
Influence of mesh decomposition
methods on the simulation of the

flow around a wing using
Computational Fluid Dynamics

MECH3890 Individual Engineering Project
Influence of mesh decomposition methods on
the simulation of the flow around a wing using

Computational Fluid Dynamics
Author Name: Jonay Ramón Alamán

 Supervisors Name:
 Dr. Marcos Carreres Talens (UPV)

Dr. Daniel Ruprecht (University of Leeds)
Examiner Name: Dr. Qingen Meng

Date of Submission: 26th April 2018

ii

SCHOOL OF MECHANICAL
ENGINEERING

MECH5840

TITLE OF PROJECT

PRESENTED BY

If The Project Is Industrially Linked Tick This Box
And Provide Details Below

This project report presents my own work and does not contain any
unacknowledged work from any other sources.

Signed Date: 24/04/2018

MECH3890 Individual Engineering Project

Influence of mesh decomposition methods on the simulation of the
flow around a wing using Computational Fluid Dynamics

Jonay Ramón Alamán

Company Name and Address:

INDUSTRIAL MENTOR:

iii

Table of contents

Table of contents .. iii

Acknowledgements ... v

Abstract .. vi

List of figures, tables and equations .. vii

1. Introduction .. 1

1.1. Introduction ... 1

1.2. Aims ... 2

1.3. Objectives ... 2

1.4. Project report layout .. 2

2. Literature review .. 3

2.1. Parallel computing .. 3

2.1.1. High-Performance Computer ... 3

2.2. Mesh partitioning methods .. 4

2.2.1. Geometry-based partitioning .. 4

2.2.2. Graph-based partitioning ... 6

2.3. Influence of the partitioning ... 6

2.3.1. Parameters .. 7

2.3.2. Influence .. 8

2.4. Results quantification ...10

3. Problem set up and meshing ..12

3.1. Geometry ...12

3.2. Boundary conditions ..12

3.3. Mesh ..13

3.3.1. Mesh independence ...14

3.4. Case set up ...15

4. Results and analysis ...16

4.1. Partitions ..16

4.1.1. Interface size ..16

4.1.2. Load Balancing Factor ..19

4.2. Results...19

4.2.1. Timing...19

4.2.2. Speedup ...22

4.2.3. Comparison between nodes ...23

5. Influence of the factors ..24

5.1. Interface cut-edge size and Load Balancing Factor24

5.2. Total CPU Time ...26

iv

6. Conclusion ..27

6.1. Achievements ..27

6.2. Discussions ...27

6.3. Conclusions ...28

6.4. Future work ..28

7. References ...29

8. Appendix I – Meeting Log ...31

v

Acknowledgements

I would like to thank Dr. Ruprecht for his continued support, interest and help

during the development of this project.

I would also like to thank my parents, Enrique Ramón and Gisela Alamán, for

their continuous support and their faith in me and my abilities especially in my hardest

times. I would like to extend this gratitude to my siblings, David and Celia, and

friends.

vi

Abstract

The increase in usage of Computational Fluid Dynamics software for different

aeronautical applications has led to the necessity of continue reducing the time

needed for running the simulations. Computational power has begun to reduce its

rate of growth in the recent years thus, a different way of reducing those times need

to be studied.

As the optimal mesh decomposition method has been found out to be problem

dependent, using a 3D model of a wing with a span of 3m, this study uses different

methods available in ANSYS Fluent to investigate its influence on the simulations run

with the software. It aims to study the scalability of the problem and show a guide on

the optimal method for the problem.

The results of this investigation showed that the mesh decomposition methods

do not only influence the simulation in the time needed for performing the simulation

but also in other ways such as the rate of convergence. METIS showed the best

results when working with a low number of processors and faster convergence while

specifically-chosen geometry-based methods showed to be able to give as good

scalability as METIS for a larger number of processors.

vii

List of figures, tables and equations

Figure 1.1 Use of CFD at AIRBUS (AIRBUS, 2010)…………………………………. 1

Figure 2.1 Deviation from the ideal behaviour when increasing the number of

partitions (Haddadi et al. 2017)…………………………………………………………. 4

Figure 2.2 Partitioned domain calculation process (Ierotheou et al., 2000)……….. 4

Figure 2.3 Resultant partitions using a Cartesian RCB method (Magoules, 2007;

ANSYS, 2018)…………………………………………………………………………….. 5

Figure 2.4 Multilevel algorithm process (Mengoules, 2007)…………………………. 6

Figure 2.5 Partitions obtained with Scotch for (a) Haddadi et al. (2017) study with

11 partitions. (b) Zang (2014) study with 4 partitions………………………………… 11

Figure 3.1 NACA 0012 Aerofoil (Airfoiltools, 2018)………………………………...… 12

Figure 3.2 Resultant geometry and calculus domain with the correspondent

coordinate system –Z, red arrow; X, green arrow; and Y, blue arrow-……………... 12

Figure 3.3 Resultant mesh in the plane XY, around the aaerofoil…………………... 14

Figure 4.1 Partitions 0 to 6 obtained when decomposing the domain on 12

partitions. (a) Cartesian Strip, (b) Cartesian Z-Coordinate, (c) METIS, (d)

Cartesian X-Coordinate, (E) Cartesian Y-Coordinate………………………………… 17

Figure 4.2. Evolution of the rate of increase in the number of I-faces of the best

and worst performing methods………………………………………………………….. 18

Figure 4.3. Evolution of the Load Balancing Factors for each method with the

number of partitions……………………………………………………………………… 19

Figure 4.4. Evolution of the partition time for each method…………………………. 20

Figure 4.5. Evolution of the WCT for each method for 500 iterations……………… 20

Figure 4.6. Evolution of the WCT for each method with the lower limit of the

residuals set at 10-3………………………………………………………………………. 20

Figure 4.7. Evolution of the residuals for each method (a) METIS (b) Cartesian Z-

Coordinate (c) Cartesian X-Coordinate (d) Y-Coordinate……………………………. 21

Figure 4.8. Speedup achieved by each method with respect to the base case…… 22

Figure 4.9. Wall clock time evolution between nodes METIS partitions……………. 23

Figure 4.10. Wall clock time evolution between nodes Cartesian Strip partitions… 23

Figure 4.11. Wall clock time evolution between nodes Cartesian X-Coordinate

partitions…………………………………………………………………………………… 23

Figure 5.1. Study on the influence of interface cut-edge size and LBF on WCT for

each number of partitions studied (a) 4 partitions (b) 8 partitions (c) 12 partitions

(d) 16 partitions (e) 20 partitions (.1) Interface cut-edge size (.2) LBF……………...

