment to some parameters to obtain results. Since this is
part of the strategy adopted, it has been considered appropriate to separate additional
equations from classical formulation: if the equations exposed in section 3 change, said
changes will be explained.

4.1 Inverse Optimization
In this section, the results obtained from the first methodology are exposed. The Inverse
Optimization is applied to the 3-Node Market and therefore prices from three rival
competitors, one per node, are analyzed by means of tables and graphs. Furthermore,
at the end of this section, some conclusions will be drawn from the outcomes.

4.1.1 Revealing marginal costs
When the formulation is applied, a set of prices per block, node and producer is ap-
proached. These prices that each company offers, will be equal or higher to their marginal
cost as financial losses when producing want to be averted. As a consequence, and taking
as inputs these sets of outcoming prices, the following equation will be used for each
rival’s block in all three nodes when estimating marginal costs.

ˆλOtrue
nb = Min

∀d,t

{
λ∗O

dtnb

}
∀n, b (4.1)

Hence, this equation will yield to the minimum price given all the associated values
of a an energy block during all the simulation period which, in this case, is 30 days.

The assumption of offering always above the marginal price is not a certain represen-
tation of what really happens in real markets as this value could be lower to guarantee
that an energy block is fully accepted, for instance. Nevertheless, as the model is con-
trolled and determines the offering values to be always greater, this is not a problem
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when solving. Anyhow, a parallel solution to this issue could be employed if happens
calculating the average offered price instead.

Taking into consideration the data provided in section 2 regarding the electricity
market model and the formulation left in section 3, the linear inverse problem is applied.
Once rival producers’ offer curves λ∗O

dtnb are sifted by equation 4.1, the rival produc-
ers’marginal costs curves ˆλOtrue

nb per block and node are obtained. These results are
gathered in table 4.1 as can be identified below.

b 1 2 3 4 5 6 7 8
λOtrue

1b 12,000 17,000 20,000 24,000 29,000 33,000 41,000 47,000
ˆλOtrue

1b - 17,022 20,122 24,030 29,039 33,051 - -
ˆλOmax

1b - 18,486 21,964 26,361 31,789 36,093 - -
λOtrue

2b 15,000 17,000 21,000 22,000 30,000 31,000 38,000 45,000
ˆλOtrue

2b 15,219 17,016 21,040 22,004 30,064 31,056 - -
ˆλOmax

2b 16,497 18,491 23,082 24,105 32,838 33,993 - -
λOtrue

3b 13,000 16,000 23,000 25,000 27,000 31,000 42,000 48,000
ˆλOtrue

3b - 16,330 23,012 25,005 27,006 - - -
ˆλOmax

3b - 17,186 25,281 27,44 29,284 - - -

Table 4.1: Estimated and True Marginal Costs in [€/MWh].

The results of the table are split into three graphical plots representing clearings in all
three nodes taking into account all technical aspects from producers and also technical
aspects from the grid. These are left below in figures 4.1, 4.2 and 4.3.

Figure 4.1: Estimated Marginal Costs: Node 1.
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Figure 4.2: Estimated Marginal Costs: Node 2.

Figure 4.3: Estimated Marginal Costs: Node 3.

All the estimated marginal costs are compared with their associated real value to
verify whether the result is accurate or not. This real values come from the previous
information that it is had from competitors and used as an input in the market clearing
optimization problem. Moreover, the maximum value of each block is also referenced so
the spreading of the prices along 30 day can be observed.

The ramping constraints for the generation and demand sides together with the in-
terconnection power limits, produce that not all the prices have been marginal. This
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results in hidden information which is never reached and thus can not be represented as
a part of the final solution even though it is had knowledge of their true values. Some
hidden prices have more importance than others from a strategic point of view. The case
of not reveling the lower blocks’ price could not be a problem due to, with those prices, is
difficult to employ market power and push competitors close to the market price beyond
the clearing point. The simulation has been extended to a longer time period without
improving the number of revealed prices, concluding that the restrictions are the causers.

Analyzing all numerical results of the table 4.1, it can be observed that the estimated
marginal cost of the prices that at least once have been a market price (or marginal) and
thus had set the corresponding LMP in a given node, are close to their real values. The
logic of taking the minimum number indicates a properly functionality when estimating
the marginal costs as they are the base number to generate offerings.

Once the outcomes from the optimization problem are discussed, some conclusions
are going to be exposed. Being critical and taking into account the scope of this project,
some aspects will be considered as decisive contributions and other will be stated as
challenges to be covered by the following methodology.

4.1.2 Conclusions
This first methodology has positive features when applying to a given market. The for-
mulation is simple since the optimization problem takes as reference the market clearing
problem used in the proposed model. Moreover, the linearization becomes elegant being
the strong duality theorem applied successfully in the constraints. This results in low
simulation time as it is not computationally demanding if compared with other alterna-
tives that apply an optimization approach.

On the other hand, some aspects that can been improved to achieve the offering
prices are also encountered. Many are found and, for that reason, a list is presented:

• First, some prices are not marginal at any simulation period and therefore they are
left as unknown variables though they could be estimated by a simple polynomial
regression, for instance. Being analytic, it is appropriate as there exist some prices
that are allocated in the lower part of the offering curve and thus will not become
in a threat from a strategy scope. Despite this, estimating prices from competitors
that are not in any market clearing should be a positive study. If obtained, higher
prices beyond the equilibrium point will be known and will result in the limited
offering price when executing power market.

