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We present a Bayesian stochastic susceptible-exposed-infectious-recovered model in discrete time to understand chickenpox
transmission in the Valencian Community, Spain. During the last decades, different strategies have been introduced in the routine
immunization program in order to reduce the impact of this disease, which remains a public health’s great concern. Under this
scenario, a model capable of explaining closely the dynamics of chickenpox under the different vaccination strategies is of utter
importance to assess their effectiveness. The proposed model takes into account both heterogeneous mixing of individuals in the
population and the inherent stochasticity in the transmission of the disease. As shown in a comparative study, these assumptions
are fundamental to describe properly the evolution of the disease. The Bayesian analysis of the model allows us to calculate the
posterior distribution of the model parameters and the posterior predictive distribution of chickenpox incidence, which facilitates
the computation of point forecasts and prediction intervals.

1. Introduction

Chickenpox is a highly contagious disease caused by the
varicella-zoster virus. Its main symptoms are a blister-like
rash, itching, tiredness, and fever. It is a rarely fatal disease
that mainly affects children younger than ten years of age,
although older children and adults can also get it. Most of the
people suffer the disease during childhood and reinfection is
very strange [1]. Because of the contagious behavior of the
disease, which spreads easily through the coughs and sneezes
of an infected person or by touching the virus particles that
come from chickenpox blisters, the best modeling approach
would be obtained by taking into account individual move-
ment and contact behavior. However, information at indi-
vidual level is scarcely ever available and models based on
aggregated data are usually considered.

Compartmental models are commonly used in epi-
demiology to understand the underlying mechanisms that
influence disease transmission when aggregated data are
available. These models divide the population being stud-
ied into different compartments according to the disease

status and describe the evolution of the disease through
changes in the number of individuals in each compartment.
There may be susceptible, exposed, infectious, recovered,
and immune individuals depending on the nature of the
disease. Compartmental models are usually written using
ordinary differential equations or difference equations. In
addition, they are normally defined assuming that all the
individuals in the population are equally likely to contact any
other individual in that population [2, 3]. Models based on
difference equations have been considered to describe the
progression of chickenpox disease (see, e.g, [4, 5]). However,
contact patterns in real populations are indeed heteroge-
neous. Therefore, models assuming homogeneous mixing
should be replaced bymodels incorporating stochastic effects
[2]. Stochastic models are able to accommodate the stochas-
ticity inherent in the transmission of infectious diseases
and provide an improved and more natural description of
disease dynamics [6–8]. In addition, stochastic models can
be analysed from a Bayesian viewpoint (see, e.g., [9]).

In the case of chickenpox, symptoms appear about two
weeks (from ten to twenty-one days) after exposure to a
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contagious person. A person with chickenpox can spread
the disease from one to two days before they get the rash
until all the blisters have fully crusted over. The condition
usually resolves by itself within a week and the infected indi-
vidual usually acquires permanent immunity [1]. Therefore,
a susceptible-exposed-infectious-recovered (SEIR) model
seems an appropriate model to describe chickenpox dynam-
ics.

In this paper, we present a Bayesian stochastic SEIRmodel
in discrete time to understand chickenpox dynamics in the
Valencian Community, Spain. The proposed compartmental
model takes into account both heterogeneous mixing of
individuals in the population and the inherent stochasticity
in the transmission of the disease. In addition, the discrete
formulation of the model better adjusts to the available data
(weekly counts) and simplifies its Bayesian analysis. The
analysis of the model from a Bayesian viewpoint allows us
to consider a probability distribution for the observed counts
of disease as well as for the parameters of the model. The
posterior distribution for these parameters and the predictive
distribution for future observations can then be straightfor-
wardly obtained. Note that point forecasts and prediction
intervals can be of utter importance to implement effective
public health measures to reduce the burden of the disease.

The remainder of this paper is organized as follows. In
Section 2 we present the available chickenpox data. Section 3
describes the SEIR model and shows its Bayesian analysis.
In Section 4 we show the results obtained in the analysis of
the data. Finally, we conclude with a general discussion of the
proposed model and provide directions for further research.

