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Abstract
The project of this paper presents four different approaches for object detection and
classification at sea using computer vision. Recent years have seen a large increase in
the use of optical detection and tracking methods in autonomous cars. However, this
is challenging in maritime environments since objects at sea can be hard to distinguish
from the waterline or hidden waves. Furthermore, cameras have a limited range and
objects far from the camera might be impossible to detect. In this paper detection of
marine vessels and aids for navigation (buoys, beacons...) are the main priority. This
project is only focused on the detection performance and the evaluation of the algorithms
present.
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CHAPTER 1
Introduction

1.1 Motivation
Nowadays, improvements in technology let computers assist in most of the duties made
by humans. The integration of sensor systems and advanced algorithms to manage data
let the technology go in a way where tedious and dangerous tasks carried out by humans
can be replaced by robots. Automated technology systems are aimed at taking the role of
the eyes and brain of an operator for controlling an automated vehicle. Automated cars,
Unmanned Aerial Vehicles (UAV), Unmanned Surface Vehicles (USV) and automated
industrial systems are examples where such technologies are applicable.

In the case of ship navigation, the level of autonomy within marine operations is
increasing, and this trend is expected to continue in the future [20, 23, 32]. Many
experts foresee that unmanned and autonomous ships will gradually replace manned
ships and become a key technology of safe, cost-effective and environmentally friendly
marine transportation. Autonomy in ship navigation would lead to reduction in crew
numbers as a result of re-skilling and relocation of crew to the shore, potentially resulting
less vigilant look-out [25]. The main benefits could be improved safety and reduction of
operating costs. Also better energy efficiency and protection of environment support the
idea of using unmanned ships for transportation of goods and raw materials over longer
distances [1]. Especially in Denmark, a country consisting on more than 70 populated
islands, food and goods transport and means of travel for commuters are important.

As the applications of automated and unmanned systems have grown in recent years,
the need for precise and robust guidance and navigations has increased as well. For
instance, technologies that have been traditionally deployed for military purposes, eg.
radars and sonars, now are found to be of immense utility in providing support for
navigation as well[25]. Therefore, surveillance systems play an important role in man-
agement and monitoring of littoral and maritime areas in providing tools for situation
awareness, threat assessment, and decision making [10].

Several sources of surveillance, monitoring, maritime safety information are available.
These include Automatic Identification System (AIS), Vessel Monitoring System (VMS),
ship- and land-based radars, air- and space-borne optical sensors and harbour-based vi-
sual surveillance. Therefore, it is important to use this situational awareness sensors
for better collision avoidance and navigation. Integration of several information sources
has been developed during the last decade. This integration from different sources, also
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known as sensor fusion, aims to obtain a lower detection error probability and a higher
reliability by using data from multiple distributed sources [6]. Example of this include
systems that integrate AIS/VMS with SAR-imagery [18, 26], radar- and visual-based
surveillance for ports [29, 27], land-radars with visual information from air-borne plat-
forms, and ship-based systems that integrate visual and other sensor’s information [19,
36].

Autonomous technology on-board ships will require that computer interpreted sen-
sors information is made available to navigation algorithms. These navigation algorithms
should deal with a proper navigation which is mainly dependent on the right answers to
the following questions:

• Where am I?

• What are the local conditions at this position and in the vicinity?

• Which path should I follow to reach my destination?

Furthermore, collision avoidance is crucial for safe navigation. An autonomous vessel,
which should perform autonomous operations, will require local situation awareness by
sensing the immediate environment to avoid collision with other ships ot with other
traffic areas of the sea bed that are too shallow to allow safe passage on the sea surface.
The International Regulations for Preventing Collisions at Sea 1972 (COLREGs) requires
all ships to be equipped with radars for proper lookout to provide early warning of
potential collision [25]. Therefore, sensor fusion will result in a better situation awareness
so the 2nd question above will help decision support on-board.

Beside sensors, electronic sea charts are used to enhance local situation awareness. In
the past, knowledge and information about the sea was storage in paper sea charts. These
charts helped seafarers navigate with the information available in that chart. Nowadays
all that information has been collected in what is called Electronic Navigational Chart
(ENC). They contain all geographic, hydrographic, and geophysical information for the
area, the sea traffic arrangements, and the administrative regulations that are also shown
on paper charts as well as described and illustrated in relevant printed nautical publi-
cations. Therefore it is important to distinguish between paper and electronic charts.
Paper nautical charts contain a fixed amount of information, while electronic chart data
can contain a far greater amount of data [33].

Unlike land-based navigation technology, marine equipment such the ENC undergoes
strict supervision by national and international bodies. The shipping nations of the world
cooperate based on regulations they have agreed under the umbrella of the International
Maritime Organization (IHO) . This means that the resources to obtain the information
have to be official.
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1.2 Scope of the project
This thesis deals with object detection and classification at sea. Having detected an
object, its nature is subsequently determined. As a third step, algorithms determine to
which category the object belongs.

One category is objects that inform about risks or regulations in the area. These
are traffic marks of the seas, implemented as buoys anchored to the seabed. Another
category is floating objects that own vessel must avoid. Depending on relative speed,
location and direction of travel, objects in this category should influence own vessel’s
navigation.

The thesis employs computer vision techniques to observe objects at sea.
A sea chart informs on positions and nature of all traffic marks at the sea and

correlating information in an electronic sea chart with observations that we consider
to be buoys, could confirm the correctness of navigation. Such correlation could also
confirm hypotheses that objects in category 2 are indeed moving objects.

The original aim of the project was to supplement object detection and classification
with fusion with sea chart information to obtain a second confirmation of observations
and classifications. Electronic sea charts should be computer readable, i.e. the thesis
project should need unencrypted information. Such S57 charts are only available from
the Danish Geodata Agency (GST), and agreements on terms between GST and DTU
were finalised so late that it was not possible to include electronic sea chart information
within the timeframe of the thesis project.

Instead, the project was re-formulated such that the scope of the thesis includes
a chapter on how the information fusion with sea chart data can be done when they
become available. The focus of the thesis is therefore to detect and classify objects at
sea as observed by on-board cameras. The scope is as follows

• Literature review of relevant computer vision methods.

• Assess existing methods for use in a maritime environment.

• Implement promising methods and evaluate their features and performance on
images from sea.

• Analyse the performance of algorithms in terms of correct and false detections

• Draft the theory and methodology to include electronic sea chart information when
this becomes available

The thesis selected four algorithm-based methods for object detection and employed
convolutional neural network methods for classification. The thesis provides a thorough
testing of the selected methods, all of which were validated on the entire set of photos.
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Processing of radar data and correlation with camera observations is not within the
scope of this thesis but was formulated by DTU as a companion thesis.

Eduardo Vasquez Salvador, who focused on other computer vision methods, writes
this parallel thesis. Small parts of the work was done jointly to save time and efforts, and
the thesis shows clearly where joint work was done or findings by Eduardo are referred
to.

1.3 Outline of the thesis
This thesis is organized in 7 chapters, as well as a appendix covering some implementa-
tion aspects. The chapters are numbered 1-7. Here is a short description of the contents
of each chapter:

• Chapter 2 describes the global system and the main resources used in the project.
Further, the equipment that includes the system is briefly presented.

• Chapter 3 presents the camera as well as some fundamental image processing
techniques. These include blurs, edge detectors and morphological operations.

• Chapter 4 is the main part of the project where object detection using computer
vision is presented. Firstly, 4 methods used are described each one individually.
To elaborate, they are divided according to the technique employed, namely clas-
sifier (Method 1) or detector (Method 2). Method 1 section includes a detailed
description of how an object is detected including different techniques for image
processing. At the end of the chapter an evaluation of 4 approaches employed is
presented as well as a discussion for each approach.

• Chapter 5 introduces the main aspects of an ENC and the methodology for sensor
fusion and correlation with an ENC.

• Chapter 6 describes the experiments carried out for evaluating the performance of
the object detection using computer vision. Results are presented with a discussion
for each method.

• Chapter 7 concludes the report. Here, the main findings are presented, as well as
possible future work related to what has been presented.



CHAPTER 2
System Description

This chapter presents the ”big picture” where this MSc thesis participates. Project work
takes a small part within a larger project carried out by Danmarks Tekniske Universitet
(DTU). The scope of this project is part of a larger research undertaking that aims
on a fully autonomous ship. As a university, DTU Electrical Engineering (professors,
researchers, students...) has been researching on marine control and sensors along with
other universities.

• section 2.1 gives an overall description of the framework of the project. This section
aims to provide the reader with an overview of how the system is structured and
of the field this MSc within the context.

• section 2.2 presents the different kind of sensors employed during the implementa-
tion.

• section 2.3 describes the database found which will be used in chapter 4.
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2.1 Platform description
This semester, three to four students are involved in the Electronic Outlook part of the
project mentioned before. Figure below shows a overall structure of a navigation system
with ability to avoid obstacles at sea.

Optimal Guidance

System
Control System Marine Craft

Localization and Obstacle Detection

Electronic

Navigational Chart
Sensor fusion

Figure 2.1: Overall structure of a navigation system with ability to avoid obstacles at
sea

Firstly, the ship is provided by a path generator that defines a mission through a
set of way-points. That mission is followed by the marine craft with the control system
which includes a Model Predictive Controller (MPC). This advanced controller outputs
an optimal control output that allows the vessel follow the reference in an optimal way.

Situational awareness takes part in the Localization and Obstacle Detection box.
This results in information (position and attitude) in the surroundings of the ship. To
do so, first data from sensors is processed, fused and finally correlated with an Electronic
Navigational Chart (ENC).

2.2 Equipment
Sensors used in this project are presented in this section. Since this thesis takes part
in an Electronic Outlook state of the project some of the sensors described below has
been subjected to changes. It is important to say, that due to several problems in the
acquisition of an Electronic Navigational Chart, this sensor or aid for perception is not
included in this section.
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2.2.1 IMU and GPS
Information regarding the position and attitude of the ship is performed using an Inertial
Measurement Unit (IMU) sensor and a GPS. These sensors are integrated in a single
device called MTi-G. The MTi‐G is a measurement unit for navigation and control of ve-
hicles and other objects. The internal low‐power signal processor runs a real‐time Xsens
Kalman Filter (XKF) providing inertial enhanced 3D position and velocity estimates.

Figure 2.2: MTi-G: integrated GPS and Inertial Measurement Unit (IMU) with a Navi-
gation and Attitude and Heading Reference System (AHRS) processor

2.2.2 Radar
A Radar is used to detect objects in the surrounding of the vessel. The Radar used in
this project is a Broadband 3GTM Radar, which uses Frequency Modulated Continous
Wave (FMCW). The way that this radar works is briefly described below.

First the radar transmits a ’rising tone’ (Tx wave) with linearly increasing frequency.
The wave propagates out of the transmitter retaining the frequency it had when it was
transmitted. When reflected from an object, the echo has the same frequency it had
when it was originally transmitted. The Doppler shift due to relative velocity can be
disregarded for sea targets.

The difference between both the currently transmitted and received frequencies, cou-
pled with the known rate of frequency increase, allows a time of flight to be calculated.
The radar uses this to calculate distance to target.

2.2.3 Electro-optical sensors
Electro-optical types of sensors used in this project imply cameras operating in the
visible and infrared portions of the electromagnetic spectrum. These set of cameras
includes two color cameras and one monochrome camera.
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|  5 Welcome  |  Broadband 3G/4G™ Radar Installation Guide

FMCW = Frequency Modulated Continuous Wave
The scanner transmits a ‘rising tone’ (Tx wave) with linearly increasing frequency. The wave 
propagates out from the transmitter retaining the frequency it had when it was transmitted. If 
it refl ects off  an object, it will return to the receiver, still at the frequency it had when originally 
transmitted.
Meanwhile, the transmitter continues to output an increasing frequency.

The diff erence between both the currently transmitted and received frequencies, coupled with 
the known rate of frequency increase, allows a time of fl ight to be calculated, from which dis-
tance is calculated.

Additional benefi ts of FMCW radar are:

Safety
• low energy emissions. 1/5th of a mobile phone
• safe operation in anchorages and marinas
• instant power up. No warm up required

Short range performance
• broadband radar can see within a few meters of the boat, compared to pulse radars, 

which can not see closer than 30 meters
• higher resolution clearly separates individual vessels and objects
• Up to fi ve times better sea and rain clutter performance

Low power
• suitable for small boats and yachts
• easier installation with lighter cabling and smaller connectors
• great for yachts on ocean passage

Instant power-up
• conventional radars take 2-3 minutes to warm up the magnetron: Safety – 2 minutes is a 

long time if you are concerned about collision.
• convenience – switch it on and use it.

Easy to use
• no constant adjusting required to obtain optimum performance
• no re-tuning between ranges. Means fast range change at all ranges

RADAR_3G_4G_IG_988-10113-003_EN_P.indd   5 2/11/2011   1:59:33 p.m.

Source:https://www.westmarine.com/buy/lowrance–broadband-3g-18-radar–12677993

Figure 2.3: How does the radar work?

2.3 Datasets
Works in maritime image processing typically use military owned or propietary datasets
which are not made available for research purposes [25]. In order to have a good per-
formance in object detection, several databases were used. These datasets were used
for different purposes due to the objects that contain the images. In a maritime sce-
nario, objects that can appear are ships, leisure boats, aids for navigation (buoys), land,
buildings on land or harbours. The following datasets were used for training purposes.

• Singapore maritime dataset contains primarily images containing ships.

• Imagenet database include ships and buoys that are used for training detectors
and classifiers as it is explained in chapter 4.

• Data collection dataset consists of images taken in some expeditions in Danish
waters.

Below, some of these database are presented in detail.

Singapore maritime dataset
Prasad et al. [25] created Singapore Maritime Dataset, using Canon 70D cameras around
Singapore waters. All videos were recorded in high definition (1080 × 1920 pixels).
Dataset is divided into parts, on-shore videos (visible and near-infra red) and on-board
videos, which are acquired by camera placed on-shore on fixed platform. Some details
of the dataset are given in table 2.1.

The sample images in figure 2.4 depict the various characteristic in real ocean condi-
tions.
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On-board videos On-shore videos
Number of videos 4 32
Total number of frames 1196 16254
Number of frames in a video 229 ∈[206, 995]
Size of frames (pixels) 1920 ×1080 1920 × 1080

Object detection related
Number of objects per frame ∈[2, 20]
Number of stationary objects per frame ∈[0, 14]
Number of moving objects per frame ∈[0, 10]
Total number of object annotations in a video 192980
Total number of stationary objects in a video 137485
Total number of moving objects in a video 55495

Table 2.1: Details of the Singapore maritime dataset

Figure 2.4: Sample from test images (Singapore Dataset)

Imagenet
Imagenet is a large scale hierarchical image database that aims to encompass the largest
amount of annotated images for a vast of objects. The hierarchy of imagenet is a
tree-structure, where each brand is a sub-category of the parent. For instance, the
parent vessel is shown to contain children images sets such as boat, ship and yacht. The
imagenet sets used in this thesis are shown in table 2.2. Figure 2.5 shows some of the
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images obtained from Imagenet.