• Another issue is encountered regarding all the required data in order to apply this
methodology. Both accepted offering and demanding blocks, block size, initial
production level for each day or even ramping constraints, between others inputs,
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are required to carry out the proposed formulation. The problem with this amount
of information is that, probably is not going to be accessible to a company as it
will be considered a strategic advantage given from a competitor as well as having
access to private information from the market TSO. One such proposal could be
to simplify the market in terms of required information but generating a faithful
supply and demand curve which give prices according to the real studied market.

• Finally, the last drawback presented is that, in the end, the offering prices are not
calculated but used further on. Marginal prices are revealed instead of offering
prices. Indeed, these offering prices are used as a whole gathered by blocks to
determine their minimum value and thus obtain the associated marginal cost.

The scope of this project wants to go one step forward. Alternately of using hidden
data in the algorithm, only market prices will be taken into account as inputs. This is,
from public prices, revealing hidden parameters inside a model as are the offering prices.
It is clear that technical data regarding generating companies is needed but only for
the model to get market outputs. This will only deal with constructing accurate curves
when compared with a real world market. One consequence when facing a problem with
multiple hidden variables that are calculated only when one is observable is that, some
assumptions will be implied within some logical range. One such example could be to
assign to the energy blocks a quantity small enough to detect a change in the price when
market clears. All the assumptions will be explained in the following section where the
second alternative is applied.

4.2 Ensemble Kalman Filter
In this section, it will be suggested the second alternative taking as reference the second
methodology exposed in section 3. Gaussian distributions will come up when represent-
ing prices instead of discrete values. Moreover, with this second option, apart from
reaching hidden variables, it is wanted to offer remedies to the weak points presented in
the conclusions of the previous approach.

Before applying the algorithm, some computing and parameter tuning is required for
the correct functioning of the overall formulation. To explain the adjustments realized
in some EnKF parameters, a natural convergence to logical decisions will be conducted
by the document as a problem solving when some setback is presented. Drawing from
the premise that only public information together with obvious knowledge that has a
common private company, some extra studies in addition to the EnKF are carried out. As
a first step, is proposed a guessing of the amount of companies with their corresponding
marginal costs for the studied market.
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4.2.1 First estimation
Before applying EnKF equations, some initial values for the ensembles that will conform
the initial state estimate variable are required. These ensembles could be set to zero and
along simulations propagate to their corresponding values. However, as market prices
are presented since first day, is common sense to take prices regarding the early days
and therefore construct initial distributions for the generators with marginal costs.

First matter to solve will be calculating the marginal costs of each company. Here,
the advantage is that few companies are given in electricity markets nowadays since
the big generators are those that occupy great stretch of the offer. One such example
could be Ørsted in the Nordpool Spot Market or even Iberdrola in the MIBEL. With
this statement, there is the chance for a private company to have knowledge regarding
number and type of energy generation as well as nominal powers.

Figure 4.4: Estimated Marginal Costs.

Taking this into account, the strategy will be to calculate marginal costs of the
companies and then when taking prices from the market have some basic argument to
accomplice price with energy block. As commented in previous sections and according
to [9], it is possible to estimate the marginal cost of a company depending on the type
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of generation, country, years of service among other factors.

In a first estimate, it will be assumed that the marginal costs have been calculated
within certain error limits with some consistency. Gaussian distributions are used in the
formulation due to the amount of realizations composing the ensembles and therefore,
this marginal cost estimations will also follow this type of representation as showed in 4.4.

In this project, this first step of researching companies and calculating generation
costs is not done as it is out of the scope in addition to being focused to a realistic
application. Anyhow, it is a good starting point when a great power market can be
exerted and few companies are direct rivals and susceptibles of being pushed out the
market. Instead, it will be supposed that this previous calculation has been done within
some margin error and thus the graph above will avail this stage.

As can be observed, the graph indicates the mean value of each marginal cost which
is the same used in the model. Together with this value, a standard deviation is iden-
tified with each distribution representing the error in cost estimations. Remark that
in this implementation, there exist the chance of striking with lower prices if compared
with their marginal cost.

Now, initial estimations are calculated added to acquaintance regarding the amount
the companies in the market. Taking as reference these distributions a filter will be
employed when a new market price appears. This supposes that when updating the en-
sembles given an observable value, the associated market value will be the responsible of
changing the distribution of the marginal costs ensembles. This update will be analyzed
further in next section.

4.2.2 Initial distributions
The simulation cycle will be of one year. This long period will permit the formulation’s
parameters to be updated throughout different demand factors as well as letting the
algorithm to converge properly. Due to this fact, prices regarding first month will be
used as observations to construct prior ensembles once they are associated to each com-
pany. Market prices will be collected from clearings and then gathered according to each
company.

Some market prices can be between two marginal costs. As it is assumed that the
price can be lower that the actual generating cost, in these special cases, these prices
will serve to update distributions immediately preceding or immediately following. The
decision making procedure is that if a price is around and below the mean value a com-
pany, this will be used to update both distributions. Some representative situations are



48 4 Results

left in table 4.2.