2. Data

In this paper we analyse weekly cases of chickenpox reported
by the health sentinel network in the Valencian Community,
Spain, for the period 2007–2012 (http://www.sp.san.gva.es).
It is important to point out that there were no changes in the
vaccination strategy during the period analysed. Starting in
2006, the chickenpox vaccine was introduced in the routine
immunization schedule of the Valencian Community and,
during the period 2007–2012, 10–14 year-old susceptible chil-
dren were vaccinated. Because varicella vaccine was available
in pharmacies, younger children could also be vaccinated
against varicella beyond official guidelines.

For 2007–2012, an average of 19,000 cases of chickenpox
have been reported per year in the region of Valencia,
representing an average incidence rate of around 375 cases
per 100,000 inhabitants. Figure 3 shows the time plot of the
series, which presents a clear seasonal pattern. As can be seen,
chickenpox incidence reaches the highest rates during spring.
From June the trend is descending, with very few cases during
the summer and part of autumn. In the end of autumn,we can
observe an upward trend that continues during the winter to
complete the seasonal cycle.

Chickenpox is a mandatory notifiable disease in the
Valencian Community. On the other hand, population cov-
erage by the Spanish Public Health System is almost uni-
versal (99.5%) and even persons not covered by it can also

be attended to in public centers. Therefore, underreported
chickenpox cases are assumed to be insignificant.

3. Model

Although it can vary from person to person, an individual
takes around two weeks to show symptoms after being
infected and, as we mentioned before, a person with chick-
enpox can spread the disease from one to two days before the
rash appears until all the blisters have crusted over (usually
five to six days after the start of the rash). Hence, in order
to describe as accurately as possible the different stages of
chickenpox while keeping a relatively simple model, wemake
the following assumptions: once an individual comes into
contact with a person with chickenpox, there is an incubation
period of two weeks and then the individual becomes
infectious for a week. Even though there is a proportion
of infected individuals that, after being recovered, become
susceptible again, that proportion is so small that it will
not be considered here. Moreover, reinfected individuals do
not transmit the disease. Consequently, chickenpox dynamics
can be explained via a compartmental model that divides
the population into susceptible, exposed, infectious, and
recovered individuals. In addition, this model should focus
on the first movement, that is, the transition from the
susceptible compartment to the exposed one. Note that the
following transitions (to the infectious compartment and
finally to the recovered one) come naturally due to the nature
of the disease.

Let 𝐸1𝑡 be the number of people at the first week of their
incubation period. Because the data reported by the health
sentinel network refer to the number of infectious people at
each week, represented by 𝐼𝑡, it is necessary to transform the
available data into the time-series {𝐸1𝑡 }. This can be easily
done taking into account the fact that 𝐼𝑡+2 was 𝐸1𝑡 . At the first
level of the model hierarchy, we can assume that 𝐸1𝑡 follows a
Binomial distribution:

𝐸1𝑡 ∼ Bi (𝑆𝑡−1, 𝑝𝑡) , (1)

where 𝑆𝑡−1 is the number of susceptible individuals at week
𝑡 − 1 and 𝑝𝑡 is the probability of getting the virus at week 𝑡.
In order to take into account the transmissible nature of the
disease, we assume that the probability of infection depends
on the number of infectious individuals at the previous week.
Besides, this probability must lie in the intervals 0-1. In order
to avoid the problem of estimates of 𝑝𝑡 falling outside the 0-1
limits, we model logit(𝑝𝑡) instead, which lies in the interval
(−∞,∞). In particular, we assume that

logit (𝑝𝑡) fl log( 𝑝𝑡
1 − 𝑝𝑡) = 𝛼 log (𝐼𝑡−1) + 𝑟𝑡, (2)

which is equivalent to

𝑝𝑡 = 𝐼𝛼𝑡−1 exp {𝑟𝑡}
1 + 𝐼𝛼𝑡−1 exp {𝑟𝑡} , (3)

where exp{𝑟𝑡} is the transmission rate and the mixing param-
eter 𝛼 in (2) allows for heterogeneous mixing of individuals

http://www.sp.san.gva.es
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Figure 1: Flowchart of the proposed chickenpox model. Boxes represent compartments, horizontal arrows represent transitions between
compartments, and downward arrows represent people leaving the system.

