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Dynamic capacity provision for
wireless sensors’ connectivity: A profit
optimization approach
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Abstract
We model a wireless sensors’ connectivity scenario mathematically and analyze it using capacity provision mechanisms,
with the objective of maximizing the profits of a network operator. The scenario has several sensors’ clusters with each
one having one sink node, which uploads the sensing data gathered in the cluster through the wireless connectivity of a
network operator. The scenario is analyzed both as a static game and as a dynamic game, each one with two stages, using
game theory. The sinks’ behavior is characterized with a utility function related to the mean service time and the price
paid to the operator for the service. The objective of the operator is to maximize its profits by optimizing the network
capacity. In the static game, the sinks’ subscription decision is modeled using a population game. In the dynamic game,
the sinks’ behavior is modeled using an evolutionary game and the replicator dynamic, while the operator optimal capac-
ity is obtained solving an optimal control problem. The scenario is shown feasible from an economic point of view. In
addition, the dynamic capacity provision optimization is shown as a valid mechanism for maximizing the operator profits,
as well as a useful tool to analyze evolving scenarios. Finally, the dynamic analysis opens the possibility to study more
complex scenarios using the differential game extension.
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Introduction

The concept of Internet of things (IoT) as a revolution-
ary paradigm is not new.1 However, the wide concept
of IoT that we know nowadays was not defined until
the past decade.2 The number of devices connected is
growing driven by this paradigm; in fact, according to
Cisco, there will be 5.5 billion mobile devices connected
to the Internet by 2020,3 with a wide range of applica-
tions in several areas, such as education, healthcare,
industry, infrastructures, smart homes, as well as smart
cities,4,5 among others. In this context of huge density
of devices connected to wireless networks, the network
capacity provision problem has been focused on opti-
mizing the bandwidth usage using different approaches,

such as algorithms and programming,6–8 protocol mod-
ifications,9 and game theory.10–13 Nevertheless, given
that the main actors in the capacity provision problem
are the network operators (OP), it is also needed to jus-
tify the solutions not only from an efficiency point of
view but also from an operator profit point of view.
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The OP profit maximization problem has been
addressed several times in the literature as a pricing
problem.14–17 Some of the papers only analyze mono-
polistic scenarios,18 but it is also common to analyze
competitive scenarios using game theory.17,19 The anal-
ysis is typically solved statically, and the results are
obtained in the equilibrium, where the actors have no
incentive to change its decisions.20,21 However, there
are some studies that analyze dynamic problems, where
the system parameters may vary over the time and the
optimization is done within a time interval.22,23 In our
work, we tried to extend the scenario analyzed in the
work by Sanchis-Cano et al.24 by solving a dynamic
optimization problem using the price as control vari-
able. However, the model was not controllable due to
the linear dependence of the Hamiltonian function with
the price. To solve this problem, we decided to analyze
the profit maximization problem in an IoT scenario,
using the capacity provision as control variable11

instead of the price.

Paper contributions and outline

In this article, we analyze a wireless sensors’ connectiv-
ity scenario from an economic point of view using
mathematical modeling and game theory. We analyze
the scenario using a static model as a first approxima-
tion and then we propose a more realistic dynamic
model, using evolutionary games and optimal control
theory to solve the problem of capacity provision for
sensors’ connectivity. We analyze a scenario with sev-
eral sensors’ clusters trying to transmit the gathered
data through a network operator (OP), which provides
wireless connectivity. The behavior of the sensors is
modeled using a delay-sensitive utility function. The
scenario is analyzed both statically and dynamically
using game theory. For the static model, the sensors’
population equilibrium is found using population
games, and the OP optimal leased capacity is obtained
through a maximization problem. The static model is
solved using backward induction, and a Nash equili-
brium is found. In the dynamic model, the population
behavior is modeled using the replicator dynamic, while
the OP capacity decision is obtained solving an optimal
control problem using the Pontryagin maximum princi-
ple (PMP).25,26 The aim of this article is to show the
feasibility of the proposed IoT scenario. To achieve this
objective, we maximize the profits of the network oper-
ator in a given time interval, using the capacity provi-
sion as the maximization variable. We provide detailed
mathematical procedures, not only for optimization
problems with fixed parameters but also for problems
where the parameters may vary over the time. In addi-
tion, we also provide graphical results, which demon-
strate the efficiency of our dynamic capacity provision

method for wireless sensors’ connectivity and the feasi-
bility of the scenario.

One real-life scenario where our work may be useful
is a scenario where an operator provides wireless con-
nectivity to different kinds of sensors in a city. If the
operator is able estimate the sensors’ mean life or can
predict new deployments of sensors, then it can opti-
mize the leased capacity over a long time period. In
addition, if it is able to lease the capacity in advance, it
may obtain a price reduction, and therefore, a reduc-
tion in its investment costs.

