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ABSTRACT Reliable computer systems employ error control codes (ECCs) to protect information from
errors. For example, memories are frequently protected using single error correction-double error detection
(SEC-DED) codes. ECCs are traditionally designed to minimize the number of redundant bits, as they are
added to each word in the whole memory. Nevertheless, using an ECC introduces encoding and decoding
latencies, silicon area usage and power consumption. In other computer units, these parameters should
be optimized, and redundancy would be less important. For example, protecting registers against errors
remains a major concern for deep sub-micron systems due to technology scaling. In this case, an important
requirement for register protection is to keep encoding and decoding latencies as short as possible. Ultrafast
error control codes achieve very low delays, independently of the word length, increasing the redundancy.
This paper summarizes previous works on Ultrafast codes (SEC and SEC-DED), and proposes new codes
combining double error detection and adjacent error correction. We have implemented, synthesized and
compared different Ultrafast codes with other state-of-the-art fast codes. The results show the validity of the
approach, achieving low latencies and a good balance with silicon area and power consumption.

INDEX TERMS Adjacent error correction, double error detection, error control codes, fast codes, reliability.

I. INTRODUCTION
As technology scaling increases, the information stored in
key elements of a computer system, such as registers and
memories, may be perturbed by different physical mecha-
nisms [1]–[3]. Traditionally, error control codes (ECCs) have
been extensively employed in computers as a very efficient
method to protect information against errors [4]. The design
of ECCs is in continuous evolution, adapting their coverage
to new design needs and error conditions.

However, when using ECCs to increase computers relia-
bility, the protected circuits also increment their delay (due
to data encoding and decoding processes), silicon area occu-
pied and power consumption (both caused by the additional
interconnection lines and/or storage needed, as well as by the
encoder and decoder circuits).

Hence, the challenge when designing ECCs is to reduce
this overhead. According to the requirements, the design
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of new ECCs tries to provide a good balance between
error coverage, redundancy, and efficiency of their encoding
and decoding circuits in terms of area, delay and power
consumption.

For example, the main objective of an ECC designed to
protect the memory is to reduce, for a given coverage, the
redundancy. That is, the number of (redundant) bits added by
the ECC [5], [6]. As they are added to each word stored in
memory, its minimization is a key criterion in the ECCdesign.

Nevertheless, redundancy is not so important for all com-
puter components. For instance, the register file is an inte-
gral element of any microprocessor architecture. Although
its overall area is small, this is one of the most frequently
accessed components. Corrupted data in registers can quickly
spread to other elements of the system, due to their high
access rate. If protected by using an ECC, the temporal
overhead of the register file should be reduced as much as
possible, as this element is in the critical path of the processor
pipeline. An excessive delay introduced by encoding and
decoding operations might cause the register file to be a
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bottleneck, requiring a longer clock cycle and resulting in
a reduction on the working frequency. In the same way, the
clock cycle may also be affected when adding ECCs to other
registers, like inter-stage latches in pipelined processors.

Current technology scaling processes enable manufactur-
ing high-speed (faster) and high-density (smaller) processors,
but this makes registers to be much more sensitive to errors.
The problem becomes more important as the voltage level
supply used to operate the registers decreases [7]. In this case,
the memory cell critical charge and the energy needed to
provoke a single-event upset (SEU) in storage is reduced [8].
As shown by different experiments, in addition to traditional
single-cell upsets (SCUs), this energy reduction can provoke
multiple-cell upsets (MCUs), i.e. simultaneous errors in more
than one cell induced by a single particle hit [2], [9], [10].
Usually, they occur in the same word and, very likely, in
adjacent bits [11].

As deduced from previous paragraphs, protecting registers
against multiple adjacent errors seems of upmost impor-
tance [6]. This challenge increases as soft error rate does,
as predicted in [12]. In this way, the mechanisms for reg-
ister protection should be as fast as possible [13]. Different
approaches are summarized in [14] and [15]. Other remark-
able alternatives are the use of interleaving of simple codes
[4] (employed in this paper for comparison) and the use of
hardened memory cells [16]. Although some authors con-
clude that ECCs are a less interesting option, modern pro-
cessors for servers use ECCs in registers for fault tolerance
(e.g. Intel R© Xeon R© Processor E7 Family [17]).