in the population [10]. Setting 𝛼 = 1 would correspond to
the assumption of mass-action law. We assume here that 𝛼
follows the uniform distribution in the interval (0, 1). A key
feature of our model formulation is that the transmission rate
is allowed to vary stochastically over time. In particular, we
model 𝑟𝑡 as follows:

𝑟𝑡 = 𝑎0 +
𝐾

∑
𝑘=1

[𝑎2𝑘−1 cos(2𝑘𝜋𝑡52 ) + 𝑎2𝑘 sin(2𝑘𝜋𝑡52 )]

+ 𝜖𝑡,
(4)

where 𝐾 represents the number of sine-cosine waves needed
to capture the seasonal variation in the disease transmission.
Its value depends on the data under study, and so 𝐾 has
to be estimated together with the other parameters of the
model. Because the seasonal pattern varies slightly from year
to year, the random effect 𝜖𝑡 ∼ 𝑁(0, 𝜎2𝜖 ) allows for unspecified
features of week 𝑡. The parameters {𝑎𝑘} are assumed to have
zero mean Gaussian distributions with standard deviations
𝜎𝑎𝑘 . The uniform distribution in the interval (0, 5) is assigned
to all the standard deviations [11].

The number of individuals in each compartment is exam-
ined at discrete time steps through the following recursive
equations:

𝑆𝑡 = 𝑆𝑡−1 − 𝐸1𝑡 − V𝑆𝑡−1 + 𝜇𝑡 − 𝜇𝑡 𝑆𝑡−1𝑁
𝐸1𝑡 = 𝐸1𝑡
𝐸2𝑡 = 𝐸1𝑡−1 − 𝜇𝑡𝐸

1
𝑡−1

𝑁
𝐼𝑡 = 𝐸2𝑡−1 − 𝜇𝑡𝐸

2
𝑡−1

𝑁
𝑅𝑡 = 𝑅𝑡−1 + V𝑆𝑡−1 + 𝐼𝑡−1 − 𝜇𝑡 𝐼𝑡−1𝑁 − 𝜇𝑡𝑅𝑡−1𝑁 ,

(5)

where 𝑆𝑡 is the number of susceptible individuals, 𝐸1𝑡 is the
number of individuals at the first week of their incubation
period (which represents the data at hand, and so it is
just set equal to its value), 𝐸2𝑡 is the number of individuals
at the second week of their incubation period, 𝐼𝑡 is the
number of infectious individuals, and 𝑅𝑡 is the number of
recovered (immune) individuals at week 𝑡. Although the
common formulation of the SEIR model includes only one

compartment of exposed individuals, we divide here the
compartment 𝐸𝑡 into two classes, 𝐸1𝑡 and 𝐸2𝑡 , in order to
simplify the update of the recursive equations. By using this
formulation, all the individuals in compartment 𝐸1 at week
𝑡−1move to compartment𝐸2 at week 𝑡 and so on. So the only
compartments where individuals can stay longer than one
unit time are the susceptible and recovered compartments.
The average proportion of individuals vaccinated eachweek is
represented by V. The parameter 𝜇𝑡 represents the number of
births at week 𝑡 and𝑁 the population size, which is assumed
to be constant over time (𝑁 = 𝑆𝑡 + 𝐸1𝑡 + 𝐸2𝑡 + 𝐼𝑡 + 𝑅𝑡, ∀𝑡).
To keep the population size constant, 𝜇𝑡 individuals must
leave the system each week, proportionally to the sizes of the
compartments; that is, 𝜇𝑡 = 𝜇𝑡(𝑆𝑡−1/𝑁 + 𝐸1𝑡−1/𝑁 + 𝐸2𝑡−1/𝑁 +
𝐼𝑡−1/𝑁 + 𝑅𝑡−1/𝑁). The flowchart diagram for the model is
described in Figure 1.