The main contributions of the article could be sum-
marized by the following points:

� The provision of wireless sensors’ connectivity is
shown feasible from an economic point of view
for all the actors if the investment costs of the
service provision are bounded (sections ‘‘Game
I: static analysis’’ and ‘‘Results and discussion’’).

� The capacity provision is a valid alternative to
pricing techniques in profit maximization scenar-
ios (section ‘‘Results and discussion’’).

� The dynamic optimization using optimal control
is shown more efficient than the optimization
using equilibrium concepts (section ‘‘Results and
discussion’’).

� The dynamic optimization allows to optimize
not only static but also changing IoT scenarios
(section ‘‘OP optimal control and sinks’ distribu-
tion with dynamic parameters’’).

The rest of this article is organized as follows: in sec-
tion ‘‘General model,’’ we describe in detail the scenario
and the behavior of the actors involved, the utility of
the sinks, and the operator profit. In section ‘‘Game
analysis,’’ the scenario is analyzed using a static and a
dynamic model. The sinks’ subscription problem as well
as OP profit maximization problem are solved using
game theory and optimization. Section ‘‘Results and
discussion’’ shows and discusses the results, while sec-
tion ‘‘Conclusion’’ draws the conclusions.

General model

We consider the IoT scenario which is depicted in
Figure 1 with several clusters uploading their sensing
data to the Internet through a network operator (OP).
The sensor nodes are grouped into clusters. Each clus-
ter has a large number of sensing nodes connected
through a multi-hop wireless network.27 Each cluster
has a sink node, which transmits the data collected by
all the nodes in the cluster to the Internet through a
network operator (OP). Our scenario is based on the
work by Sanchis-Cano et al.24 and analyzes the interac-
tion between the sinks and the OP. The analyzed model
has the following market actors:
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� Sinks.
� Network operator (OP).

Sinks

Each sink belongs to only one cluster. Each sink is
responsible of transmitting all the data collected by its
sensors in a cluster to the Internet. They are the clients
of the wireless connectivity service offered by the OP.
The number of sinks is N , where N � 1.

In order to model the utility perceived by the sinks
that subscribe to the OP, we use a quality function Q

based on the previous works,18,24,28–31 which evaluate
the service offered by the OP

Q [ c Tð Þ�1 ð1Þ

where c.0 is a conversion factor and T is the mean
sensing-data-unit (s.d.u) service time. Note that when
the service time T increases, Q decreases, or equiva-
lently, the sinks perceive a worst quality when the delay
of the network increases. This function has the ability
to model the congestion in the wireless network, which
is suitable for IoT scenarios with delay constraints.32

We model the OP service as an M/M/1 system, and
compute the mean service time T as follows33

T =
1

m� l
ð2Þ

where m is inverse of the mean s.d.u transmission time
t = 1=m or simply the system capacity, and l is the arri-
val rate of the s.d.u.

We propose a utility function, which models the per-
ception of the sinks about the service offered by the OP,
as the difference between the quality perceived by the
sinks and the price charged by the OP. This utility

function is also known as compensated utility and is
commonly used in telecommunications28,34–36

Us [ Q� p= c m� x1Nrð Þ � p ð3Þ

where we have re-written the arrival rate as the traffic
generated by all the sinks being served l= x1rN , r is
the s.d.u generation rate of one sink, p is the price in
monetary units (m.u.) per s.d.u charged by the OP to
each sink when it transmits one s.d.u and x1 is the frac-
tion of sinks being served by the OP.

The utility must be non-negative Us � 0 or the sink
will not subscribe to the service. Note that all the sinks
in the system perceive the same utility. The distribution
of sinks in the system is described by the vector
Xs =(x0, x1), where x0 and x1 are the fraction of sinks
being served and not being served by the OP, respec-
tively, and x0 + x1 = 1.

Network operator

The OP offers a wireless connectivity service to the
sinks that allows them to transmit the data collected
and charges a price p to the corresponding sink per
s.d.u transmitted.

The objective of the OP is to maximize its own profit
choosing the system capacity in order to provide a ser-
vice ratio m given a fixed price p.0. The OP profit is as
follows

POP = x1Nrp� km2 ð4Þ

where Nprx1 are the revenues obtained from sinks and
km2 are the investment costs37 of leasing a system
capacity m, and k is a cost scale factor. The convex cost
factor allows us to prevent an aggressive behavior of
the OP,12,38 opening the possibility to analyze competi-
tive scenarios in future studies.

Figure 2 shows the payment flow described in this
section; we observe that the amount of money perceived
by the OP is proportional to the traffic generated by all
the sinks multiplied by the price that each sink pays per
data unit.