Category images Category images
Buoys 94 Fishing boat 413
Cabin Motorboat 751 Large sailboat 941
Cargo Ship 844 Open motorbooat 220
Cruise Ship 704 Personal watercraft 177
Ferry 659 Small boat 593
Small sailboat 700
Total number of
images 6096

Table 2.2: Details of dataset from Imagenet

Figure 2.5: Sample from test images (Imagenet)

Data collection
During the thesis some expeditions were conducted to gather data of sea objects such as
ships or buoys. The expedition consisted of sailing a ferry on the route Hundested-Rørvig
to collected data in different scenarios that a seafarer may encounter. Unfortunately,
during the expeditions there were not many merchant ships. But, there were other
objects such as buoys and small fishing boats (figure 2.6) that showed up in the journey.
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Figure 2.6: Sample from test images(Data collection)

2.4 Summary
To provide situation awareness for sailing an structure of the navigation system as well
as the sensors implemented are described. First, the ship estimates the position and
attitude through the IMU and GPS. Second, objects around are detected through fusion
of radar and electro-optical sensors. In order to have a good performance, electro-optical
sensor used algorithms to process images and detect objects. These algorithms are
trained using large datasets containing different objects that can appear in a maritime
scenario. Finally, some of this objects (static object such as buoys) are correlated with
the information provided by the Electronic Navigational Chart.
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CHAPTER 3
Image Processing

The analysis of images and their processing are two major fields that are known as
computer vision and image processing. A brief introduction to the camera and how it
acquires color images is presented in this chapter. It is also described some important
image processing techniques that make changes in image properties. This chapter is
targeted towards readers with little experience in image processing. The general infor-
mation in this chapter is obtained in Siegwart, Nourbakhsh, and Scaramuzza’s book
Introduction to autonomous mobile robots [28].

• Section 3.1 introduces some key aspect of camera operation

• Section 3.2 presents image processing techniques such as Gaussian smoothing, edge
detectors and morphological operations.
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3.1 Image acquisition
A camera in the broadest term could be defined as a photon collection machine. The
digital cameras, after starting from one or more light sources, reflecting off of one or
more surfaces in the world (subject), and passing through the camera’s optics (lenses),
light finally reaches the imaging sensor (figure 3.1). The mosaic filter depicted in the
figure is a square array of color filters consisting of red, blue and green. When the
camera is exposed to light, the photosites of the sensor are excited, converting photons
into current. Since the sensor only measure the brightness of the light, no its colour,
colour information is gathered by red, green and blue filters. These filters are arranged
into 2×2 sets of four in a mosaic known as Bayer pattern. Normally, two pixels of 2
× 2 block measure green while the remaining two pixels measure red and blue light
intensity. The reason why there are twice as many green filters as red and blue its that
the luminance signal is mostly determined by green values.

Lens
Subject

Mosaic	Filter

Image	sensor

Image courtesy: www.digitalcameraworld.com

Figure 3.1: Digital camera diagram

The next step for acquiring and image is demosaicing. Demosaicing is the process
of translating this Bayer array of primary colors into a final image which contains full
color information at each pixel. Instead of thinking of the 2×2 array of red, green and
blue, we can consider a single full cavity. (figure 3.2). This would work fine, however
most cameras take additional steps to extract even more image information from this
color array.
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Figure 3.2: Bayer demosaicing

3.2 Image processing
Image processing can be treated as signal processing where the input is an image (such
as a photo or a video) and the output is either an image or a set of parameters associ-
ated with the image. Images are widely used in image processing techniques as a two
dimensional signal I(x, y) where x and y are the pixel coordinates (spatial image) of the
input image and I is the amplitude of the image for any given x and y coordinates.

3.2.1 Smoothing filters
Image filtering is one of the most used tools in image processing. The reason why are
they called filters is due to the fact that in frequency domain processing, the world
”filtering” refers to the process of accepting or rejecting certain frequency components.
In this section smoothing filters are presented but first an introduction to spatial filtering
is described.

Image filters can be implemented both in the frequency domain and in the spacial
domain. In the latter case, the filter is called mask or kernel. A kernel consists of (1) a
region around the pixel examination (typically a small rectangle), and (2) a predefined
operation T that is performed on the image pixels encompassed by the neighborhood of
the pixel. Let defined Sx,y the set of coordinated of the neighborhood pixels around an
arbitrary point (x,y) in an image I. Image filtering will generate a new output image I ′

where the value of each pixel is determined by the specified operation. This operation
can be expressed as follows:

I ′(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t) · I(x − s, y − t), (3.1)

where w is the filter of size m × n (with m = 2a + 1 and n = 2b + 1) which are usually
assumed odd integers. The expression presented is call a convolution an it can be written
in a more compact way as:

I ′(x, y) = w(x, y) ∗ I(x, y), (3.2)
where ∗ denotes the convolution operator.
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where  and  are usually assumed odd integers. The filter w is also
called kernel, mask, or window. As observed in (4.101), linear filtering is the process of
moving a filter mask over the entire image and computing the sum of products at each loca-
tion. In signal processing, this particular operation is also called correlation with the kernel
w. It is, however, opportune to specify that an equivalent linear filtering operation is the
convolution

 (4.102)

Figure 4.55 Illustration of the concept of spatial filtering. (c) Input image. (d) Output image after
application of average filter.
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Source: Introduction to autonomous mobile robots [28]

Figure 3.3: Illustration of the concept of spatial filtering. (c) Input image. (d) Output
image after application of average filter

Smoothing filters are special filters used for blurring and noise reduction. One of the
filters used for smoothing is the 2-D Gaussian filter. The continuous 2-D Gaussian is
given by:

G(x, y) = 1
2πσ2 e

−
x2 + y2

2σ2 . (3.3)

This 2-D Gaussian can be discretize by sampling about its center. For example, for
generating a 5 × 5 mask with σ = 1 we obtain:

Gd = 1
289


1 4 7 4 1
4 16 28 16 4
7 28 49 28 7
4 16 28 16 4
1 4 7 4 1

 (3.4)

Main parameters that can be adjusted in a Gaussian filter are the size of the kernel or
mask and σ value. The kernel size is usually set to 5×5 kernel for fast implementation
however the value for σ is directly related to the blurring of the image. In this project,
this technique is used for removing noise produced by wakes or foam in the images.
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Figure 3.4: Illustration of Gaussian filtering

3.2.2 Edge Detection
Edges define regions in the image plane where a significant change in the image bright-
ness takes place. As shown in figure 3.5, salience of the edges reduces the amount of
information from the image and it may result in an useful feature during image inter-
pretation. Therefore a practical edge detector should simply differentiate, since an edge
by definition is located where there are large transitions in intensity.

One of the most competent edge detector is the Canny edge detector [28]. This edges
extractor smooths the image I via Gaussian convolution and then looks for maxima in
the derivative. In practice, the smoothing and differentiation are combined into one
operation because of this property of convolutions:

(G ∗ I)′ = G′ ∗ I. (3.5)

Since edges might appear in any directions, it is required to apply two perpendicular
filters:

fV (x, y) = G′
σ(x)G′

σ(x)fh(x, y) = G′
σ(y)G′

σ(x) (3.6)

where G′
σ is the first derivative of G. This results in a basic algorithms for detecting

edges at arbitrary orientations:

• Convolve the image I(x, y) with fV (x, y) and fH(x, y) to obtain the gradient com-
ponents RV (x, y) ans RH(x, y), respectively.

• Define the square of the gradient magnitude R(x, y) = RV (x, y)2 + RH(x, y)2

• Mark those peaks in R(x, y) that are above some predefined T This threshold is
selected manually so weakest edges are eliminated.
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Typically, there are missing contours, as well as noise contours, that do not correspond to
anything of significance in the scene.

The basic challenge of edge detection is visualized in figure 4.57. The top left portion
shows the 1D section of an ideal edge. But the signal produced by a camera will look more
like figure 4.57 (top right) because of noise. The location of the edge is still at the same x
value, but a significant level of high-frequency noise affects the signal quality. 

A naive edge detector would simply differentiate, since an edge by definition is located
where there are large transitions in intensity. As shown in figure 4.57 (bottom right), dif-
ferentiation of the noisy camera signal results in subsidiary peaks that can make edge detec-
tion very challenging. A far more stable derivative signal can be generated simply by
preprocessing the camera signal using the Gaussian smoothing function described above.
Below, we present several popular edge detection algorithms, all of which operate on this
same basic principle, that the derivative(s) of intensity, following some form of smoothing,
comprises the basic signal from which to extract edge features.

Optimal edge detection: the Canny edge detector.  The current reference edge detector
throughout the vision community was invented by John Canny in 1983 [91]. This edge
detector was born out of a formal approach in which Canny treated edge detection as a
signal-processing problem in which there are three explicit goals:

• Maximizing the signal-to-noise ratio;

• Achieving the highest precision possible on the location of edges;

• Minimizing the number of edge responses associated with each edge.

Figure 4.56
(a) Photo of a ceiling lamp. (b) Edges computed from (a).

(a) (b)

Source: Introduction to autonomous mobile robots [28]

Figure 3.5: Edge detection

3.2.3 Morphological operations
In the following chapter, binary images are mentioned. In this case, the binary images
are generated by a threshold, which leads in numerous imperfections due to noise o
texture. The aim of morphological image processing is removing these imperfections
trough some operations that are described below. Morphological image processing is a
collection of non-linear operations related to the shaper or morphology of features in an
image. Since morphological operations rely on the relative ordering of pixels, not on the
numerical values, they are especially suited to the processing of binary images.

Morphological techniques use a small shape or template called a structuring element.
Structuring elements play in morphological image processing the same role as convolution
kernels in linear image filtering. This structuring element is positioned in all possible
locations in the image and it is compared with the corresponding neighborhood of pixels.
Operations consist of testing whether the element fits within the neighbourhood or if it
hits or intersects the neighbourhood (3.6). The impact of the structuring element shape
is related with the element we want to modify in the image.

Source: https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-
html/topic4.htm

Figure 3.6: Testing on an image with a structuring element
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Erosion and dilation
Some of the basic operations used in morphological image processing are erosion and
dilation. Both operations produce a new binary image that is generated by a certain
structuring element. Theses operations are commonly used consecutively in order to
remove small objects and to joint objects from the image that are close. To illustrate
figure 3.7 shows an example of the two morphological operations. First the image is
eroded which means that the structuring element shrinks the image by stripping away a
layer of pixels from both the inner and outer boundaries of regions. The holes and gaps
between different regions become larger, and small details are eliminated. Then holes
enclosed by a single region and gaps between different regions become smaller, and small
intrusions into boundaries of a region are filled in.

(a) Erosion using a 3× 3 square structuring element

(b) Dilation using a 3× 3 square structuring element

Source: www.cs.princeton.edu/ pshilane/class/mosaic/

Figure 3.7: Morphological operations: erosion and dilation
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CHAPTER 4
Object Detection using

Computer Vision
As it was mentioned above, an autonomous vessel will require situation awareness by
sensing the immediate environment to avoid collision with other ships or with other
traffic areas. One way to enhance situation awareness is by using Electro-optical (EO)
sensors. In the latest years camera-systems have been employed to aid humans and
robots alike in detecting and classifying objects in the real world. EO sensors are pre-
pared to complement ranging devices and they are of interest for two main reasons.
Firstly, the image generated by them are directly interpretable and intuitive for human
operators. Secondly, the image stream from them can be used to image processing and
computer vision such that advanced intelligence can be generated without significant
human intervention.

In this chapter, several approaches are introduced to detect objects using computer
vision. Further, and evaluation of each of these methods is presented.

• Section 4.1 contains a brief summary of the approaches implemented in this project.
The section aims to provide the reader with insight into the two main methods
used for object detection.

• Section 4.2 describes the two approaches using Method 1.

• Section 4.3 describes the two approaches using Method 2.

• Section 4.4 presents the results for the different approaches.
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4.1 Methodology
Four different methods for object detection have been applied in this project both for
color and infrared cameras. This section briefly presents them whereas theoretical prin-
ciples and techniques used on them will be treated in the following sections. The aim is
to compare the performance and choose the most suitable detector.

Two of them use conventional approaches whereas the two others use more advanced
techniques that could be considered as the state-of-the-art in image analysis (involving
training of Convolutional Neural Networks (CNN)). List of acronyms is presented in
table 4.1.

Detection approaches are arranged according to the method and technique employed.
Methods are divided into Region of Interest (RoI) with classifier and pure detector.
Different techniques adopted in the project discern between whether the method employs
either neural networks or classical techniques. Table 4.1 shows the arrangement used.

Technique
Conventional CNN

Method Method 1 ROI algorithm +
SVM

ROI algorithm +
CNN classifier

Method 2 ACF detector Faster RCNN detector

Table 4.1: Methods for object detection

RoI region of interest Areas of an image whose color and/or
texture differs from that of their background.

SVM support vector machine Supervised learning model used for
classification of data.

ACF aggregate channel features
Supervised learning model that extracts
features from different channels of images
for detection purposes.

CNN convolutional neural
networks

Specific type of neural networks (trained
through supervised learning) used for
object classification.

RCNN region-based
convolutional network CNN applied to object detection.

Table 4.2: List of acronyms from table 4.1

Method 1 consist of a multi-scale process to detect a particular RoI from an image and
a classifier to allocate the object detected. These RoIs contain potential to be categorized.
First step is to find these RoIs that are defined as bounding boxes. How these RoIs are
obtained is explained in the next section. Second step consists of classifying each of
the bounding boxes by using two different types of classifiers: Support Vector Machine



4.2 Object detection using Method 1 23

(SVM) and Convolutional Neural Network (CNN) classifiers, that are covered below.
The part from classifiers has been implemented commonly by a fellow student, Eduardo
Vázquez, whose MSc thesis is tightly connected to the one presented in this report.

Method 2 does not use a multi-scale process to detect the objects. The main dif-
ference between both methods is that the two steps in Method 1 (detect + classify),
in the case of the Method 2 it take place internally. Two different techniques have
been employed: Aggregate Channel Features (ACF) detector which uses aggregate chan-
nel features and the state-of-the-art Faster Region-based Convolutional Neural Network
(RCNN) detector. This part was performed by Eduardo Vázquez. Main principles will
be cover below.

4.2 Object detection using Method 1
This section presents Method 1 for object detection. Figure 4.1 shows a description of the
implementation to detect and classify an object. First, RoIs are detected in the image
based. Since any found RoI could differ from others a classifier is needed. Therefore,
a classifier is trained previously using several images containing objects to be classify.
Second step is classification where based on the trained classifier RoIs are arranged into
different categories.

Input frame Detect Region of
Interest Classification

Classifier

Images
with RoI

Obtain Classifier
parameters

Offline Classifier Training

Figure 4.1: General Framework of object detection using Method 1

Firstly, an overall description of how the RoI is found is described. Secondly, the two
different classifiers used are presented.