25

viii

Figure 5.2. Total CPU Time evolution………………………………………………….. 26

Figure 5.3. Total CPU Time evolution (Haddadi et al., 2017)……………………….. 26

Table 4.1. Number of Interface faces produced by each method…………………… 18

Equation 2.1 Total CPU Time equation………………………………………………... 7

Equation 2.3 Energy consumption equation…………………………………………... 7

Equation 2.4 Load Balancing Factor equation………………………………………… 7

Equation 2.4 Load Balancing Factor equation………………………………………… 8

Equation 2.5 Cost function proposed by Vanderstraeten et al. (1996)……………... 9

1

1. Introduction

1.1. Introduction

The development and increase in accuracy of CFD codes has “revolutionised”

the development of projects in the aerospace industry becoming one of the “primary

tools” for aircraft design (Johnson et al., 2005). As can be observed in Figure 1, in

2010 CFD was frequently or moderately used by Airbus in approximately 83% of the

items listed. Items with growing use are mainly limited by the complexity of the

geometries and the coupling of aerodynamics with other disciplines such as

thermodynamics or acoustics (Abbas-Bayoumi and Becker, 2011). Even though, the

program development of an aircraft still “take much too long” (Spalart and

Venkatakrishnan, 2016). In fact, Abbas-Bayoumi and Becker (2011) describe time

reduction as one main aim for Airbus. In the last thirty years speedup in CFD has

been mainly due to the increase in the computing power –a rate of 3.8 every two

year- but this is decreasing and it is expected a factor of 1.8 for the period 2013-2025

(Spalart and Venkatakrishnan, 2016). Despite this slowdown in the computing power

growth, CFD requirements in order to increase its usage are becoming more

demanding even for more complex situations (Spalart and Venkatakrishnan, 2016).

Thus, it is necessary to study speedup methods other than trusting the increase in

computational power.

 In figures, according to Johnson

et al. (2003) in 2002 more than 20,000

CFD cases were run in Boeing

commercial airplanes. Six years later,

according to Professor Jameson (2008),

between 50,000 and 100,000

simulations were needed in Boeing for

developing an aircraft. Also at that time between 4,000 and 6,000 iteration on 288

processors during 12.9 hours were needed for Airbus to obtain only six points of the

polar in landing configuration. More complex –but not less common- situations such

as the study of ground effect –an increase in lift due to the compression of air under

the wing when it is close to a surface (e.g. the runway)- need meshes with 48 million

points working on 64 processors for 6 days (Jameson, 2008). Thus, a reduction to a

fifth of the initial time, which is achieved in the results, would mean a huge reduction

in the simulation time. These calculation-time reductions have a relevant economic

Figure 1.1 Use of CFD at AIRBUS (AIRBUS, 2010)

2

impact as the cost of 3 hours of CFD calculations was estimated by McDonell

Douglas on about $1,000 (Jameson, 2008).

Even each stakeholder in the industry develops its own CFD codes (AIRBUS,

2018) the case here studied has been as close to real-world problems as possible to

make the results on optimal decomposition strategies transferable. As an example, in

the sake of fidelity to real-world problems the model used for the study of flow around

a wing –k-epsilon model- belongs to the same group of models –Reynolds Averaged

Navier-Stokes (RANS)- that has been qualified, from inside the industry, as the most

common way to approach these problems (Abbas-Bayoumi and Becker, 2011).

1.2. Aims

The aim of this project is the optimization of the mesh partitioning for wing

analysis in CFD. The purpose is to find the method that best fits the problem in order

to divide it in the optimal number of partitions for which the time is reduced while the

costs do not overcome the benefits of using a larger number of processors to run the

case. It has been aimed to study the non-user-defined methods which, according to

Vanderstraeten et al. (1996), constitute the first steps of a more complex thus,

efficient, method.

1.3. Objectives

 Define a real-life based case manageable with the time and resources

available.

 Select varied partition methods available in ANSYS Fluent.

 Annalise the parameters used in similar studies for evaluating the methods to

find the optimal one.

 Study the influence of the methods other than the calculation time.

 Stablish recommendation for the selection of a partitioning method.

1.4. Project report layout

This project has been produced with the following structure:

 Chapter 2: Analyses the study done on previous works.

 Chapter 3: Illustrates how the geometry was meshed and the case configured.

 Chapter 4: Shows the obtained results for the case with the different methods.

 Influence of the factors: Shows the study of the importance of each of the

factors outlined as important in the Literature review.

 Conclusion: Shows the conclusions derived from the study.

3

2. Literature review

2.1. Parallel computing

Parallel computing is, according to the Spanish Dictionary of Engineering

(RAI, 2018), “computation that uses simultaneously the different processors on a

system for a faster resolution of the programmed algorithm”. This is achieved by

dividing the problem in a number of subtasks assigning each one to a processor –

CPU- to be performed all at the same time. The aim is to reduce the time needed for

performing the calculations in traditional –serial- computing where the tasks are

performed consecutively (Barney, 2018). When applied to CFD, performing a

simulation in parallel means dividing the domain, that is, the region where the flow

variables are being solved given some boundary conditions (Atkins, A.G. and

Escudier, 2013), into different subdomains and assigning each subdomain to a

processor.

Even the domain is divided, flow variables in each partition are not

independent of those in the rest of subdomains and the flow field still needs to be

solved for the whole domain thus, it is necessary to maintain communication between

the different processors to maintain the process shown in Figure 2.2. At that point, a

compromise arises because, as explained by Haddadi et al. (2017); even the time

spent on calculating the solution for the flow field decreases with the number of

processors, the time spent passing data between processors is increased. This, as

shown in Figure 2.1, distances the speedup –rate of reduction of the simulation time

with respect to a base case- from the ideal behaviour as the number of partitions

increases. Eventually, it can lead to the increase in the total time needed with respect

to a lower number of partitions. This capacity to reduce calculation time while

increasing the number of processors is known as scalability (ANSYS, 2017).

2.1.1. High-Performance Computer

The HPC facilities can be divided, according to the taxonomy proposed by

Michael J. Flynn in 1966, in four groups depending on the capability of

simultaneously handling instructions (Clevenger et al., 2015). The HPC facility used

for this study works with a Multiple Instruction Multiple Data (MIMD) paradigm in

which the mesh is split by the master processor among the nodes available (the

slaves). Despite this architecture is suitable for the number of processors being used

in this study –a maximum of 30- it may show scalability problems when the number of

CPUs is increased to hundreds or thousands of processors (Manke, 2001).

4

2.2. Mesh partitioning methods

In order to assign a task to each of the previously mentioned CPUs, the

domain –the mesh that divides it into discrete elements- has to be partitioned. This

can be done through several methods that will result in different partition structures

with different communication necessities which will influence the time needed to

perform the calculations (Haddadi et al., 2017). As done by Shang (2014) the

methods here studied have been selected from two main groups: graph-based and

geometry-based methods.