This paper focuses on low-delay, multiple adjacent error
correction codes. Recently introduced, Ultrafast error control
codes are a family of ECCs with very low encoding/decoding
latencies. Moreover, the logic depth of the circuits does not
depend on the data word length. Ultrafast codes with sin-
gle error correction (SEC), single error correction-double
error detection (SEC-DED) and single error correction-
double adjacent error correction (SEC-DAEC) capabilities
were introduced in [14] and [15]. In this work, the error
coverage is still hardened, combining double error detection
with multiple adjacent error correction (xAEC), obtaining
new Ultrafast SEC-xAEC-DED codes. These codes have
been obtained applying the Flexible Unequal Error Control
(FUEC) methodology, developed and described in [18]. The
delays of the new codes mainly depend on the error coverage,
although a small dependency on the data word length may
appear due to implementation details, as explained later.

Ultrafast codes have been implemented and synthesized in
order to validate the error coverage and to measure the delay,
area and power overheads. They have also been compared to
other state-of-the-art fast codes, obtaining interesting results.

Therefore, the main novelty presented in this paper is the
combination of double error detection with multiple adjacent
error correction, achieving new Ultrafast SEC-xAEC-DED
codes. Furthermore, we have complemented the comparisons
performed in [14] and [15]. In this work, we have imple-
mented different designs in VHDL hardware description

FIGURE 1. Encoding, channel crossing and decoding processes.

language, and we have employed CMOS standard cell syn-
thesis to evaluate and compare them.

Although Ultrafast codes have been presented as a pos-
sible solution for register protection, it is remarkable that
their usefulness is not restricted to this case. If the required
redundancy is affordable, Ultrafast codes offer fast encoding
and decoding processes with a moderate area and power
overhead. For instance, they can also be useful to protect
high-speed memories or caches.

This paper is organized as follows. Section II introduces
previous works and basic concepts about error correction
codes. The methodology used to build the proposed codes is
described in Section III. Section IV includes an evaluation of
the codes and a comparison with previous proposals. Finally,
Section V presents conclusions and ideas for future work.

II. RELATED WORK
A. BASICS ON ERROR CONTROL CODING
An (n, k) binary ECC encodes a k-bit input word in an n-
bit output word [19]. The input word u = (u0, u1, . . . , uk−1)
is a k-bit vector that represents the original data. The code
word b = (b0, b1, . . . , bn−1) is an n-bit vector, where the
(n − k) added bits are called parity, code or redundant bits.
b is transmitted through an unreliable channel that delivers
the received word r = (r0, r1, . . . , rn−1). The error vector
e= (e0, e1, . . . , en−1) models the error induced by the channel.
If no error has occurred in the i-th bit, then ei = 0; otherwise,
ei = 1. Therefore, r can be interpreted as r = b ⊕ e. Fig. 1
synthesizes this encoding, channel crossing and decoding
processes.

The parity check matrix H(n−k)×n of a linear code defines
the code [4]. For the encoding process, b must meet the
requirement H · bT = 0. For syndrome decoding, syndrome
is defined as sT = H · rT, and it exclusively depends on e:

sT = H · rT = H·(b⊕ e)T = H · bT ⊕H · eT = H · eT (1)

There must be a different syndrome s for each correctable
error vector e. Syndrome decoding is done through a lookup
table that relates each s to the decoded error vector ê. If s =
0, we can assume that ê = 0 and r is correct. Otherwise, an
error has occurred. The decoded code word b̂ is calculated as
b̂ = r ⊗ ê. From b̂, it is easy to obtain û by discarding the
parity bits. If the fault hypothesis used to design the ECC is
consistent with the behavior of the channel, û and u must be
equal with a very high probability.

Referred to a binary word, the term Hamming weight w
denotes the number of ones in that word. As explained later,
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the Hamming weights of rows and columns of the parity
check matrix determine the properties of a code.

Hamming Single Error Correction (SEC) codes [5] can
correct an erroneous bit with simple and fast encoding and
decoding operations, and the lowest redundancy. An example
of implementation for these codes can be found in [14].

Extended Hamming codes are able to correct single errors
and detect double errors. They need an additional parity bit
(calculated as the even parity for the whole encoded word) to
achieve the double error detection. Additional explanation,
with an example of implementation, can be found in [15].

Hsiao SEC-DED codes [20] are an optimized version of
Extended Hamming codes. They are optimal minimum odd-
weight-column codes, i.e. all columns of the parity check
matrix have an odd number of ones, allowing the DED cover-
age. The detection logic is simplified, achieving lower delay,
silicon area and power consumption than conventional Ham-
ming SEC-DED codes. We will compare them to Ultrafast
codes in Section IV.