4.2.1 Detect Region of Interest
The algorithm presented is based on the general framework for object detection used in
conventional forms. Prasad et al. [25] work contains some of the historical milestones
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for object detection in the maritime environment. This paper provides a comprehensive
overview of various approaches of video processing for object detection.

For object detection in maritime EO data processing, each frame of the EO video
stream is considered independently without taking temporal information into account.
The general pipeline is presented in figure 4.2. It consists of three main steps, namely,
horizon detection, background subtraction and foreground segmentation.

Horizon Detection Static background
subtraction

Background
model

Foreground
SegmentationInput frame

Figure 4.2: General pipeline of maritime EO data processing for object detection

4.2.2 Horizon detection
In the first step of the method the location and orientation of the horizon line are
detected. Horizon detection is useful in maritime electro optical data for various purposes
being registration for mobile sensors such as buoys, maritime vessels, unmanned aerial
vehicles [24]. Further, the horizon line can be used as a reference to limit the regions of
interest and reduce the execution time of detection.

In literature, basically three main approaches for horizon detection can be distin-
guished: projection based, region based and hybrid approach. In this project, projection
based has been selected due to its simplicity and computational speed. Projection meth-
ods computes the edge map of the image by using edge detectors. Then, it is projected
to another space where prominent line features in the edge map can be identified easily
[15].

In maritime scenario, horizon often appear as a straight line and therefore is expected
to be simple. Consequently, some of the assumptions of the horizon extraction algorithm
include that the sky is visible and there is a horizon in the images. The general nota-
tion and derivation is inspired by Bao, Xiong, and Zhou work “Vision-based horizon
extraction for micro air vehicle flight control” [2].

The given algorithm is based on the orientation projection method which includes,
image preprocessing, projection of scope determination, pixel projection calculation, pro-
jection direction determination with maximum projection value and horizon estimation.
The algorithm is extracted from Bao, Xiong, and Zhou work and the following is an
adaptation with some enhances of the algorithm.

The main changes made in the algorithm are:
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• the use of the Canny edge detector,

• incorporation of an optimal threshold threshold selector,

• resize of the image to increase computational speed,

• increase the orientation accuracy by selecting larger projection directions,

• algorithm to estimate the goodness of the horizon line estimation.

Image preprocessing
First step is image preprocessing, which involves noise removing, resize of the image, im-
age binaryzation and edge detection. By adjusting the size of the image, computational
time is reduced in the case the image’s size is considerable. Further, Gaussian filter is
used to remove high noise produced by the different shapes of the sea such as waves,
foam, etc.

Since it is taken the existence of a horizon, there is also a local intensity difference
between the sea surface below the horizon and the air (or coast) above the horizon (or
coast line). This can be used to select a threshold to binarize based on the statistical
properties of the image. Brief description of the threshold selection is explained below.

Input frame from Figure 4.2 is assumed to be sampled to form a L x M (320 x 240)
discrete gray scale image with integer density values from the range [1,m]. Suppose that
the total number of the pixels with gray level is ni. Then the total number of the pixels
in the image is given by

N =
m∑

i=1
ni (4.1)

The probability of each gray level is

Pi = ni

N
(4.2)

Separate the gray levels into two groups C0 = {1,2,..,k} and C1 = {k+1,k+2,...,m} by
the integer k. Then the probabilities and means of C0 and C1 are given by{

ω0 = ∑K
i=1 Pi

µ0 = ∑k
i=1 iPi/ω0(k) = µ(k)/ω0(k) (4.3)

{
ω1 = ∑m

i=k+1 Pi = 1 − ω0(k)
µ1 = ∑m

i=k+1 iPi/ω1(k) = [µ − µ(k)]/[1 − ω0(k)] (4.4)

where ω = ∑m
i=1 iPi is the statistical mean of the whole image gray levels. According to

4.3 and 4.5,
µ = ω0(k)µ0(k) + ω1(k)µ1(k). (4.5)
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The variance between the two groups is

σ2 = ω0(k)[µ0(k) − µ]2 + ω1(k)[µ1(k) − µ]2. (4.6)

The optimal threshold k is the gray level by which σ2(k) is maximum. Once the optimal
threshold is found binaryzation is implemented by

G(i, j) =
{

255, G(i, j) > k
0, G(i, j) ≤ k

, i = 1, ...., L, j = 1, ..., M (4.7)

Where G(i, j) denotes an observed density value of the pixel (i, j). After applying
optimal threshold edge detection is implemented.

Several methods can be used in the edge detector such as LoG (Laplacian of Gaussian)
operator, Prewitt, Robert, Sobel, Canny etc. The canny operator is adopted in this
project since it is less likely than the other methods to be fooled by noise. After being
processed by the Canny detector a binary image is obtained, in which the line information
is prominent.

Figures 4.3 and 4.4 shows an example of the process described above. First, the RGB
image is converted to a greyscale (figure 4.3). Then it is resized and high noises removed
( figure 4.4a). Figure 4.4a is shown in a greyscale. Then an optimal threshold that
separate the grey levels in two groups is applied (figure 4.4b) and the image is binarized.
Lastly, edges in the binary image are detected.

Orientation Projection Algorithm
The orientation projection algorithm takes place after image preprocessing. First, 162
projection directions are defined, which are denoted by the orientation number m(m =
0, 1..., 161). This value was selected in order to cope with all the possible orientations
and have a good performance. In order to balance the computational precision with the
speed, projection directions are chosen from 0 ◦ to 45 ◦ and from 135 ◦ to 180 ◦ (0 ◦ and
180 ◦ are considered as the same direction). One may notice, that directions larger than
45 ◦ and smaller than 135 ◦ are not taken into account since horizon line rarely appear
in those directions in a maritime scenario. Therefore the orientation projection can be
made for an image in the selected direction.

Figure 4.3: Conversion from color image (left) to greyscale image (right).
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(a) Noise removing and re-
size

(b) Global threshold selec-
tion

(c) Egde detection

Figure 4.4: Preprocessing procedure in an image for horizon detection

Since the image is binary, white pixels (defining edges) are used to obtain the projec-
tion value, which is the number of white pixels along the selected projection direction
in the image. The maximum projection value in each direction and the position corre-
sponding the maximum value are recorded. The horizon line is then drawn based on
the projection direction and the position where the global maximum projection value is
obtained.

Figure 4.5 shows the sketch map orientation projection. Two coordinate systems are
shown, the image coordinate system defined by OX and OY and the projection axis
coordinate defined by OP. Where O is the common origin of the two coordinate systems,
Φ is the orientation angle dependent on the orientation number m, representing the
projection direction. OP is the projection axis, which is perpendicular to the selected
orientation angle Φ. A and B are the projection limits. L1L2 is a line parallel to the
selected projection direction, which is vertical to OP. (x, y) is the coordinates of a pixel
on L1L2. n is the position at which the line L1L2 is projected onto OP.

P

B

A

O

n

C

L1

s2

X

Y

s1

L2

Φ

a	binary	image

(x,	y)

Figure 4.5: Sketch map of orientation projection for an image

Once main parameters are defined, all the pixels of the images are projected to
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the projection axis along the selected projection direction within the limited scope. The
relationship between the projection coordinate n and the coordinates (x, y) of a projected
pixel located on L1L2 satisfies the following equation

n = −x sin(Φ) − y cos(Φ), 0 ≤ Φ ≤ π
4 and 3π

4 ≤ Φ ≤ π (4.8)

P (x, y) is defined as the pixel projection values of the pixel (x, y),

P (x, y) =
{

1, G(x, y) = 255
0, G(x, y) = 0 ≤ k

(4.9)

and Pm(n) represents the projection value of the image pixels along the line L1L2

Pm(n) =
∑

(x,y)∈L1L2

P (x, y). (4.10)

Figure 4.6 shows a pixel projection curve of an image in the selected direction m. The
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Figure 4.6: Pixel projection curve of an image in the projection direction m

peak of the projection value Pm occurs at the position n0. This peak means that the
longest edge detected in the selected direction Φ passed through n0. Those values, m,
Pm, n0 are recorded so they can be used for further calculations. One example of this can
be seen in Figure 4.7, where an original image is preprocessed and the pixel projection
computed in one direction. The left image is an original image captured from a on-
board camera. The right one is the preprocessed image with the sketch map of the pixel
projection curve in one direction. The line OD represent the projection direction. The
curve above the projection axis is the orientation projection curve.
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P

O

A

D

Figure 4.7: Original image and the pixel projection result in one direction

Figure 4.8: Three-dimensional graph of orientation projection

In order to analyze all possible directions, the image has to be projected in all direc-
tions then a three dimensional plot is obtained as seen in figure 4.8. Values recorded
previously (orientation number, m, maximum projection value Pm and projection posi-
tion n0) are used to find where the global maximum projection value is. Once the Pmax

is obtained is straightforward to obtain the horizon line using the projection direction
m and the position n corresponding to the peak Pmax as it is shown in the following
equation
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Φ =
{

m × π
4×80 m ∈ (0, 80)

m × π
161 m ∈ (81, 161)

y = −x tan(Φ) − n

cos(Φ)
Φ ∈ [0,

π

4
] ∪ [3π

4
, π]

(4.11)

Figure 4.9 gives some processing results for different weather conditions. It can
be seen that the horizon can be extracted not only from fine images captured in fair
conditions but also from blurred images captured in cloudy or even foggy days. Further,
the algorithm is effective for both color images (Fig. 4.9a and Fig. 4.9b) and gray images
taken from a Near Infra-Red (NIR) camera (Fig. 4.9c).

(a) Image captured in fair conditions (b) Image captured in fair conditions

(c) Image captured from a NIR camera (d) Image captured in a foggy day

Figure 4.9: Horizon extracted (red line) from video images
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Evaluation horizon line
In order to check the goodness of the horizon estimation it has been developed an evalu-
ator that measures the whether the horizon has been detected correctly. The evaluation
method is needed in order to continue the process of object detection correctly. For
example, if the horizon is not well detected, the posterior process, namely, background
subtraction and foreground segmentation will lead in wrong results.

The evaluation method takes into account the ’strength’ of the lines that belongs
to the estimated horizon line. In 4.7 (left) it can be seen a prominent line that goes
from one side (left) to the other one (right) in the image that corresponds to the horizon
line. This line is produce by a bunch of small lines. The evaluation method observes
some aspects of the lines that conform the final line. These values give us an idea of the
goodness of the estimation.

Therefore, when the horizon is detected, the number of lines and the total length are
considered and through some thresholds that were fixed for some test images it will give
us whether the horizon is matched or not.

4.2.3 Background Subtraction
Once the horizon is detected next step is background subtraction. There is a large
collection of works related to background subtraction. Background subtraction can
be considered under two scenarios in a maritime environment: open seas and close
to the port/harbour. Both scenarios pose a challenge due to the dynamic of the water
background such as waves, wakes, foams and debris in the case of open sea and buildings
or stationary vessels in the case of close to port/harbour. The current literature in
maritime background subtraction almost exclusive deals in the first case.

Background subtraction technique is a tool for object detection, where a pixel-wise
statistical background model is used to classify the input video stream into foreground
and background regions. Detection performance relies on the modelled background. For
this purpose, 3 different methods for background modeling are presented in this section.

Method A is the most straightforward of the three methods. It consists of a back-
ground reference of the sea in the Hue Saturation Value (HSV) color space that is selected
manually.

Method B uses Gaussian Mixture Model to represent background based on the lu-
minance of the pixel. The histogram of both visible and infrared images are invariably
multimodal in some cases because of the presence of foam, debris or wakes. Therefore
Gaussian Mixture Model (GMM), which are suitable for representing multimodal back-
grounds [3, 35, 11, 13, 16] can be used for background modeling using pixel luminance
values.

Method C is similar to Method B but it presents a novel method that uses Discrete
Cosine Transform (DCT) based feature selection of background texture. It can be seen
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in a large range of maritime videos that the texture feature of sea surface is generally uni-
form and consistent. Considering this texture consistency of the sea-surface background
this method employs GMM for modeling different textures from background.

As it will see later these 3 methods provides different benefits depending on the
desired object to be detected. Method A is suitable for detecting small object such as
buoys whereas Method B and C have a better performance detecting larger objects such
as ships.

Table 4.3 shows an overview of the methods employed in this project.

Learning Method Feature Application Sensor
Method A No learning HSV histogram Buoys Visible range

Method B GMM Grayscale Ships Visible/Infrared
range

Method C GMM Texture Ships Visible/Infrared
range

Table 4.3: Background modelling techniques description

This methods are explained in the following separately.

4.2.3.1 Method A
Method A uses a reference mask defined previously. This method relies on light condi-
tions where colours are distinguishable. The reason why this method is simple is because
no learning is involved. First step consists of selecting a region of sea background from
the input image. Next this region is converted from Red Green Blue (RGB) to Hue
Color Value (HSV) color space which has a better performance. This was tested with
several images and it was found that HSV describes more accurately a region rather
than RGB color space. Now a sea mask is created and it is ready to be used to remove
sea from the image. This method only considers objects below horizon line like traffic
maritime signals (buoys). Therefore once the horizon line is detected, region above the
horizon is cropped in order to reduce processing time and reduce searching boundaries.

Figure 4.10 shows an implementation of this method. From 4.10a horizon is detected
and reference selected manually. This mask is then applied to remove pixels within
the defined mask. To illustrate this point, figures 4.10b and 4.10d show a background
removal using this method where sky has been cropped. Some advantages of this method
are that it is able to detect small objects and the background model is accurate enough
since it is selected manually by the user. However the aim of an autonomous ship, relies
on the fact that the user has the minimum interaction with the system. Further, this
method only detects objects below the horizon line. It is was initially though to detect
only buoys and due to the lack of time and and the better performance of other methods
Method A is only used for that purpose. Thus, as it was mentioned before, region above



4.2 Object detection using Method 1 33

(a) (b)

(c) (d)

Figure 4.10: Image subtraction using Method A

horizon is not considered since buoys will only appear in the sea. It is true that some
of them can be showed up closed to the horizon and may be cropped but those buoys
anyway far away and are very difficult to detect due to a poor resolution. Finally, it
is important to mention that Method A is only suitable for cameras operating in the
visible spectrum in daylight.

4.2.3.2 Method B
In order to give a better insight of this method, GMM is presented. Given the intensity
It of a pixel, the probability P (It) of that pixel belongs to the background is given as
Wang et al. [34]:

P (It) =
K∑

i=1
ωi,tη(It, µi,t, σ2

i ), i = 1, 2, ..., K (4.12)

where K is the total number of Gaussian distributions, ωi,t is the normalized weight
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of the ith Gaussian distribution at time t, µi,t and σ2
i,t are the mean and variance of the

iith Gaussian in the mixture at time t, respectively. The Gaussian probability density
function η is defined as

η(It, µi,t, σ2
i ) = 1

(2π)n
2 | σ2

i | 1
2
e

1
2 (It−µi)T (σ2

i )−1(It−µi) (4.13)

The procedure of pixel intensity-based background modeling is to simulate a mixture
of Gaussian distributions using pixel intensity values. Using GMM aims to estimate
unknown parameters of ωi, µi, Σi in the Gaussian probability density functions.