Game analysis

The model described in the previous section can be ana-
lyzed as two games each one with two stages. The first
game is a static analysis, while the second game is a

Figure 1. Analyzed scenario with all the actors of the market.

Figure 2. Model payment flow and actors involved.
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dynamic analysis of the model. Both games have the
following structure: first, an optimization stage where
the OP chooses the capacity that maximizes its profits
and second, a sink’s subscription stage. The games are
summarized in Figure 3.

The games were solved as follows. First, the Game I
was solved. A static analysis was conducted and the
equilibrium solutions were obtained. Second, the Game
II was solved, obtaining the optimal OP decisions and
the social state as a function of time.

Both games were solved using backward induction,
which allows us to find a subgame perfect Nash equili-
brium (SPNE) of the proposed games. Backward induc-
tion consists in deducing backward from the end of a
problem to the beginning to infer a sequence of optimal
actions. Any Nash equilibrium found using backward is
a Nash equilibrium for every subgame or, equivalently,
an SPNE.24,39

Game I: static analysis

This game analyzes our scenario using a static model,
where all the parameters are fixed. In this game, the
actors act with perfect rationality and its decisions are
instantaneous. The solution of this game is a Nash equi-
librium where no actor has incentive to change its own
decisions.

Stage II: sinks’ subscription game. This stage is played once
the OP has fixed its m. Sinks’ equilibrium was solved
using the unified framework provided by population
games described by Sandholm.40 This framework is use-
ful for study strategic interactions between agents with
certain properties that our model satisfies.

Population game
� Strategies: S = f0, 1g, where 0 means not to sub-

scribe to the OP and 1 means to subscribe to the
OP.

� Social state: Xs = fx0, x1g, x0 + x1 = 1. Sinks’
distribution between not being served and being
served by the OP.

� Payoffs: Fs(x0, x1)= fFs0(X ),Fs1(X )g= f0,Usg,
where Us is the utility of the sinks defined in
equation (3), Fs0

(X ) is the utility of the sinks not
subscribing to the OP, and Fs1

(X ) is the utility of
the sinks subscribing to the OP.

Pure best response. The pure best response b(Xs) is the
best response where the actors can only choose a pure
strategy.40 In this case, a pure strategy means that all the
population of sinks choose the same strategy. The first
step for solving the population game is to obtain the
pure strategies that are optimal at each social state Xs

b(Xs)[ argmax
i2S

Fsi(Xs)

=
i= 0 if m� p

c
+ x1Nr

i= 1 if m � p

c
+ x1Nr

( ð5Þ

where i is the pure strategy chosen by all the population.

Mixed best response. The mixed best response B(Xs) is
the best response where the actors can choose a mixed
strategy.40 In this case, a mixed strategy means that
each sink in the population chooses its strategy based
on probabilities, and therefore, the population could be
split into several strategies. Once we have obtained the
pure best responses, we can extend the results to include
the best mixed strategies

B(Xs)[ z0 + z1 = 1; zi 2 R+½ � : zi.0) i 2 b(Xs)f g

=

z0 = 1, z1 = 0 if x1 �
cm� p

cNr

z0.0, z1.0 if x1 =
cm� p

cNr

z0 = 0, z1 = 1 if x1�
cm� p

cNr

8>>>>><
>>>>>:

ð6Þ

Figure 3. Description of the game stages.
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where zi is the fraction of the population choosing the
strategy i.

Nash equilibrium. At this point, social state x 2 Xs is a
Nash equilibrium of the game Fs if all the agents choose
a best response to x 2 Xs

NE(Fs)[ fx 2 Xs : x 2 B(Xs)g

=

(1, 0) if m� p

c

1� cm� p

cNr
,

cm� p

cNr

� �
if

p

c
�m� p

c
+Nr

(0, 1) if m � p

c
+Nr

8>>>>><
>>>>>:

ð7Þ

Stage I: OP capacity optimization. In this stage, the OP
wants to maximize its profit given by equation (4) using
m as the optimization variable and considering the price
p fixed by a regulatory authority. Given the three cases
obtained from equation (7), we analyze the case where
the maximum profit is reached

POP =

�km2 if m� p

c
cm� p

c
p� km2 if

p

c
�m� p

c
+Nr

Nrp� km2 if m � p

c
+Nr

8>>>><
>>>>:

ð8Þ

� Case 1: m� p=c: in this case, the maximum profit
is obtained solving the optimization problem

max
m

P�OPc1
= � km2

subject to m� p

c

ð9Þ

where P�OPci
is the profit obtained in equation (8) for the

Case i. The solution for the problem defined in equa-
tion (9) is as follows

P�OPc1
= 0 with m�= 0 ð10Þ

Note that in this case, it is not possible to obtain pos-
itive profit.

