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Abstract 

The increase in usage of Computational Fluid Dynamics software for different 

aeronautical applications has led to the necessity of continue reducing the time 

needed for running the simulations. Computational power has begun to reduce its 

rate of growth in the recent years thus, a different way of reducing those times need 

to be studied.  

As the optimal mesh decomposition method has been found out to be problem 

dependent, using a 3D model of a wing with a span of 3m, this study uses different 

methods available in ANSYS Fluent to investigate its influence on the simulations run 

with the software. It aims to study the scalability of the problem and show a guide on 

the optimal method for the problem. 

The results of this investigation showed that the mesh decomposition methods 

do not only influence the simulation in the time needed for performing the simulation 

but also in other ways such as the rate of convergence. METIS showed the best 

results when working with a low number of processors and faster convergence while 

specifically-chosen geometry-based methods showed to be able to give as good 

scalability as METIS for a larger number of processors. 
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1. Introduction 

1.1. Introduction 

The development and increase in accuracy of CFD codes has “revolutionised” 

the development of projects in the aerospace industry becoming one of the “primary 

tools” for aircraft design (Johnson et al., 2005). As can be observed in Figure 1, in 

2010 CFD was frequently or moderately used by Airbus in approximately 83% of the 

items listed. Items with growing use are mainly limited by the complexity of the 

geometries and the coupling of aerodynamics with other disciplines such as 

thermodynamics or acoustics (Abbas-Bayoumi and Becker, 2011). Even though, the 

program development of an aircraft still “take much too long” (Spalart and 

Venkatakrishnan, 2016). In fact, Abbas-Bayoumi and Becker (2011) describe time 

reduction as one main aim for Airbus. In the last thirty years speedup in CFD has 

been mainly due to the increase in the computing power –a rate of 3.8 every two 

year- but this is decreasing and it is expected a factor of 1.8 for the period 2013-2025 

(Spalart and Venkatakrishnan, 2016). Despite this slowdown in the computing power 

growth, CFD requirements in order to increase its usage are becoming more 

demanding even for more complex situations (Spalart and Venkatakrishnan, 2016). 

Thus, it is necessary to study speedup methods other than trusting the increase in 

computational power. 

 In figures, according to Johnson 

et al. (2003) in 2002 more than 20,000 

CFD cases were run in Boeing 

commercial airplanes. Six years later, 

according to Professor Jameson (2008), 

between 50,000 and 100,000 

simulations were needed in Boeing for 

developing an aircraft. Also at that time between 4,000 and 6,000 iteration on 288 

processors during 12.9 hours were needed for Airbus to obtain only six points of the 

polar in landing configuration. More complex –but not less common- situations such 

as the study of ground effect –an increase in lift due to the compression of air under 

the wing when it is close to a surface (e.g. the runway)- need meshes with 48 million 

points working on 64 processors for 6 days (Jameson, 2008). Thus, a reduction to a 

fifth of the initial time, which is achieved in the results, would mean a huge reduction 

in the simulation time. These calculation-time reductions have a relevant economic 

 

Figure 1.1 Use of CFD at AIRBUS (AIRBUS, 2010) 
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impact as the cost of 3 hours of CFD calculations was estimated by McDonell 

Douglas on about $1,000 (Jameson, 2008). 

Even each stakeholder in the industry develops its own CFD codes (AIRBUS, 

2018) the case here studied has been as close to real-world problems as possible to 

make the results on optimal decomposition strategies transferable. As an example, in 

the sake of fidelity to real-world problems the model used for the study of flow around 

a wing –k-epsilon model- belongs to the same group of models –Reynolds Averaged 

Navier-Stokes (RANS)- that has been qualified, from inside the industry, as the most 

common way to approach these problems (Abbas-Bayoumi and Becker, 2011). 

1.2. Aims 

The aim of this project is the optimization of the mesh partitioning for wing 

analysis in CFD. The purpose is to find the method that best fits the problem in order 

to divide it in the optimal number of partitions for which the time is reduced while the 

costs do not overcome the benefits of using a larger number of processors to run the 

case. It has been aimed to study the non-user-defined methods which, according to 

Vanderstraeten et al. (1996), constitute the first steps of a more complex thus, 

efficient, method.  

1.3. Objectives 

 Define a real-life based case manageable with the time and resources 

available. 

 Select varied partition methods available in ANSYS Fluent. 

 Annalise the parameters used in similar studies for evaluating the methods to 

find the optimal one. 

 Study the influence of the methods other than the calculation time.  

 Stablish recommendation for the selection of a partitioning method. 

1.4. Project report layout 

This project has been produced with the following structure: 

 Chapter 2: Analyses the study done on previous works. 

 Chapter 3: Illustrates how the geometry was meshed and the case configured. 

 Chapter 4: Shows the obtained results for the case with the different methods. 

 Influence of the factors: Shows the study of the importance of each of the 

factors outlined as important in the Literature review. 

 Conclusion: Shows the conclusions derived from the study.  
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2. Literature review 

2.1. Parallel computing 

Parallel computing is, according to the Spanish Dictionary of Engineering 

(RAI, 2018), “computation that uses simultaneously the different processors on a 

system for a faster resolution of the programmed algorithm”. This is achieved by 

dividing the problem in a number of subtasks assigning each one to a processor –

CPU- to be performed all at the same time. The aim is to reduce the time needed for 

performing the calculations in traditional –serial- computing where the tasks are 

performed consecutively (Barney, 2018). When applied to CFD, performing a 

simulation in parallel means dividing the domain, that is, the region where the flow 

variables are being solved given some boundary conditions (Atkins, A.G. and 

Escudier, 2013), into different subdomains and assigning each subdomain to a 

processor. 