Learning of Gaussian mixture model
The learning mechanism of the proposed background modeling in [38] is described as
follows:

(1) Initialize the following GMM parameters as:

ωi,0 = 0, µi,0 = M0, σ2
i,0 = V 2

0 (4.14)

where M0 is set to 0, and V0 is set to a larger number.
(2) Calculate the Mahalanobis distance di from an observed input sample It to a

Gaussian distribution:

di =
(

(It − µi,t−1)T (σ2
i,t−1)−1(It − µi,t−1)

)1
2 , (4.15)

where It corresponds to the intensity value of a pixel in the input image I and di

measures the matching degree between It and the ith Gaussian. Let Td be the threshold
of maximum Mahalanobis distance from a input sample It to the cluster of center. If
di is smaller than threshold Td, then It is categorized into the ith Gaussian, and the
corresponding parameters in the ith Gaussian distribution are updated as:

ωi,t = (1 − α)ωi,t−1 + α,
µi,t = (1 − β)µi,t−1 + βIt,

σ2
i,t = (1 − β)σ2

i,t−1 + β(It − µi,t−1)2
(4.16)

where α denotes the learning rate of ωi, β denotes the learning rate of µi and σ2
i . Rest

of the parameters of the other K − 1 Gaussian distributions remains the same. If di

is larger than threshold Td, i.e. the sample It cannot match anyone of the K Gaussian
distributions, then all distributions are rearrange in a descending order according to the
fitness function:

Fiti = ωi

(σi)
(4.17)
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The mth Gaussian with the lowest fitness value by the following equation:

m = argmini(Fiti) ω′
m,t = α

µm,t = It (σm,t)2 = V 2
0 (4.18)

Moreover, all the weights are normalized as

ωi,t =
ω′

i,t∑K
j=1 ω′

j,t

i = 1, 2, ..., K (4.19)

where ω′
i,t and ωi,t are the original and normalized weights, respectively.

(3) Learning step (2) is performed until all samples are implemented. Then, all distri-
butions are rearranged according to the fitness function 4.17 and the first B distributions
are selected as the iutput background model,

B = argminb(
b∑

i=1
Fiti > Tb), (4.20)

where Tb is a threshold to select the number of Gaussian distributions for background
model.

It should be noted that the number of K Gaussian distributions is related to the type
of maritime scenario, i.e whether the images are captured in open sea where background
regions typically do not contain many elements (and K can be sufficient smaller for
modelling) or whether images are close to the coast/harbour where usually there are
more elements that may increase the number of elements. In experiments where K =
3-5 the methods has proven good performance.

Ship detection using background subtraction
The way this method is implemented is explained now. Since ships may appear within
both sea-surface and sky regions, background subtraction is implemented independently.

First step, needs of horizon estimation so both regions can be treated in two sep-
arately ways. Second step is to obtain a Gaussian distribution using learning method
explained above for both sea-surface and sky regions. Now that two background models
(each one for sea-surface and sky ) are formed image subtraction can be implemented.

Figure 4.11 shows two different frames from the same video. In figure 4.11a back-
ground model is obtained and then implemented in figure 4.11b.

Learning of GMM for background subtraction using figure 4.11a is shown in fig. 4.12.
As it was mentioned before, both regions (sea-surface and sky) are treated independently.
In this case K is selected equal to 3 due to the fact that there are a few elements in both
regions. In the bottom of the figure are shown the curves of the 3 different distributions
for each region.
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(a) (b)

Figure 4.11: Illustration of background subtraction using Method B. (a) Image used to
model background. (b) Image used for background removing from model obtained in
Image (a).

(a) Sky-surface (region above horizon) (b) Sea-surface (region bellow the
horizon)

(c) Object clusters in the sky-surface (d) Object clusters in the sea-surface

(e) Sky-surface Gaussian distributions (f) Sea-surface Gaussian distributions

Figure 4.12: Learning og Gaussian Mixture Model Using method B
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Figure 4.12 depicts different distributions using K equal to 3 in both cases. In the sea-
surface region it can be seen that these 3 distributions are properly clustered according
to the distribution. It is clear that the green region correspond (figure 4.12d) to the sea
surface whereas yellow represents the foam produces by the waves. In the same figure,
in the upper right corner a small piece (blue) of the boat it is also clustered in other
distribution. In the case of the sky modelling it is more conspicuous the different clusters
formed after the GMM learning. Sky appears in the yellow part of the image, mountains
in the background an some small pieces of ships are represented with green and finally
ships are depicted with color blue. This can also be represented with the curves in the
bottom of the figure where for K=3 the 3 different Gaussian distributions are plotted.
Curves with the largest peak and narrowest variance represents the sea-surface/sky in
the picture. In the case of the sky, the second peak (2nd Gaussian distribution, blue
color) describes the mountain whereas in the case of the sea the red curve describes the
foam existing in the sea. The other remain distributions (green colors in both cases)
represents the foreground regions.

Once the the two background models are obtained they can be implemented in fu-
tures frames. Procedure is applied in both regions. An image pixel is classified as
foreground/region if the Mahalanobis distance di defined in equation 4.15 is larger or
smaller than threshold Td. This is repeated until all pixels are inspected.

(a) Image used for background
modelling

(b) Image used for testing back-
ground model

Figure 4.13: Image subtraction using Method B
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After background subtraction, the objects are enclosed in the bounding boxes by
morphological operations. This part is presented later.

4.2.3.3 Method C
Method C is inspired by the work of Zhang, Li, and Zang [38], where novel sea-surface
background modeling algorithm using DCT-based GMM was presented. Essentially,
energies coefficients in each DCT block are calculated to feed the learning process of
GMM. Once all the ocean regions are modeled, the objects in these regions can be
detected by classifying each image block into background or foreground. The method
consists of three main steps, namely, (1) decompose the luminance component of an
input image in block and apply DCT to these blocks, (2) calculate coefficient in each
block and (3) GMM learning. In order to make easier the understanding of the method
figure 4.14 illustrates the steps. A color input is converted into grey scale values.

10
80

	p
ixe

ls

1920	pixels

Figure 4.14: Example of image used for illustrate method C. Color image (left) and
greyscale image

Image decomposition
First the image luminance component (greyscale image from figure 4.14) is decomposed
into 8×8 non-overlapped blocks and the DCT is applied to these blocks:

Ai,j = αiαj

7∑
m=0

7∑
n=0

Imncos
π(2m + 1)i

16
cos

π(2(n + 1)j)
16

i, j = 0, 1, ...7 (4.21)

where Imn is the pixel value at location (m, n) in the 8×8 image block, and Aij is the
DCT block. The normalized weight αi = 1

2
√

2 , if i = 0;otherwise, αi = 1
2 . Each 8×8

block includes 1 DC coefficient and 63 AC coefficients.

Texture-Based feature vector X generation
The textured-based features in sea-surface background can be considered as the spatial
distributions of intensity variations. Zhang, Li, and Zang defines the texture feature
as a three dimensional vector in DCT domain, as shown in Figure 4.16. The DCT
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Figure 4.15: Decomposition of the input image in blocks of 8 × 8 and DCT application

coefficients depicted by different colors account the spectrum component in the corre-
sponding direction. To elaborate, white region R0 in the upper left corner denotes the
direct-current component; R1 (green), R2 (yellow), R3 (gray) regions represent the ver-
tical, diagonal and horizontal frequency variation, i.e., horizontal, diagonal and vertical
texture information.

R0

R3

R2

R1

DCT	block
Figure 4.16: Frequency portioning for texture features in a 8×8 DCT block. .(Left) 8×8
block obtained from figure 4.15. (Right) Texture feature description where each color
represents a frequency variation in space.

Next energies E1, E2 and E3 of region R1, R2 , R3 respectively are calculated to
generate the texture-based feature X:

X = (E1, E2, E3)T (4.22)

where the region Ek(k = 1, 2, 3) is defined as follows

Ek =
∑

i,j,Rk

(Aij − Āk)2 (4.23)
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where Ai,j(i.j ∈ Rk) are DCT coefficients in the region Rk(k = 1, 2, 3), and Āk is the
average of DCT coefficients of Regions Rk:

Āk = 1
| Rk |

∑
Rk

Aij k = 1, 2, 3 (4.24)

This yields a corresponding texture feature vector denoted by Xi(i = 1, 2, ..., N) for each
block where N is the total number of blocks or feature vectors within the sea-surface
background region. Now, it is possible to model the texture background of sea surface
using these texture-based feature vectors.

Learning of Gaussian Mixture Model
Now the background surface is categorized into K clusters using GMM. Procedure is
similar to the one explained previously for Method B. Let D = X1, X2, ..., Xn account
for a sample set of 3-dimensional feature vectors X defined in Eq. 4.22. Each sample
corresponds to a DCT block from K clusters with a certain probability. To quantify, the
probability of Xt based on Gaussian distribution is written as :

P (Xt) =
K∑

i=1
ωi,tη(Xt, µi,t, Σi), i = 1, 2, ..., K (4.25)

which is similar to Eq. 4.12 with two main differences: (1) µi,t and Σi, t is the covariance
matrix of the iith Gaussian in the mixture at time t, respectively and (2) that the
Gaussian probability distribution η is defined as :

η(It, µi,t, Σi) = 1
(2π)n

2 | Σi | 1
2
e

1
2 (It−µi)T (Σi)−1(It−µi) (4.26)

Since the DCT is an orthogonal transform, coefficients in a DCT block are indepen-
dent of each other [34]. Therefore, the three component E1, E2, and E3 (coefficient
energies) of X are mutually independent. Further, the covariance of independent vari-
ables is zeros and the covariance matrix Σi,t is a diagonal matrix:

Σi,t =

σ2
1,i,t 0 0
0 σ2

2,i,t 0
0 0 σ2

3,i,t

 (4.27)

where σ1, σ2 and σ3 are the standard deviations of E1, E2, and E3, respectively.
Two images are used to show the implementation of this method. Figure 4.17 shows

the sample of images used for modeling the background. It includes one image (left)
captured with a color camera and one image (right) captured with a monochrome camera.
The results for the color image are shown in figure 4.18 where the number of Gaussian
distributions K is changed. For K=2 this method achieves to distinguish between texture
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produced by sky an sea and the rest of the elements. For K = 3 the wakes produce by
waves are also classify and the ship and two buoys are distinguish. For K = 4 and K=5
the results are almost similar. In both it is clearly identify the ship and buoys and the
rest of the background (wakes, sea, sky...).

Figure 4.17: Example of two images for bacground modelling using texture features
in 8 × 8 blocks. Color image containing one fishing boat an two buoys (left). Image
captured from a monochrome camera containing a ferry and some building on land.

K=2 K=3

K=4 K=5

Figure 4.18: Results for background modeling using method C for color image. K
represents the number of Gaussian distributions used for modeling

Figure 4.19 shows the result for the image captured with a monochrome camera. It
includes a ferry and some buildings on land in the background. For K =2 it only classify
in two categories and it sky, some parts of the building are one category. For K =3 sky,
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sea and building appear to be classified in three different categories. Also some reflections
in the water allocated in the category of the buildings. For K=4 and K=5 it seems to
perform similar and some elements of the land are categorized as well. However this is
one of the worst scenarios for background modeling since it is very difficult distinguish
where the different elements of the image are.

K=2 K=3

K=4 K=5

Figure 4.19: Results for background modeling using method C for image captured with
a monochrome camera. K represents the number of Gaussian distributions used for
modeling

This demonstrates that the method performs correctly and it shows that the number
of K Gaussian distributions is related to the type of maritime scenario.

4.2.4 Foreground Segmentation
After background subtraction, objects are enclosed in bounding boxes by morphological
operations as it is described in Prasad et al. [25]. Morphological operations used in a
given image P consist of morphological opening and closing, which are the combinations
of dilation and erosion using the same structuring element Q for both operation:

Opening : P ◦ Q = (P ⊖ Q) ⊕ Q (4.28)

Closing : P • Q = (P ⊕ Q) ⊖ Q (4.29)
where ⊕ and ⊖ denote the dilation and erosion, respectively. In this project, the im-
proved morphological close-minus-open (CMO) technique presented in Westall et al. [37]
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is applied to enhance the foreground segmentation:

I ′ = (I − (I • SE)) + (I − (I ◦ SE)) = 2I − ((I • SE) + (I ⊕ SE)) (4.30)

where SE denotes the structuring element, I denotes the input image containing fore-
ground, and I ′ denotes the enhanced foreground results.

Implementation of this method can be seen in fig 4.20. First the horizon line is esti-
mated so we can subtract both sea-surface and sky background (figures 4.20a and 4.20b).
Second step is removing background using in this case Method B (figure 4.20c). Then
morphological operations are applied; first morphological closing and second morpholog-
ical opening (figures 4.20d and 4.20e). Structuring element used with this method was
a rectangle of 16 × 1 dimensions had a good performance in some images for removing
line created in the horizon 4.20d. This structuring element is parameter to consider due
to the fact, that a large value will remove objects that are far from the camera whereas
a small value will result in small object that will no be erased. Last step is to create a
bounding box using a label for each of the blocks showed in figure 4.20e.

4.2.5 Classification
Once the RoI is found as it is shown in Figures 4.20 and 4.21, classifiers appear. The aim
of a classifier is to categorize or distinguish an element based on some patterns defined
by the category or class that represents. For instance, a buoy has some features that
differs from features of a ship or a kayak. Therefore, classification needs samples to train
as well as a definition of each category. In this project two main classifiers have been
used, i.e Support Vector Machine (SVM) classifier and Convolutional Neural Networks
(CNN) classifier. In the following sub-sections this methods are presented as well as
some examples that illustrate their performance.

(a) Horizon detection (b) Background subtraction (c) Foreground segmenta-
tion

Figure 4.21: Object detection using Method A

Categories used for training classifiers and detectors (this last is presented in the
following section) and the number of images used for each category are shown in table
4.4.
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(a) Original image (b) Horizon detection

(c) Background subtraction (d) Morphological closing

(e) Morphological opening (f) Egde detection

Figure 4.20: Bounding boxes after morphological operations

Some basic definitions are given below in order to aid the comprehension of the
sections that are now presented.

• Feature vector: is just a vector that contains information describing an object’s
important characteristics. It can take many forms; a basic feature representation
of an image can be the raw intensity of a pixel or a more complex feature can be
circularity, gradient magnitude or gradient direction.
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• Supervised Learning: machine learning task where a funtion is shaped by infer-
ence data in the form of input-output pairs.

• Unsupervised learning: machine learning task where a function is inferred from
just input data.

Category images Category images
Buoys 94 Fishing boat 413
Cabin Motorboat 751 Large sailboat 941
Cargo Ship 844 Open motorbooat 220
Cruise Ship 704 Personal watercraft 177
Ferry 659 Small boat 593
Small sailboat 700
Total number of
images 6096

Table 4.4: Categories used for training classifiers and detectors. Repeated for conve-
nience from table 4.4

4.2.5.1 Classification using SVM
This section containing SVM classifier was extracted from Eduardo Vazquez thesis and
the following is a summary of his results.