� Case 2: p

c
�m� p

c
+Nr: in this case, the maxi-

mum profit is obtained solving the optimization
problem

max
m

P�OPc2
=

cm� p

c
p� km2

subject to
p

c
�m� p

c
+Nr

ð11Þ

The problem in equation (11) is solved using
Karush–Kuhn–Tucker (KKT) conditions and its solu-
tion is as follows

P�OPc2
=

(c� 4k)p2

4ck
if k.

cp

2(p+ cNr)

with m�=
p

2k
c2Npr � k p+ cNrð Þ2

c2
if k� cp

2(p+ cNr)

with m�=
p

c
+Nr

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

� Case 3: m � p

c
+Nr: in this case, the maximum

profit is obtained solving the optimization
problem

max
m

P�OPc3
=Nrp� km2

subject to m � p

c
+Nr

ð13Þ

The problem in equation (13) is solved again using
KKT conditions and its solution is as follows

P�OPc3
=

c2Npr � k(cNr+ p)2

c2
with m�=

p

c
+Nr ð14Þ

Given that the first part of equation (12) is always
greater than equation (14) for the problem restrictions,
the OP optimal profit can be summarized as follows

P�OP =

(c� 4k)p2

4ck
if k.

cp

2(p+ cNr)

with m�=
p

2k

c2Npr � k p+ cNrð Þ2

c2
if k� cp

2(p+ cNr)

with m�=
p

c
+Nr

8>>>>>>>>>><
>>>>>>>>>>:

ð15Þ

Analyzing the previous results, we observe that
P�OP.0 if the following conditions are met

� Case k.cp=2(p+ cNr)

k\
c

4
ð16Þ

� Case k� cp=2(p+ cNr)

k\
c2Npr

p+ cNrð Þ2
ð17Þ

In this case, there are two possible interpretations
depending on which is more restrictive than equation
(17) or k� cp=2(p+ cNr). If c.p=Nr, then the case
condition k� cp=2(p+ cNr) is more restrictive than
equation (17) and therefore there are no additional
conditions. However, if c� p=Nr, then equation (17) is
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more restrictive and it must be met in order to obtain
positive profits.

As shown in the previous analysis, the value of k has
a vital role in the feasibility of the system and therefore
has to be bounded in order to obtain positive profits.

Game II: dynamic analysis

This game analyzes our scenario using a dynamic
model, where the parameters and the decisions of the
actors may change over the time. The dynamic analysis
was conducted using evolutionary game theory for the
sinks’ subscription game, while for the OP capacity,
optimization stage optimal control theory and PMP
were used.

Stage II: sinks’ evolutionary subscription game. In order to
maximize the user utility described in equation (3), we
define the following evolutionary game:

� Strategies: S = fS0, S1g, where S0 means not to
subscribe to the OP and S1 means to subscribe to
the OP.

� Social state: Xs(t)= fx0(t), x1(t)g, x0 + x1 = 1.
Sinks’ distribution between not being served and
being served by the OP.

� Payoffs: Us(t)= fu0(t), u1(t)g= f0,Us(t)g, where
Us(t) is the utility of the sinks defined in equation
(3) as a function of time, u0(t) is the utility of the
sinks not subscribing to the OP, and u1(t) is the
utility of the sinks subscribing to the OP. Note
that here the utility varies with the time due to
the variation on the social state.

The sinks use a set of rules to update their strategies.
This set of rules is known as revision protocol40 and
determine the evolutionary dynamic. There are several
revision protocols but we are interested in the imitative
protocols and direct selection protocols. In the imitative
protocols, the users update their strategies taking into
account the strategies chosen by other users, but imita-
tive protocols admit boundary rest points that are not
Nash equilibria of the underlying game.41 On the other
hand, direct selection protocols are not directly influ-
enced by the choice of others and this characteristic pre-
vents the boundary rest points. In this work, we have
chosen an imitative protocol, given that it is tractable
analytically and widely used in the literature. However,
we need to be cautious about the boundary rest points.

The revision protocol used in this work can be
described by the following action:

� At the time instant t, a user with strategy Si imi-
tates the strategy Sj(j 6¼ i) selected by other user
if ui(t).uj(t) with probability

rI
ij(t, xj, ui, uj)= xj(t)½uj(t)� ui(t)�+ ð18Þ

The revision protocol was introduced by Schlag42 in
a population game context. Under this protocol, a user
switches its strategy only if the other user has a better
utility. The switching rate is proportional to the differ-
ence in the utility and the number of users in the destina-
tion strategy. The protocol has D2 data requirements.41

The mean dynamic can be derived from the pro-
posed revision protocol (equation (18)) as follows

_xi =
X
j2S

xjrji � xi

X
j2S

rij

=
X
j2S

xixj ui � uj

� �+ � xi

X
j2S

xj uj � ui

� �+

= xi

X
j2S

xj ui � uj

� �
= xi ui �

X
j2S

xjuj

 !