Even the domain is divided, flow variables in each partition are not 

independent of those in the rest of subdomains and the flow field still needs to be 

solved for the whole domain thus, it is necessary to maintain communication between 

the different processors to maintain the process shown in Figure 2.2. At that point, a 

compromise arises because, as explained by Haddadi et al. (2017); even the time 

spent on calculating the solution for the flow field decreases with the number of 

processors, the time spent passing data between processors is increased. This, as 

shown in Figure 2.1, distances the speedup –rate of reduction of the simulation time 

with respect to a base case- from the ideal behaviour as the number of partitions 

increases. Eventually, it can lead to the increase in the total time needed with respect 

to a lower number of partitions. This capacity to reduce calculation time while 

increasing the number of processors is known as scalability (ANSYS, 2017). 

2.1.1. High-Performance Computer  

The HPC facilities can be divided, according to the taxonomy proposed by 

Michael J. Flynn in 1966, in four groups depending on the capability of 

simultaneously handling instructions (Clevenger et al., 2015). The HPC facility used 

for this study works with a Multiple Instruction Multiple Data (MIMD) paradigm in 

which the mesh is split by the master processor among the nodes available (the 

slaves). Despite this architecture is suitable for the number of processors being used 

in this study –a maximum of 30- it may show scalability problems when the number of 

CPUs is increased to hundreds or thousands of processors (Manke, 2001). 
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2.2. Mesh partitioning methods 

In order to assign a task to each of the previously mentioned CPUs, the 

domain –the mesh that divides it into discrete elements- has to be partitioned. This 

can be done through several methods that will result in different partition structures 

with different communication necessities which will influence the time needed to 

perform the calculations (Haddadi et al., 2017). As done by Shang (2014) the 

methods here studied have been selected from two main groups: graph-based and 

geometry-based methods.  

2.2.1. Geometry-based partitioning 

These methods are the classical approach to mesh partitioning. The mesh is 

partitioned based on its coordinate system, on the position of the nodes –edge 

intersections- and centroids of the elements (Magoulès, 2007). They aim to minimize 

the distance between the elements that will become part of the interface –the face 

between two partitions- (Shang, 2014). This intention is to assign continuous vertices 

to the partitions (Magoulès, 2007) –instead of creating divided subdomains-. One of 

the main advantages is that they are fast partitioning the mesh but, as they do not 

take into account the “connectivity information” given by the graph they often end up 

giving large cut edges –high number of elements in the interface- (Magoulès, 2007). 

Magoulès (2007) recommends them for simulations in which the amount of work 

each CPU performs solely –or highly- depends on the number of elements of the 

partition especially in meshes with uniformly distributed edges –such as the one here 

studied-. The geometry-based methods can be further subdivided depending on the 

way the cut direction is selected.  

Recursive Coordinate Bisection (RCB) 

Is the group that contains the geometry-based methods experimentally 

analysed. It divides the mesh in two roughly equal halves until the number of 

Figure 2.1 Deviation from the ideal behaviour 
when increasing the number of partitions 

(Haddadi et al. 2017) 

Figure 2.2 Partitioned domain calculation 
process (Ierotheou et al., 2000) 
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subdivisions equals the desired one (Magoulès, 2007). However, in order to achieve 

an odd number of partitions –E.g. three- the mesh is divided into two parts, one twice 

the size of the other, and then the former is divided again ending up with three 

roughly equal partitions (ANSYS, 2017). 

These methods create cutting planes orthogonal to the selected direction 

thus, in order to optimize the method, the direction selected –if needed to- should be 

the longest direction of the domain. These methods offer “extremely” short partition 

times, with partitioned mesh easily parallelizable with the need of little memory. 

However, for irregular structures, they offer poor solutions. (Magoulès, 2007). 

From among the geometry-based RBS methods available in Fluent four have 

been chosen to be studied. 

Cartesian Strip 

Autonomously finds the largest coordinate in the initial mesh and uses it to 

create the partitions (ANSYS, 2017). 

Cartesian X-, Y-, Z-Coordinate 

Uses the selected coordinate from the initial mesh for creating the partitions 

(ANSYS, 2017). For the case being studied the Z-Coordinate case will give the same 

results as the Cartesian Strip method as it is the longest coordinate of the parent 

domain. It has been used to find errors and measure uncertainty. 

Other Geometry-based methods 

Such as the Recursive Inertial Bisection (RIB), this uses the principal axes of 

the domain to perform the partition; the Space-Filling Curve (SFC), which uses 

curves in more than one dimension; or the Circle Bisection (CB), which uses circles 

instead of straight lines. They have not been used whether because they are not 

available in Fluent (SFC and CB) or because for this case their result is the same 

Figure 2.2 Resultant partitions using a Cartesian RCB method (Magoulès,2007; 
ANSYS, 2018) 
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than the obtained with RCB (RIB). 

2.2.2. Graph-based partitioning 

Also known as Coordinate-free or combinational methods they do not take 

into account the proximity of the other nodes but globally the mesh aiming to reduce 

the cutting edge size. These methods are slower partitioning the mesh but tend to 

reduce the size of the interface (Magoulès, 2007). 

METIS 

Designed by Karypis and Kumar (1999), it uses a “multilevel approach” in 

which, as shown in Figure 2.4, the elements of the graph are joint to obtain a coarser 

graph. The latter is divided “carefully” and last the divisions are extended back to the 

finest graph with the occasional need of a refinement algorithm (ANSYS, 2017; 

Karypis and Kumar, 1998).  

 

2.3. Influence of the partitioning 

As mentioned before, the way the mesh is partitioned influences the time 

needed for calculating the solution of the system but, as shown by authors such as 

Haddadi et al. (2017) or Shang (2014), they also influence other important 

parameters such as the partition time or the energy consumption of the HPC –which 

is expenditure for the user of the method that should be considered-. It is equally 

important to analyse the causes of these differences in the results and performance 

of each method. Thus, some parameters have been defined to be able to rank the 

methods studied.  