Market Price [€/MWh] G10 G15 G20 G25 G30 G35 G40 G45
20.984 7 7 3 7 7 7 7 7

14.444 3 3 7 7 7 7 7 7

27.781 7 7 7 3 7 7 7 7

39.458 7 7 7 7 7 3 3 7

46.785 7 7 7 7 7 7 7 3

Table 4.2: Classifying Market Prices.

In the table, the name of the generators end with two numbers representing mean
values of their corresponding marginal costs. Once all prices from a month of clearings
are collected and classified by companies, the distributions are made up and ensembles
can be drawn from them. Thus, this ensembles will form the initial estate estimated
ensemble which will act as the initial conditions. As an example of the resulting distri-
butions from this exercise, figure 4.5 is left below.

Figure 4.5: Initial distributions from 1-Month Data.
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Recalling the matrix form of this variable and giving some numbers from the distri-
butions above, the initial state will be similar to the one presented in equation 4.2. Here,
as the number of companies already calculated are 8, this will be the dimension of the
columns (n=8). Moreover, as it is required a huge amount of realizations, the number
of ensembles per company will be set at N=106. See that the realizations composing the
ensembles of each company have grown if compared with their initial costs.

x̂t−1 =


x̂11 x̂12 x̂13 . . . x̂1n

x̂21 x̂22 x̂23 . . . x̂2n

... ... ... . . . ...
x̂N1 x̂N2 x̂N3 . . . x̂Nn


t−1

=


10, 975 16, 006 21, 853 . . . 47, 026
13, 643 16, 978 21, 041 . . . 48, 533

... ... ... . . . ...
11, 188 16, 559 20, 093 . . . 44, 375


t−1
(4.2)

Figure 4.6: PDFs of each company.

One such representation of the Gaussian distributions for each marginal cost in ad-
dition to the distributions for the offering prices is given in figure 4.6. Each column
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corresponds to a company and both representations appointed are added to a fixed base
price represented by a black bar. As an example, a market price of 36.55e/MWh has
been associated to the company with a mean marginal cost of 35e/MWh. See that the
mean value of the offering price distribution is higher even though appending a lower
value.

This figure will help to place the offering prices separately from the marginal cost.
However, and as seen in equation 4.2 only a PDF will be used to generate ensembles for
each company.

4.2.3 Revealing offering prices
This first step will be done independently of the conditions presented in the market. It
has been checked that is the best starting point for the algorithm and will help conver-
gence into good results in less time. In this section, the revealed prices for each company
will be presented by means of tables and graphs as a guidance for the presentation of
the solutions.

Three scenarios will be presented as some problems regarding the EnKF parameters
will appear in some of them and therefore retrieved in the following. Firstly, a static
model for the EnKF will be used to reveal prices from the 1-Node Electricity Market
model. Then the results obtained will be compared with the ones achieved in a dynamical
model, which will be examined in second scenario. Finally, taking as reference the
formulation from the dynamic model, extremely conditions in demand will be applied to
check the performance of the algorithm. These conditions will become in great changes
of market outcomes and will permit analyze versatility.

4.2.3.1 Scenario 1: Static EnKF model
As commented, the algorithm will be applied to the 1-Node Market which has three rep-
resenting days affecting to the amount of demanded energy per block and hour. With
this scenario, it is wanted to show how does work the formulation without changing the
parameters. The results of this application will give an idea of what to tune properly
inside the EnKF model of the EnKF in order to fully attach the behaviour of the hidden
variables in the market model.

For this reason, some values are needed for the parameters. Before updating an
ensemble by means of the measurement (market price), a prior guess is required propa-
gated from the initial known state of previous time step. As the evolution of the offering
prices for each company follow a stochastic behaviour, it has no sense to apply any re-
lation between them. This will be equivalent to implement to the matrices, used in the
equations, the complexion given in table 4.3.
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Mt Identity matrix
Qt Zero matrix
Ht Identity matrix
Rt Zero matrix

Table 4.3: EnKF Parameters.

The simulation time in this scenario is less than a year due to the meaninglessness
of the results given a number of iterations, consequently 2500 hours out of 8760 will be
enough instead.

One of the issues identified in the results is that there is no correlation between of-
fering prices. When a market price comes up, it is associated to a company and hence
an ensemble will be updated meanwhile the others remain static. It should happen that
when last company inside the market clearing is taking some risk in terms of price rising
over its marginal cost, something similar would happen with companies that offer en-
ergy blocks at lower prices. This problem could improve accuracy when guessing hidden
prices.

Secondly, and as a consequence of the prior issue above, when a company offers an
energy block which is not marginal and therefore no information is presented to update
the corresponding ensemble, the median value of the distribution remains static and a
decrease of its standard deviation is presented. Truthfully, all standard deviations con-
verge to zero in less than 700 step periods, being more pronounced in those companies
which present more prices that are marginal. It should be highlighted that equation
3.19a reduces covariance error and thus uncertainty. This fact together with null white
errors converts this static alternative to be applicable only in small periods or even in-
applicable.

One example is given with company C1. In figure 4.7, the statistics of the distri-
bution for six time periods are left by means of box plots where data is represented
through quartiles. Here, it can be observed the decrease in the standard deviation due
to the lack of observations for this company. Moreover, the median remains fairly static
as commented. Finally, it can be observed that in these periods and for this company,
five of the real offering prices are inside the limits of the distribution. Nevertheless,
then it will be observed that the accuracy when estimating will also decrease along time
resulting in a small success percentage.
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Figure 4.7: Box-Whiskers plot for Company C1.