2.2.1. Geometry-based partitioning

These methods are the classical approach to mesh partitioning. The mesh is

partitioned based on its coordinate system, on the position of the nodes –edge

intersections- and centroids of the elements (Magoulès, 2007). They aim to minimize

the distance between the elements that will become part of the interface –the face

between two partitions- (Shang, 2014). This intention is to assign continuous vertices

to the partitions (Magoulès, 2007) –instead of creating divided subdomains-. One of

the main advantages is that they are fast partitioning the mesh but, as they do not

take into account the “connectivity information” given by the graph they often end up

giving large cut edges –high number of elements in the interface- (Magoulès, 2007).

Magoulès (2007) recommends them for simulations in which the amount of work

each CPU performs solely –or highly- depends on the number of elements of the

partition especially in meshes with uniformly distributed edges –such as the one here

studied-. The geometry-based methods can be further subdivided depending on the

way the cut direction is selected.

Recursive Coordinate Bisection (RCB)

Is the group that contains the geometry-based methods experimentally

analysed. It divides the mesh in two roughly equal halves until the number of

Figure 2.1 Deviation from the ideal behaviour
when increasing the number of partitions

(Haddadi et al. 2017)

Figure 2.2 Partitioned domain calculation
process (Ierotheou et al., 2000)

5

subdivisions equals the desired one (Magoulès, 2007). However, in order to achieve

an odd number of partitions –E.g. three- the mesh is divided into two parts, one twice

the size of the other, and then the former is divided again ending up with three

roughly equal partitions (ANSYS, 2017).

These methods create cutting planes orthogonal to the selected direction

thus, in order to optimize the method, the direction selected –if needed to- should be

the longest direction of the domain. These methods offer “extremely” short partition

times, with partitioned mesh easily parallelizable with the need of little memory.

However, for irregular structures, they offer poor solutions. (Magoulès, 2007).

From among the geometry-based RBS methods available in Fluent four have

been chosen to be studied.

Cartesian Strip

Autonomously finds the largest coordinate in the initial mesh and uses it to

create the partitions (ANSYS, 2017).

Cartesian X-, Y-, Z-Coordinate

Uses the selected coordinate from the initial mesh for creating the partitions

(ANSYS, 2017). For the case being studied the Z-Coordinate case will give the same

results as the Cartesian Strip method as it is the longest coordinate of the parent

domain. It has been used to find errors and measure uncertainty.

Other Geometry-based methods

Such as the Recursive Inertial Bisection (RIB), this uses the principal axes of

the domain to perform the partition; the Space-Filling Curve (SFC), which uses

curves in more than one dimension; or the Circle Bisection (CB), which uses circles

instead of straight lines. They have not been used whether because they are not

available in Fluent (SFC and CB) or because for this case their result is the same

Figure 2.2 Resultant partitions using a Cartesian RCB method (Magoulès,2007;
ANSYS, 2018)

6

than the obtained with RCB (RIB).

2.2.2. Graph-based partitioning

Also known as Coordinate-free or combinational methods they do not take

into account the proximity of the other nodes but globally the mesh aiming to reduce

the cutting edge size. These methods are slower partitioning the mesh but tend to

reduce the size of the interface (Magoulès, 2007).

METIS

Designed by Karypis and Kumar (1999), it uses a “multilevel approach” in

which, as shown in Figure 2.4, the elements of the graph are joint to obtain a coarser

graph. The latter is divided “carefully” and last the divisions are extended back to the

finest graph with the occasional need of a refinement algorithm (ANSYS, 2017;

Karypis and Kumar, 1998).

2.3. Influence of the partitioning

As mentioned before, the way the mesh is partitioned influences the time

needed for calculating the solution of the system but, as shown by authors such as

Haddadi et al. (2017) or Shang (2014), they also influence other important

parameters such as the partition time or the energy consumption of the HPC –which

is expenditure for the user of the method that should be considered-. It is equally

important to analyse the causes of these differences in the results and performance

of each method. Thus, some parameters have been defined to be able to rank the

methods studied.

Figure 2.3 Multilevel algorithm process (Mengoules, 2007)

7

2.3.1. Parameters

Wall Clock Time (WCT): Time needed to perform the calculation (Haddadi et

al., 2017) –from the moment the simulation is started in the CPU(s) until the last

processor has finished-.

Total CPU Time (TCT): Aggregated time used by the processors to perform

the calculation (Haddadi et al., 2017).

𝑇𝐶𝑇 = 𝑊𝐶𝑇 𝑥 𝑛𝑝

Where np is the number of processors being used in the simulation.

This parameters quantifies the computational resources being used. In

parallel simulation, even the simulation time –WCT- is being reduced with respect to

the serial case it does not mean that the total time the resources are being used is

reduced.

Speedup: Relation between the TCT needed for performing the case with a

given number of processor and the time needed for performing that same case in

serial –base case- (Haddadi et al., 2017). Other authors such as Jamshed (2015)

define it as the ratio between WCT and the base case time but the former definition

has been considered to be more illustrative especially when showing the results in

graphs.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝐶𝑇

𝑇𝑏𝑎𝑠𝑒−𝑐𝑎𝑠𝑒

Partition Time (PT): Time needed to divide the domain in the different

partitions.

Energy consumption (Ec): Amount of energy required for performing a

simulation. It measures the cost of operating the system (Haddadi et al., 2017). It is

defined multiplied by an overhead factor to consider the power losses of the system

but, for this study, the system is assumed to be ideal as this losses highly depend on

the HPC facility.

𝐸𝑐 =
𝐶𝑃𝑈 𝑝𝑜𝑤𝑒𝑟

𝑛𝑝
∗ 𝑇𝐶𝑇

Equation 2.1 Total CPU Time equation

Equation 2.2 Speedup equation

Equation 2.3 Energy consumption equation

8

Load Balancing Factor (LBF): Measures how the workload is distributed

through the processors. Thus, it represents how much more work one processor will

be carrying with respect to the others. That imbalance in the amount of work would

mean also an imbalance in the time needed for performing the calculations in a

processor and, as the problem is parallelised and the calculations in a processor

depend on the development of those in the neighbouring one, imbalances produce

delays in the simulation. For the case here studied, as there are not big imbalances

between the workload of different elements of the mesh, the load carried by each

processor is equivalent to the number of elements it carries. The LBF has been

defined as the ratio of the maximum difference in workload between the processors

being used and the minimum workload of a processor.

𝐿𝐵𝐹 =
max(𝑁𝑒

𝑘) − min (𝑁𝑒
𝑘)

min (𝑁𝑒
𝑘)

∗ 100

Alternatively, the ratio between the maximum and the minimum number of

elements in a partition is also studied.