Increasing the error coverage frequently makes ECCsmore
complex and slower. For example, correction of multiple
errors in adjacent bits is achieved by the codes presented in
[6] (up to three) and in [21] (up to four). Multiple random
error correction is achieved by well-known BCH codes [4].
All these codes are designed to reduce the redundancy, but at
the cost of more complex and slower decoders.

B. FASTER ERROR CONTROL CODES
Hamming or Hsiao codes have been employed to protect
registers and memories against single and double errors.
However, as working frequency of VLSI systems increases,
reducing the delays introduced by the encoding and decoding
circuits becomes of paramount importance.

Different approaches can be found in the literature. The
terms ‘‘fast’’, ‘‘high speed’’, ‘‘low delay’’, etc. are frequently
associated to different ECCs. Anyway, what is considered
‘‘fast’’ depends on each application.

For instance, a method to reduce the timing impact of an
ECC for multilevel flash memories is described in [22]. In
multilevel flash memories, each memory cell stores more
than one bit. Thus, from a digital viewpoint, each cell stores
a multibit symbol, and a faulty cell may result in several
erroneous bits (belonging to the same symbol). The proposal
is compared to other classic approaches, and the results show
a reduction in the temporal overhead. The strategy is to
increase the redundancy to reduce both the Hamming weight
of the parity check matrix and the weight of the heaviest row.
Nevertheless, non-binary symbol codes are commonly more
complex than binary codes.

Fast decoding using binary ECCs is proposed in [23], but
only for a subset of critical bits. That is, the original data
includes ‘‘standard’’ bits and a small number of ‘‘important’’
bits. The proposed ECCs correct single errors and they can
decode faster the ‘‘important’’ bits. The strategy, in this case,
is based on correcting the ‘‘important’’ bits using only a

subset of the parity bits. Recently, these codes have been
improved to correct adjacent errors [24].

Fast decoding for the whole word is the objective of
Orthogonal Latin Square (OLS) codes [25]. They are one-
step majority logic decodable codes. ‘‘One-step’’ means that
the decoding is performed in a combinational circuit (without
iterative steps). This circuit implements a voter of several
check bits to correct, if necessary, the received bits. The
majority voter constitutes a simple and fast corrector. These
codes correct random errors, at the cost of a high redundancy
and additional overhead. In addition, these codes only exist
for a few word lengths.

Correction of adjacent errors in a simple and efficient
way is achieved by the codes presented in [26]. They com-
bine multiple error detection with vertical parity in a two-
dimensional layout. Due to their fast decoding, these codes
will be compared to our proposal in Section IV.

Finally, Low Delay (LD) codes proposed in [27] and [28]
can be applied to CPU registers protection. They share objec-
tives with our proposal. Due to the special interest for our
work, they are explained in detail in Section II.C.

A problem of all the aforementioned codes is that the logic
depth of the encoder and decoder circuits scales with the word
length. Hence, their latency will grow with longer words. As
explained later, one of the main advantages of our proposal
is that the logic depth introduced by the encoder and decoder
circuits do not depend on the word length.

C. LOW DELAY CODES
Low Delay (LD) SEC and SEC-DED codes [27] reduce the
time required to correct 1-bit errors when only the correction
of data bits is needed. These codes take advantage of the
minor interest of correcting parity bits in registers, as the
information stored is not rewritten in the same register once it
has been read, and the input data come from other processor
elements.

The idea behind LD codes is minimizing the number of 1s
in each column and in each row. By reducing the number of
1s in the columns, the decoding logic (i.e. the implementation
of the lookup table) can be simplified if all the columns for
data bits have the same Hamming weight w (more details can
be found in [27]). As the columns for parity bits have w = 1,
the columns for data bits will have w = 2 if only single error
correction is required. If additional double error detection is
desired, the columns for data bits will have w = 3.

On the other hand, the delay when computing the parity
bits in the encoder and the syndrome bits in the decoder can
be decreased by reducing the number of 1s in the rows.

Summarizing, the main characteristics of LD codes are:

• Encoder and decoder circuits are simpler than equivalent
Hamming codes, presenting equal or lower logic depths.
This reduces the delay.

• LD codes slightly increase the redundancy over tradi-
tional SEC and SEC-DED codes.

• LD codes only correct errors in data bits.
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• The logic depth of the encoder and decoder circuits
scales with the word length, as stated above.