A Support Vector Machine (SVM) classifier is a multi-class image classifier, that
assigns a given image to a certain category within a finite range of categories. It is
considered a supervised learning method, since instances for every class are provided
through annotated images. The process for building and applying such a type of classifier
consist of three main steps: building a vocabulary, training the classifier and applying
the classifier to images.

A visual vocabulary is composed by a collection of visual words, i.e, mutually exclu-
sive groups, each of them classified according to features extracted from images. Features
are recognizable structures of elements in the environment, and can be processed using
several techniques. Features are important to consider since they can help us to describe
numerically some regions of an image. Most popular techniques are the Scale Invariant
Feature Transform (SIFT) or Speeded Up Robut Features (SURF). SIFT method is
widely used and robust to rotation and small changes of illumination, scale, and view-
point whereas SURF method is inspired by SIFT but several times faster [28]. Visual
words are assembled by firstly, extracting features from a number of images and sec-
ondly, grouping those features by means of clustering. This clustering is an iterative
process that is processed until it results in compact and distinctive groups of similar
features, that correspond to visual words. The clustering process used is a simple par-
titioning method: k-means clustering, that iteratively assigns features to their closest
cluster centers and recalculates those centers.
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(a) SURF features (b) Visual vocabulary pipeline

Figure 4.22: Bag of visual words

Once visual words are obtained for each image through feature extraction, SVM
classifier training is implemented. SVM classifier takes the visual vocabulary as an
input and produces a multi-class classifier. Figure 4.22 shows the process to train the
SVM classifier. First, every visual word obtained on images used for training is encoded
into a visual word histogram. This procedure is employed for all images in the training
set. Further, each histogram, also called feature vector or support vector, is stored and
finally the application of the SVM algorithm allows to distinguish between classes by
means of optimal hyperplanes.

(a) Procedure for obtaining feature vector from visual
word histogram

(b) Illustration of SVM per-
formance

Figure 4.23: Illustration of feature vector and SVM

Once the SVM classifier is trained by using a large and representative set of images
from different classes it can be applied to new images so it assigns them to one of those
classes or categories. Procedure is straightforward, for each image, features are extracted
and the feature histogram is formed. Then, the image is assigned to the category to
which its histogram belongs according to the division drawn by planes in the histogram
spaces.
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4.2.5.2 Classification using CNN
This section containing CNN classifier was extracted from Eduardo Vazquez thesis and
the following is a summary of his results.

Now the use of Convolutional Neural Networks (CNN) classifier is described. CNN
training is made by first, obtaining an optimal classifier and then testing it in new
images to perform the classification task on them. Procedure implemented such as CNN
training and relevant learning technique (transfer learning) is covered in this sub-section.

An appropriate training of a CNN consists on determining the optimal values of the
model parameters such as weights and biases. Similar to SVM, every categories are
defined previously through annotated images. During the training, models are adjusted
so the probability of the model performing a correct classification increases. Training
is completed when this process is completed for every image of each category. This
probability is reflected on an error function minimization, which is backpropagated so
that the model parameters are updated to the optimal ones.

In order to have a much faster training process transfer learning has been imple-
mented. Transfer learning is a particular method used very often in machine learning
for training purposes. For reducing the time of the process an already trained neural
network is used as starting point for the development of the new model. This neural
network is built with different classes to those of the original training. The training
consist of retraining only the last layers, those specifically trained for the original set
of classes, so the are adapted to the new set of classes. General scheme can be seen in
figure 4.24 Once a CNN has been trained, it can be used to classify new images. For

Figure 4.24: General scheme used for training CNN classifier

every input image, the CNN outputs an array of scores relative to the classes which
represents the probability that the image belongs to them. Then the image is assigned
to the class with the highest score.

An implementation of this two methods for classifying bounding box form figure
4.21c is shown in figure 4.25. The score of the classification appear in the top of the
bounding box. This score is a percentage output in the classifier function.
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(a) Buoy detection using SVM classifier (b) Buoy detection using CNN classifier

Figure 4.25: Implementation of Classifiers

4.2.6 Summary
Method 1 for object detection using computer vision was presented in this subsection.
This method include several steps that can be seen in figure 4.1. We can distinguish two
main parts in this method, namely Region of Interest (RoI) detection and Classification
of this RoI. Since the aim of object detection is not only detecting the objects but also
classify them both part are important. The algorithm presented for detecting the RoI
consists of three main steps; first the horizon detection, second background subtraction
(sea and sky) and finally foreground segmentation which in this case uses morphological
operations. The background modeling approach for ship detection was the Method B
which consists of using the value of the pixel for background modeling. In the case
of buoys the method implemented includes a manually selection of the sea background
region. Foreground segmentation includes morphological operations that aims to erased
small objects in the image and enclosed different parts of an object that can be segmented.
Once the RoI are defined, a pre-trained classifier has the duty of classifying the different
bounding boxes contained in an image.

4.3 Object detection using Method 2
Method 2 is described in this section. As it was described previously, the main difference
between both methods is that detection and classification takes places internally in the
case of Method 2. This section containing ACF detector and Faster RCNN was extracted
from Eduardo Vazquez thesis and the following is a summary of his results.
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4.3.1 Detection using ACF
An ACF detector is a single class detector that is trained through supervised learning
to identify objects of a certain class in an image. Work presented in this sub-section
is based on Dollar et al. [7]. This method mainly consists of two stages: training of
the detector and implementation in images. Training process is composed of channel
features computation and learning process.

In the channel feature computation, a number of channels are computed (such as
normalized gradient magnitude or histogram of oriented gradients) for every training
image as it is shown in figure 4.26. Then, pixel blocks are summed and smoothed for
every channel. Features correspond to single pixels lookups in those aggregated channels.

Figure 4.26: Scheme for ACF training

The learning process is considered as supervised and uses the AdaBoost (Adaptive
boosting) algorithm [5]. This algorithm creates a classifier of a given category by com-
bining weak classifiers. Weak classifiers are basically decision trees as shown in figure
4.26 (right) that from an given image it yields in a binary output, namely, whether the
image belongs to that category. Each weak learner has a weight that iteratively cho-
sen based on its accuracy on the training set. Therefore accurate decision tree models
contribute more to the final estimation. This process yields in a strong learner.

Once the ACF detector is obtained is ready to be implemented. For every image,
the detector will find features in order to identify objects of a certain category in each
image.

4.3.2 Detection using Faster RCNN
A Faster RCNN detector is a multi-class detector. It is composed of a modified CNN,
that includes a layer known as Region Proposal Network (RPN), which aims outputting
Regions of Interest (RoI) from images that can later be classified by the latest layers of
the CNN. Therefore, training of Faster RCNN involves four consecutive training steps,
two for specifically training the RPN and two for training last layers of the CNN. Figure
4.27 shows Faster RCNN structure of how the algorithm works. One may notice that
the way the algorithm detect objects is similar to the method presented in the previous
section (Method 1).

The algorithm consists of 4 main steps that are now described. First, there are a
series of convolutional layers that extract features from input images, creating activation
maps. Then based on these activation maps, RPN outputs regions of interest. Next, all
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Figure 4.27: Faster RCNN scheme

this RoI are passed to other convolutional layers, that finally output the classification
scores for every RoI.

Regarding training, it is supervised and takes place in the following steps:

• Initial RPN training: all parameters of the RPN are optimized using a set of
training imags with annotated bounding boxes.

• Initial CNN training: parameters belonging to the rest of the layers of the CNN is
trained for classification of the image regions proposed by the RPN.

• RPN retraining: this step constitutes a fine-tuning of the parameters obtained
from the first of the training.

• CNN retraining: this step is the equivalent to the third step for the CNN layers
that are not part of the RPN. The parameters of those layers are initialized to the
values obtained at the second step.

4.3.3 Summary
This section presents the two main detectors algorithms used in this section. One, ACF
detector training consists of computing several features for each input image and then
used weak classifiers that yields in a binary output, namely, whether the image belongs
to that category. On the other side, Faster RCNN detector is composed o a modified
CNN where the RoI is computed in an other layers of the neural network.
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4.4 Results
Results for horizon and object detection are presented in this section.

4.4.1 Horizon detection results
In order to give verify the effectiveness of the proposed method, two different tests were
compared from the different results available. First, a comparative with other methods
used in [25]. Secondly, an evaluation of the precision and recall scores is accomplish to
analyze the performance of the method proposed.
Comparative among other methods
A qualitative comparison of the methods employed in [25] and the method proposed in
this project is provided in table 4.5. For quantitative comparison on Singapore Maritime
dataset, the representation of horizon shown in fig. 4.28 is used. Where Y is the distance
between the center of the horizon and the upper edge of the frame and α is the angle
between the normal to the horizon and the vertical axis of the frame. Then it is used
the position error | YGT − Yest | and the angular error | αGT − αest | as performance
metric. Where the sub-index GT makes reference to the real horizon line and est to the
estimate horizon.

y

x

air

sky

Y

!

(0,	0)

Figure 4.28: Representation of horizon for quantitative comparison of horizon detection

The results provided by [25] include Hough transform [14] (referred to as Hough),
Radon transform [15] (Radon), multi-scale median filter [4] (MuSMF), Ettinger et al.’s
method [8] (ENIW), and Fefilatyev et al.’s method [12] (FGSL). Hough and Radon are
projection based, MuSMF, ENIW and FGSL are alternative methods to projection based
method. It is clearly see that the method proposed has a better performance for both
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on-shore and on-board videos among the other methods. Time of detection was also
compared as an average of the processing time per frame for each method. In the case
of the method proposed the real-time performance was assessed on an Intel i5 Macbook
Pro with 8GB RAM. As noted, method proposed has the shortest average processing
time among the other methods.

Position error (pixels)
| YGT − Yest |

Angular error °
| αGT − αest | Time/

frame (s)Mean Q25 Q50 Q75 Mean Q25 Q50 Q75
On-board videos

Hough 219 131 229 295 2.6 0.6 1.7 3.4 0.3
Radon 372 213 362 517 40.6 1.5 3.4 87.7 2.7
MuSMF 269 156 283 379 1.8 0.5 1.2 2.5 0.9
ENIW 120 63 116 166 1.9 0.5 1.2 2.5 hours
FGSL 120 63 117 165 1.8 0.5 1.2 2.5 12.8
Method
Proposed 7.8 0.1 21.12 3.94 0.44 0.11 0.22 0.42 0.26

On-shore videos
Hough 208 26 194 354 1.2 0.2 0.7 1.5 0.26
Radon 313 28 359 549 32.9 0.2 0.4 88.1 2.0
MuSMF 60 25 49 85 1.2 0.2 0.4 1.1 0.9
ENIW 121 15 94 163 1.2 0.2 0.4 1.3 hours
FGSL 112 12 91 162 1.2 0.2 0.4 1.1 12.3
Method
Proposed 16.4 1.6 3.5 11.5 0.3 0.13 0.19 0.31 0.16

Table 4.5: Quantitative Comparison of methods for horizon detection. The smallest
error in each column is indicated in bold.

Evaluation of the precision and recall rates
In order to verify the effectiveness of the proposed horizon detection, precision and recall
rate are adopted:

Precision = NT P

NT P + NF P

Recall = NT P

NT P + NF N

(4.31)

where NT P is the number of true positives, NF P is the number of false positive, and
NF N is the number of false negatives. Here, when the method estimates the horizon
detection either that estimation corresponds to the real one (TP) or that estimation
does not matched the real horizon (FP). On the other hand, if the methods estimates
that it did not matched the horizon either that estimation is actually true (TN) or the
estimation is corrected but the algorithm thinks that it did not matched the horizon line
(FN). Clearly, the higher the precision and recall are, the better the horizon detection
performance is.
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Table 4.6 depicts the results of the set of values that determines the precision and
recall for different datasets. The selection of those that sets include images taken in
Hundested and Singapore where the different scenarios in the images contain ships,
land, several weather conditions (images containing haze, clouds) and several objects
that challenged the horizon detection. Singapore dataset also includes NIR images.

The average precision and recall are 90.1% and 98.4%, respectively as listed in table
4.6. This means that from the total 1210 number of images a 98.4% of the horizon lines
were detected correctly and that the algorithm achieves a 90.1% of horizon detection
precision. It is noticeable, that approximately 8% of the horizon are false positive
meaning. This is due to the fact that some of the images (Data Sing (on shore)) contain
a bunch of ships that prevent the correct detection. However nearly a 90% of the
estimation are TP and that gives us a good values for precision and recall rates. An
assessment of the time is also performed which results in 0.13 seconds per image. Such an
effective horizon detection method, provided a solid basis for the following background
modelling and object detection.

Database number
of images TP TN FP FN Prec. Recall Time(s)

Data collection 1 126 105 2 14 5 0.882 0.955 0.164
Data collection 2 46 40 3 3 1 0.930 0.976 0.185
Data collection 3 50 40 0 10 0 0.800 1.000 0.177
Data Sing. (on board) 290 281 0 9 0 0.969 1.000 0.075
Data Sing. (on shore) 399 340 5 53 1 0.865 0.997 0.083
Data Sing. (on shore)
NIR 299 273 8 11 7 0.961 0.975 0.087

Total 1210 1079 18 100 14 0.901 0.984 0.128

Table 4.6: Precision and recall evaluation.

4.4.2 Object detection results
In order to evaluate the performance the detections enclosed in bounding boxes are
compared against the ground truth objects and judged to be true or false positives by
measuring bounding box overlap. A detection is considered as correct (true positive) if
the intersection over union (IOU) ratio of the bounding box eq 4.32 is larger than 50%
[9]:

IOU = Area(Bd ∩ Bgt)
Area(Bd ∪ Bgt)

, (4.32)

where Area(Bd ∩ Bgt) denotes the intersected area (number of pixels) of the detected
and ground truth bounding boxes, Area(Bd ∪ Bgt) denotes their union. Associated
objects with IOU smaller than 50% or unassociated objects are labelled as false positives.
False negatives are ground truth objects that are not matched. Figure 4.29 shows the
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overlapping area between the ground truth region and the detected region. Here it is
also used the precision and recall rates from equation 4.31 to measure the performance
of the model. Clearly, a high value of precision means a low value for false alarms, e.g,
false detection of a ship can be derived from a low precision.

Figure 4.29: Illustration of IOU for object detection

Original Image (left). On the right picture ground truth objects (red boxes) and detec-
tion results (yellow box with name of the object and score)

The way results are presented are in a comparative structure. To elaborate, two
different datasets were used including visual and NIR images. One of the datasets
contains images taken in Hundested (Figure 2.6) and the other dataset is a selection from
the Singapore database (Figure 2.4). Results of the 4 approaches include an average of
the precision and the recall for each of the datasets and some relevant precision-recall
curves.