These factors are based on the LBF proposed by Vanderstraeten et al. (1996)

which is simply the ratio between the average and the maximum number of elements

in the partitions. It was modified to fully represent the deviation from the ideal case.

2.3.2. Influence

There is still lack of uniformity on the parameters that should be studied and

the importance that should be given to each of them. Even as long ago as in 1996,

Vanderstraeten et al. already diagnosed the underestimation of the importance of the

LBF when designing algorithms for partitioning the mesh. According to them,

excessive importance was being given to the reduction of the interprocessor

communication by reducing the number of interface elements. In fact, in studies such

as the one performed by Haddadi et al. (2017) one of the main capabilities

emphasized from the automatic method –Scotch- is the reduction of cut-edge sizes

while the LBF is not mentioned. Even though, this omission may be due to the fact

that the case studied in that paper belongs to one of the three cases for which

Vanderstraeten et al. (1996) define as “reasonable” to “prioritize” the reduction in the

interface size –when the main communication between nodes is between neighboring

subdomains-. The other two cases listed by Vanderstraeten et al. are:

Equation 2.4 Load Balancing Factor equation

9

• When the “computational complexity” can be simplified to the nodes or

elements that compose the domain. This assumption seems to be made in the

ANSYS User Guide (2018) when it is claimed that “create partitions with equal

number of cells” is one of the main objectives when partitioning a mesh.

• When the method used for solving the system is not sensitive to the

differences in partitions.

As will be explained in the results section, the case here studied may fulfil the

first and second conditions.

Due to the problem-dependency of the importance of the factors that should

be considered Vanderstraeten et al. (1996) proposed a “cost function” in which each

of the factors (Ci) influencing the performance of the CFD code solving the partitioned

system is given a specific weight (αi). Thus, the cost function to be optimized would

be:

𝐶 = ∑ 𝛼𝑖𝐶𝑖

This function should be optimized after partitioning the mesh with “suboptimal

but fast” algorithms which have been studied to suit the problem (Vanderstraeten et

al., 1996). That is the step done in this work, with the analysis of which method best

suits the problem it will be possible to establish a cost function and further optimize

the chosen method.

As a sample three factors (Ci) are given:

 Interface size: Considered always helpful but not necessarily

governing.

 Load imbalance: It may get as simple as creating same-size

partitions but for more computationally complex cases it may be

necessary a more thorough study on the size of the partition assigned

to each processor.

 Subdomain aspect ratio: Has been observed that this factor highly

influences the convergence of domain decomposition.

 This last factor, more thoroughly studied by Farhat et al. (1995) is, from the

three factors highlighted by Vanderstraeten et al. (1996), the one less explicitly

mentioned in the literature despite that Farhart et al. (1995) achieved times up to 1.54

Equation 2.5 Cost function proposed by Vanderstraeten et al. (1996)

10

lower than in non-optimized cases. This, as mentioned above, is probably due to the

fact that the importance of each factor is problem-dependent.

2.4. Results quantification

Two main papers which studied the performance of different partitioning

methods on different problems have been analysed aiming to extract some common

trends and features to study. These are Shang (2014) that partitioned the mesh

obtained for analysing a submarine and Haddadi et al. (2017) whose subject of

analysis was a “simple” multiphase case included in OpenFOAM –an open source

CFD software- that consisted on a cube.

While the former studies three geometry-based methods –Scotch, PT-

Scothch and Zoltan- and two graph-based methods –METIS and ParMETIS-, the

latter study analises only geometry-based methods –Scotch, Hierarchical and

Simple-.

Both studies agree that –as can be observed in Figure 2.5 (Haddadi et al.,

2017)- the higher differences between methods appear as the number of processors

increases –performance is similar for a low number of CPUs-.

Haddadi et al (2017) conclude that more manually-configured methods are

preferable –among the geometry-based methods- and recommend the election of

the principal axis of the geometry for the partition. Even though, one of the automatic

methods analysed by Haddadi et al. (2017) –Scotch- is the second best performing

for the case of Shang (2014). Looking at the available images of the obtained

partitions in each study –Figure 2.5- it seems that the difference is due to the

difference in the case analysed and that, when partitioning the cube, Scotch has

generated a huge interface cut-edge and connecting many different processors. In

fact, Shang observed that METIS –graph-based- was the best-performing and

mentioned that geometry-based “induced an extremely non-uniform mesh

distribution”. The poor performance of the most automatic method studied by

Haddadi et al. –Simple- is probably due to its “simplicity” as it performs the partitions

assigning parts with the same amount of elements to each CPU and the remaining

cells –if the ratio between the number of cells and the number of CPUs is not a

natural number- are assigned to the CPUs in order (Wang et al., 2012) instead of

trying to reduce the interface cut-edge size or the LBF.

11

Regarding graph-based methods –METIS- Shang recommended it if memory

is not a limitation. Even though, he still found some problems with the memory

requirements of Scotch.

Haddadi et al. are able to outline some general trends and rules:

 The speedup depends on the solver used but there are similar trends

for the different methods.

 The number of cells per core should be kept in the range 50,000-

100,000.

 Total computational time grows with the number of partitions.

 The execution time ideal evolution is inversely proportional to the

number of partitions. It deviates from this behaviour as the number of

partitions increases due to communication overheads. Overhead

higher than 25% of ET is not considered acceptable in their study.

(a)

(b)

Figure 2.5. Partitions obtained with Scotch for (a) Haddadi et al. (2017) study with 11 partitions. (b) Zang (2014) study
with 4 partitions

12

3. Problem set up and meshing

3.1. Geometry
The geometry studied

is a NACA 0012 aerofoil –as

the one shown in Figure 3.1-

extruded 3m in the Z direction

–Figure 3.2-. It is a symmetric aerofoil thus, non-cambered –the line that crosses

through the middle point of each section from the leading to the trailing edge is a

straight line- with a maximum thickness of 12% of the chord –the straight line that

joins the leading with the trailing edge- at 30% of it. It was defined with a chord of 1m.

The aerofoil was placed at zero angle of attack –the chord line is parallel to the

direction of the flow- with the trailing edge lying on the origin of coordinates and the

chord on the x-axis.

3.2. Boundary conditions
Based on the results obtained by Craft et al. (2006) the boundaries of the

domain were placed at x=-1.738m upstream, x=0.678m downstream and y=±0.5m as

they show this was sufficient for the boundaries not to affect the flow around the

aerofoil. As the boundaries were set at the same position as Craft et al. did, the

Reynolds number –a non-dimensional number that characterizes the flow by relating

its density, velocity, viscosity and a characteristic dimension and makes possible to

establish the transition from laminar to turbulent flow (RAI, 2018)- was, as they had

done, 4.35×106 –thus, turbulent- with the chord as characteristic dimension. As

shown in Equation 3.2, that is equivalent to a free flow velocity of 63.4967m/s -

228.5879km/h-.