Other Low Delay codes, with single and double adjacent
error correction properties, were presented in [28]. These
codes take advantage of the simplification of logic func-
tions when implementing the lookup table, among other
techniques.

D. PREVIOUS WORKS ON ULTRAFAST CODES
Ultrafast SEC codes were firstly introduced in [14]. We
designed them assuming that redundancy is not the main
concern, and focusing on reducing the temporal overhead.
Although these codes present a higher redundancy than
equivalent Hamming codes, the delay introduced is very
short. The requirements to build their parity check matrices
are:

1) Each column must be different and nonzero. It allows
the correction of single errors.

2) Each column assigned to code bits must have w = 1. It
allows easy encoding operations.

3) Each column assigned to data bits must have w = 2.
If the correction of parity bits is not required, it allows
simpler error location in the decoder circuit [27].

4) Each row must have w = 3. It allows decoder circuits
whose logic depth does not scale with the word length.

Matrices, circuits and more information can be found
in [14]. A similar approach was independently presented in
[29]. However, these approaches do not allow the double error
detection. In order to ease this coverage, Ultrafast codes were
reformulated in [15].

The new formulation allowed the design of Ultrafast SEC-
DED codes [15]. Their parity check matrices are generated
using these requirements:

1) Each column must be different and nonzero.
2) Each column assigned to code bits must have w = 1.
3) Each column assigned to data bits must have w = 3.
4) Each row must have w = 4.

Conditions 2 and 3 determine the new coverage: all the
columns of the parity check matrix have odd weight. There-
fore, all syndromes for single errors have oddweight, whereas
all syndromes for double errors have evenweight. This allows
the detection of 2-bit errors. Condition 4, as stated above,
allows decoder circuits whose logic depth does not scale with
the word length.

Examples, with their parity check matrices, circuits and
detailed explanation and information can be found in [15].

As adjacent errors are becoming more and more frequent,
we also presented Ultrafast SEC-DAEC codes in [15]. They
can correct single and double adjacent errors. To add this
coverage, a new requirement must be considered:

• All possible double adjacent errors must produce a dif-
ferent syndrome.

As all columns have odd Hamming weight, single errors
produce an odd weight syndrome and double adjacent errors

generate an even weight syndrome. If all these syndromes are
different, double adjacent errors can be corrected.

An example, with its parity check matrix, is detailed
in [15]. The complete process to design the decoder circuit,
where the simplification of logic functions is essential to
achieve the 4-gate delay, is also described. As explained in
Section III, this methodology is employed again to get low
decoding latencies.

III. ULTRAFAST ERROR CONTROL CODES
A. DELAY INDEPENDENT OF THE WORD LENGTH
When redundancy is not the main concern, and reducing the
temporal overhead is the main objective in ECCs construc-
tion (e.g. register protection), designers can employ differ-
ent techniques, mainly based on minimizing the number of
ones in rows and columns of the parity check matrix. With
these premises in mind, Ultrafast codes presented in Section
II.D were designed for fast encoding and decoding opera-
tions. Although these codes present a higher redundancy than
equivalent codes, the delay introduced is very short.

Let us consider Ultrafast codes as formulated in [15].
These codes are well suited for high-speed operation because:
i) encoders are 2-gate-delay circuits (assuming 2-input XOR
gates); ii) decoders are 4-gate-delay circuits; and iii) these
delays do not depend on the word length. As stated in Section
II.A, the decoding process has two steps: syndrome compu-
tation, and error(s) location and correction. The delay intro-
duced mainly depends on:

• The Hamming weight w of the heaviest row of the parity
check matrix H, for the first part.

• The complexity of the code, for the second part. It is
related to the weights of the columns of H, mainly a
consequence of its error coverage.

The weights of the rows in H scale with the word length k
for most of the codes. Hence, they have length-dependent
delays. Conversely, Ultrafast codes keep constant the weights
of the rows, independently of k . This can be achieved by
adding parity bits, which is their main concern. In fact, for
these codes, n – k = k , that is, the number of parity bits is
the same as the number of data bits (100% redundancy).