Labels 70 85 100 115 130 145
Min 9,945 9,807 10,116 10,063 10,022 10,159
Q1 10,270 10,252 10,262 10,285 10,291 10,251

Median 10,400 10,392 10,359 10,354 10,331 10,291
Q3 10,503 10,507 10,412 10,433 10,412 10,362

Max 10,985 11,093 10,613 10,629 10,559 10,490
IQR (Interquartile Range) 0,232 0,255 0,149 0,147 0,120 0,111

Real Offering Price 10,148 10,789 12,390 10,008 10,451 10,305

Table 4.4: Data Regarding Figure 4.7.

Together with the figure above, table 4.4 gives values to the main parts of the box
representations. This table gives also numerical justification as the Interquartile Range
decreases along time periods. With this problem, the distributions will be converted
into discrete guesses and therefore the formulation by means of Gaussian Distributions
will have nonsense.

To end with this section, some statistics regarding the market behaviour and the
algorithm performance are left below. Company C1 has been analyzed though could be
the less important company when competing as it is always inside the market. In order
to justify that the behaviour seen in this company is exhibited in the others, figure 4.8
is exposed.

The blue bar represents when an offer is inside the market clearing. The red bar
produces when the offer is inside the distribution this is, within the maximum and min-
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imum parts of the box no matter how many times is inside the market. Finally, the
green bar indicates the number of times that a price is marginal along simulations.

Figure 4.8: Statistics for Scenario 1.

Regarding the market behaviour, a decrease in the blue bar indicates that the de-
mands are not extreme and thus collect medium values. This is the reason why last three
companies have small participation. Here, companies C2, C3 and C4 become important
when being monitored as they set more than the 60% of the market prices.

Moreover and according to the graph, along the 2500 time periods, only 10 obser-
vations (0,4%) are given to update the ensemble of C1. This is the reason why the
predicted distributions are accurate only in the 18% of the times. As commented before,
these results could not be a problem when exert market power as this is the first com-
pany which is always supplying energy. However, when paying attention to company
C3 which is the one with greater marginal offering prices and thus must be the most
consistent with accurate guesses, it can be seen that this is not met.

In the end, blue and green bars are representative regarding the market behaviour
as well as indicators of how well the algorithm must perform. Taking an overall view on
red bars it can be concluded that the accuracy with static parameters is not enough as
the most factual PDF is encountered with C2 representing a 55,6% of correct guesses.
There exist even the detail from company C5 until C8 than red bars are smaller than
greens. This is because at certain time period, the measurement is only correcting the
a priori guess distribution by shifting its mean value and the variance is almost zero,
which is therefore insufficient.
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In the following section, taking as reference this scenario, some changes are applied in
order to reach solid results. It is clear that when taking an observation from the model,
has a discrete nature and no noise is presented. Despite this, and recalling the formu-
lation, some advantage could be taken when using in a correct approach the simulated
observation. Finally and to justify that the main problem of an EnKF model without
associated noises is not feasible, figure 4.11 is left below showing that the decrease of
the standard deviation becomes more critical when more marginal prices are associated
to the offering prices of a company.

Figure 4.9: Evolution the Standard Deviation for Company C3.

4.2.3.2 Scenario 2: Dynamic EnKF model
In this section, some changes regarding the parameters of the EnKF will be tested.
Again, the algorithm will be applied to the 1-Node Market which has three representing
days affecting to the amount of demanded energy per block and hour. With this scenario,
it is wanted to show how does work the formulation making the values of the parame-
ters observation-dependent, and then checking if it is fully attach the behaviour of the
hidden variables in the market model. Finally and before starting with the formulation,
comment that a dynamic model will be forced as a consequence of nature changing along
periods of the observations.

As a first step and following the reasons exposed in the previous section, as the of-
fering prices behave in a stochastic manner and thus it is not predictable which could
be the forecasted state, the a priori state estimate will be the same as the optimal state
estimate in the previous time step. Hence, values for the first two parameters are known
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an presented in table 4.5.

Mt Identity matrix
Qt Zero matrix

Table 4.5: EnKF Forecasting Parameters.

This will result in calculating the covariance sample matrix with the values of the
optimal state estimate matrix in t-1, which makes sense if there is not a prediction.

Next step will be to set properly the simulated observation matrix exposed in equa-
tion 3.17. Its value will depend on the optimal state estimate matrix as well as parameters
Ht and vt. The strategy applied in this project will be the following:

• When a new market prices comes out the market, as did with the initial distribu-
tions, it is associated with a company. In these steps it will be only supposed that
offerings are greater than marginal costs. At the end of the section, special cases
which price could be lower will be studied.

• Once the market price is classified, the difference between this value and the mean
value of the associated ensemble is calculated thus resulting in variable dt:

dt = λM
t − Et(x̃i,j∗

t ) (4.3)

Here, the asterisk next to j indicates that the mean value will be only calculated
from the selected company. See that this variable can be either positive or negative,
and will be used to calculate both Ht and vt.