= xi ui � UAVGð Þ
_xi = dxi ui � uAVGð Þ

ð19Þ

where d is the learning rate and UAVG =
P

j2S xjuj is the
average utility of all the users in the model. Following
the mean dynamic described above, users learn progres-
sively the best choice until the market reach a stationary
point, where the action of one user has no impact in the
utility of the other users and no user has an incentive to
switch its strategy. When the equilibrium is reached, the
utility of all the users is the same ui = uj 8i, j 2 N .
This mean dynamic is also known as replicator
dynamic. Adapting equation (19) to our model, we
obtain the following equation

_x0 = dx0 u0 � x0u0 � x1u1ð Þ= dx0 �x1u1ð Þ
_x1 = dx1 u1 � x0u0 � x1u1ð Þ= dx1 u1 � x1u1ð Þ

ð20Þ

Given that x1 = 1� x0, we can work only with one
of the previous equations without loss of generality.

Dynamic stationary points. The dynamic reaches a sta-
tionary point when no user is willing to change its strat-
egy or equivalently when _xi = 0

_x1 = dx1 u1 � x1u1ð Þ= 0

dx1u1 1� x1ð Þ= 0

Solving the previous equation and assuming that
d.0, we get the following steady states:

� Case 1

x1 = 0, x0 = 1 ð21Þ

� Case 2

1� x1 = 0

x1 = 1, x0 = 0
ð22Þ
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� Case 3

u1 = c m� x1rNð Þ � p= 0

x1 =
cm� p

cNr
, x0 = 1� cm� p

cNr

ð23Þ

Stability of stationary points. Once we have found the
stationary points, it is necessary to characterize its sta-
bility. Consider a steady state x 2 Xs where sinks per-
ceive a utility Us(x) and an invader state y 2 Xs where
some sinks move to a different strategy and they per-
ceive a utility Us(y). We can affirm that x 2 Xs is a glob-
ally evolutionary stable strategy (GESS)40 if

Us(y)� Us(x)\0 8 y 2 X � fxg ð24Þ

which means that the utility perceived by the sinks
which did not switch their strategy from state x 2 Xs is
higher than the utility perceived by the sinks which
switched it. An equivalent definition is that the utility
of sinks which switch their strategy decreases or the
utility of sinks which keep their strategy increases, while
the utility of sinks which switch remains constant.43 We
can apply this definition to the steady states found in
the previous point

� Case 1: X =(x0 = 1, x1 = 0).

Consider that a number of sinks e migrate from
strategy S0 to S1, which leads us to the new social state

X 0=(x00 = 1� e, x01 = e)

The utility of sinks in both states is as follows

Us(x0)= 0, Us(x1)= cm� p

Us(x
0
0)= 0, Us(x

0
1)= c m� eNrð Þ � p

This steady state is a GESS if

Us(x0).Us(x
0
1)jjUs(x

0
0).Us(x

0
1)

0.c m� eNrð Þ � p

For all the possible values of e 2�0, 1�, it is true if

m� p

c
ð25Þ

� Case 2: X =(x0 = 0, x1 = 1).

Consider that a number of sinks e migrate from
strategy S1 to S0, which leads us to the new social state

X 0=(x00 = e, x01 = 1� e)

The utility of sinks in both states is as follows

Us(x0)= 0, Us(x1)= c m� Nrð Þ � p

Us(x
0
0)= 0, Us(x

0
1)= c m� eNrð Þ � p

This steady state is a GESS if

Us(x1).Us(x
0
0)jjUs(x

0
1).Us(x

0
0)

c m� Nrð Þ � p.0jjc m� eNrð Þ � p.0

For all the possible values of e 2�0, 1�, it is true if

m � p

c
+Nr ð26Þ

� Case 3: X =(x0 = 1� (cm� p=cNr), x1 =
cm� p=cNr).

Consider that a number of sinks e migrate from
strategy S1 to S0, which leads us to the new social state

X = x0 = 1+ e� cm� p

cNr
, x1 =

cm� p

cNr
� e

� �
The utility of sinks in both states is as follows

Us(x0)= 0, Us(x1)= c m� cm� p

cNr
Nr

� �
� p= 0

Us(x
0
0)= 0, Us(x

0
1)= c m� cm� p

cNr
� e

� �
Nr

� �
� p

The necessary conditions to be a GESS are follows

Us(x1).Us(x
0
0)jjUs(x

0
1).Us(x

0
0)

0.0jjc m� cm� p

cNr
� e

� �
Nr

� �
� p.0

For all the possible values of e 2�0, cm� p=cNr�, it is
true if

m.
p

c
ð27Þ

On the other hand, if we analyze the case when a
number of sinks e migrate from strategy S0 to S1, we
obtain the new social state