Using demographic data from the Spanish National
Institute of Statistics (http://www.ine.es), we can estimate
the average weekly number of births in the Valencian Com-
munity for years 2007–2012 as 1, 002, and so we set 𝜇𝑡 =1, 002 ∀𝑡 and𝑁 = 5,061,245.The annual vaccination coverage
among children younger than 14 years of age in the Valencian
Community is approximately 45% [12]. Thus, parameter V
can be estimated as 0.45 times the percentage of population
aged less than 14 years divided by 52. Because the vaccination
program started in 2006, we assume that children older than
14 years old are already protected.

Taking into account the following relationship between
exposed and infectious individuals,

𝐼𝑡 = (1 − 𝜇
𝑁)𝐸2𝑡−1 = (1 − 𝜇

𝑁)2 𝐸1𝑡−2, (6)

the initial conditions for the recurrence equations can be
computed as follows:

𝐸1𝑡ini =
𝐼𝑡ini+2

(1 − 𝜇/𝑁)2

𝐸2𝑡ini =
𝐼𝑡ini+1

(1 − 𝜇/𝑁)
𝐼𝑡ini = 𝐼𝑡ini
𝑅𝑡ini = % people older than 14 years × 𝑁
𝑆𝑡ini = 𝑁 − 𝐸1𝑡ini − 𝐸2𝑡ini − 𝐼𝑡ini − 𝑅𝑡ini .

(7)

http://www.ine.es
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Table 1: Posterior means and 95% credible intervals for the model
parameters.

Parameter Mean Credible interval
𝛼 0.59 (0.48, 0.66)
𝑎0 −11.18 (−11.58, −10.57)
𝑎1 0.42 (0.38, 0.46)
𝑎2 0.44 (0.34, 0.58)
𝑎3 −0.12 (−0.17, −0.06)
𝑎4 −0.34 (−0.38, −0.29)
𝑎5 −0.01 (−0.05, 0.03)
𝑎6 0.15 (0.11, 0.19)

4. Results

In this section we show the main results obtained in the
analysis of notified cases of chickenpox in the Valencian
Community for the period 2007–2012. Because we want to
model the number of individuals at the first week of their
incubation period (see (1)), we used chickenpox infections
from week 4, 2007, to week 3, 2012, to calculate 𝐸1𝑡 from week
2, 2007, to week 1, 2012, (see relationship in (6)). A total of
𝑇 = 260 data were used to estimate the model. Data for the
first 3 weeks of 2007 (𝐼1, 𝐼2, and 𝐼3) were used to compute
the initial conditions for the recursive equations with 𝑡ini = 1
(see (7)). Finally, data for the last 49 weeks (from week 4 to
week 52, 2012) were left to evaluate the ability of our model to
predict the dynamics of chickenpox infection.

As it happens with many statistical models, the posterior
distribution of the model parameters is not analytically
tractable and this makes necessary the use of efficient sim-
ulation algorithms to obtain a sample from that posterior
distribution. All the analysis was implemented using the free
statistical software 𝑅 with the package R2OpenBUGS that
allows us to call OpenBUGS within 𝑅 to carry out posterior
sampling using Markov chain Monte Carlo simulation [13].
The code for the proposedmodel can be seen in Pseudocode 1.
To assess the convergence ofMCMCchains, we fixed a burnin
period of 50,000 iterations. We then kept one posterior sam-
ple in ten iterations until a set of 5,000 iterationswas obtained.

Figure 4 shows the estimated transmission rate 𝑟𝑡 together
with its seasonal component and the estimated probability of
getting the virus at each time point. In this case study, the
seasonal component is given by the sum of three harmonic
waves (𝐾 = 3). Higher values of 𝐾 were not significant. As
can be seen, seasonality has a strong influence on disease
transmission. Nevertheless, it is important to incorporate
random effects into the model to accommodate variability in
the transmission rate from year to year. The posterior mean
and 95% credible intervals for parameters 𝛼 and {𝑎𝑘} are
shown in Table 1. Note that the posterior mean of parameter
𝛼 is 0.59. This value of 𝛼 smaller than 1 corroborates that the
mixing of individuals in the population is heterogeneous.