• In order to calculate matrix Ht, it will be supposed that the last company inside
the market clearing is taking some risk in terms of price rising. This means that a
shift to the mean values of all the companies in each ensemble must be done. To
infer proportionally, a new constant is presented:

jt = 1 + dt

Et(x̃i,j∗
t )

(4.4)

Taking as reference this constant, matrix Ht will be a diagonal one which entries
will be identical and equal to jt:

Ht = jt ∗


1 0 0 . . . 0
0 1 0 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

 (4.5)
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• In addition, some white error vt must be added to avoid decrease in standard
deviations. As a second hypothesis, it will be supposed that the risk taken by
companies with lower marginal costs should be lower. Therefore, to cover this
uncertainty and taking as reference the value of dt, a value for vt will be given so
that the distribution ranges from the shifted mean value until the previous one.
To fulfill this premise, the following equation will be applied:

vt = Σ̃t − d2
t (4.6)

• With these determined parameters, the value of the simulated observation can be
calculated and thus follow with the formulation as stated in section 3.

These steps have been exposed considering only the situations when the offering price
is greater that its corresponding marginal cost. However, as proceeded with the initial
distributions, this offered price could be lower. It is known that some energy generating
companies implement this action when is cheaper for them not to stop generating rather
than being out of the market clearing. Therefore, since there is a base factor that gen-
erates small demands, when this case occurs together with a market price immediately
below the marginal cost of any of the companies, this special case will be considered.
Here, dt will be negative and as a consequence jt less than one. It is not a case that
has a high occurrence, but must be taken into account because in the current electricity
market occurs as it may be the case of a nuclear power plant.

Finally and before commenting the results, remark that the real observation has a
discrete nature and thus must be treated. By reason of this fact, yt will collect mean
values from the simulated observation columns of the matrix being the market price in
the associated company. This is done in this way to avoid minimizing the variances
created with variable dt.

As was done in the previous scenario, the figure 4.10 is left with six representative
boxes of the distributions that represent the forecasts made in six simulation periods.
Together with the graph, the corresponding values are left as a guide in table 4.6. In the
graph, data corresponding to March 21 has been considered, taking into account that
the simulation begins on January 1. In this case, it has been opted for the company C4
although later it will be analyzed the precision of the results for all others. However, un-
like the previous scenario, looking at the graph it can be observed that the real offering
prices are within the presented distributions.



4.2 Ensemble Kalman Filter 57

Figure 4.10: Box-Whiskers plot for Company C4.

Labels 500 515 530 545 560 575
Min 24,932 23,524 23,767 22,550 24,559 26,220
Q1 25,460 25,020 25,691 24,012 25,097 27,068

Median 25,650 25,455 26,338 24,494 25,396 27,225
Q3 25,924 26,325 26,828 24,924 25,627 27,499

Max 26,500 27,711 27,958 26,165 26,357 28,267
IQR (Interquartile Range) 0,463 1,305 1,136 0,912 0,530 0,431

Real Offering Price 25,629 25,899 26,562 25,072 25,651 27,326

Table 4.6: Data Regarding Figure 4.10.

Continuing with the analysis of the results of the table, it can be seen that the values
of the median indicates changes in prices between simulations. It no longer remains
almost static as it could be detected in the previous scenario and it is also a potential in-
dicator that the shift through the mean done by jt is being applied correctly. In addition,
it can be observed that due to the special cases of low demand and prices immediately
below the marginal cost, the one mediated in the period 545 is below said cost. As it
has been said is a possible indicator, because it would really be the average value of the
distribution which should indicate such a situation, although checking in the database
the average is also below and therefore would be representative of this special case.

Considering more closely the inter-quartile ranges, it can be observed that the re-
spective values do not decrease along simulations. In fact, observing the values, can be
seen that ranges between 0.5 and 1.3 approximately in the presented sampling. Small
values can indicate two different cases: the first is that the price change with respect
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to the previous value is small, and the other is that the company’s offer in that period
of time has a marginal character. In the cases of the graph, both in the first reference
(500) and in the last two (560 and 575) the cause is due to be establishing the market
price. It is already possible to anticipate justifiably that the offers of C4 are marginal
almost 1 out of 3 occasions. By means of these data, it can be concluded that the error
with the reduction of the standard deviation has been corrected without increasing its
value excessively and without any justification.

Figure 4.11: Statistics for Scenario 2.

As has been done in the previous scenario, the statistics are left with respect to
the results of the simulations of this scenario. The percentages of market participation
(blue bar) are almost identical to the previous occasion because the market is the same
and so are the demand factors. For the same reasons, the percentages that indicate the
marginal character of the prices (green bar) are also practically identical to the previous
case.

Assessing now the percentage of success or what is the same, in how many times
the true price is within the proposed distribution, the general conclusion is that it has
increased considerably if it is compared. In the cases where the companies fix market
prices, the percentage is higher, standing at around 80 %. This correlation existed in
scenario 1, but due to the changes made in the simulated observation, the effectiveness
of the prediction has been increased.

On the occasions when the price is not marginal, results in a potential problem with
the application of this alternative due to the lack of references and as a consequence
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there is a very small percentage of belonging to the distribution. However it can be seen
an improvement because without having almost observations for C1 and C8 (50 and 38)
over 1 year, the success rate is around 50 %. This percentage could be improved, but is
considered unimportant because they do not occupy a strategic position to apply market
power along market clearings: the first enters inside the market 100 % of the times and
the last only a 0.434 %.