X = x0 = 1� e� cm� p

cNr
, x1 =

cm� p

cNr
+ e

� �
The utility of sinks in both states is as follows

Us(x0)= 0, Us(x1)= c m� cm� p

cNr
Nr

� �
� p= 0

Us(x
0
0)= 0, Us(x

0
1)= c m� cm� p

cNr
+ e

� �
Nr

� �
� p

The necessary conditions to be a GESS are as
follows

Us(x0).Us(x
0
1)jUs(x

0
0).Us(x

0
1)

0.c m� cm� p

cNr
+ e

� �
Nr

� �
� p
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For all the possible values of e 2�0, 1(cm� p=cNr), it
is true if

m\
p

c
+Nr ð28Þ

With equations (27) and (28), we have the sufficient
conditions where this state is a GESS

p

c
\m\

p

c
+Nr ð29Þ

In the previous analysis, we have demonstrated that
there is a GESS for all the possible values of the control
variable m. Furthermore, in every single population
games, like in our model, it can be demonstrated that
every GESS is unique and it is also a Nash equili-
brium.40 In addition, every GESS is also an ESS and,
as proven by Barron,39 it is also an asymptotically sta-
ble solution of the dynamic.

Note that when one of the steady states deduced in
equations (21)–(23) is a GESS, it is unique. Figure 4
shows a particular case when the GESS is the mixed
strategy equilibrium (equation (23)).

Stage I: OP dynamic capacity optimization. The capacity
optimization stage was solved using optimal control
theory,26 which allows us to do a dynamic optimization
within a time horizon and not only in the steady states.
As a result of the dynamic optimization, we obtained a
control function in every instant of time t that opti-
mizes the objective function within a time horizon
t 2 ½0, T �. The problem that we are going to solve is to
obtain the optimal capacity that maximizes the profits

of the OP, given that the behavior of sinks is modeled
by the dynamic (eqaution (19))

max
m

POP(m)=

ðT
0

e�rtPOPINS
(m)dt

s:t: _xi = dxi ui � uAVGð Þ, Xs(0)=X0, and m 2�0,R+½
ð30Þ

where r is a given discount rate, POPINS
(m) is the instan-

taneous profit of the OP defined in equation (4) and X0

is the initial distribution of the population.
In order to solve the previous problem, we used the

PMP, which provides the necessary conditions to find
the candidate optimal strategies for the open-loop case.
The Hamiltonian function of the OP is defined as
follows

H =POPINS
+ l _x1

where l is the adjoint variable of the OP. Rewriting the
Hamiltonian in terms of our model, we have the follow-
ing equation

H = x1(dlx1 �c(m+Nr)+ cNrx1 + pð Þ
+ dl(cm� p)+Npr)� km2

ð31Þ

Following the PMP, all candidate optimal strategies
must satisfy the necessary conditions

m�(t)= max
m2�0,R+½

H ð32Þ

_x1 = dx1 u1 � uAVGð Þ ð33Þ

_l(t)= lr � ∂H

∂x1

ð34Þ

l(T )= 0 ð35Þ

where equation (32) is the maximality condition, equa-
tion (33) is the replicator dynamic, which models the
behavior of the sinks, equation (34) is the adjoint equa-
tion, and equation (35) is the transversality condition.
Solving equation (32), we obtain the candidate strategy
to maximize in terms of the state x1 and the adjoint
variable l

m�(t)= � cdl x1 � 1ð Þx1

2k
ð36Þ

Replacing the optimal candidate strategy equation
(36) in the remaining PMP conditions and with the ini-
tial state condition, we have the system of partial differ-
ential equations (PDEs) shown in equation (37)

t(s)

x 1
(t
)

Figure 4. Replicator dynamic convergence when the GESS is a
mixed equilibrium.
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_x1 =
d x1 � 1ð Þx1 cx1 �cdl+ cdlx1 + 2kNrð Þ+ 2kpð Þ

2k

_l(t)=
2k(l(dp+ r)� Npr)� dlx1ðc2dl+ 4k(p� cNr)Þ � dlx1cx1ð�3cdl+ 2cdlx1 + 6kNrÞ

2k

x1(0)= x0

l(T )= 0

8>>>>>>><
>>>>>>>:

ð37Þ

This system is a two-boundary value problem
(TBVP) and cannot be solved using traditional meth-
ods for PDEs, given that it has no initial conditions for
all its variables. Instead of it, is has an initial condition
and an end condition. This problem has been solved
numerically using the shooting method.44 Given that
the shooting method requires a good initial estimation
for the value of l(0), otherwise it may be unstable, we
have solved the problem in several steps, beginning
with small values of T and increasing it in the following
stages, using the solution of l(0) of the previous stage
as initial estimation for the present stage.