As Ultrafast codes have n – k = k , n = 2k . Therefore,
they have a k × 2k parity check matrix. By definition, the
k columns for data bits must have w = 3, and the k columns
for parity bits must have w = 1. For a given value of k , a
parity check matrix will have w = 3k + k = 4k (data plus
parity columns). Thus, a balancedmatrix will have 4k / k = 4
ones on each row, independently of the value of k . Therefore,
the encoding, as well as the first part of the decoding logic,
has always the same logic depth, independently of the word
length. In a hardware implementation, minimum variations
may appear on their delays due to wiring, parasitic capaci-
tances and inductances, and other implementation details. It
applies to the previous Ultrafast codes published in [15] and
to the new Ultrafast SEC-xAEC-DED codes presented in this
work.
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In addition, when only single error correction is required,
we can get the lowest decoding latency if the decoder only
corrects errors in data bits [27]. In this case, the second part
of the decoding logic only depends on the weights of the
columns for data bits ofH. Asw = 3 by definition, this part of
the decoding process is also independent of the word length.

But when multiple error correction is required, different
syndromes may indicate an error in the same bit. Even more,
these syndromes may have different Hamming weights and,
therefore, the technique proposed in [27] cannot be employed.
In these cases, the simplification of logic equations helps to
reduce the complexity of the decoder. In fact, the second part
of the decoding logic, i.e. the implementation of the lookup
table, is a truth table of a group of logic functions where the
inputs are the syndrome bits, and the outputs are the bits of the
estimated error vector. This technique was employed in [15]
to obtain the Ultrafast SEC-DAEC decoder with 4-gate delay,
and it is employed in this work as well.

For simplification, it is important to get as many ‘‘don’t
care’’ terms as possible. Due to their high redundancy, Ultra-
fast codes commonly have a high quantity of free syndromes
that can be treated as ‘‘don’t care’’ terms. In addition, Ultra-
fast codes have a low Hamming weight of their parity check
matrices (2n for all Ultrafast codes) and a low average weight
for their columns (2 ones per column). All these character-
istics allow better simplifications, compared to other ECCs,
where this ratio is frequently larger and dependent of k . Later,
we deepen into this methodology, but the results show that the
decoding delay mainly depends on the error coverage.

New Ultrafast SEC-xAEC-DED codes are presented next.
As an example, codes for 8-bit data words have been
designed, but longer word lengths can be easily achieved, as
discussed in Section III.C. Some comparisons are shown in
Section IV.

B. ULTRAFAST SEC-xAEC-DED CODES
The main novelty presented in this work is the enhancement
of Ultrafast codes to correct multiple adjacent errors, and to
detect double (non-adjacent) errors. It is done maintaining
the redundancy and low delays (proportional to the error
coverage), with reasonable increments in area and power
overheads.

The requirements for these Ultrafast codes are:

1) Each column must be different and nonzero.
2) Each column assigned to code bits must have w = 1.
3) Each column assigned to data bits must have w = 3.
4) Each row must have w = 4.
5) All correctable errors must have different syndromes.
6) All detectable errors must have a syndrome that is

different from all syndromes reserved for correction.

The explanation for requirements 1 to 4 is the same given in
Section II.D. Searching a matrix that achieves requirements 5
and III-Cmay result very complex.We have used the Flexible
Unequal Error Control (FUEC) methodology, presented in
[18]. Although a detailed explanation of the methodology is

out of the scope of this paper, it is briefly summarized in the
following.

After determining the values of n and k for the code to be
designed, error patterns to be corrected and detected must
be selected. Then, the parity check matrix H that satisfies
(2) and (3) is searched. E+ represents the set of error vectors
to be corrected, and E1 is the set of error vectors to be
detected.

H · eTi 6= H · eTj ; ∀ei, ej ∈ E+|ei 6= ej (2)

H · eTi 6= H · eTj ; ∀ei ∈ E1, ej ∈ E+ (3)

That is, each correctable error must have a different syn-
drome (2), and each detectable error must have a syndrome
that is different from all the syndromes generated by cor-
rectable errors (3).

To find the matrix, a recursive backtracking algorithm is
used. It checks partial matrices and adds a new column only
if the previous matrix satisfies the requirements. There are
2n−k– 1 combinations for each column. A big amount of these
combinations is discarded, as the algorithm is configured to
employ columns with Hamming weight 1 or 3 only, to meet
requirements 2 and 3 for Ultrafast codes. In addition, we have
included requirement 4 to discard partial matrices that have
rows with Hamming weight w > 4.
As an example, using the FUEC methodology we have

found a (16, 8) Ultrafast code which is SEC-5AEC-DED.
That is, it can correct single errors and up to five adjacent
errors, and it can detect double non-adjacent errors. LetH8 be
8× 16 parity check matrix for this code. It can be represented
as:

H8 =
[
I8×8 A8×8

]
=



10000000 10100010
01000000 01000101
00100000 10101000
00010000 01010100
00001000 10001010
00000100 01010001
00000010 00101010
00000001 00010101


(4)

where I is the identity matrix (columns for parity bits), and
A is the second half of the matrix, with the columns for data
bits.