Figure 5 displays the fit of the model to the data originally
reported by the health sentinel network. The estimated data
for week 𝑡 + 2, 𝐼𝑡+2, has been calculated as 𝑆𝑡−1 ⋅ 𝑝𝑡 ⋅ (1−𝜇/𝑁)2
(see (1) and (6)).The fitting root mean squared error (RMSE)
is 4.41.

Finally, in order to measure the out-of-sample forecast
accuracy, we forecast the number of chickenpox infections
for the last 49 weeks (from week 4 to week 52, 2012). These
forecasts have been obtained by simulation as follows. Given
a sample of size 𝐽 (here J = 5,000) from the posterior
distribution of the model parameters, we compute 𝐼(𝑗)

𝑇+3+ℎ
=

𝐸1(𝑗)
𝑇+1+ℎ

⋅ (1 − 𝜇/𝑁)2, where 𝑇 = 260, ℎ = 1, 2, . . . , 49, and
𝑗 = 1, 2, . . . , 𝐽, and 𝐸1(𝑗)

𝑇+1+ℎ
is simulated from the following

Binomial distribution:

Bi (𝑆𝑇+ℎ, 𝑝(𝑗)𝑇+1+ℎ) , (8)

where

𝑝(𝑗)
𝑇+1+ℎ

= 𝐼𝛼(𝑗)𝑇+ℎ exp {𝑟(𝑗)𝑇+1+ℎ}
1 + 𝐼𝛼(𝑗)
𝑇+ℎ

exp {𝑟(𝑗)
𝑇+1+ℎ

} ,

𝑟(𝑗)
𝑇+1+ℎ

= 𝑎(𝑗)0 + 𝑎(𝑗)1 cos(2𝜋 (𝑇 + 1 + ℎ)52 )

+ 𝑎(𝑗)2 sin(2𝜋 (𝑇 + 1 + ℎ)52 )

+ 𝑎(𝑗)3 cos(4𝜋 (𝑇 + 1 + ℎ)52 )

+ 𝑎(𝑗)4 sin(4𝜋 (𝑇 + 1 + ℎ)52 )

+ 𝑎(𝑗)5 cos(6𝜋 (𝑇 + 1 + ℎ)52 )

+ 𝑎(𝑗)6 sin(6𝜋 (𝑇 + 1 + ℎ)52 ) .

(9)

These equations correspond to (3) and (4) for time 𝑇 +
1 + ℎ computed at 𝐼𝑇+ℎ = 𝐼𝑇+ℎ, the point forecast,
(𝛼, 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6) = (𝛼(𝑗), 𝑎(𝑗)0 , 𝑎(𝑗)1 , 𝑎(𝑗)2 , 𝑎(𝑗)3 , 𝑎(𝑗)4 , 𝑎(𝑗)5 ,
𝑎(𝑗)6 ), and the 𝑗th values simulated from the posterior dis-
tribution of all the unknowns, assuming that the random
effects in the transmission rate are equal to zero at time
𝑇 + 1 + ℎ. As explained in (4), the random effects, which
are normally distributed with zero mean, capture unspecified
features of each week, and so our predictions are based on
the deterministic component of the transmission rate. Point
forecasts and prediction intervals for each time point can
be straightforwardly computed using the sample {𝐼(𝑗)

𝑇+3+ℎ
}𝐽𝑗=1.

Figure 6 displays the forecasting results. As can be seen, the
proposed model allows us to quite accurately predict the
timing and magnitude of the chickenpox epidemic in 2012.
The forecast RMSE is 64.24.