Figure 2.3 Multilevel algorithm process (Mengoules, 2007) 



7 
 

2.3.1. Parameters 

Wall Clock Time (WCT): Time needed to perform the calculation (Haddadi et 

al., 2017) –from the moment the simulation is started in the CPU(s) until the last 

processor has finished-. 

Total CPU Time (TCT): Aggregated time used by the processors to perform 

the calculation (Haddadi et al., 2017).  

𝑇𝐶𝑇 = 𝑊𝐶𝑇 𝑥 𝑛𝑝 

 

Where np is the number of processors being used in the simulation. 

This parameters quantifies the computational resources being used. In 

parallel simulation, even the simulation time –WCT- is being reduced with respect to 

the serial case it does not mean that the total time the resources are being used is 

reduced. 

Speedup: Relation between the TCT needed for performing the case with a 

given number of processor and the time needed for performing that same case in 

serial –base case- (Haddadi et al., 2017). Other authors such as Jamshed (2015) 

define it as the ratio between WCT and the base case time but the former definition 

has been considered to be more illustrative especially when showing the results in 

graphs. 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝐶𝑇

𝑇𝑏𝑎𝑠𝑒−𝑐𝑎𝑠𝑒
 

 

Partition Time (PT): Time needed to divide the domain in the different 

partitions.  

Energy consumption (Ec): Amount of energy required for performing a 

simulation. It measures the cost of operating the system (Haddadi et al., 2017). It is 

defined multiplied by an overhead factor to consider the power losses of the system 

but, for this study, the system is assumed to be ideal as this losses highly depend on 

the HPC facility. 

𝐸𝑐 =
𝐶𝑃𝑈 𝑝𝑜𝑤𝑒𝑟

𝑛𝑝
∗ 𝑇𝐶𝑇 

 

Equation 2.1 Total CPU Time equation 

Equation 2.2 Speedup equation 

Equation 2.3 Energy consumption equation 
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Load Balancing Factor (LBF): Measures how the workload is distributed 

through the processors. Thus, it represents how much more work one processor will 

be carrying with respect to the others. That imbalance in the amount of work would 

mean also an imbalance in the time needed for performing the calculations in a 

processor and, as the problem is parallelised and the calculations in a processor 

depend on the development of those in the neighbouring one, imbalances produce 

delays in the simulation. For the case here studied, as there are not big imbalances 

between the workload of different elements of the mesh, the load carried by each 

processor is equivalent to the number of elements it carries. The LBF has been 

defined as the ratio of the maximum difference in workload between the processors 

being used and the minimum workload of a processor. 

𝐿𝐵𝐹 =
max(𝑁𝑒

𝑘) − min (𝑁𝑒
𝑘)

min (𝑁𝑒
𝑘)

∗ 100 

 

Alternatively, the ratio between the maximum and the minimum number of 

elements in a partition is also studied. 

These factors are based on the LBF proposed by Vanderstraeten et al. (1996) 

which is simply the ratio between the average and the maximum number of elements 

in the partitions. It was modified to fully represent the deviation from the ideal case. 

2.3.2. Influence 

There is still lack of uniformity on the parameters that should be studied and 

the importance that should be given to each of them. Even as long ago as in 1996, 

Vanderstraeten et al. already diagnosed the underestimation of the importance of the 

LBF when designing algorithms for partitioning the mesh. According to them, 

excessive importance was being given to the reduction of the interprocessor 

communication by reducing the number of interface elements. In fact, in studies such 

as the one performed by Haddadi et al. (2017) one of the main capabilities 

emphasized from the automatic method –Scotch- is the reduction of cut-edge sizes 

while the LBF is not mentioned. Even though, this omission may be due to the fact 

that the case studied in that paper belongs to one of the three cases for which 

Vanderstraeten et al. (1996) define as “reasonable” to “prioritize” the reduction in the 

interface size –when the main communication between nodes is between neighboring 

subdomains-. The other two cases listed by Vanderstraeten et al. are: 

Equation 2.4 Load Balancing Factor equation 
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• When the “computational complexity” can be simplified to the nodes or 

elements that compose the domain. This assumption seems to be made in the 

ANSYS User Guide (2018) when it is claimed that “create partitions with equal 

number of cells” is one of the main objectives when partitioning a mesh. 

• When the method used for solving the system is not sensitive to the 

differences in partitions. 

As will be explained in the results section, the case here studied may fulfil the 

first and second conditions. 

Due to the problem-dependency of the importance of the factors that should 

be considered Vanderstraeten et al. (1996) proposed a “cost function” in which each 

of the factors (Ci) influencing the performance of the CFD code solving the partitioned 

system is given a specific weight (αi). Thus, the cost function to be optimized would 

be: 

𝐶 = ∑ 𝛼𝑖𝐶𝑖 

 

This function should be optimized after partitioning the mesh with “suboptimal 

but fast” algorithms which have been studied to suit the problem (Vanderstraeten et 

al., 1996). That is the step done in this work, with the analysis of which method best 

suits the problem it will be possible to establish a cost function and further optimize 

the chosen method.  

As a sample three factors (Ci) are given: 

 Interface size: Considered always helpful but not necessarily 

governing. 

 Load imbalance: It may get as simple as creating same-size 

partitions but for more computationally complex cases it may be 

necessary a more thorough study on the size of the partition assigned 

to each processor. 

 Subdomain aspect ratio: Has been observed that this factor highly 

influences the convergence of domain decomposition. 