It is noticeable that the same parity check matrix can be
used for lower error coverage. How to design a SEC-DAEC-
DED decoder (or 3AEC/4AEC versions) using the same
matrix is explained in Section III.D. Results are also evaluated
in Section IV. As stated later, lower error coverage results in
higher simplifications and, hence, in faster decoders.

The encoding and syndrome equations can be obtained
from the parity check matrix. The encoding equations for this
code are:

As it can be observed, the parity check matrix relates each
parity bit (b0. . . b7) with the data bits (u0. . . u7) required for
its calculation. Each parity bit is calculated XORing three
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data bits. Hence, the encoding implementation can be a circuit
whose logic depth is two (assuming the use of 2-input XOR
gates). As stated above, it does not depend on the word length.

The expressions for syndrome calculation are:

Again, the syndrome calculation can be implemented in a
circuit whose logic depth is two, independently of the word
length. Following the process shown in Fig. 1, next step is
the implementation of the lookup table, i.e. the computation
of the ê vector as a function of the syndrome. If the design
of the parity check matrix is correct, each correctable error
will have a different syndrome. This step is described, for
example, in [15]. The non-recoverable error (NRE) signal
indicates that an error is detected but cannot be corrected. It
is calculated in the same way. As the full lookup table is too
long, some sample lines are included here.

In this truth table, we can observe 17 logic functions
(16 bits from the estimated error vector, and the NRE signal).
The input of these functions are the eight syndrome bits.
Different cases can be described from the table:
• The no error situation generates the zero syndrome.
• Single errors produce a syndrome that must coincide
with the assigned column in the parity check matrix (e.g.
00000010 for r1 or 01000101 for r10).

• Multiple errors included in the correction coverage gen-
erate a syndrome that is the bitwise XOR of the columns
assigned to the affected bits (e.g. 00000011 for r0 and r1
or 11111111 for r6, r7, r8 and r9).

All the above conditions maintain the NRE signal inactive,
as all of them represent correctable situations. Two additional
situations can be found in the truth table for this code:
• Double non-adjacent errors must activate the NRE sig-
nal. The syndrome is also the bitwise XOR of the
affected columns, but different errors may generate the
same syndrome (e.g., 00000101 syndrome is produced
by an error in r0 and r2, but also by an error in r12
and r14). The ê vector cannot be determined, as it is not
possible to know the positions of the erroneous bits.

• Once assigned all the above situations to the correspond-
ing syndromes, several syndromes may remain unas-
signed (e.g. 11110111). They represent multiple errors
not considered in the code coverage. Nevertheless, as
they are very uncommon situations (according to the
fault assumptions for which the code has been designed),
they can be not considered for NRE activation. Instead,
they can be employed for the logic simplification of êi
and NRE signals, as detailed in Section III.D.

Finally, the output of the decoder is the result of XOR-
ing the received bits with the corresponding estimated error
vector: b̂i = ri ⊗ êi. û is easily obtained just extracting the
corresponding bits from b̂.

C. CODES FOR LONGER DATA WORDS
Applying the FUEC methodology, matrices for codes with
different word lengths and error coverages can be found.
Nevertheless, as the number of parity bits grows, the process
becomes heavier and it requires a lot of computation time.
However, Ultrafast codes for long data words can be easily
obtained combining matrices for shorter data words. As the
common word lengths in computers are powers of two (8, 16,
32, 64. . . ), we can use Ultrafast (16, 8) matrices to generate
(32, 16), (64, 32), etc. codes. For example, considering H8
matrix shown in (4), the 16 × 32 parity check matrix for an
Ultrafast (32, 16) code, with the same redundancy and error
coverage, can be generated as:

H16 =
[
I16×16

A8×8 08×8
08×8 A8×8

]
(5)

This new code has the same complexity, as the construction
is equivalent to having two 16-bit sub-words —bits (0..7,
16..23) and bits (8..15, 24..31)—, each one covered by inde-
pendent (16, 8) codes. It also maintains the error coverage:
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• Single and multiple adjacent errors on each half word
are corrected as in the (16, 8) code.

• Adjacent errors affecting both half words become two
shorter adjacent errors for the (16, 8) codes.

• Double non-adjacent errors, where each bit belongs to a
different half, become single errors for each code.