4.1. Comparison with Alternative Formulations of the SEIR
Model. For comparative purposes, we present here the results
obtained in the analysis of the data with four alternative
formulations of the SEIR model. The first one corresponds
to a stochastic formulation of the SEIR model in discrete
time with a deterministic seasonal transmission rate. The
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model{
E1[1] ∼ dbin(p[1], Sini)

logit(p[1]) <- alpha1 * log(Iini) + r[1]

for(t in 2:T){
E1[t] ∼ dbin(p[t], S[t-1])

logit(p[t]) <- alpha1 * log(I[t-1]) + r[t]

}
for(t in 1:T){

r[t] <- a + a1*cos(2*3.1416*t/52) + a2*sin(2*3.1416*t/52)

+ a3*cos(4*3.1416*t/52) + a4*sin(4*3.1416*t/52)

+ a5*cos(6*3.1416*t/52) + a6*sin(6*3.1416*t/52) + epsilon[t]

epsilon[t] ∼ dnorm(0, tau.epsilon)

}
alpha1 ∼ dunif(0, 1)

a ∼ dnorm(0, tau.a)

tau.a <- 1 / pow(sigma.a, 2)

sigma.a ∼ dunif(0, 5)

a1 ∼ dnorm(0, tau.a1)

tau.a1 <- 1 / pow(sigma.a1, 2)

sigma.a1 ∼ dunif(0, 5)

a2 ∼ dnorm(0, tau.a2)

tau.a2 <- 1 / pow(sigma.a2, 2)

sigma.a2 ∼ dunif(0, 5)

a3 ∼ dnorm(0, tau.a3)

tau.a3 <- 1 / pow(sigma.a3, 2)

sigma.a3 ∼ dunif(0, 5)

a4 ∼ dnorm(0, tau.a4)

tau.a4 <- 1 / pow(sigma.a4, 2)

sigma.a4 ∼ dunif(0, 5)

a5 ∼ dnorm(0, tau.a5)

tau.a5 <- 1 / pow(sigma.a5, 2)

sigma.a5 ∼ dunif(0, 5)

a6 ∼ dnorm(0, tau.a6)

tau.a6 <- 1 / pow(sigma.a6, 2)

sigma.a6 ∼ dunif(0, 5)

tau.epsilon <- 1 / pow(sigma.epsilon, 2)

sigma.epsilon ∼ dunif(0, 5)

}

Pseudocode 1: BUGS code for the Bayesian stochastic SEIR model in discrete time.

second formulation is the deterministic counterpart, that is,
a deterministic model in discrete time with a seasonal trans-
mission rate.The last twomodels correspond to deterministic
continuous-time formulations.

Alternative 1 (stochastic model in discrete time with a deter-
ministic seasonal transmission rate (SMDT-DTR)). This
alternative formulation is similar to the one proposed in this
paper, but the transmission rate is modeled in a deterministic
way. The transmission rate is allowed to vary seasonally,
but we assume that the seasonal pattern repeats over time;
that is, there are no weekly random effects that account for
overdispersion in the transmission rate. In particular, the
SMDT-DTR assumes that

𝑟𝑡 = 𝑎0 +
𝐾

∑
𝑘=1

[𝑎2𝑘−1cos(2𝑘𝜋𝑡52 ) + 𝑎2𝑘sin(2𝑘𝜋𝑡52 )] . (10)

We have implemented this model in a Bayesian frame-
work using the package R2OpenBUGS in a similar way to our
model.

Alternative 2 (deterministicmodel in discrete timewith a sea-
sonal transmission rate (DMDT)). This model is the deter-
ministic counterpart of the stochastic discrete time model
with a deterministic seasonal transmission rate. Within this
model formulation, the number of people at the first week of
their incubation period is estimated as

𝑒1𝑡 = 𝑆𝑡−1 𝐼𝛼𝑡−1 exp {𝑟𝑡}
1 + 𝐼𝛼𝑡−1 exp {𝑟𝑡} , (11)

where 𝑟𝑡 ismodeled as in (10). So, instead of analysing directly
𝐸1𝑡 and considering that 𝐸1𝑡 is a random variable with its
associated probability distribution, the model is defined in
terms of an estimate, 𝑒1𝑡 , which is given by the mean of
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Figure 2: Flowchart of the continuous-time deterministic chick-
enpox model. Boxes represent compartments, horizontal arrows
represent transitions between compartments, and downward arrows
represent people leaving the system.