Results and discussion

In this section, we present the numerical results for the
static and dynamic games analyzed in the previous sec-
tion. The results were obtained for the case when the
equilibrium is a mixed strategy. The figures were calcu-
lated for the values shown in Table 1 unless otherwise
specified.

OP optimal control and sinks’ distribution with static
parameters

In order to study the static and dynamic results, we
show the optimal capacity m�(t) and the fraction of
sinks being served by the OP x1(t) as a function of the
time t, for different values of the number of sinks N .

Figure 5 shows the OP optimal capacity in the static
case and in the dynamic case for different values of N .

In both the static and the dynamic analyses, when N

increases, the optimal capacity increases in order to be

able to serve the higher number of sinks. Comparing
the static and the dynamic analyses, we observe that
the provider chooses a similar strategy for low values
of t. It is different due to the existence of the discount
rate r. Nevertheless, when t is close to T , the provider
decreases the reserved capacity, and when t= T , the
total capacity reserved is zero. This behavior makes
sense given that the OP optimize its decision for a lim-
ited time interval, and it is not worthy to have costs
when the OP has not to provide more services. Figure 6
shows a similar behavior. For low values of t, the pop-
ulation learns the optimal strategy by imitation moving
from the initial state to the static Nash equilibrium.
The population learns faster the optimal strategy when
it has a higher amount of sinks. For values of t close to
T , the utility perceived by the sinks decreases due to the
decrease in the capacity offered by the provider. The
sinks start to leave the OP service but they are not able
to learn fast enough and some sinks remain in the OP
when t = T and it offers no service at all.

OP optimal control and sinks’ distribution with
dynamic parameters

In this section, we show the evolution of the optimal
capacity m�(t) and the fraction of sinks being served by
the OP x1(t), when the number of sinks in the system is
also a function of the time N (t). The results for two dif-
ferent scenarios are shown. Figures 7–10 are related to
the Scenario 1, while Figures 11–14 are related to the

Table 1. Reference Case 1—static parameters.

Parameter Value Units

Quality conversion factor (c) 1 m:u s

s:d:u2

h i
Sensor data generation ratio (r) 1 s:d:u

s

� 	
Operator price (p) 0:2 m:u

s:d:u

h i
Total number of sensors (N) 200
Capacity cost scale parameter (k) cp

1:5(cNr+ p)

m:u s

s:d:u2

h i
Dynamic’s learning rate (d) 0.14
Initial social state (Xs(0)) f0:05, 0:95g
End time horizon (T) 1 s½ �
Discount rate (r) 0:2

t(s)

(s.d.u/s)

Figure 5. OP optimal capacity in the static and dynamic cases
for different values of N.
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Scenario 2. The figures for each scenario were calcu-
lated for the values shown in Table 2.

In both scenarios are shown three different cases:

� Case 1. In this case, the values of m�(t) and x1(t)
are obtained using the solutions for the static
equilibrium obtained in equations (7) and (15)
for each instant of time. The values of m�(t) and
x1(t) are represented in the figures with the names
‘‘m� Static’’ and ‘‘x�1 Static,’’ respectively.

� Case 2. In this case, the value of m�(t) is obtained
using the solution for the static equilibrium
obtained in equation (7) for each time instant.
However, the value of x1(t) is obtained from the
replicator dynamic defined in equation (20). The
values of m�(t) and x1(t) are represented in the
figures with the names ‘‘m� Static’’ and ‘‘x�1
Replicator,’’ respectively. Note that the value of
m�(t) is the same in the Case 1 and Case 2. This
case models a more realistic model when the
behavior of the sinks is not ideal and their reac-
tion against a change in the market is not
instantaneous.

� Case 3. In this case, the values of m�(t) and x1(t)
are obtained from the solution to the optimal
control problem defined in equation (37). The

values of m�(t) and x1(t) are represented in the
figures with the names ‘‘m� Optimal Control’’
and ‘‘x�1 Optimal Control,’’ respectively.

Scenario 1. This scenario models a decreasing number
of sensors over the time due to failures in the sensors
during its life, as shown in Table 3 and Figure 7. The
figures were calculated for the values shown in Tables 2
and 3.

Due to the variation in the number of sensors N, the
optimal decision for the OP over the time may vary.
Figure 8 shows how the system is able to adapt its deci-
sions to variations not only in the distribution of the
sinks but also in the system parameters. The difference
between the Cases 1 and 2 and the Case 3 is small for
small values of t but it increases when t is close to T .
Figure 9 shows the distribution of the sinks as a func-
tion of time, while Figure 10 shows the instantaneous
profit for all the cases, while the aggregated profits are
48:46 for the Case 1, 44:36 for the Case 2, and 45:56 for
the Case 3. We observe how the optimal control strat-
egy, represented in the Case 3, allows to increase the
OP profits compared with the Case 2 despite the lower

x

x

x

x

x

x

t(s)

x

Figure 6. Social state in the static and dynamic cases for
different values of N.