 This last factor, more thoroughly studied by Farhat et al. (1995) is, from the 

three factors highlighted by Vanderstraeten et al. (1996), the one less explicitly 

mentioned in the literature despite that Farhart et al. (1995) achieved times up to 1.54 

Equation 2.5 Cost function proposed by Vanderstraeten et al. (1996) 
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lower than in non-optimized cases. This, as mentioned above, is probably due to the 

fact that the importance of each factor is problem-dependent. 

 

2.4. Results quantification 

Two main papers which studied the performance of different partitioning 

methods on different problems have been analysed aiming to extract some common 

trends and features to study. These are Shang (2014) that partitioned the mesh 

obtained for analysing a submarine and Haddadi et al. (2017) whose subject of 

analysis was a “simple” multiphase case included in OpenFOAM –an open source 

CFD software- that consisted on a cube. 

While the former studies three geometry-based methods –Scotch, PT-

Scothch and Zoltan- and two graph-based methods –METIS and ParMETIS-, the 

latter study analises only geometry-based methods –Scotch, Hierarchical and 

Simple-. 

Both studies agree that –as can be observed in Figure 2.5 (Haddadi et al., 

2017)- the higher differences between methods appear as the number of processors 

increases –performance is similar for a low number of CPUs-.  

Haddadi et al (2017) conclude that more manually-configured methods are 

preferable –among the geometry-based methods- and recommend the election of 

the principal axis of the geometry for the partition. Even though, one of the automatic 

methods analysed by Haddadi et al. (2017) –Scotch- is the second best performing 

for the case of Shang (2014). Looking at the available images of the obtained 

partitions in each study –Figure 2.5- it seems that the difference is due to the 

difference in the case analysed and that, when partitioning the cube, Scotch has 

generated a huge interface cut-edge and connecting many different processors. In 

fact, Shang observed that METIS –graph-based- was the best-performing and 

mentioned that geometry-based “induced an extremely non-uniform mesh 

distribution”. The poor performance of the most automatic method studied by 

Haddadi et al. –Simple- is probably due to its “simplicity” as it performs the partitions 

assigning parts with the same amount of elements to each CPU and the remaining 

cells –if the ratio between the number of cells and the number of CPUs is not a 

natural number- are assigned to the CPUs in order (Wang et al., 2012) instead of 

trying to reduce the interface cut-edge size or the LBF. 
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Regarding graph-based methods –METIS- Shang recommended it if memory 

is not a limitation. Even though, he still found some problems with the memory 

requirements of Scotch. 

 

Haddadi et al. are able to outline some general trends and rules: 

 The speedup depends on the solver used but there are similar trends 

for the different methods. 

  The number of cells per core should be kept in the range 50,000-

100,000. 

 Total computational time grows with the number of partitions. 

 The execution time ideal evolution is inversely proportional to the 

number of partitions. It deviates from this behaviour as the number of 

partitions increases due to communication overheads. Overhead 

higher than 25% of ET is not considered acceptable in their study. 

  

(a) 

(b) 

Figure 2.5. Partitions obtained with Scotch for (a) Haddadi et al. (2017) study with  11 partitions. (b) Zang (2014) study 
with 4 partitions 
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3. Problem set up and meshing 

3.1. Geometry 
The geometry studied 

is a NACA 0012 aerofoil –as 

the one shown in Figure 3.1- 

extruded 3m in the Z direction 

–Figure 3.2-. It is a symmetric aerofoil thus, non-cambered –the line that crosses 

through the middle point of each section from the leading to the trailing edge is a 

straight line- with a maximum thickness of 12% of the chord –the straight line that 

joins the leading with the trailing edge- at 30% of it. It was defined with a chord of 1m. 

The aerofoil was placed at zero angle of attack –the chord line is parallel to the 

direction of the flow- with the trailing edge lying on the origin of coordinates and the 

chord on the x-axis.  

3.2. Boundary conditions 
Based on the results obtained by Craft et al. (2006) the boundaries of the 

domain were placed at x=-1.738m upstream, x=0.678m downstream and y=±0.5m as 

they show this was sufficient for the boundaries not to affect the flow around the 

aerofoil. As the boundaries were set at the same position as Craft et al. did, the 

Reynolds number –a non-dimensional number that characterizes the flow by relating 

its density, velocity, viscosity and a characteristic dimension and makes possible to 

establish the transition from laminar to turbulent flow (RAI, 2018)- was, as they had 

done, 4.35×106 –thus, turbulent- with the chord as characteristic dimension. As 

shown in Equation 3.2, that is equivalent to a free flow velocity of 63.4967m/s -

228.5879km/h-. 

𝑅𝑒 =
𝜌 ∗ 𝑈∞ ∗ 𝑐

𝜇
 

 

Where ρ is the density of the fluid; U∞ is 

the free stream velocity; c is the characteristic 

dimension –the chord- and µ the viscosity of the 

fluid. As the fluid is air at standard atmospheric 

conditions:  

𝜌 = 1.225𝑘𝑔/𝑚3; 𝜇 = 1.789 ∗ 105𝑘𝑔/(𝑚𝑠)  

(Haynes et al., 2016) 

Figure 3.1  NACA 0012 Aerofoil (Airfoiltools, 2018) 

Figure 3.2 Resultant geometry and calculus 
domain with the correspondent coordinate 

system –Z, red arrow; X, green arrow; and Y, 
blue arrow- 

Equation 3.1 Reynolds number definition 



13 
 

 

𝑈∞ =
𝑅𝑒 ∗ 𝜇

𝜌 ∗ 𝑐
=

4.35 ∗ 106 ∗ 1.789 ∗ 105

1.225 ∗ 1
= 63.4967𝑚/𝑠  

 

At the inlet –the domain limit ahead the leading edge- the turbulent intensity –

the ratio between the “root-mean-square” of the variations of velocity and the mean 

velocity of the flow (ANSYS, 2017)- was set at 2% and the hydraulic diameter –

diameter of a theoretical circular pipe that generates the equivalent flow conditions at 

same velocity and friction coefficient as the real, rectangular, diameter (RAI, 2018)- to 

0.80023m (Craft et al., 2006). 