𝑅𝑒 =
𝜌 ∗ 𝑈∞ ∗ 𝑐

𝜇

Where ρ is the density of the fluid; U∞ is

the free stream velocity; c is the characteristic

dimension –the chord- and µ the viscosity of the

fluid. As the fluid is air at standard atmospheric

conditions:

𝜌 = 1.225𝑘𝑔/𝑚3; 𝜇 = 1.789 ∗ 105𝑘𝑔/(𝑚𝑠)

(Haynes et al., 2016)

Figure 3.1 NACA 0012 Aerofoil (Airfoiltools, 2018)

Figure 3.2 Resultant geometry and calculus
domain with the correspondent coordinate

system –Z, red arrow; X, green arrow; and Y,
blue arrow-

Equation 3.1 Reynolds number definition

13

𝑈∞ =
𝑅𝑒 ∗ 𝜇

𝜌 ∗ 𝑐
=

4.35 ∗ 106 ∗ 1.789 ∗ 105

1.225 ∗ 1
= 63.4967𝑚/𝑠

At the inlet –the domain limit ahead the leading edge- the turbulent intensity –

the ratio between the “root-mean-square” of the variations of velocity and the mean

velocity of the flow (ANSYS, 2017)- was set at 2% and the hydraulic diameter –

diameter of a theoretical circular pipe that generates the equivalent flow conditions at

same velocity and friction coefficient as the real, rectangular, diameter (RAI, 2018)- to

0.80023m (Craft et al., 2006).

At the outlet –the domain limit behind the trailing edge- the pressure was set

at atmospheric conditions –gauge pressure of 0Pa- turbulent intensity and hydraulic

diameter were kept at the inlet values.

For the upper, lower and side limits of the domain, in order to simulate the

conditions of free flow around the aerofoil, the condition of symmetry was used. Thus,

the model represents an infinite wing –equivalent to a 2D wing, an aerofoil-.

The surfaces of the wing were set as walls with a no-slip condition –the

relative velocity of the flow with respect to the wall in the tangential direction is zero

(Atkins, M.T. and Escudier, 2018)-.

3.3. Mesh

The first mesh was created with 717,430 elements. The wall of the aerofoil

was divided in 100 divisions clustering the elements on the parts of it where the flow

varies the most –leading and trailing edges-. The bias factor –ratio between the size

of the largest and the smallest elements- was set to 10.

The leading and trailing edges of the wing were divided, along the length of

the wing –Z coordinate-, in 100 parts.

The edges of the side walls of the domains –rectangles- were divided into

elements of 5×10-2m.

The most important features of the resultant mesh are shown in Figure 3.3.

Equation 3.2 Free stream velocity from Reynolds number

14

3.3.1. Mesh independence

Whenever a case is performed in a CFD code it is necessary to check that the

results obtained are independent of the mesh used to obtain them (Gilkeson, 2018). It

is necessary to measure the errors due to the size of the elements of the mesh.

 For doing this it is necessary to create meshes with different number of

elements –thus elements of different sizes as the domain is the same-, run the same

simulation in all the meshes and compare the results to verify that the variation is

inside a reasonable limit and quantify that variation to take it into account when giving

the results.

In this case, as recommended by Gilkeson (2018) three meshes were created

with an –almost- constant effective ratio –Equation 3.3- of the number of elements

between them. These were of 1.1905 between the finest and medium mesh and of

1.1917 between the medium and coarsest mesh, inside the range recommended

(1.1<r<1.3). Thus, the number of elements was 1.2105 million elements for the finest

mesh and 423,867 elements for the coarsest mesh.

𝑟𝑒𝑓𝑓 = (
𝑁1

𝑁2
)

1
𝐷

Where N1 is the number of elements in the fine mesh; N2, the number of

elements in the coarse mesh and D is the dimension of the problem –three-.

After running the case in all three meshes a relevant variable –pressure at

50% of the chord at the centre of the wing- was extracted in all three cases and

compared. Errors –calculated as shown in Equation 3.4- of -1.82% and 3.06% were

Equation 3.3 Effective ratio equation

Figure 3.3 Resultant mesh in the plane XY, around the aaerofoil

15

obtained between the fine and medium and the medium and coarse meshes

respectively.

𝑒 =
(𝑓2 − 𝑓1)

𝑓1

Where f1 is the value in the fine mesh; f2, the value in the coarse mesh

3.4. Case set up

With the previously explained boundary conditions, the case was configured

with the segregated pressure based solver because the flow was expected to be

subsonic on the whole domain and stable enough to converge with it. Turbulence

was modelled –as done by Craft et al. (2006)- with a k-ε model with wall functions to

solve the flow in the boundary layer as there was no interest on studying it in detail.

Equation 3.4 Error due to mesh

16

4. Results and analysis

The previously explained case was run in ANSYS Fluent using two different

convergence criteria:

 Setting a minimum level for the residuals. That is, automatically

ending the calculations when the variation of some selected variables

with respect to the previous iteration is under a minimum value –i.e.

0.001-. ANSYS Fluent uses the variation in the continuity equation; in

the velocity in the three directions and the variation in k and ε –from

the turbulence model-. This is the default convergence criteria in

ANSYS Fluent.

 Setting a number of iterations. The case is run for a number of

iterations such that the residuals have dropped to a low level and stay

constant. For this case, it was run for 500 iterations.

The case was run in the nodes 2, 7 and 15 of the HPC facility of the University

of Leeds. Node 2 is composed of 20 cores –CPUs- of the model E5-2630v4 with 64

Gb of memory. Node 7,of 12 cores of the model Xeon X5660 with 48 Gb of memory.

Node 15 is composed of 32 old liquid cooled nodes with 48 Gb of memory. While

node 2 was used to undertake the deepest study on the methods, nodes 7 and 15

were used, mainly, to study the influence of the hardware in the results.

4.1. Partitions

The geometry was decomposed in 4, 8, 12, 16 and 20 partitions which each

method. Figure 4.1 shows, for each 12 partitions case, the first seven divisions –

partitions 0 to 6-.