Analyzing again the inter-quartile range, in some occasions it can be thought that
the range is high and that this can lead to a high number of success because the dis-
tributions cover a wide variety of prices. As a consequence of this fact, it is seen the
necessity to carry out another study where it can be justified to which part of the box
the real offer price belongs. In the table 4.7 are reflected the probabilities that has a
predicted price to be in the different regions of the box.

C1 C2 C3 C4 C5 C6 C7 C8
Min-Q1 4,760% 8,464% 8,708% 6,008% 6,510% 7,532% 6,425% 5,232%

IQR 29,380% 46,820% 52,201% 52,054% 46,143% 48,044% 38,146% 32,136%
Q3-Max 13,680% 23,848% 25,484% 24,426% 24,516% 21,238% 23,237% 20,061%

Out 52,180% 20,868% 13,607% 17,511% 22,831% 23,185% 32,192% 42,571%

Table 4.7: Probability of appearance by rank for all offering prices.

From the table, it can be concluded that for the companies with the greatest preci-
sion in terms of forecasting, their real prices tend to be in the inter-quartile range. It
can be seen special cases for the companies C7 and C8, where the probability of being
between the maximum and the third quartile is high and comparable with being between
the first and third quartile.

Finally, in the table 4.8 the probability that, given a real price that belongs to the
predicted distribution, is within each proposed range is left as a decision-making tool.
This table would help in cases where the standard deviations are greatly enlarged due to
a large price difference between periods and therefore create uncertainty when accurately
predicting a price. On the other hand, it should be noted that these sudden changes in
prices do not have a very high frequency, although over such a long period of simulation
it may appear occasionally.

C1 C2 C3 C4 C5 C6 C7 C8
Min-Q1 4,760% 8,464% 8,708% 6,008% 6,510% 7,532% 6,425% 5,232%
IQR 29,380% 46,820% 52,201% 52,054% 46,143% 48,044% 38,146% 32,136%
Q3-Max 13,680% 23,848% 25,484% 24,426% 24,516% 21,238% 23,237% 20,061%

Table 4.8: Probability of appearance by rank of the prices that are within the distri-
bution.
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To end the section and as a guide, it is left the equivalence between a box diagram
and a normal distribution in the figure 4.12 due to observing a statistical distribution
is more common in comparison with a box diagram. The graphic comparison between
these two representations can be a useful tool to understand the box-whiskers diagram.
This type of diagrams has been chosen for the presentation of results due to the fact that
they take less space and, therefore, are particularly useful for comparing distributions
among several groups or data sets.

Figure 4.12: Box-plot vs PDF of a Normal Distribution.[21].
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4.2.3.3 Scenario 3: Dynamic EnKF model with seasonal demand
In this section, the last scenario is presented where the same formulation presented in
the previous case will be applied to verify its robustness in special situations. It is known
that sometimes there are strong fluctuations in demand that can be both predictable and
not due to different factors. Some of them can be the failure of a set of generators of a
power plant, a saturated interconnection or a special day of the year where consumption
is high. In addition, it will also serve to measure performance when there is a transition
between seasons of the year.

For the reasons given, this section has been created where the market is going to be
subjected to abrupt changes in terms of demand. For this, the demand factors used in
the 1-Node Market have been taken into account and have been altered. The figure 4.13
reflects the changes made in these factors.

Figure 4.13: Demand Factors for Scenario 3.

Looking at the figure, it can be seen that the factors with respect to a day of the base
type remain unchanged. It is interesting to have a reducing factor in order to create
both smooth and sharp jumps. Regarding the factors from the Shoulder and Peak days,
its value has been raised in order to increase the demands in the market. Because the
study of this section is based on having knowledge of how the formulation of scenario
2 behaves when the demands are extreme between them, the simulation has also been
opted for over a year.
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Finally and before commenting on the results, discuss that the randomness regard-
ing the choice of the factor is no longer with respect to the day but to the time. In the
previous cases, a day factor was chosen and applied to the following 24 hours. In this
case the factor can jump between the different days throughout the hours, being in the
hour 1 a base day and in the hour 2 a peak day, for instance.

Having into consideration the new parameters added to the basic formulation of
EnKF, it can be anticipated that creating changes in demand should not change the
achievement obtained previously. As it has gone up, companies with higher marginal
costs will have more opportunities to enter the market and therefore the observations
will be more distributed between them. The statistics obtained in this scenario are
shown below.

Figure 4.14: Statistics for Scenario 3.

Taking into account the results of figure 4.14, it can be seen that the percentages
of success of the predicted distributions fall a bit with respect to the previous results.
The reason is none other than the distribution of marginality in the offering prices. In
the previous case, it were the companies C2, C3 and C4 the ones which set prices more
frequently and that is why it was presented a greater success in the forecasts.

Another curious fact that can be found in the graph is that the strategy suggested in
scenario 2 offers similar success percentages for the extreme companies C1 and C8. The
percentage of success of the first company is completely consistent with the strategy and
presents a value close to 50 %. While if the last one is analyzed, it offers a practically
similar result because from the overall achievement a 9.269 % corresponds due to its
marginality. Therefore, it can be concluded that the more observations is had, the more
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chances will be presented in order to succeed in forecasting.