A brief repetition of the 4 different approaches is made for convenience. Method 1
includes Method 1a and Method 1b. They both consists of a first detection of the RoI
and second classification. Detection is the same for both methods while classification is
different. Method 2 includes Method 2a (ACF detector) and Method 2b (Faster RCNN
detector).

The comparison results are shown in Table 4.7. The table shows the results for the
localization of the objects, i.e, the ROI finder part of Method 1 and the detection in
Method 2. Therefore the values for classification are not included in the table due to the
great amount of categories employed in the classification. It can be seen that Method
1a and 1b will have the same results, that is why results for that detection is fused in
the same raw.

It is clearly, that the best performance for object detection is using Method 2b. The
Method 2b outperforms the other two methods for detecting a RoI in terms of precision
and recall rates. From the Average column, we can see that Method 2b achieves the
highest precision (83%) for the test images but the other two methods only obtain a 1.5%
and 0.4%. Further, in the case of the NIR images it has a 95% of precision. However, it
can be also seen in the Average column the low value for the recall rate for all 3 methods.
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Method Hundested Singapore AverageVisible NIR
Prec. Recall Prec. Recall Prec Recall Prec Recall

Method 1
(RoI finder) 0,8% 6,0% 3,0% 20,0% 0,6% 0,4% 1,5% 8,8%

Method 2a 0,1% 9,0% 0,4% 20,0% 0,6% 8,0% 0,4% 12,3%
Method 2b 60,0% 7,0% 94,0% 24,0% 95,0% 10,0% 83,0% 13,7%

Table 4.7: Results for object detection

In the case of Method 2b, only a 13.7% of the objects are detected and with the other
two detectors only obtain a 8.8% and 12.3% of the objects, respectively.

In order to understand those results a discussion of the results is done. In the
case of Method 1 , the poor performance is due to the background content variety in
the test images. The different changes in the background may have cause the poor
performance. These results shows how sensitive is this method for changes from one
background to another and the need of an appropriate tuning of the parameters as
K (number of distribution in the GMM) and Tb (the threshold to select the number
of Gaussian distributions). High dynamic backgrounds, e.g, large waves, reflections,
sheen (in the case of sea), and clouds, sun rays, lands, mountains (in the case of sky
background modeling) will need a large K whereas for flat waters and a color uniform
color distribution K will be smaller. In this experiment, K was set to 3 for both sea and
sky since for some test images was working perfectly Further, morphological operations
relies on the Structuring element employed in the performance. Therefore the amount
of parameters and thresholds of this method make difficult the achievement of a good
performance. Certainly, these set of parameters needs to be update depending on the
maritime scenario.

Method 1 and Method 2a perform almost similar, neither providing adequate preci-
sion and recall.

Finally method 2b has better performance in terms of precision. This state of the art
technique shows good results compared with the other conventional method for detecting
objects. The suitable and large dataset used for training provides high precision score.
However, the low value in the recall is due to the fact that in some images farther ships
are not detected by the algorithm (Figure 4.31). Therefore when the method is evaluated
and compared with the ground truth object yields a poor recall result. This can be seen
in Figure 4.30, which depicts the precision-recall curve for the Singapore visible dataset.

When Method 1 detects something that it considers as an object, that object is then
classified. The performance of these classifiers with the tests showed in Table 4.7 are
difficult to evaluate due to the low scores in precision and recall for Method 1. However
during the experiments, the CNN (Method1b) classifier showed a better performance
than the SVM (Method1a) classifier. This can be seen in the figure 4.31 where some far
ships are classified as buoys for Method 1a meanwhile Method 1b classifies those ships
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Figure 4.30: Precision-recall curve of the Method 2b for object detection from the dataset
of the visible camera from Singapore

The ending point of the curve indicates the final precision and recall rates

within the ships categories.
Figures 4.31, 4.32 and 4.33 presents the comparison of varying scene content using

the four object detection methods. Boxes in red color represent the ground truth region
and the classification of the object. Yellow boxes shows the objects detected by the
algorithm.

Method 1a, 1b and 2a all suffer from false detections caused by bad visibility, wakes,
waves. The different background and shapes in waves in images produces these false
detections. As a result, some small regions in the sea-surface background are modelled
incorrectly as foreground, due to the fact that waves introduce a high contrast with the
respect surroundings. This problem becomes more serious in the case of Method 2a
where the number of RoI detected are far from detecting relevant objects in the images.
This might be caused by the process the ACF detector uses for detecting objects. The
lack of a algorithm inside the detector that deals with the correct location of the object
may produced the poor result in detecting the object. The use of the AdaBoost algorithm
may cause the poor performance when it needs to classify the object.

In comparison, Method 2b does not label any sea region as an object what explains
its good results for the precision score. Consequently this method success in detecting
correctly objects and in its posterior classification. This confirms that the Faster RCNN
using neural networks will lead to a good performance with an appropriate training.
However, this method fails in detecting objects that are far as it is shown in figure 4.31.
Far ships are in a low resolution what may affect to the detection and a posterior precise
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Method	1bMethod	1a

Method	2a Method	2b

Figure 4.31: Detection results by the 4 methods. Image from Singapore visible camera
dataset

classification.

Method	1bMethod	1a

Method	2a Method	2b

Figure 4.32: Detection results by the 4 methods. Image from Singapore NIR camera
image dataset

We asses the real-time performance on an Intel Core i7 with 8GB RAM. All the
algorithms were implemented in Matlab. Table 4.8 gives the average processing time
per image by the 4 detectors and classifiers algorithms. As it can be seen, Method
2a consumes the longest time whereas Method 1a and Method 2b processing time are
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Method	1bMethod	1a

Method	2a Method	2b

Figure 4.33: Detection results by the 4 methods.Image from Hundested dataset

shorter among the other two Methods. Such a large time for Method 2a arises from one
reason: the algorithm that process and extract features suffers from false detections that
subsequently have to be classified.

Method 1a Method 1b Method 2a Method 2b
time (ms) 3586 5340 11636 3743

Table 4.8: Average processing time per image

4.5 Summary
Four different approaches for object detection and classification at sea has been designed
and compared. According to the different approaches they can divided in to classes
depending on the technique employed, namely RoI finder and classifier (Method 1) or
detector (Method 2). The input (image) and the output (object detected and category
of the object) are the same for both methods.

Method 1 first, finds a region where an object is detected trough the RoI algorithm.
To elaborate, an algorithm to detect the region of interest is designed and tested. The
experimental results with various scenes have demonstrated that the proposed horizon
detection approach can achieve both improved horizon detection accuracy and enhanced
real-time performance in comparison to traditional horizon detectors. Once the horizon
is detected the background is subtracted. In order to find an appropriate background
subtraction, 3 different approaches have been presented and considered. Due to the
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complexity to adjust on of the approaches, only were implemented two of them. When
the background is suppressed in the image and after some morphological operations to
enhance the detection, classification is performed. To proceed, two different classifiers
were used, namely SVM and CNN classifiers. These techniques consists of extracting
features from the RoIs and classify them according to some parameters trained off-line.
The experimental results for object detection led into poor results due to the need of
tuning the parameters for detection.

Method 2a is a single class detector that is trained to detect the object of certain
class in an image. However the results show that the process inside the algorithm is not
accurate enough for detecting objects. This might be caused by the process the ACF
detector uses for detecting objects. The lack of a algorithm inside the detector that
deals with the correct location of the object may produced the poor result in detecting
the object. The use of the AdaBoost algorithm may cause the poor performance when
it needs to classify the object.

Method 2b is a multi-class detector that is composed of a modified CNN that includes
a layer that outputs the region of interest that can be later classified in the latest layers
of the CNN. This method outperforms among the other approaches due to the intensive
training with a pre-trained CNN that aims to detect objects. This techniques achieves
a 83,0% and 13,7% of averaged precision and recall for the 3 datasets used for training.
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CHAPTER 5
Electronic Sea Chart

When a mariner navigates into an unfamiliar, he/she uses a nautical chart to familiarize
him/herself with the environment, determine the locations of hazards, and decide upon a
safe course of travel. An autonomous surface vehicle (ASV) would gain a great advantage
if, like its human counterpart, it can learn to read and interpret the information from a
nautical chart.

In the past, knowledge and information about the sea was storage in paper sea charts
that provide seafarers a safer navigation. Nowadays, all that information has been
collected in what is called Electronic Nautical Chart (ENC). ENCs contain extensive
information on an area, providing indications of rocks and other obstructions.

Due to some complications to obtain an ENC, ENC are only treated theoretically.
Main points presented in this chapter are shown below.

• Section 5.1 presents what is an ENC and why it is so important for a safer navi-
gation.

• Section 5.2 briefly presents sensor fusion architecture technique.

• Section 5.3 describes how ENC information can be integrated to enhance situation
awareness.
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5.1 What is an ENC?
Navigating properly is mainly dependent on 3 main points, namely, knowing where is
the position of the ship, what are the conditions in that position and in the vicinity and
which direction should the ship follow to reach its destination. These points can be deal
with a proper combination of the correctly ship’s position with available information
about the local environment. An electronic chart ensures the availability of both of
these at sea.
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23.7 Chart Functions

23.7.1 Navigating the Vessel

The general functions of navigation are route planning,
route monitoring, and route documentation. Similar to
paper charts, this includes the ability of a digital system

• To determine the optimal route, with navigational
and economical viewpoints taken into considera-
tion.

• To ensure that the route can be safely sailed, e.g.,
by identifying navigational aids, marking position
lines, and fixing the ship’s position, course correc-
tions, and speed.

Fig. 23.12 A typical human–machine interface (HMI) of an electronic navigational chart, including the graphical chart,
the main menu for control (right-hand side), an information line (status bar) to display numeric information (top), and
a function line to activate common navigational functions (bottom) (Source: Hagenuk, Kiel)

Electronic chart systems introduce a new level of per-
formance in maritime navigation. As an interactive
real-time navigation system, it is much more than a sim-
ple device to reproduce a conventional paper nautical
chart on a screen. Moreover, the functions of elec-
tronic charts are not limited, as when using a paper
chart, to presentation of the included information graph-
ically. Complex integrated navigation and information
systems make it possible to present selected situa-
tional information from a complex dataset together with
navigation sensor information, all to support ship navi-
gation through route planning and monitoring in a very
effective way. Therefore, they also include all basic nav-
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Source: Vetter et al. [33] (try to find the corret one)

Figure 5.1: A typical human–machine interface (HMI) of an electronic navigational chart

The introduction of digital technology on-board vessels marked the beginning of elec-
tronic navigational charts development. As it was said before, digitalization of nautical
charts are still being developed and some are very difficult to get access to them. Un-
like land-base navigation technology, marine equipment undergoes strict supervision by
national and international bodies. Reason of this strict supervision is that shipping is
international in nature, consequently shipping nations of the world cooperated based
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on regulations agreed under the umbrella of the International Maritime Organization
(IMO) and in the case of the ENC the International Hydrographic Organization (IHO)
[33]. Electronic chart display and information system (ECDIS), as it is also known this
technology, had become a mature technology and is about to send paper charts into sea
navigation history.

The general functions of navigation are route planning, route monitoring, and route
documentation. Electronic chart systems introduce a new level of performance compared
with conventional paper nautical chart. Figure 5.1 shows an example of an ENC includ-
ing the graphical chart, the main menu for control (right-hand side), an information
line (status bar) to display numeric information (top), and a function line to activate
common navigational functions (bottom).

Generally, the functions of an electronic chart are [33]: to determine the optimal
route, with navigational and economical viewpoints taken into consideration and to
ensure that the route can be safely sailed, e.g., by identifying navigational aids, marking
position lines, and fixing the ship’s position, course corrections, and speed.

This project treats mainly with identifying navigational aids. A navigational aid is
any sort of marker which aids the traveller in navigation. Common types of such aids
include lighthouses, buoys, fog signals, and day beacons, Appendix A. These navigational
aids will be used to contextualized and correlate information from sensors.

5.2 Sensor Fusion
This section aims to give the reader an insight of the sensor fusion method. This part
is only presented theoretically and without going into specifics due to the lack of time
of the project.

Sensor data fusion techniques have been extensively employed on multisensor envi-
ronments with the aim of fusing and aggregating data from different sensors and for
obtaining a lower detection error probability and a higher reliability by using data from
multiple distributed sources [6]. In our case those sensors are the cameras and the radar.

In the case of sensor data fusion for automotive applications, the task consists of
creating and all-around detection system to overcome the deficiency of an individual
sensing device. There are many works that have been carried out this problem through
several approaches. In this project and to the lack of information serialfusion technique
has been employed.

Serial fusion is an architecture that uses the information from one sensor and then
that information is complemented with the other one. An application of this method is
shown in [30] and [21] for classifying pedestrians using a laser and a camera. First the
laserscanner segments the scene and then provide some Region of Interest (RoIs), which
are confirmed to match pedestrians by means of a vision based classifier.

The architecture presented is extracted from [30] and [21] and the following is a
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rewrite of their method but using a radar instead of a laser. This approach contains
some modules subdivided in four systems: radar-based and vision-based systems, coordi-
nate transformation and classification. The radar-based detects the objects in the radar
space, estimates its position and size, and classifies them. The position of the objects is
then converted to the camera coordinates in order to define a RoI in the image space.
Then the vision-based system classifies the RoI received from the coordinate transforma-
tion module. Finally the classification module process the information from the others
systems and outputs the class of the objects and its position (Figure 5.2).

ROI Sub-ROI Classifier

Vision-based System
Final Classification 

 System

Coordinate Transform System

Radar-Camera Coordinates

Transformation

Object

Segmentation

Feature

Extraction

Position and

Size

Estimation

Classifier

Final

Classifier

Object class

and position

Radar-Based System

Figure 5.2: Module architecture using radar and vision information for detection and
classification of objects

Since the information from radar is not available and description for object detection
using cameras has been discussed in previous chapter, a brief description the coordinate
transformation system and the final classification system is described.
Coordinate Transformation System
The task of fusing sensor information leads to establishing a correspondence between
the measurements gathered by distinct sensors. In this case, it is necessary to find
a correspondence between the camera and the radar. The coordinate transformation
system shown in figure 5.2 calculates this correspondence. From the result of object’s
position and size estimation, in the radar space, is used to construct a ROI in the image
frame by means of a set of coordinates transformations. This correspondence between
objects detected in radar and the objects in image frame is used to create this ROI in
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the image plane. This process facilitates the process segmentation and detection in the
vision-based system and accelerates the computational speed of the classifier.
Combining Classifiers
The final classifier shown in figure 5.2 takes as an input the results from the classifiers
of the camera and the radar, which are then combined by means of another classifier
in order to produce an unique decision rule. This final classifier works with a vector of
structured data (feature array) as it is described in the next section.

The way this classifier works is by using a sum rule to combine (fuse) the classifiers
outputs from radar and camera. This decision rule inspired in [17] uses the Bayesian
framework to ultimate classify an object based on the outputs of each classifier.