4.1.1. Interface size

(a)
(b)

17

As was explained with Figure 3.2, the Z coordinate is parallel to the

longitudinal direction of the domain. As explained previously and can be observed in

Figure 4.1 (a) and (b) Cartesian Strip method partitions the domain based on its

original longest direction (Z coordinate) creating planes perpendicular to it. Cartesian

Z-Coordinate produces, as expected, the same results but, in that case, the direction

had been selected by the user. Even this methods produce, at the beginning, the

smallest interface cut-edge size achievable by an RCB (geometry-based) method in

the first partitions, when increasing the number of partitions it will eventually get to a

point in which continuing partitioning in that direction would not produce the smallest

cut-edge size. This is because the length of the partition in another coordinate –i.e. X

coordinate- would be greater than the length of the partition in the firstly chosen

coordinate –i.e. Z coordinate-. For this case, the length of the domain is 2.41m, 1m

and 3m in X, Y and Z coordinate respectively thus, dividing the domain into 4

partitions would generate:

 Four 2.41x1m2 (9.64m2) interfaces when dividing the domain

exclusively with the Cartesian Z-Coordinate method.

(c)

(c)
(d) (c)

(e)

Figure 4.1 Partitions 0 to 6 obtained when decomposing the domain on 12 partitions. (a) Cartesian Strip, (b) Cartesian
Z-Coordinate, (c) METIS, (d) Cartesian X-Coordinate, (E) Cartesian Y-Coordinate

18

 Two 1.208x1m2 and two 1.5x1m2 (5.416m2) interfaces when

partitioning the domain firstly with the Cartesian Z-Coordinate method

an later with the Cartesian X-Coordinate method.

This, obviously, is not that simple when performing partitions with the

computer and it depends, for example, on the number and size of element faces that

lay on each interface but it shows clearly how the geometry-based methods, despite

being less memory expensive and needing less time to perform the partitions also

have their drawbacks. Even though, it can be observed in Figure 4.1 (a), (c) and (d)

and in Table 4.1 that using the longest dimension still is a logical election as their

interface size is smaller than the interface size of the shorter ones. Even more, as the

length of the direction decreases, the size of the interface increases.

The differences between partitioning in the largest direction or in the shortest

are significant. They represent up to 911.144% of the Cartesian Z-Coordinate

interface faces (I-Faces), for the four partitions case. These differences are reduced

to 580.817% of the Cartesian Z-Coordinate faces for 20 partitions. This reduction is

due, mainly, to the fast increase in the number of I-Faces for the first partitions of

Cartesian Z-Coordinate which starts using a non-optimum partition direction. As

shown in Figure 4.2 the rate of increase in I-faces for both methods tends to

converge.

In Table 4.1 it can be also

observed that METIS is the

method which obtains the shortest

interface cut-edge size. This is

achieved by, as can be observed

in Figure 4.1, partitioning the mesh

in more than one direction.

Table 4.1. Number of Interface faces produced by each method

4 8 12 16 20

METIS 13759 33066 46756 53658 66162

CARTESIAN SRIP 18772 47422 74076 100366 126478

Z-COORDINATE 18772 47422 74076 100366 126478

X-COORDINATE 93864 187266 292436 386676 470750

Y-COORDINATE 189812 373936 536612 706474 861084

METHOD
NUMBER OF PARTITIONS

Figure 4.2. Evolution of the rate of increase in the number of I-
faces of the best and worst performing methods

19

4.1.2. Load Balancing Factor

As explained previously, it is considered that the LBF plays an important role

in the influence of the partitioning methods. A well-balanced partitioned domain is key

to reduce the amount of time needed to run the simulations. Even the differences

between the best and the worst method on balancing loads are of approximately the

same order of magnitude as the differences in the size of the cut-edge interface –

between 4372.152% and 565.046%- it is needed a deeper study. By means of

Equation 2.4. it was obtained the LBF for each method. Its evolution for each method

can be observed in Figure 4.3.

From Figure 4.3 it can be concluded that, even there are generally-better and

generally-worse methods for balancing the loads it is not exclusively dependent on

the method –may be on the importance given to it in the algorithm of the method- but

also on the number of partitions.

4.2. Results

4.2.1. Timing

As explained in chapter 2 –Literature review- it is necessary to define a base

case in order to study the influence of the methods on the wall-clock time and time-

based parameters.

The selected base case was the METIS one partition case performed on one

of the CPUs of the second node. Its Wall-Clock time was 1999s –33min and 19s-. As

explained previously, it will be used as the reference case to calculate how the

partitioning modifies the parameters.

Figure 4.3. Evolution of the Load Balancing Factors for each method with the number of partitions

20

For Node 2 the case was run with 4, 8, 12, 16 and 20 partitions. The following

graphs –Figures 4.4 to 4.6- show the time needed for partitioning the mesh and for

running the case.

It can be

observed how the

graph-based method –

METIS- performs

slower partitions than

the studied geometry-

based methods.

It is also shown that the partition time depends, not only on the method, but

also on the number of partitions being produced.

In Figure 4.5 is shown the WCT needed for running each case on the Node 2

with both, the residuals limited to a value of 10-3 and run for 500 iterations.

Figure 4.4. Evolution of the partition time for each method

Figure 4.5. Evolution of the WCT for each method for 500 iterations

Figure 4.6. Evolution of the WCT for each method with the lower limit of the residuals set
at 10-3

21

Looking at the values for the times in Figures 4.4 to 4.6 it can be observed

that the time spent on partitioning the mesh played a secondary role on the total time

needed for simulating the case.

Both figures -4.5 and 4.6- show the reduction of the WCT needed for running

the case –thus, the scalability- for all the methods when initially increasing the

number of cores. The greatest differences in WCT were found for the initial number of

partitions studied -4 and 8- in which METIS showed the smallest times of all the

methods. Even though, all the three fastest methods –METIS, Cartesian Strip and

Cartesian Z-Coordinate- converged when increasing the number of processors.

METIS started reducing its rate of reduction of WCT earlier than the other two

methods. This could be due to, as can be observed in Figure 4.6 bigger

communication overheads. In that figure, for the simulations in which the value of the

residuals for convergence was set at 10-3, the case was not scalable from a point. It

can be observed how the WCT started increasing for METIS, Cartesian Strip and

Cartesian Z-Coordinate methods showing that the communications overheads were

starting to be higher than the time saved by splitting the case between more

partitions. Interestingly, the number of partitions for which the WCT started to

increase was different for each method showing the previously mentioned influence

(a) (b)

(d) (c)

Figure 4.7. Evolution of the residuals for each method (a) METIS (b) Cartesian Z-Coordinate (c) Cartesian X-
Coordinate (d) Y-Coordinate

22

of the method in the convergence of the case. This was analysed by checking the

evolution of the residuals –Figure 4.7-.

The trends were observed to be equal for each method independently of the

number of partitions –even the number of iterations depended on the number of

partitions-. However, when comparing between methods it can be observed in Figure

4.7 how the shape of the graph was similar –with slight differences and with

variations in the number of iterations needed- for METIS, Cartesian Strip and

Cartesian Z-Coordinate but that the trends where completely different than those of

Cartesian X-Coordinate and Cartesian Y-Coordinate –which were identical-.