the Binomial distribution in (1). In this case, the recursive
equations are given by

𝑆𝑡 = 𝑆𝑡−1 − 𝑒1𝑡 − V𝑆𝑡−1 + 𝜇𝑡 − 𝜇𝑡 𝑆𝑡−1𝑁
𝐸2𝑡 = 𝑒1𝑡−1 − 𝜇𝑡 𝑒

1
𝑡−1

𝑁
𝐼𝑡 = 𝐸2𝑡−1 − 𝜇𝑡𝐸

2
𝑡−1

𝑁
𝑅𝑡 = 𝑅𝑡−1 + V𝑆𝑡−1 + 𝐼𝑡−1 − 𝜇𝑡 𝐼𝑡−1𝑁 − 𝜇𝑡𝑅𝑡−1𝑁 .

(12)

In order to fit this deterministic model, weminimized the
sum of squared errors (𝐸1𝑡 − 𝑒1𝑡 ) using the optim function in
𝑅.

Alternative 3 (deterministic continuous-time model with a
seasonal transmission rate (DMCT)). As mention in the
Introduction, deterministic compartmental models in con-
tinuous time are widely used to understand the dynamics
of infectious diseases. A deterministic continuous-time SEIR
model accounting for heterogeneous mixing patterns in the
population can be formulated as follows:

𝑑𝑆
𝑑𝑡 = −𝛽 (𝑡) 𝑆𝐼

𝛼 − V𝑆 + 𝜇 − 𝜇𝑆
𝑑𝐸
𝑑𝑡 = 𝛽 (𝑡) 𝑆𝐼

𝛼 − 𝑎𝐸 − 𝜇𝐸
𝑑𝐼
𝑑𝑡 = 𝑎𝐸 − 𝑏𝐼 − 𝜇𝐼
𝑑𝑅
𝑑𝑡 = V𝑆 + 𝑏𝐼 − 𝜇𝑅,

(13)

where 𝛽(𝑡) is defined as 𝛾0 + 𝛾1cos(2𝜋𝑡 + 𝜓) to account
for seasonality, 𝜇 is the proportion of births, and V is the
proportion of individuals vaccinated. The values of 𝑎 and 𝑏
are set taking into account the fact that the average time to
show symptoms after being infected is 14 days and the average
time to recover from chickenpox disease is 7 days. Therefore,
in the continuous scenario, it is not necessary to distinguish
between 𝐸1 and 𝐸2. Finally, we assume that 𝑆 + 𝐸 + 𝐼 + 𝑅 =
1, ∀𝑡. The flowchart diagram for this model is described in
Figure 2.
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Figure 3: Weekly number of reported infections of chickenpox in
the Valencian Community from 2007 to 2012.

Alternative 4 (deterministic continuous-time model with
a seasonal transmission rate and assuming homogeneous
mixing (DMCT-Homo)). This model is similar to the pre-
vious one, but it assumes that all the individuals in the
population are equally likely to contact any other individual
(homogeneous mixing), and so the model is formulated as in
(13) setting 𝛼 = 1.

In order to estimate the parameters of these two previous
continuous-time deterministic models, we have used the 𝑅
package deSolve together with the optim function.

Table 2 shows the fitting and forecast RMSEs for the
Bayesian stochastic SEIR model in discrete time proposed in
this paper and the four alternative formulations previously
described. As can be seen, the proposed model leads to an
improved goodness of fit as judged by a lower RMSE. The
comparison between the fitting error of the proposed model
and that of the SMDT-DTR corroborates the idea that the
incorporation of random effects when modeling the trans-
mission rate is fundamental to explaining particular features
of annual epidemics, which are different from year to year.
The difference between the corresponding forecast errors is
smaller due to the fact that the randomeffects in the transmis-
sion rate are set equal to zero when forecasting. Comparison
between the fitting errors of the stochastic models and those
associated with the deterministic approaches highlights the
importance of taking into account the stochasticity inherent
in the transmission dynamics. We can also emphasize the
importance of using models that do not imply mass-action
mixing of individuals in the population.