• Double non-adjacent errors inside a half are detected by
the corresponding (16, 8) code.

Even more, we can modify H16 by means of column
permutations to achieve better coverage. Alternating columns
of both H8 matrices, the new H16’ matrix represents an
Ultrafast (32, 16) SEC-10AEC-DED, where ci H8 represents
the i-th column of the H8 matrix. As it can be observed, a
10-bit adjacent error is treated as two 5-bit adjacent errors,
which can be corrected by each original code.

H16′ =
[
c0 H8 08×1
08×1 c0 H8

c1 H8 08×1
08×1 c1 H8

· · ·

]
(6)

Expressions (5) and (6) can be generalized for other word
lengths (32, 64, . . . bits). For example:

H32 =

 I32×32

A8×8 08×8
08×8 A8×8

08×8
08×8

08×8
08×8

08×8 08×8 A8×8 08×8
08×8 08×8 08×8 A8×8

 (7)

H32′ =


c0 H8 08×1
08×1 c0 H8

08×1 08×1
08×1 08×1

08×1 08×1
08×1 08×1

c0 H8 08×1
08×1 c0 H8

c1 H8
08×1
08×1
08×1

· · ·

 (8)

D. DECODER IMPLEMENTATION
As stated above, the objective of Ultrafast codes is to achieve
encoding and decoding circuits as fast as possible. The ‘‘real’’
performance of a circuit will depend on several factors, such
as the implementation technology, the logic depth of the
signals or the complexity of the logic equations. Discussion
about this matter can be found in [14] and [15].

As described in Section II.A, the encoding operations and
the syndrome calculation, the first part of the decoding, can
be easily obtained from the parity check matrix. In most
ECCs, the complexity of these operations depends on the
word length. Conversely, the expressions for Ultrafast codes
have low and constant complexity, independently of the word
length, as stated in Section III.A.

Anyway, the most complex part of the decoder is the
implementation of the lookup table, especially when several
syndromes may indicate an error in the same bit (i.e. when
the decoder allows multiple error correction). It is necessary
to simplify the logic equations required to obtain êi and NRE
signals. Simplifying the expressions can reduce delay, area
and power consumption of the corrector circuit.

Non-simplified equations can be obtained from the lookup
table as sum of minterms or product of maxterms. Ultrafast
codes take great advantage of their redundancy to get a high
number of free syndromes, which become ‘‘don’t care’’ terms

for simplification. They can be obtained when the value of the
error vector, or the NRE signal, is not important:
• Different errors can cause the syndromes assigned to
double errors. As this situation is indicated by the NRE
signal, the erroneous bits cannot be determined and these
syndromes can be used to simplify the êi signals.

• If the fault hypothesis considered for the design of the
ECC is correct, the ‘‘undefined’’ syndromes only appear
under very uncommon situations. Hence, the probability
of a wrong detection/correction due to a bad estimation
of the error vector is negligible. Therefore, the value of
the error vector or the NRE signal is not significant, and
these syndromes can be employed to simplify them.

Additional simplification, if required, can be obtained by
reducing the error coverage of a code. For example, the
SEC-5AEC-DED code presented in (4) allows a great error
coverage, maybe excessive. If, according to a given fault
hypothesis, adjacent errors may affect two adjacent bits at
most, we can design a SEC-DAEC-DED decoder using the
same parity check matrix. In this case, the lookup table
will consider as ‘‘undefined’’ the syndromes assigned to
3- to 5-bit adjacent errors, improving the simplification. In
the same way, 3AEC/4AEC decoders can be designed.

Following with the above example, ê10 will be the sum
of 15 minterms (of 8 variables) if no simplification and
maximum error coverage (SEC-5AEC-DED) is considered:

ê10 = s̄7s̄6s̄5s4s3s̄2s̄1s0 + s̄7s̄6s5s4s̄3s̄2s1s0
+ s̄7s6s̄5s̄4s̄3s2s̄1s0 + s̄7s6s̄5s4s̄3s̄2s1s̄0
+ s̄7s6s5s̄4s̄3s̄2s1s̄0 + s̄7s6s5s̄4s3s2s1s0
+ s̄7s6s5s4s3s̄2s1s̄0 + s7s̄6s̄5s̄4s̄3s2s1s̄0
+ s7s̄6s̄5s4s̄3s̄2s1s0 + s7s̄6s5s4s3s̄2s̄1s0
+ s7s̄6s5s4s3s̄2s1s̄0 + s7s6s̄5s̄4s̄3s2s1s0
+ s7s6s̄5s4s̄3s̄2s1s̄0 + s7s6s5s̄4s3s2s̄1s0
+ s7s6s5s4s3s̄2s1s̄0