As this scenario shows events with very similar percentages in comparison to the
previous one, instead of a box plot it is chosen to represent some part of the results
as shown in the figure 4.15. This chart shows the market prices, the real prices of the
offerings from C3 and a pair of bands that correspond to the extremes values of the
interval [µ + 3σ, µ − 3σ] of the forecasted distribution had for this company each time
step (this interval covers approximately 99.74 % of the distribution).

Figure 4.15: Forecasted Distribution for Company C3.

Taking advantage of this type of graph and taking it as a reference will permit un-
derstanding more clearly how the system works globally. Seeing the first market prices
of the graph it can be seen that there is a correlation between its increase from their
associated marginal cost and along the bands. When these prices separate from the base
values same behaviour is presented with the representative bands of other companies.
In addition, the graph corroborates the fact that when a price is marginal the bands
become narrow due to there is full knowledge of the value as it is an observation. Quite
the opposite happens when the price is hidden as they spread out.

As it has been opted in the previous scenario, the table 4.9 is left where the probabil-
ities of a predicted price of being in the different regions of the distribution are reflected.
Since the distributions used in the graph are Gaussian, the intervals are changed. How-
ever, very similar values in comparison to the previous ones are obtained as the ranges
used in this table are almost aligned with the ranges of the box-whiskers used in the
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previous table. See the figure 4.12 as reference. Again, a forecast tendency to be around
the interval closer to the average is observed. Belonging to the distribution area where
there is less uncertainty is an indicator that the shift that is made to the rest of the
prices hidden in the model is appropriate.

C1 C2 C3 C4 C5 C6 C7 C8
(µ-3σ,µ-σ) 5,114% 7,567% 6,887% 5,330% 6,069% 7,028% 6,019% 5,673%
(µ-σ, µ+σ) 32,886% 42,768% 41,854% 44,851% 42,047% 46,617% 36,219% 34,035%

(µ+σ, µ+3σ) 15,527% 21,949% 20,528% 20,892% 22,204% 20,888% 22,145% 21,114%
Out 46,473% 27,717% 30,731% 28,927% 29,680% 25,468% 35,616% 39,178%

Table 4.9: Probability of appearance by rank for all prices.

Again, along with the previous table, the 4.10 is attached where it can be seen the
probability that, belonging to a real price to the predicted distribution, is in each of the
three regions.

C1 C2 C3 C4 C5 C6 C7 C8
(µ-3σ,µ-σ) 5,114% 7,567% 6,887% 5,330% 6,069% 7,028% 6,019% 5,673%
(µ-σ, µ+σ) 32,886% 42,768% 41,854% 44,851% 42,047% 46,617% 36,219% 34,035%

(µ+σ, µ+3σ) 15,527% 21,949% 20,528% 20,892% 22,204% 20,888% 22,145% 21,114%

Table 4.10: Probability of appearance by rank of the prices that are within the distri-
bution.

To finish with this section and to show visually how the forecasts of the offering
prices would be presented in a closing of a market clearing, the figure 4.16 is exposed.
Distributions are presented by box-whisker diagrams because they are more visual for
the presentation of these type of results.

In the specific case of the figure, there is a market close where the company C3
sets the price. Due to this fact, its small standard deviation can be observed again.
It could be said that in this scenario, the price revelations of the first four companies
are of relevant interest in comparison with the rest. In particular, the prices of these
companies are within the proposed distributions.
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Figure 4.16: Forecasted distributions for a given Market Clearing.
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CHAPTER 5
Conclusion

In this project, the novel application of an algorithm in the field of study has been
proposed for the disclosure of offering prices in a spot market. Taking as reference the
work done in [8], it has been reproduced obtaining practically the same results and its
performance has been improved by the application of an Ensemble Kalman Filter.

With respect to the implementation of the inverse Optimization problem, some de-
tails have already been concluded in the results section. It has been seen that the
resolution is quick and simple although it has also been seen that there are some draw-
backs. The blocks that are not marginal in any period are hidden in the model and
are unattainable with the proposed formulation. It also requires a lot of information
to be able to solve the optimization problem because it uses the market model in the
restrictions of the main problem. Finally, and probably the most outstanding problem
with respect to the project’s objective, is that it does not disclose offering prices of the
rivals but their marginal prices, which is therefore irrelevant.

Seeing the potential problems found in the first methodology, they have been over-
come with the implementation of EnKF. As in the Inverse Optimization Problem, a series
of necessary hypotheses have been considered. It is assumed that a private company is
able to estimate with certain error the marginal costs of its competitors. Actually, with
an approximate estimate would be more than enough because when applying the EnKF,
being a recursive filter, the real prices converge to their correct values. In the proposal
of this project, a reduced model of an electric market is used because it would be practi-
cally impossible in the development period to find and calculate all the marginal costs.

The proof that the first proposal has been improved is found in the results obtained
for the three scenarios. It can be seen that, with a good strategy that encompasses
supply values following a certain logic of market behavior, high success is achieved. In
addition, it has been tested with different demand profiles with some distance between
them and the performance has been maintained. Finally, another example of perfor-
mance is that the pricing of the offers in the model is done in a random way without
following any risk pattern and it is always greater than the marginal cost. Even consid-
ering the ignorance of the behavior of the market prices, the percentage of success of the
companies of interest is around 80 %.