Let us consider the number of classifiers as NC, and the feature vector used by the
ith classifier by Ωi. Let us assume that each class qi is represented by a class-conditional
probability density function p(Ωi | qi) and its as priority probability of detection P (qi).
Given the probability density function and the priori probability, the classical decision
rule can be stated as:

assign Object → if
P (qj | Ω1, ..., ΩNC) = maxkP (qk | Ω1, ..., ΩNC) (5.1)

Assuming that the features vectors are conditionally statically independent, and
that the posterior probability of each classifier do not deviate dramatically from the
prior probability, after some mathematical formulations [17], a ”practical” combinational
Bayesian decision rule is stated as:

assign Object → if
(1 − NC)P (qj) + ∑NC

i=1 P (qj | Ωi) =
maxN

k=1 = [(1 − NC)P (qk) + ∑NC
i=1 P (qk | Ωi)]

(5.2)

This ”sum” decision rule depends on the prior probability of occurrence each class qi

and the posterior probabilities yielded by the respective classifiers.

5.3 Contextualizing ENC information with
sensor measurements

This section describes how ENC information can be used to enhance object estimation.
To elaborate, a description of the methodology used is presented. As mentioned before,
this section is treated theoretically due to the difficulties to obtain an ENC. Therefore,
assumptions about the format on how information is presented in ENC are made based
on knowledge provide by maritime experts. First, an introduction to the hypothesis (as-
sumptions) of how information from the navigational aids is display on ENC is described.
Then the proposed Kalman Filter model for enhance object estimation is presented.
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5.3.1 Assumptions
Navigational aid position estimation such as beacons, buoys or lighthouses is considered
as the target of this section. The way as these sea marks are represented in a map is by a
type of map projection called Mercator. Mercator projection is widely used in maritime
navigation an it consists of using mathematical formulas to relate spherical coordinates
on the globe to planar coordinates (Figure 5.3). In the spherical system, horizontal lines,
are lines of equal latitude,whereas vertical lines,are lines of equal longitude. Latitude
and longitude values are traditionally measured either in decimal degrees or in degrees,
minutes, and seconds (DMS). Therefore, to refer the location of a navigational aid,
longitude and latitude are required.

Assumptions of the format of the sea marks in an ENC are:

• Longitude and attitude are given as planar coordinates.

• Accuracy of these values are provided so an estimation of the variance of these can
be made.

• These objects are considered statics which means that position is independent of
the time. In the case of buoys, tide changes can alter the position of them. This
fact, is translate as a decrease of the accuracy of the buoys position.

Figure 5.3: Illustration of coordinate systems. (Left) Spherical system representation.
(Right) Map projection; from spherical system to planar coordinate

5.3.2 Kalman Filter model for object detection
This section aims to present a model that allows enhancement in object detection using
values from the ENC as well as from sensors. To elaborate, Kalman Filter is used.
Figure 5.4 shows the general pipeline followed in the method that now is presented.
First, sensors, ie, radar and cameras compute from raw data to features an estimation
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of the objects. Then both estimations are fused, so a lower error probability. The fused
estimation is complemented with ENC information by using a Kalman filter.

Figure 5.4: General Pipeline for object detection correlation with the ENC

First a brief introduction to the model and notation used in the method are presented.
Then, the description of the method is introduced.

The general notation and derivation presented below is inspired by Thrun’s book
“Probabilistic Robotics” [31]. Despite the fact this book is mainly for land-robot appli-
cations it can be a good aid to give an idea how the problem could be focused.

Introduction
In general, sensors models are based on extracting features from the measurements. If
we can denote the feature extractor as a function of f , then the features extracted from
a range measurement at time t are given by f(zt). One of the main advantages of this
technique is the enormous reduction of time complexity. Example of this features varies
depending on the sensors; for range sensors, it is commonly to find lines or corners
whereas for cameras, relies on computer vision techniques to extract an specific feature
as edges, patterns or objects with distinct appearance.
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The most common model for processing sea marks assumes that the sensor can
measure the range and the bearing of the sea mark relative to the ship’s local coordinate
frame. Moreover the feature extractor might generate a signature. Signature might be
either numerical value, an integer that characterizes type or a multi-dimensional vector
characterizing a landmark. All this information can be represented as below:

f(zt) = {f 1
t , f 2

t , f 3
t ...} = {

 r1
t

ϕ1
t

s1
t

 ,

 r2
t

ϕ2
t

s2
t

 ,

 r3
t

ϕ3
t

s3
t

 ...} (5.3)

where r, ϕ, s are the range, bearing and signature, respectively.
The number of features identified at each time step is variable. However, many

probabilistic robotic algorithms assume conditional independence between features, that
is,

p(f(zt)|xt, m) = ∏
p(ri

t, ϕi
t, si

t|xt, m) (5.4)

In order to use this sensor model, we need a variable that establishes correspondence
between the feature f i

t and the sea mark mj in the map. This variable called corre-
spondence variable ci

t is the true identity of an observed feature. It is established that
ci

t ∈ {1, ..., N +1} where N is the number of sea marks in the map m. If ci
t = j ≤ N then

the ith feature corresponds to the jth mark. When ci
t = j ≤ N +1 a feature observation

does not correspond to any feature in the map m.
In practice, is rarely the case when correspondences can be determined with absolute

certainty. Most implementations therefore determine the identity of the sea mark during
localization. One of the strategies to cope with this problem is known as maximum
likelihood correspondence. This technique will be treated in detail below.

Once, the object detection and the correspondence is presented is time to describe the
predictor of the sea mark. The Kalman filter is a technique for filtering and prediction
in linear systems. It represents beliefs by the moments representation: the belief is
represented by the mean µ and the covariance Σ. Algorithm 1 depicts the Kalman
Filter algorithm. At time t, the belief is represented by the mean µt and the covariance
Σt. The input of the Kalman filter is the belief at time t1, represented by µt−1 and Σt−1.
These parameters are updated by using control ut and the measurement zt. The output
is the belief at time t, represented by µt and Σt.

In lines 2 and 3, the predicted belief µ̄ and Σ̄ is calculated representing the belief
b̄el(xt) on time step later, but before incorporating the measurement zt. This belief is
obtained by incorporating the control ut. The mean is updated using the deterministic
version of the state transition function 5.5, with the mean µt−1 substituted for the state
xt−1,

xt = Atxt−1 + Btut + ϵt (5.5)
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Algorithm 1 Kalman filter algorithm
1: input µt−1, Σt−1, ut, zt

2: µ̄t = Atµt−1 + Btut

3: Σ̄t = AtΣ̄t−1A
T
t + Rt

4: Kt = Σ̄tC
T
t (CtΣ̄tC

T
t + Qt)−1

5: µt = µ̄t + Kt(zt − Ctµ̄t)
6: Σt = (I − KtCt)Σ̄t

7: return µt, Σt

where xt and xt−1 are the state vectors, and ut is the control vector time at t, At and
Bt are state and control matrices that assure linearity between states. ϵt is a Gaussian
random vector that models the randomness in the state transition. In Line 3 covariance
is updated considering the fact that states depend on previous states through the linear
matrix At.

The belief b̄el(xt) is transformed into the desired belief bel(xt) in Lines 4 through
6, by incorporating the measurement zt. The variable Kt, Kalman gain, specifies the
degree to which the measurement is incorporated into the new estimate. Line 5 manip-
ulates the mean, by adjusting it in proportion to the Kalman gain Kt and the deviation
of the actual measurement, zt, and the measurement predicted, z̄t. Finally, the new
covariance is calculated in Line 6. This algorithm will be adapted to our problem and
then incorporated to the method present below.

Method
Problem description
Featured based maps consists of a list of features (l = m1, m2...) where each one posses a
signature and a location coordinate. The resulting measurement model is formulated for
the case where a feature at time t corresponds to a sea mark in the map. As usual, the
ship pose is given by xt = (x, y, θ)T where x and y determines the latitude and longitude
and θ the yaw.

Figure 5.5 shows the framework of the ship. There are two coordinate systems; one
of the coordinate framework of the global map, OG, and the other relative to the ship
location, Oship. In this case, the sea mark m and the ship are represented by global
coordinates (xG

m, yG
m) and (xG

s , yG
s , θG

s ), respectively. Sensors that provide information
of the location of sea marks brings that position in terms of the range, bearing and a
signature as shown in equation 5.3. Range and bearing (rship

m,sensor, ϕship
m,sensor) need to be

transformed from local to global coordinates (xship
m,sensor, yship

m,sensor). This is achieved by
the equation showed below,

xG
m,sensor = rship

m,sensor · cos(ϕship
m,sensor + θG

s ) + xG
s

yG
m,sensor = rship

m,sensor · sin(ϕship
m,sensor + θG

s ) + yG
s

(5.6)
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Figure 5.5: Illustration of a coordinate system of the global map

Now that Kalman filter algorithm is given, description of the model used for local-
ization of obstacles using sensor fusion and ENC information is presented. Figure 5.6
shows a scheme for estimate the position of the sea marks. In this case, sea mark k is
initialized from the ENC information. Then when the ship senses, fused the information
from sensors and estimates the correspondence. Correspondence, as explained below
gives a value of how good a measurement match with an object in the map. Therefore
if the sea mark m corresponds to the measurement j, Kalman filter is implemented and
new position of the sea mark updated.

Figure 5.6: Block diagram illustration of the algorithm proposed for estimate sea mark
position

As mentioned before, the aim of this section is estimation of sea marks. This is
equal to obtain the belief bel(xt), where xt is the state that represents the position and
signature of the sea mark, i.e, latitude (xG

m), longitude (yG
m) and type of sea mark (type),
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 xG
m

yG
m

type

 =

 x1,t

x2,t

x3,t

 = xt

σ2
x,m 0 0
0 σ2

y,m 0
0 0 σ2

s,m

 =

σ2
1,t 0 0
0 σ2

2,t 0
0 0 σ2

3,t

 = Σt, (5.7)

where Σt represents the covariance matrix of the state xt and σ2
1,t, σ2

2,t and σ2
3,t are the

variances of the latitude, longitude and the sea mark type of the mark m at time t,
respectively.

As before, each feature vector (measurement) contains three elements, latitude, lon-
gitude and signature,

zt =
[
xG

m,sensor yG
m,sensor sm,sensor

]T
(5.8)

The measurement probability p(zt | xt) model is given by the following expression,

z̄t = Ctx̄t + N (0, Qt) (5.9)

where Ct is a matrix of size 3×3 and N (0, Qt) is Gaussian noise and x̄t is given from
the prediction state from equation 5.13. In equation 5.15 are the given the matrices used
in the system.

Initialization
First, the algorithm initializes first belief bel(x0) from the information provided form

the ENC.xm,ENC

ym,ENC

sm,ENC

 =

x1,0
y1,0
s1,0

 = x0

σ2
x,m,ENC 0 0

0 σ2
y,m,ENC 0

0 0 σ2
s,m,ENC

 =

σ2
1,0 0 0
0 σ2

2,0 0
0 0 σ2

3,0

 = Σ0

(5.10)
where xm,ENC , ym,ENC and sm,ENC are the position and signature of the sea mark from
the ENC and Σ0 is the initial covariance matrix given from the variances of the ENC.
Correspondence estimation

The algorithm proposed for estimating correspondences is performed via a maximum
likelihood estimator. The maximum likelihood estimator determines the correspondence
that maximizes the data likelihood. Then a correspondence variable is choosen, by
minimazing a quadratic Mahalanobis distance function defined over the measure feature
vector zi

t and expected measure ẑt for the sea mark mk in the map.
Maximum likelihood correspondence, first determines the most likely value of the

correspondence variable and then takes this value for granted. This is equal to solve
equation,
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c̄t = argmax
ct

p(zt | c1:t, l, z1:t−1). (5.11)

Here ct is the correspondence vector at time t, zt = {z1
t , z2

t , ...} is the measurement vector
that contains the list of features, or sea marks observed at time t. Equation 5.11 after
some mathematical derivation [31] yields:

c̄t(i) = argmax
ct

det(2πSt)
1
2 exp{−1

2
(zi

t − z̄t)T [St]−1(zi
t − z̄t)} (5.12)

which selects the maximum correspondence c̄t that maximizes the likelihood of all mea-
surements zt. Here, St is the uncertainty corresponding to the measurement z̄t and the
Jacobian Ht of the measurement model.
Kalman filter

Once the correspondence is made the Kalman filter is implemented. It is divided into
two parts; prediction and update. First, it takes the last state to predict the next pose
for the sea mark. This value is then used to update the posterior states and covariance
matrix. Finally the output is the belief represented by xt ans Σt. In this case, prediction
is given by this expression,

x̄t = Atxt−1 + Btut−1 Σ̄t = AtΣt−1A
T
t . (5.13)

The equations for the measurement update yields,

Kt = Σ̄tC
T
t (CtΣ̄tC

T
t + Qt)−1

xt = x̄t + Kt(zt − z̄t)
Σt = (I − KtCt)Σ̄t

(5.14)

At =

1 0 0
0 1 0
0 0 1

 Bt =

0
0
0

 Ct =

1 0 0
0 1 0
0 0 1

 Qt =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
s

 (5.15)

One may notice, that the elements in the input matrix Bt are zero due to the fact
that there is not control in the system.

The algorithm proposed is shown in Algorithm 2. First the algorithm initialize the
sea mark k with the information from the ENC of that sea mark (Line 1). Once the
position is initialized, the algorithm waits until the sensors match that sea mark by
calculating the maximum correspondence along all the measurements (Lines 2 to 5).
Then the measurement that has been match is used to update the last prediction.To
elaborate, first prediction is computed (Line 6 to 10) and then last prediction (z̄t) is
computed as explained in equation 5.12. Finally, this measurement is used to update
last position estimation of that sea mark (Lines 11 to 14).
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Algorithm 2 Contextualizing ENC information with sensor measurements
1: initialization x0, Σ0, z̄0
2: input xt−1, Σt−1, zi

t

3: for all observed features zi
t do

4: j̄(i) = argmaxct
det(2πSt)

1
2 exp{−1

2 (zi
t − z̄t)T [St]−1(zi

t − z̄t)}
5: endfor
6: Prediction
7: x̄t = Atxt−1
8: Σ̄t = AtΣ̄t−1A

T
t + Rt

9: z̄t = Ctx̄t + N (0, Qt)
10: Kt = Σ̄tC

T
t (CtΣ̄tC

T
t + Qt)−1

11: Update
12: xt = x̄t + Kt(zt − z̄t)
13: Σt = (I − KtCt)Σ̄t

14: return xt, Σt

5.4 Summary
In this chapter a theoretical description of the implementation of the model for object
detection is presented. First an introduction of the different aids for navigation available
in an ENC are presented. Sea marks (aid for navigation) are useful for seafarer due to
the fact that depending on the feature (color, shape...) of that sea mark it gives a
different information. Then the sensor fusion architecture is presented. This technique
first takes the information from radar and created some ROI to classify the information
from camera. Both classifiers (radar and camera) are then combined in a final one that
provides the information of that object detected. Finally, an approach to have a better
estimation of sea marks using sensor fusion and the ENC is presented. The approach
consists of a Kalman filter implemented for each of the sea marks.
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CHAPTER 6
Test of object searching

This chapter presents the results and discussion for the experiment carried out with the
setup that will be used in the real implementation. The experiment aims to validate
results obtained with the previous datasets and how methods performed in a system
that could be used in cooperation with the rest of the sensors (radar and IMU).