Table 2. Reference Case 2.1—dynamic common parameters.

Parameter Scenarios 1 and 2 Units

Quality conversion factor (c) 1 m:u s

s:d:u2

h i
Sensor data generation ratio (r) 1 s:d:u

s

� 	
Operator price (p) 0:2 m:u

s:d:u

h i
Initial number of sensors (N(0)) 1200
Dynamic’s learning rate (d) 0:14
Initial social state (Xs(0)) f0:25, 0:75g
End time horizon (T) 0:5 s½ �
Discount rate (r) 0

Table 3. Reference Case 2.1—dynamic non-common
parameters.

Parameter Scenario 1 value

Evolution of number of sensors (N(t))
N(0)� 0:7N(0)

Te0:8T
te0:8t

Capacity cost scale parameter

k
m:u s

s:d:u2

h i� � cp

1:8(cN(0)r+ p)

Parameter Scenario 2 value

Evolution of number of sensors (N(t))
N(0)+

0:7N(0)

Te0:8T
te0:8t

Capacity cost scale parameter

k
m:u s

s:d:u2

h i� � cp

2:75(cN(0)r+ p)

t(s)

Figure 7. Scenario 1: evolution of the number of sinks N as a
function of t.
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number of sinks subscribed. This is possible, thanks to
the lower value of m�, and therefore, there is a reduc-
tion in the investment costs. We also observe how the
non-optimal behavior of the sinks caused by the repli-
cator dynamic decreases the OP profits with respect to
the Case 1; however, a scenario with instantaneous sink
decisions is not realistic.

Scenario 2. This scenario models an increasing number
of sensors over the time due to a progressive deploy-
ment of new sensors, as shown in Table 3 and
Figure 11. The figures were calculated for the values
shown in Tables 2 and 3.

As in the previous scenario, the change in the num-
ber of sensors varies the OP optimal static solution
m� static, as shown in Figure 12. However, in this case,
the optimal control decision does not follow the static
optimal solution. This is possible given that the OP
knows in advance the evolution of N over the time and
can adapt its strategy to optimize not only the instanta-
neous profits but also the profits in all the time interval.
This strategy allows the OP to maintain all the sensors
subscribed during more time, as shown in Figure 13,
and allows the OP to increase its profits with respect to
the static optimization. Figure 14 shows the instanta-
neous profit for all the cases, while the aggregated prof-
its are 81:06 for the Case 1, 80:14 for the Case 2, and
82:77 for the Case 3.

Conclusion

A capacity provision scenario for wireless sensors’ con-
nectivity has been studied using mathematical

t(s)

(s.d.u/s)

Figure 8. Scenario 1: OP optimal capacity in the cases with
static and dynamic optimization as a function of t.

x

x

x

x

Figure 9. Scenario 1: social state in the three studied cases as
a function of t.

t(s)

(m.u./s)

Figure 10. Scenario 1: evolution of the OP profits for different
strategies as a function of t and total profits.

Figure 11. Scenario 2: evolution of the number of sinks N as a
function of t.

t(s)

(s.d.u/s)

Figure 12. Scenario 2: OP optimal capacity in the cases with
static and dynamic optimization as a function of t.
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modeling. The scenario was studied using both a static
model and a more complex, but also more realistic,
dynamic model. The analysis was conducted using con-
cepts such as game theory, replicator dynamics, opti-
mal control, and optimization.

The behavior of the sensors was modeled through a
utility function based on a congestion model, while the
subscription decision was modeled using both the static
equilibrium and the replicator dynamic. The network
operator profit was modeled using the revenues
obtained from the sensors and a quadratic investment
cost function. The optimal profit in a defined time
interval was obtained solving an optimal control prob-
lem, using the network capacity as a control variable,
and compared against the static optimization.

It has been shown that the optimization using opti-
mal control, when the users are modeled using the repli-
cator dynamic, allows the OP to obtain higher profits
than the optimization using the equilibrium solution. In
addition, the dynamic optimization allowed the opera-
tor to optimize its profits not only in a scenario with
fixed parameters but also in a scenario where the sys-
tem parameters, like the number of sensors, change

over the time. Given the obtained results, we can con-
clude that the proposed scenario is feasible from an
economic point of view for all the actors. In addition,
we show that the optimal control theory is a profitable
and a powerful tool for the maximization of the net-
work operator profits in dynamic IoT scenarios.

Future work will involve the dynamic profit optimi-
zation of more complex scenarios with several compet-
ing operators using differential games.
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