At the outlet –the domain limit behind the trailing edge- the pressure was set 

at atmospheric conditions –gauge pressure of 0Pa- turbulent intensity and hydraulic 

diameter were kept at the inlet values. 

For the upper, lower and side limits of the domain, in order to simulate the 

conditions of free flow around the aerofoil, the condition of symmetry was used. Thus, 

the model represents an infinite wing –equivalent to a 2D wing, an aerofoil-. 

The surfaces of the wing were set as walls with a no-slip condition –the 

relative velocity of the flow with respect to the wall in the tangential direction is zero 

(Atkins, M.T. and Escudier, 2018)-. 

3.3. Mesh 

The first mesh was created with 717,430 elements. The wall of the aerofoil 

was divided in 100 divisions clustering the elements on the parts of it where the flow 

varies the most –leading and trailing edges-. The bias factor –ratio between the size 

of the largest and the smallest elements- was set to 10.  

The leading and trailing edges of the wing were divided, along the length of 

the wing –Z coordinate-, in 100 parts.  

The edges of the side walls of the domains –rectangles- were divided into 

elements of 5×10-2m. 

The most important features of the resultant mesh are shown in Figure 3.3.  

 

Equation 3.2 Free stream velocity from Reynolds number 



14 
 

 

3.3.1. Mesh independence 

Whenever a case is performed in a CFD code it is necessary to check that the 

results obtained are independent of the mesh used to obtain them (Gilkeson, 2018). It 

is necessary to measure the errors due to the size of the elements of the mesh. 

 For doing this it is necessary to create meshes with different number of 

elements –thus elements of different sizes as the domain is the same-, run the same 

simulation in all the meshes and compare the results to verify that the variation is 

inside a reasonable limit and quantify that variation to take it into account when giving 

the results. 

In this case, as recommended by Gilkeson (2018) three meshes were created 

with an –almost- constant effective ratio –Equation 3.3- of the number of elements 

between them. These were of 1.1905 between the finest and medium mesh and of 

1.1917 between the medium and coarsest mesh, inside the range recommended 

(1.1<r<1.3). Thus, the number of elements was 1.2105 million elements for the finest 

mesh and 423,867 elements for the coarsest mesh. 

𝑟𝑒𝑓𝑓 = (
𝑁1

𝑁2
)

1
𝐷

 

 

Where N1 is the number of elements in the fine mesh; N2, the number of 

elements in the coarse mesh and D is the dimension of the problem –three-. 

After running the case in all three meshes a relevant variable –pressure at 

50% of the chord at the centre of the wing- was extracted in all three cases and 

compared. Errors –calculated as shown in Equation 3.4- of -1.82% and 3.06% were 

Equation 3.3 Effective ratio equation 

Figure 3.3  Resultant mesh in the plane XY, around the aaerofoil 
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obtained between the fine and medium and the medium and coarse meshes 

respectively. 

𝑒 =
(𝑓2 − 𝑓1)

𝑓1
 

 

Where f1 is the value in the fine mesh; f2, the value in the coarse mesh  

3.4. Case set up 

With the previously explained boundary conditions, the case was configured 

with the segregated pressure based solver because the flow was expected to be 

subsonic on the whole domain and stable enough to converge with it. Turbulence 

was modelled –as done by Craft et al. (2006)- with a k-ε model with wall functions to 

solve the flow in the boundary layer as there was no interest on studying it in detail. 

  

Equation 3.4 Error due to mesh 
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4. Results and analysis 

The previously explained case was run in ANSYS Fluent using two different 

convergence criteria: 

 Setting a minimum level for the residuals. That is, automatically 

ending the calculations when the variation of some selected variables 

with respect to the previous iteration is under a minimum value –i.e. 

0.001-. ANSYS Fluent uses the variation in the continuity equation; in 

the velocity in the three directions and the variation in k and ε –from 

the turbulence model-. This is the default convergence criteria in 

ANSYS Fluent. 

 Setting a number of iterations. The case is run for a number of 

iterations such that the residuals have dropped to a low level and stay 

constant. For this case, it was run for 500 iterations. 

The case was run in the nodes 2, 7 and 15 of the HPC facility of the University 

of Leeds. Node 2 is composed of 20 cores –CPUs- of the model E5-2630v4 with 64 

Gb of memory. Node 7,of 12 cores of the model Xeon X5660 with 48 Gb of memory. 

Node 15 is composed of 32 old liquid cooled nodes with 48 Gb of memory. While 

node 2 was used to undertake the deepest study on the methods, nodes 7 and 15 

were used, mainly, to study the influence of the hardware in the results. 

4.1. Partitions 

The geometry was decomposed in 4, 8, 12, 16 and 20 partitions which each 

method. Figure 4.1 shows, for each 12 partitions case, the first seven divisions –

partitions 0 to 6-. 

4.1.1. Interface size 

 

  

(a) 
(b) 
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As was explained with Figure 3.2, the Z coordinate is parallel to the 

longitudinal direction of the domain. As explained previously and can be observed in 

Figure 4.1 (a) and (b) Cartesian Strip method partitions the domain based on its 

original longest direction (Z coordinate) creating planes perpendicular to it. Cartesian 

Z-Coordinate produces, as expected, the same results but, in that case, the direction 

had been selected by the user. Even this methods produce, at the beginning, the 

smallest interface cut-edge size achievable by an RCB (geometry-based) method in 

the first partitions, when increasing the number of partitions it will eventually get to a 

point in which continuing partitioning in that direction would not produce the smallest 

cut-edge size. This is because the length of the partition in another coordinate –i.e. X 

coordinate- would be greater than the length of the partition in the firstly chosen 

coordinate –i.e. Z coordinate-. For this case, the length of the domain is 2.41m, 1m 

and 3m in X, Y and Z coordinate respectively thus, dividing the domain into 4 

partitions would generate: 

 Four 2.41x1m2 (9.64m2) interfaces when dividing the domain 

exclusively with the Cartesian Z-Coordinate method. 