• Section 6.1 describes the system setup and where the images were taken.

• Section 6.2 presents the results and discussion for the experiment carried. out with
the real setup.

6.1 Object system setup
The design of the system for measuring was carried out by DTU. However, it is interesting
to present how the system looks like to make easier the reader the understanding of the
setup. Figure 6.1 shows the construction for performing the experiment. It is composed
of a radar (R), a set of cameras (C1L, C1R, C2, C3), an IMU with the GPS integrated
and a computer that collects the data. The important setup regarding this project was
the set of cameras for collecting images, since the IMU and radar was not used in this
project. Only a monochrome camera (C2) and two color cameras (C1L and C1R) were
used for this test. FLIR camera (C3) was not used due to some problems with the
battery.

The experiment was carried out in Helsingør in daylight. The information of the
dataset content is shown in table 6.1. Color in the table concern to the captured images
from the two color cameras and Monochrome refers to the images from the monochrome
camera. Figure 6.2 shows a collection of images taken from camera 1 and 2 in the

number of images number of objects
ferry cargo ships

Color 866 1006 105
Monochrome 134 134 0

Table 6.1: Dataset content from Helsingør experiment .
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C1R
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C3

Figure 6.1: Platform used for measurement. In red are annotated different sensors.
Radar (R), Inertial Measurement Unit and GPS (IMU), two color cameras (C1L, C1R),
one monochrome camera (C2) and FLIR camera (C3).

Helsingør expedition. These images were captured in different environments (harbour,
open sea).

Figure 6.2: Set of images from from Helsingor experiment.

6.2 Results
Results for the experiment are shown in this section. As it was presented in the test
experiments, first the horizon line algorithm is evaluated and then the object detection.
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Horizon detection evaluation
Table 6.2 gives the results for the precision and recall for the experiment in Helsingør. For
1000 images, the average precision and recall are 98,84% and 96,27%, respectively. The
proposed algorithm achieves a 100% precision and recall averaged over 134 monochrome
images. Such a high scores indicate the effectiveness of the proposed horizon detection
method.

Number
of images TP TN FP FN Precision Recall Time(s)

Color 866 756 32 18 61 97,67% 92,53% 0,1076
Monochrome 134 134 0 0 0 100,00% 100,00% 0,0982
Total 1000 890 32 18 61 98,84% 96,27% 0,1029

Table 6.2: Precision and recall rates by the proposed horizon line detection in Helsingør
experiment

a b c

d e f

g h i

Figure 6.3: Horizon detection results in Helsingør using the proposed algorithm.

Further, this algorithm shows a good performance in both scenarios: open seas and
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close to port/harbour. Figure 6.3 depicts the horizon line marked in red color in a
set of images. The line detected in figures 6.3(a, b, c, g) confirms the adaptability to
scenarios were the horizon line is not well defined. Further, images captured in open sea
also presented a good performance for both color (figures 6.3(d, e, f)) and monochrome
(figures 6.3(h, i)) cameras. In the case of figures 6.3 (g, h, i) where region between sea
and sky includes buildings and land, horizon detections appear above the land (figure 6.3
(g, h)) or below the land (figure 6.3 (i)). Both estimations are considered correct since
the aim of this algorithm is to find a line that segments sky from sea, and in scenarios
like those, that problem is can be solved in the following background modeling step.
Object detection and classification evaluation
Table 6.3 lists the average precision and recall scores for color and monochrome cameras.
The Method 2b (Faster RCNN) outperforms the other two methods in terms of both
precision and recall rates. This method achieves a 88,52% and 40,30% in precision
and recall rates in monochrome pictures. In comparison, this method results the most
effective among two other methods with a 35,6% of ships detected in over 1000 images
with a total of 1245 object.

Methods 1 and 2a performs almost similar, neither providing adequate precision and
recall. In Method 1 we note that the presence of clouds contributes the presence of false
detections (figures 6.4 and 6.5). Further, the images with the monochrome camera were
captured in a harbour scenario where the presence of harbour made difficult the object
detection.

Method	1bMethod	1a

Method	2a Method	2b

Figure 6.4: Object detection for Helsingør using color camera

Classify algorithms (Method 1a and 1b) were difficult to evaluate in terms of precision
and recall due to the fact that classification was mainly based on the RoI and the poor



6.3 Summary 79

Method Color Monochrome Average
Precision Recall Precision Recall Precision Recall

Method 1
(RoI finder) 0,30% 0,30% 0,00% 0,00% 0,26% 0,26%

Method 2a 5,40% 0,18% 6,00% 1,50% 5,48% 0,36%
Method 2b 79,21% 30,87% 88,52% 40,30% 80,46% 32,13%

Table 6.3: Precision and recall rates in object detection for Helsingør experiment.

results on the RoI finder made difficult this task.

Method	1bMethod	1a

Method	2a Method	2b

Figure 6.5: Object detection for Helsingør using monochrome camera

6.3 Summary
In order to validate results obtained with the previous datasets and also study how
the proposed methods perform with the camera system setup this chapter presents the
results of the experiment carried out in Helsingør with the real system. To elaborate, a
color and a monochrome camera where used to collect a total of 1000 images with 1245
objects including (ferries and cargo ships).

Results for method 1 involves the evaluation of both horizon line detection and the
RoI finder. Horizon line detection achieves a 98,84% and 96,27% averaged precision
and recall scores, respectively. These results confirm the effectiveness of this horizon
detection method that is crucial in the following background modeling subtraction.
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Object detection assessment shows that the method 2b (Fast RCNN) outperforms
among 3 other proposed methods with a 80,46% and 32,13% of precision and recall
rates, respectively. The other two methods (method 1 and method 2a) performs almost
similar, neither providing adequate precision and recall.



CHAPTER 7
Conclusion

This chapter concludes the thesis, summarizing most important findings and presenting
some future challenges.

• Section 7.1 gives a brief overview of the work presented in this thesis.

• Section 7.2 underlines the most important findings in this thesis.

• Section 7.3 presents some future work that might be worth investigating.

7.1 Overview
This thesis has investigated four different approaches for object detection an classification
at sea using computer vision. This work was carried out to provide robust detection with
optical sensor (camera) with the aim of aiding maritime collision avoidance. The detector
uses 4 different approaches; three of them are conventional approaches whereas the other
uses the state of the art object detection classification framework Faster R-CNN.

Two of the conventional approaches consist of a Region of Interest finder. This multi-
scale algorithm includes an horizon line detector, a background subtraction process
and finally a foreground segmentation. First, a projection horizon detection method
is proposed. Second, three different methods for background modelling are presented
and discussed. One of the methods consists of selecting the region of the background
manually to proceed with the subtraction. The other two techniques include a Gaussian
Mixture Modeling; one applied to the value of the pixel whereas the other detects objects
by extracting texture features from DCT blocks. The next step is to apply a set of
morphological operations so the small object can be erased and the objects can be
detected properly. Once the object has been detected two classifiers categorize the
object according to the different trained classes. The classifiers include a SVM and a
CNN classifier.

Other conventional approach (ACF detector) consists of computing several features
for each input image and the used classifiers that yields in an output, namely, whether
the image belong to that category. Finally, Faster R-CNN is composed of a modified
CNN where the RoI’s and classifiers are defined and computed in different layers of the
CNN.
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Further, this work includes a brief introduction of how sensor fusion can be used to
enhance situation awareness using information from different sensors. In addition, some
of the important aspects of the ENC are presented so information from sensor fusion
can be correlated with an electronic sea chart.

7.2 Findings
The results includes first test with images from different datasets and finally with im-
ages captured with the cameras that will be used in the real implementation. In both
experiments two elements are evaluated, i.e, horizon detection and object detection.

Horizon detection is evaluated in the RoI finder algorithm. The horizon detection
method can extract the sea regions accurately for complex background modeling. It
achieves a 98,84% and 96,27% of precision and recall in the final experiment which
confirms its effectiveness to segment sky from sea. Background subtraction using two
of the techniques presented did not have a good performance due to the complexity of
the background and the sensitivity in tuning parameters of the background modelling.
As a result, the best result for this technique only achieves a 3% and 20% of precision
and recall. The main contribution of this approach for detecting a RoI is the horizon
detection algorithm proposed and the different proposals for background subtraction.

On the other hand, results show that the Faster R-CNN outperforms among the
other approaches due to the intensive training with a pre-trained CNN that aims to
detect objects. This techniques achieves a 80,46% and 32,13% of precision and recall in
the final experiment confirming the effectiveness of this method among the three other.
ACF detector performs similar to the RoI finder algorithm, providing an inadequate
precision and recall rates.

7.3 Future work
The presentation of 4 different approaches gives an idea of which one is better for an
application in a maritime environment. Regarding the RoI finder, the different back-
ground subtraction techniques can be enhanced by studying the performance with dif-
ferent parameters. Future work should also include improvement the recognition ability
to discriminate ships from other foreground objects such as buildings, harbor...

Concerning the findings in this thesis there are aspects which should be explored
further. Building a larger and more diverse training and test data set is one thing that
is necessary in order to evaluate the true robustness of such a detectors. Collecting image
data on the same path at different times of year with different targets would be ideal. In
the case of evaluating robustness, not enough data can be obtained. Another possibility
that should be explored is adding some background-classes to the training-data. Adding
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classes such as house, harbor and mountain to name a few, could help eliminate some
of the false positive detection.

In chapter 5 a theoretical introduction of how sensor fusion and ENC can be fused
is presented so the situation awareness of the vessel can be improved. In the tracking
pipeline it is also necessary to estimate the Cartesian coordinates of the detected vessels
coordinates by using sensor fusion and track them.
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APPENDIX A
Aids to Navigation

Classification of different marks extracted from [22]:

• lateral marks

• cardinal marks

• isolated danger marks

• safe water marks

• special marks

• marking new dangers

• other marks
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A.1 Lateral Marks
The conventional direction of buoyage, which must be indicated in appropriate nautical
charts and documents, may be either:

• The general direction taken by the mariner when approaching a harbour, river,
estuary or other waterway fr5om seaward

• The direction determined by the proper authority in consultation, where appropri-
ate, with neighbouring contruis. In principle, it should follow a clockwise direction
around and masses.

There are two international Buoyage Regions A and B, where lateral marks differ. The
current geographical division os these two Regions are shown on the world map.

 

 

 
IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 17 

 

Figure A.1: World map with Buoyage Systems A and B

Description of lateral Marks used in Region A are shown below:
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IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 15 

Figure A.2: Description of lateral Marks used in Region A

A.2 Cardinal Marks
Ther four quadrants (North, East, South and West) ared bounded by the true bearings
(NW-NE, NE-SE, SE-SW, SW-NW). The name of a Cardinal mark indicates that it
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should be passed to the named side of the mark. A Cardinal mark may be used, for
example:

• to indicate the deepest water in that area is on the named side of mark

• to indicate the safe side on which to pass a danger

• to draw attention to a feauture in a channel such as a bend, a junction, a bifurcation
or the end of a shoal.

• competent authorities should consider carefully before establishing too many car-
dinal marks in water-way or areas as this can lead to confusion, given their white
lights of similar charecteristics. 

 

 
IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 19 

Figure A.3: Cardinal Marks

A.3 Isolated Danger Marks
An isolated Danger mark is a mark erected on, or moored on or above, an isolated danger
which has navigable water all around it.

 

 

 
IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 20 

Figure A.4: Isolated Danger mark
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A.4 Safe Water Marks
Safe Water marks serve to indicate that there is navigable water all around the mark.
These include center line marks and mid-channel marks. Such a mark may also be used
to indicate channel entrance, port or statuary approach, or landfall. The light rhythm
may also be used to indicate best point of passage under bridges.

 

 

 
IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 20 

Figure A.5: Safe Water Marks

A.5 Special Marks
Marks used to indicate a special area or feature whose may be apparent from reference to
a chart or other nautical publication. They are not generally intended to mark channels
or obstructions where other marks are more suitable.

 

 

 
IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 21 

Figure A.6: Special Marks

A.6 Marking New danger
The term ”New Danger” is used to describe newly discovered hazards not yet shown in
nautical documents. ”New Dangers” include naturally occurring obstructions such as
sandbanks or rocks or man-made danger such as wrecks.

 

 

 
IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 22 

Figure A.7: New Dangers Mark
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A.7 Other Marks
A.7.1 Leading Lines/Ranges
A group of two or more marks or lights, in the same vertical plane such that the navigator
can follow the leading line on the same bearing.

 

 

 
IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 23 

Figure A.8: Leading Lines/Ranges

A.7.2 Sector Lights
A sector light is a fixed aid to navigation that displays a light of different colours and/or
rhythms over designated arcs. The colour of the light provides directional information
to the mariner. A sector may be used:

• to provide directional information in a fairway

• to indicate a turning poin, a junction with other channels, a hazard or other items
of navigational importance

• to provide information on hazard areas that should be avoided

• in some cases a single directional light may be used
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Figure A.9: Sector Lights
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A.7.3 Lighthouses
Definition of lighthouse is a tower, or substantial building or structure, erected at a
designated geographical location to carry a signal light and provides a significant day
mark. It provides a long or medium range light for identification by night.

 

 

 
IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 24 

Figure A.10: Lighthouses

A.7.4 Beacons
A fixed a-made navigation mark that can be recognised by its shape, colour, pattern,
top-mark, or light character, or a combination of these.

 

 

 
IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 24 

Figure A.11: Beacons

A.7.5 Major-Floating Aids
Major floating aids include lightvessels, light floats and alarge navigational buoys. Major
floating aids are generally deployed at critically locations, intended to mark approaches
from off-shores areas, where shipping traffic concentrations are high. It may provide a
platform for other AIDS to Navigations such as AIS an Aids to Navigation to assist
marine navigation.
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Figure A.12: Major-Floating Aids

A.7.6 Auxiliary Marks
These marks are usually outside of defined channels and generally do not indicate the
port and starboard sides of the route to be followed or obstructions to be avoided. They
also include those marks and shall be promulgated in appropriate nautical charts and
documents. Should not generally be used if a more appropriate mark is available within
the MBS.

 

 

 
IALA RECOMMENDATION R1001 The IALA Maritime Buoyage System   
Edition 1.0 June 2017  P 25 

Figure A.13: Auxiliary Marks

A.7.7 Port or Harbour Marks
Mariners should be careful to take account of any local marking measures that may be in
place and will often be covered by Local Regulation or by-lays. Before transiting an area
for the first time, mariners should make themselves aware of local marking arrangements.
Local Aids to Navigation may include, but not be restricted to, marking of:

• breakwater, quays and jetties

• bridges and traffic signals

• leisure areas

and other rivers, channels, canals, locks and waterways marked within the responsibilities
of competent authorities.
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