But like all the methodologies applied in the field of engineering, there are poten-
tial problems that must be prevented or detected when the results are not as expected.
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With the application of EnKF one can have the problem of cutting the demand curve
too much and distributing the marginality between blocks too much. As seen in the
results section, the lower the marginality, the lower the percentage of success. A pos-
sible solution to this problem could be to divide the supply curve into blocks that are
really of interest to the private entity. With this, prices would only be revealed when
the market price was associated with the most potential rivals, while if the market price
is set by a rival that is not of interest, the algorithm does not apply. With this pro-
posal, in addition, a regression could be made with the revealed prices and build the
full supply curve without revealing all the prices of the blocks. There is also the pos-
sibility that the market throws a series of prices with very small increases or decreases.
This would lead to a decrease in the standard deviation in chain and lower the accuracy
obtained. Faced with this problem, it is possible to make use of the additional param-
eters proposed in the scenario 2 strategy in order to control the propagation of the same.

Making a global critique about the results obtained, it can be conclude that the
EnKF is a very powerful tool to reveal prices if it is tuned properly. In fact, if a given
private company manages to calculate offer prices, it could be applied to a real market.
It is worth noting that said applicability is of special interest to those producers that
have a significant market share and therefore are able to exercise their market power.



CHAPTER 6
Conclusión

En este proyecto, se ha propuesto la aplicación novedosa de un algoritmo en el campo
de estudio para la divulgación de precios de oferta en un mercado spot. Tomando como
referencia el trabajo realizado en [8], se ha reproducido obteniendo prácticamente los
mismos resultados y se ha mejorado su rendimiento mediante la aplicación de un En-
semble Kalman Filter.

Con respecto a la implementación del problema de optimización inversa, algunos de-
talles ya se han concluido en la sección de resultados. Se ha visto que la resolución es
rápida y simple aunque también se ha visto que hay algunos inconvenientes. Los bloques
que no son marginales en ningún período se ocultan en el modelo y son inalcanzables
con la formulación propuesta. También requiere mucha información para poder resolver
el problema de optimización porque usa el modelo de mercado en las restricciones del
problema principal. Finalmente, y probablemente el problema más destacado con re-
specto al objetivo del proyecto, es que no revela los precios de oferta de los rivales sino
sus precios marginales, lo cual resulta irrelevante.

Al ver los posibles problemas encontrados en la primera metodología, se han superado
con la implementación del EnKF. Al igual que en el problema de optimización inversa,
se han considerado una serie de hipótesis necesarias. Se supone que una empresa privada
puede estimar con cierto error los costos marginales de sus competidores. En realidad,
con una estimación aproximada sería más que suficiente porque al aplicar el EnKF, que
es un filtro recursivo, los precios reales convergen a sus valores correctos. En la prop-
uesta de este proyecto, se usa un modelo reducido de un mercado eléctrico porque sería
prácticamente imposible en el período de desarrollo encontrar y calcular todos los costos
marginales.

La prueba de que la primera propuesta se ha mejorado se encuentra en los resultados
obtenidos para los tres escenarios. Se puede ver que, con una buena estrategia que abarca
los valores de suministro siguiendo una cierta lógica del comportamiento del mercado,
se logra un gran éxito. Además, se ha probado con diferentes perfiles de demanda con
cierta distancia entre ellos y se ha mantenido el rendimiento. Finalmente, otro ejemplo
de desempeño es que el precio de las ofertas en el modelo se realiza de forma aleatoria
sin seguir ningún patrón de riesgo y siempre es mayor que el costo marginal. Incluso
teniendo en cuenta el desconocimiento del comportamiento de los precios de mercado,
el porcentaje de éxito de las empresas de interés ronda el 80 %.
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Pero como todas las metodologías aplicadas en el campo de la ingeniería, existen
problemas potenciales que hay que prevenir o detectar cuando los resultados no son los
esperados. Con la implementación del EnKF se puede tener el problema de seccionar
demasiado la curva de demanda y repartir demasiado la marginalidad entre bloques.
Como se ha visto en el apartado de resultados, a menor marginalidad menor porcentaje
de acierto. Una posible solución a este problema podría ser el dividir la curva de oferta
en bloques que realmente sean de interés para la entidad privada. Con esto, solo se
revelarían ofertas cuando el precio de mercado estuviera asociado a los rivales más po-
tenciales, mientras que si el precio de mercado lo fija un rival que no es de interés, el
algoritmo no se aplica. Con esta propuesta, además, se podría realizar una regresión
con los precios revelados y construir la curva de oferta al completo sin revelar todos los
precios de los bloques. También cabe la posibilidad de que el mercado arroje una serie
de precios con incrementos o decrementos muy pequeños. Esto conllevaría a una dis-
minución de la desviación estándar en cadena y bajaría la precisión obtenida. Ante este
problema, se puede hacer uso de los parámetros adicionales propuestos en la estrategia
del escenario 2 con el fin de controlar la propagación de la misma.

Haciendo una critica global acerca de lo obtenido, el EnKF es una herramienta para
revelar precios muy potente si se ajusta adecuadamente. De hecho, si la una compañía
privada dada consigue calcular precios de oferta, se podría aplicar a un mercado real.
Bien cabe destacar, que dicha aplicabilidad es de especial interés para aquellos produc-
tores que tienen una importante cuota de mercado y, por lo tanto, pueden ejercer su
poder de mercado.
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