(c) 

(c) 
(d) (c) 

(e) 

Figure 4.1 Partitions 0 to 6 obtained when decomposing the domain on 12 partitions. (a) Cartesian Strip, (b) Cartesian 
Z-Coordinate, (c) METIS, (d) Cartesian X-Coordinate, (E) Cartesian Y-Coordinate 
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 Two 1.208x1m2 and two 1.5x1m2 (5.416m2) interfaces when 

partitioning the domain firstly with the Cartesian Z-Coordinate method 

an later with the Cartesian X-Coordinate method. 

This, obviously, is not that simple when performing partitions with the 

computer and it depends, for example, on the number and size of element faces that 

lay on each interface but it shows clearly how the geometry-based methods, despite 

being less memory expensive and needing less time to perform the partitions also 

have their drawbacks. Even though, it can be observed in Figure 4.1 (a), (c) and (d) 

and in Table 4.1 that using the longest dimension still is a logical election as their 

interface size is smaller than the interface size of the shorter ones. Even more, as the 

length of the direction decreases, the size of the interface increases. 

 

 

 

 

The differences between partitioning in the largest direction or in the shortest 

are significant. They represent up to 911.144% of the Cartesian Z-Coordinate 

interface faces (I-Faces), for the four partitions case. These differences are reduced 

to 580.817% of the Cartesian Z-Coordinate faces for 20 partitions. This reduction is 

due, mainly, to the fast increase in the number of I-Faces for the first partitions of 

Cartesian Z-Coordinate which starts using a non-optimum partition direction. As 

shown in Figure 4.2 the rate of increase in I-faces for both methods tends to 

converge. 

In Table 4.1 it can be also 

observed that METIS is the 

method which obtains the shortest 

interface cut-edge size. This is 

achieved by, as can be observed 

in Figure 4.1, partitioning the mesh 

in more than one direction. 

 

 

Table 4.1. Number of Interface faces produced by each method  

4 8 12 16 20

METIS 13759 33066 46756 53658 66162

CARTESIAN SRIP 18772 47422 74076 100366 126478

Z-COORDINATE 18772 47422 74076 100366 126478

X-COORDINATE 93864 187266 292436 386676 470750

Y-COORDINATE 189812 373936 536612 706474 861084

METHOD
NUMBER OF PARTITIONS

Figure 4.2. Evolution of the rate of increase in the number of I-
faces of the best and worst performing methods  
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4.1.2. Load Balancing Factor 

As explained previously, it is considered that the LBF plays an important role 

in the influence of the partitioning methods. A well-balanced partitioned domain is key 

to reduce the amount of time needed to run the simulations. Even the differences 

between the best and the worst method on balancing loads are of approximately the 

same order of magnitude as the differences in the size of the cut-edge interface –

between 4372.152% and 565.046%- it is needed a deeper study. By means of 

Equation 2.4. it was obtained the LBF for each method. Its evolution for each method 

can be observed in Figure 4.3. 

 

From Figure 4.3 it can be concluded that, even there are generally-better and 

generally-worse methods for balancing the loads it is not exclusively dependent on 

the method –may be on the importance given to it in the algorithm of the method- but 

also on the number of partitions.  

4.2. Results 

4.2.1. Timing 

As explained in chapter 2 –Literature review- it is necessary to define a base 

case in order to study the influence of the methods on the wall-clock time and time-

based parameters.  

The selected base case was the METIS one partition case performed on one 

of the CPUs of the second node. Its Wall-Clock time was 1999s –33min and 19s-. As 

explained previously, it will be used as the reference case to calculate how the 

partitioning modifies the parameters. 

Figure 4.3. Evolution of the Load Balancing Factors for each method with the number of partitions  
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For Node 2 the case was run with 4, 8, 12, 16 and 20 partitions. The following 

graphs –Figures 4.4 to 4.6- show the time needed for partitioning the mesh and for 

running the case. 

It can be 

observed how the 

graph-based method –

METIS- performs 

slower partitions than 

the studied geometry-

based methods.  

 

It is also shown that the partition time depends, not only on the method, but 

also on the number of partitions being produced. 

In Figure 4.5 is shown the WCT needed for running each case on the Node 2 

with both, the residuals limited to a value of 10-3 and run for 500 iterations. 

  

Figure 4.4. Evolution of the partition time for each method 

Figure 4.5. Evolution of the WCT for each method for 500 iterations 

Figure 4.6. Evolution of the WCT for each method with the lower limit of the residuals set 
at 10-3 
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Looking at the values for the times in Figures 4.4 to 4.6 it can be observed 

that the time spent on partitioning the mesh played a secondary role on the total time 

needed for simulating the case. 

Both figures -4.5 and 4.6- show the reduction of the WCT needed for running 

the case –thus, the scalability- for all the methods when initially increasing the 

number of cores. The greatest differences in WCT were found for the initial number of 

partitions studied -4 and 8- in which METIS showed the smallest times of all the 

methods. Even though, all the three fastest methods –METIS, Cartesian Strip and 

Cartesian Z-Coordinate- converged when increasing the number of processors. 