Cartesian X-Coordinate and Cartesian Y-Coordinate showed larger WCT for

every number of partitions tending to stabilize at a bigger value than the other three

methods.

4.2.2. Speedup

When the reduction in time is non-dimensionalised –with the speedup, Figure

4.8- it can be observed how the performance of the methods highly differed. Even for

a low number of processors the differences on the speedup obtained with the three

fastest methods –METIS, Cartesian Strip and Cartesian Z-Coordinate- and two

slowest –Cartesian X and Y-Coordinate- were small, these differences highly

increased with the number of processors. As observed in Figure 4.5, these three

fastest methods converged to a number with the increase in the number of

processors, however, for the speedup the previously described behaviour observed

in Figure 4.5 in which the WCT tended to a constant value is not observed in the

figure for the speedup.

Figure 4.8. Speedup achieved by each method with respect to the base case

23

4.2.3. Comparison between nodes

It can not only be observed the differences in WCT due to the different

capabilities of the processors –E.g. Node 15 is composed by old liquid refrigerated

systems- but also that the processors slightly modify the trends. Even though, for all

the processors tested, the conclusions such as the fastest method are the same. The

shapes of the graphs are modified but the same conclusions, such as which is the

fastest method, are derived from all the methods.

Figure 4.11. Wall clock time evolution between nodes Cartesian X-Coordinate partitions

Figure 4.9. Wall clock time evolution between nodes METIS partitions

Figure 4.10. Wall clock time evolution between nodes Cartesian Strip partitions

24

5. Influence of the factors

5.1. Interface cut-edge size and Load Balancing Factor
After analysing the trends followed by each variable it is necessary to study

the causes of these trends.

As mentioned previously, in the review of literature, the main causes for the

performance of a decomposition method are the capacity of balancing the load and

the cut edge size of the interface. But it was unclear and problem-dependent the

importance of each of the factors. For analysing the importance of each factor in the

decompositions of the mesh of a wing Figure 5.1 shows the size of the interface or

the LBF together with the WCT needed for performing the simulations.

It can be clearly observed in Figure 5.1 (a) and (b) that both of the factors are

in accordance to what has been previously said, with the increase in the LBF –higher

imbalances between partitions- and the number of I-Faces the WCT increased.

However Figure 5.1 (b), (c) and (d) show how the importance of the size of the

interface is much higher than that of the LBF. In Figure 5.1 (b) the LBF obtained with

the Cartesian X-Coordinate method is 98.39% of that of Cartesian Y-Coordinate while

the number of I-Faces is half of the Y-Coordinate method value. The time difference

is reduced from the previous number of partitions while the I-Faces ratio is almost

maintained thus, is it the fact of reducing the difference on the LBF seemed the most

reasonable cause for the reduction in time difference –given that no that big

communication overhead effects where expected for that low number of partitions-.

This same conclusion can be obtained from the differences in WCT between METIS

and Cartesian Strip observed in Figure 5.1 (c) to (d).

As mentioned in the review of literature, Cartesian Z-Coordinate and

Cartesian Strip were used to analyse the possible errors. A mean value of 10.4s for

the error was obtained.

25

Figure 5.1. Study on the influence of interface cut-edge size and LBF on WCT for each number of partitions studied
(a) 4 partitions (b) 8 partitions (c) 12 partitions (d) 16 partitions (e) 20 partitions (.1) Interface cut-edge size (.2) LBF

(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)

(d.1) (d.2)

(e.1) (e.2)

26

5.2. Total CPU Time

It can be observed how the TCT followed a generally increasing trend –the
local minimums at 16 partitions are higher than the TCT for 4 processors- even the
reductions in time for some partitions were able to compensate the increase in the
number of CPUs. This unstable behaviour for a low number of processors was also
observed by Haddadi et al. (2017) as can be seen in Figure 5.3.

Figure 5.3. Total CPU Time evolution (Haddadi et al., 2017)

Figure 5.2. Total CPU Time evolution

27

6. Conclusion

6.1. Achievements

With the development of this project, the following items have been achieved.

 The production of partitioned domains of a wing with good scalability

for the number of cores studied.

 The comparison of different mesh partitioning methods available in the

software.

 The measure of the characteristic parameters of a parallel computation

in the wing.

 The identification and measurement of the factors influencing the

performance of the models.

6.2. Discussions
This project has studied the case-dependent problem of partitioning a mesh

designed to analyse the flow around a wing. The results obtained corroborate that

mesh partitioning is a case-dependent problem and that there are several factors

influencing it but the importance of each is different. It has shown how in a problem

with a so much dominant coordinate as this (z-coordinate) performance of geometry-

based models can get as good as graph-based. The study has shown the importance

of adequately selecting the method for fitting the problem –time differences between

the geometry-based methods studies-. The importance of studies like this can be

observed in the results where reductions of even four times the initial WCT were

obtained.

The study has set a good start for further study even it is acknowledged that

differences may arise when varying some parameters –E.g. the dimensions of the

domain or the shape of the wing- or the models employed for solving the turbulence.

The available hardware should also be beard in mind as –as corroborated while

developing this project- it is necessary a system with a single type of CPUs in the

nodes for the results to be applicable. Despite those small variations trends in the

results and conclusions are expected to be transferable as they have been shown to

be –in a more generalised view- from previous studies on less similar problems.

28

6.3. Conclusions

 The partitioning methods here studied show good scalability for the

decomposition of the domain.

 The Interface cut-edge size is the parameter most affecting the

performance of the mesh partitioning methods.

 The methods do not only affect the time needed for running the

simulation but also the convergence of the model and the behaviour of

essential evaluation variables such as the residuals.

 The graph-based method studied has shown the best performance for

a low number of partitions.

 When the number of partitions was increased, geometric-based

methods specifically chosen for the problem showed as good

performance as graph-based methods.

 The geometry-based methods studied delay the appearance of

communication overheads.

 Mesh-partitioning time represents a truly small contribution to the total

time needed when compared with the WCT.

6.4. Future work
The work that could be developed in the future from this study would be the

introduction of new features to the geometry. Convert it into a 3-D wing for the study

of the wingtip vortices and set the basis for the introduction of the fuselage of the

aircraft in the model.

Another line of investigation which could be started from this work would be,

as proposed by Vanderstraeten et al. (1996) the development of more complex user-

defined partitioning methods.