Finally, Figures 7 and 8 compare, respectively, the esti-
mates and point forecasts of chickenpox infections obtained
with the proposed model, the SMDT-DTR model and the
DMCT model. As expected, both the SMDT-DTR and the
DMCT models, which consider a seasonal pattern that
is constant over time, are not able to properly describe
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Figure 4: Estimated transmission rate together with its seasonal component (a) and estimated probability of getting the virus (b) from week
2, 2007, to week 1, 2012.
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Figure 5: Reported cases of chickenpox (solid points) together with
posterior means (solid line) and 95% credible intervals (dotted line)
from week 4, 2007, to week 3, 2012.

annual epidemics. Besides, in this case study, the commonly
used deterministic continuous-time approach cannot explain
properly epidemic peaks.

5. Conclusions

We have proposed a flexible stochastic compartmental model
in discrete time to understand the dynamics of chickenpox,
which is an infectious disease with a latency period. Unlike
standard formulations, the proposed model does not imply
homogeneous mixing of individuals in the population and
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Figure 6: Point forecasts (solid line) together with 95% prediction
intervals (dashed lines) for the last 49 weeks of 2012 (from week 4 to
week 52, 2012). Solid points represent cases of chickenpox reported
by the health sentinel network in the Valencian Community.

takes into account the stochasticity inherent in the transmis-
sion of disease, providing a much more realistic and accurate
description of the progression of the disease. In addition,
the Bayesian analysis of the model allows us to quantify
uncertainty about the parameters of the model and facilitates
computation of the posterior predictive distribution. The
model closely predicts the timing and magnitude of the
chickenpox epidemic in 2012.

Although the results obtained are encouraging, we must
note that the proposed model has some limitations. We have
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Figure 7: Reported cases of chickenpox from week 4, 2007, to
week 3, 2012 (solid points), and the estimates obtained with the
Bayesian stochastic SEIR model in discrete time proposed in this
paper (solid lined), the stochastic model in discrete time with
a deterministic seasonal transmission rate (dashed line) and the
deterministic continuous-time model with a seasonal transmission
rate and heterogeneous mixing (dotted line).

Table 2: Fitting and forecast RMSE for the proposed model and
four alternative formulations of the SEIR model: a stochastic model
in discrete time with a deterministic seasonal transmission rate, a
deterministic model in discrete time with a seasonal transmission
rate, and two deterministic continuous-time formulations, one
with heterogeneous and the other with homogeneous mixing of
individuals.

Model Fitting RMSE Forecast RMSE
Proposed model 4.41 64.24
SMDT-DTR 89.08 73.32
DMDT 106.79 80.27
DMCT 135.09 106.71
DMCT-Homo 229.26 309.89

assumed that the number of births equals the number of
deaths so that the total population size is constant over
time. In addition, we do not consider an age structure into
the formulation of the compartmental model. It would be
valuable to extend the proposed model to allow for different
age groups. An age-structured model would also provide an
important tool to study the effects of alternative vaccination
strategies.

Another very fruitful area for further research is the
extension of the model into the spatial domain. Space can
play a significant role in disease dynamics. In addition, a
spatiotemporal model would help to detect high-risk areas
in need of more strong intervention strategies to reduce the
burden of disease. The incorporation of covariates affecting
disease transmission, such as temperature orwind speed,may
also improve description and prediction of the pattern of
disease.
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Figure 8: Reported cases of chickenpox from week 4 to week
52, 2012 (solid points), and point forecasts obtained with the
Bayesian stochastic SEIR model in discrete time proposed in this
paper (solid lined), the stochastic model in discrete time with
a deterministic seasonal transmission rate (dashed line) and the
deterministic continuous-time model with a seasonal transmission
rate and heterogeneous mixing (dotted line).
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