METIS started reducing its rate of reduction of WCT earlier than the other two 

methods. This could be due to, as can be observed in Figure 4.6 bigger 

communication overheads. In that figure, for the simulations in which the value of the 

residuals for convergence was set at 10-3, the case was not scalable from a point. It 

can be observed how the WCT started increasing for METIS, Cartesian Strip and 

Cartesian Z-Coordinate methods showing that the communications overheads were 

starting to be higher than the time saved by splitting the case between more 

partitions. Interestingly, the number of partitions for which the WCT started to 

increase was different for each method showing the previously mentioned influence 

(a) (b) 

(d) (c) 

Figure 4.7. Evolution of the residuals for each method (a) METIS (b) Cartesian Z-Coordinate (c) Cartesian X-
Coordinate (d) Y-Coordinate 
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of the method in the convergence of the case. This was analysed by checking the 

evolution of the residuals –Figure 4.7-. 

The trends were observed to be equal for each method independently of the 

number of partitions –even the number of iterations depended on the number of 

partitions-. However, when comparing between methods it can be observed in Figure 

4.7 how the shape of the graph was similar –with slight differences and with 

variations in the number of iterations needed- for METIS, Cartesian Strip and 

Cartesian Z-Coordinate but that the trends where completely different than those of 

Cartesian X-Coordinate and Cartesian Y-Coordinate –which were identical-. 

Cartesian X-Coordinate and Cartesian Y-Coordinate showed larger WCT for 

every number of partitions tending to stabilize at a bigger value than the other three 

methods. 

4.2.2. Speedup 

 

When the reduction in time is non-dimensionalised –with the speedup, Figure 

4.8- it can be observed how the performance of the methods highly differed. Even for 

a low number of processors the differences on the speedup obtained with the three 

fastest methods –METIS, Cartesian Strip and Cartesian Z-Coordinate- and two 

slowest –Cartesian X and Y-Coordinate- were small, these differences highly 

increased with the number of processors. As observed in Figure 4.5, these three 

fastest methods converged to a number with the increase in the number of 

processors, however, for the speedup the previously described behaviour observed 

in Figure 4.5 in which the WCT tended to a constant value is not observed in the 

figure for the speedup. 

Figure 4.8. Speedup achieved by each method with respect to the base case 
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4.2.3. Comparison between nodes  

 

It can not only be observed the differences in WCT due to the different 

capabilities of the processors –E.g. Node 15 is composed by old liquid refrigerated 

systems- but also that the processors slightly modify the trends. Even though, for all 

the processors tested, the conclusions such as the fastest method are the same. The 

shapes of the graphs are modified but the same conclusions, such as which is the 

fastest method, are derived from all the methods. 

  

Figure 4.11. Wall clock time evolution between nodes Cartesian X-Coordinate partitions 

Figure 4.9. Wall clock time evolution between nodes METIS partitions 

Figure 4.10. Wall clock time evolution between nodes Cartesian Strip partitions 
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5. Influence of the factors 

5.1. Interface cut-edge size and Load Balancing Factor 
After analysing the trends followed by each variable it is necessary to study 

the causes of these trends. 

As mentioned previously, in the review of literature, the main causes for the 

performance of a decomposition method are the capacity of balancing the load and 

the cut edge size of the interface. But it was unclear and problem-dependent the 

importance of each of the factors. For analysing the importance of each factor in the 

decompositions of the mesh of a wing Figure 5.1 shows the size of the interface or 

the LBF together with the WCT needed for performing the simulations. 

It can be clearly observed in Figure 5.1 (a) and (b) that both of the factors are 

in accordance to what has been previously said, with the increase in the LBF –higher 

imbalances between partitions- and the number of I-Faces the WCT increased. 

However Figure 5.1 (b), (c) and (d) show how the importance of the size of the 

interface is much higher than that of the LBF. In Figure 5.1 (b) the LBF obtained with 

the Cartesian X-Coordinate method is 98.39% of that of Cartesian Y-Coordinate while 

the number of I-Faces is half of the Y-Coordinate method value. The time difference 

is reduced from the previous number of partitions while the I-Faces ratio is almost 

maintained thus, is it the fact of reducing the difference on the LBF seemed the most 

reasonable cause for the reduction in time difference –given that no that big 

communication overhead effects where expected for that low number of partitions-. 

This same conclusion can be obtained from the differences in WCT between METIS 

and Cartesian Strip observed in Figure 5.1 (c) to (d). 

As mentioned in the review of literature, Cartesian Z-Coordinate and 

Cartesian Strip were used to analyse the possible errors. A mean value of 10.4s for 

the error was obtained. 
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Figure 5.1. Study on the influence of interface cut-edge size and LBF on WCT for each number of partitions studied 
(a) 4 partitions (b) 8 partitions (c) 12 partitions (d) 16 partitions (e) 20 partitions (.1) Interface cut-edge size (.2) LBF 

(a.1) (a.2) 

(b.1) (b.2) 

(c.1) (c.2) 

(d.1) (d.2) 

(e.1) (e.2) 
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5.2. Total CPU Time 

 

It can be observed how the TCT followed a generally increasing trend –the 
local minimums at 16 partitions are higher than the TCT for 4 processors- even the 
reductions in time for some partitions were able to compensate the increase in the 
number of CPUs. This unstable behaviour for a low number of processors was also 
observed by Haddadi et al. (2017) as can be seen in Figure 5.3. 

  

  

Figure 5.3. Total CPU Time evolution (Haddadi et al., 2017) 

Figure 5.2. Total CPU Time evolution  
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6. Conclusion  

6.1. Achievements 

With the development of this project, the following items have been achieved. 

 The production of partitioned domains of a wing with good scalability 

for the number of cores studied. 

 The comparison of different mesh partitioning methods available in the 

software. 