29

7. References

Abbas-Bayoumi, A. and Becker, K. 2011. An industrial view on
numerical simulation for aircraft aerodynamic design. Journal of
Mathematics in Industry. 1(1), p10.
AIRBUS. 2010. 2010 use of CFD at Airbus. An industrial view on
numerical simulation for aircraft aerodynamic design: Adel Abbas-
Bayoumi.
AIRBUS. 2018. A partnership for next-generation computational fluid
dynamics. [Online]. [Accessed 07 April 2018]. Available from:
http://www.airbus.com/newsroom/news/en/2018/01/a-
partnership-for-next-generation-computational-fluid-dynamics.html
ANSYS. 2017. ANSYS DOCUMENTATION - ANSYS USER GUIDE.
Atkins, A.G. and Escudier, M.P. 2013. A dictionary of mechanical
engineering. Oxford: Oxford University Press.
2018. s.v.
Barney, B. 2018. Introduction to Parallel Computing. [Online].
[Accessed 10 April 2018]. Available from:
https://computing.llnl.gov/tutorials/parallel_comp/
Clevenger, L.A., Eng, H., Khan, K., Maghsoudi, J. and Reid, M. 2015.
Parallel Computing Hardware and Software Architectures for High
Performance Computing. Proceedings of Student-Faculty Research
Day, CSIS, Pace University. pp.D7.1-D7.7.
Craft, T.J., Gerasimov, A.V., Launder, B.E. and Robinson, C.M.E. 2006. A
computational study of the near-field generation and decay of
wingtip vortices. International Journal of Heat and Fluid Flow. 27(4),
pp.684-695.
Gilkeson, C. 2018. MECH5770M: Computational Fluid Dynamics
Analysis. Lecture 7: Verification & Validation. Unpublished.
Haddadi, B., Jordan, C. and Harasek, M. 2017. Cost efficient CFD
simulations: Proper selection of domain partitioning strategies.
Computer Physics Communications. 219, pp.121-134.
Haynes, W.M., Lide, D.R. and Bruno, T.J. 2016. CRC handbook of
chemistry and physics: a ready-reference book of chemical and physical
data. 97th /-in-chief W.M. Haynes ; associate, David R. Lide, Thomas J.
Bruno. ed. Boca Raton: CRC Press.
Jameson, A. 2008. Computational Fluid Dynamics and Airplane
Design: Its Current and Future Impact. In: 22 February 2008,
University of Cincinnati.
Johnson, F.T., Tinoco, E.N. and Yu, N.J. 2005. Thirty years of
development and application of CFD at Boeing Commercial Airplanes,
Seattle. Computers & Fluids. 34(10), pp.1115-1151.

http://www.airbus.com/newsroom/news/en/2018/01/a-partnership-for-next-generation-computational-fluid-dynamics.html
http://www.airbus.com/newsroom/news/en/2018/01/a-partnership-for-next-generation-computational-fluid-dynamics.html
https://computing.llnl.gov/tutorials/parallel_comp/

30

Karypis, G. and Kumar, V. 1998. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on Scientific
Computing. 20(1), pp.359-392.
Magoulès, F. 2007. Mesh Partitioning Techniques and Domain
Decomposition Methods.
Manke, J.W. 2001. Parallel computing in aerospace. Parallel
Computing. 27(4), pp.329-336.
Diccionario Español de Ingeniería. 2018. s.v.
Shang, Z. 2014. Impact of mesh partitioning methods in CFD for large
scale parallel computing. Computers & Fluids. 103, pp.1-5.
Spalart, P.R. and Venkatakrishnan, V. 2016. On the role and challenges
of CFD in the aerospace industry. The Aeronautical Journal.
120(1223), pp.209-232.
Vanderstraeten, D., Farhat, C., Chen, P.S., Keunings, R. and Ozone, O.
1996. A retrofit based methodology for the fast generation and
optimization of large-scale mesh partitions: beyond the minimum
interface size criterion. Computer Methods in Applied Mechanics and
Engineering. 133(1), pp.25-45.
Wang, M., Tang, Y., Guo, X. and Ren, X. 2012. Performance analysis of
the graph-partitioning algorithms used in OpenFOAM. In: 2012 IEEE
Fifth International Conference on Advanced Computational Intelligence
(ICACI), 18-20 Oct. 2012, pp.99-104.

31

8. Appendix I – Meeting Log

Date of
meeting

Summary of discussion
Objectives for next

meeting
Supervisor

initials

13/10/2017

 Presentation

 Previous knowledge
of any CFD software

 Expectations on the
project

 Explanation of the
project

 Objectives of the
project

 Discuss viability
of the cases
found by
students

 Discuss software
selection

20/10/2017

 Discussion about the
project decision made

 Request of sending
papers to tutor for
checking the viability
of the cases chosen

 Intertool focusing

 Decide softwares
for being used

 Talk about
simple
simulations
performed in
other softwares
than fluent

 Discuss the
scoping
document

13/11/2017

 Decision of the case
for simple
simulations. Cylinder
for Von Karman
vortex street

 Start the simple
cases

 Study the
capabilities of
Fluent
PostProcessing
tool

20/11/2017

 Comments on the
evolution of the
simple case

 Proposed variations
to the simple case:
reduce the mesh size,
look for the range at
which k-omega is
applicable

 Obtain
converged cases
for the Von
Karman vortex
street

27/11/2017

 Comments on the
simple cases:
Increase velocity, try
with the laminar
model, try using
water, familiarize with
the interface for the
HPC facility

 Comment the
results obtained
for the variations
in the simple
case

 Comment any
possible problem
with the HPC
facility

32

13/12/2018

 Commentary on the
results from the
simple cases.

 No problems found
when using the HPC
facility

 Commentary on the
Scoping document

 Recommendation to
use a Reference
Manager –EndNote-

 Problems found with
the transient in Fluent

 Recommendation of
using a coarser mesh
near the boundary
condition

 Recommendation of
dedicating more time
to literature review.

 Comments on the
work for Christmas
holidays

22/1/2018

 Definitive decision of
how to do the project
after the simple cases

 Comment the
first steps taken
on the project:
methods,
geometry, mesh

29/1/2018

 Commentary on the
overall evolution of
the first steps of the
project

 Comments on
any problem with
the geometry
and/or its
meshing

5/2/2018

 Comments on the
general ongoing of
the project

 Recommendation of
trying to automatize
the process

 Comments on
the results

19/2/2018

 Doubts about
problems in the
results

 Problems with
choosing the node for
the calculation

 Comments on
the performance
of the solutions
given to the
problems

1/3/2018

 Checking mesh
independence

 Recommendations on
how to approach the
project

 Doubts

 Comments on
the results

12/3/2018
 Recommendation on

validating the results
 Comments on

the results

33

 Checking mesh
independence

19/3/2018
 Analysing the

obtained results
 Comment on the

general evolution
of the project

6/4/2018

 Analysing the
obtained results

 Comments on the
report

 Comment on the
general evolution
of the project

9/4/2018

 Analysing the
obtained results

 Comments on the
report

 Comment on the
general evolution
of the project

17/4/2018
 Last doubts and

analysis comment