 The measure of the characteristic parameters of a parallel computation 

in the wing. 

 The identification and measurement of the factors influencing the 

performance of the models. 

6.2. Discussions 
This project has studied the case-dependent problem of partitioning a mesh 

designed to analyse the flow around a wing. The results obtained corroborate that 

mesh partitioning is a case-dependent problem and that there are several factors 

influencing it but the importance of each is different. It has shown how in a problem 

with a so much dominant coordinate as this (z-coordinate) performance of geometry-

based models can get as good as graph-based. The study has shown the importance 

of adequately selecting the method for fitting the problem –time differences between 

the geometry-based methods studies-. The importance of studies like this can be 

observed in the results where reductions of even four times the initial WCT were 

obtained.  

The study has set a good start for further study even it is acknowledged that 

differences may arise when varying some parameters –E.g. the dimensions of the 

domain or the shape of the wing- or the models employed for solving the turbulence. 

The available hardware should also be beard in mind as –as corroborated while 

developing this project- it is necessary a system with a single type of CPUs in the 

nodes for the results to be applicable. Despite those small variations trends in the 

results and conclusions are expected to be transferable as they have been shown to 

be –in a more generalised view- from previous studies on less similar problems.  
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6.3. Conclusions 

 The partitioning methods here studied show good scalability for the 

decomposition of the domain. 

 The Interface cut-edge size is the parameter most affecting the 

performance of the mesh partitioning methods. 

 The methods do not only affect the time needed for running the 

simulation but also the convergence of the model and the behaviour of 

essential evaluation variables such as the residuals. 

 The graph-based method studied has shown the best performance for 

a low number of partitions. 

 When the number of partitions was increased, geometric-based 

methods specifically chosen for the problem showed as good 

performance as graph-based methods. 

 The geometry-based methods studied delay the appearance of 

communication overheads. 

 Mesh-partitioning time represents a truly small contribution to the total 

time needed when compared with the WCT. 

6.4. Future work 
The work that could be developed in the future from this study would be the 

introduction of new features to the geometry. Convert it into a 3-D wing for the study 

of the wingtip vortices and set the basis for the introduction of the fuselage of the 

aircraft in the model.  

Another line of investigation which could be started from this work would be, 

as proposed by Vanderstraeten et al. (1996) the development of more complex user-

defined partitioning methods. 
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8. Appendix I – Meeting Log 

Date of 
meeting 

Summary of discussion 
Objectives for next 

meeting 
Supervisor 

initials 

13/10/2017 

 Presentation 

 Previous knowledge 
of any CFD software 

 Expectations on the 
project 

 Explanation of the 
project 

 Objectives of the 
project 

 Discuss viability 
of the cases 
found by 
students 

 Discuss software 
selection  
 
 
 

 
 
 

 

20/10/2017 

 Discussion about the 
project decision made 

 Request of sending 
papers to tutor for 
checking the viability 
of the cases chosen 

 Intertool focusing 

 Decide softwares 
for being used 

 Talk about 
simple 
simulations 
performed in 
other softwares 
than fluent 

 Discuss the 
scoping 
document 

 

13/11/2017 

 Decision of the case 
for simple 
simulations. Cylinder 
for Von Karman 
vortex street 

 Start the simple 
cases 

 Study the 
capabilities of 
Fluent 
PostProcessing 
tool 

 

20/11/2017 

 Comments on the 
evolution of the 
simple case 

 Proposed variations 
to the simple case: 
reduce the mesh size, 
look for the range at 
which k-omega is 
applicable 

 Obtain 
converged cases 
for the Von 
Karman vortex 
street  

 

27/11/2017 

 Comments on the 
simple cases: 
Increase velocity, try 
with the laminar 
model, try using 
water, familiarize with 
the interface for the 
HPC facility 

 Comment the 
results obtained 
for the variations 
in the simple 
case 

 Comment any 
possible problem 
with the HPC 
facility 
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13/12/2018 

 Commentary on the 
results from the 
simple cases. 

 No problems found 
when using the HPC 
facility 

 Commentary on the 
Scoping document 

 Recommendation to 
use a Reference 
Manager –EndNote- 

 Problems found with 
the transient in Fluent 

 Recommendation of 
using a coarser mesh 
near the boundary 
condition 

 Recommendation of 
dedicating more time 
to literature review. 

 Comments on the 
work for Christmas 
holidays 

  

22/1/2018 

 Definitive decision of 
how to do the project 
after the simple cases 

 Comment the 
first steps taken 
on the project: 
methods, 
geometry, mesh 

 

29/1/2018 

 Commentary on the 
overall evolution of 
the first steps of the 
project 

 Comments on 
any problem with 
the geometry 
and/or its 
meshing 

 

5/2/2018 

 Comments on the 
general ongoing of 
the project 

 Recommendation of 
trying to automatize 
the process 

 Comments on 
the results 

 

19/2/2018 

 Doubts about 
problems in the 
results 

 Problems with 
choosing the node for 
the calculation 

 Comments on 
the performance 
of the solutions 
given to the 
problems 

 

1/3/2018 

 Checking mesh 
independence 

 Recommendations on 
how to approach the 
project 

 Doubts 

 Comments on 
the results 

 

12/3/2018 
 Recommendation on 

validating the results 
 Comments on 

the results 
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 Checking mesh 
independence 

19/3/2018 
 Analysing the 

obtained results 
 Comment on the 

general evolution 
of the project 

 

6/4/2018 

 Analysing the 
obtained results 

 Comments on the 
report 

 Comment on the 
general evolution 
of the project 

 

9/4/2018 

 Analysing the 
obtained results 

 Comments on the 
report 

 Comment on the 
general evolution 
of the project 

 

17/4/2018 
 Last doubts and 

analysis comment 

  

 

 