Simplifying for maximum error coverage, we obtain:

ê10 = s6s̄4s3 + s7s̄5s̄3s1 + s̄7s6s2s0 + s̄6s4s̄2s0
+ s6s̄2s1s̄0 + s4s̄2s1s̄0

And simplifying for SEC-DAEC-DED error coverage:

ê10 = s̄4s2s0

These are all the simplifications for the SEC-DAEC-DED
decoder. They implement the lookup table for this code:

ê0 = s̄4s̄2s0 ê1 = s̄5s̄3s1 ê2 = s̄4s2s̄0 ê3 = s̄5s3s̄1
ê4 = s4s̄2s̄0 ê5 = s5s̄3s̄1 ê6 = s6s̄2s̄0 ê7 = s7s̄3s̄1
ê8 = s4s2s0 ê9 = s5s3s1 ê10 = s̄4s2s0 ê11 = s5s3s̄1
ê12 = s4 s2s̄0 ê13 = s̄5s3s1 ê14 = s4s̄2s0 ê15 = s5s̄3s1

Different matrices may meet the Ultrafast requirements
enumerated in Section III.B. They may result in distinct min-
imizations and decoding delays. Further research is required
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to determine if it is possible to find matrices with better
minimizations than matrix (4).

An additional question that may help to design simpler
decoders, is the necessity (or not) of correcting the parity
bits. Of course, errors covered by a code must lead to a right
decoding, independently of the kind (data or parity) of the
bits affected. However, what is the result of a right decoding?
Sometimes, only û is required (that is, only data bits; for
example, when protecting processor registers, as commented
before). Other times it is interesting to obtain b̂ (i.e. data
and parity bits; for example, when a scrubbing mechanism is
employed in DRAMs). Obviously, correcting the parity bits
will require additional silicon area and power consumption,
and it may influence the delay of the decoder.

Ultrafast codes could correct parity bits, as all êi can be cal-
culated from the lookup table. Nevertheless, as our objective
is to maximize the simplification, only data bits have been
corrected in our designs.

All the techniques presented in this section have been
applied in the design of Ultrafast circuits. In next section,
they will be evaluated and compared to other state-of-the-
art codes. For a fair comparison, these techniques have been
applied to all codes, when appropriate. For example, all
decoders have been implemented for correcting data bits only.

IV. EVALUATION AND COMPARISON
A. PREVIOUS CONSIDERATIONS
In previous works, Ultrafast SEC [14] and Ultrafast SEC-
DED [15] codes have been compared to other codes, in
terms of number of parity bits, logic depth and number of
logic gates. The number of parity bits measures the redun-
dancy. The logic depth of the encoder and decoder circuits
is an estimator of the propagation delay introduced by those
circuits. The number of logic gates influences the silicon
area occupied and the power consumption of the circuits.
Thesemeasurements allow an approximated estimation of the
efficiency of the codes, but it is less accurate than the real
synthesis for a given technology.

So, in this paper, the encoder and decoder circuits for all
ECCs have been implemented inVHDLhardware description
language. Then, using CADENCE software [30], we have
carried out a logic synthesis for 45-nm technology by using
the NanGate FreePDK45 Open Cell Library [31], [32]. Stan-
dard cells are based on SCMOS design rules. Power voltage
and temperature conditions are 1.1V and 25 ◦C, respectively.
Logic synthesis allows obtaining better estimation of the
overhead induced by different ECCs. Although the main
objective is diminishing the propagation delay of the circuits,
information about the silicon area and power consumption is
also compared.

As stated above, the simplification techniques employed
to improve the performance of the circuits have been applied
equally to all codes, when appropriate, for a fair comparison.
Synthesis data consider all encoding and decoding steps,
including the lookup table implementation.

FIGURE 2. Propagation delay for SEC-DED codes.

Prior to the synthesis, all compared codes have been simu-
lated, injecting all possible correctable and detectable errors,
and we have verified that the planned coverages have been
achieved.

B. COMPARISON OF CODES FOR 8-BIT DATA WORDS
In this section, several codes for 8-bit data words are com-
pared: a Hsiao code [20], a SEC-DED Low Delay code [27]
and a SEC-DED Ultrafast code [15]. In addition, the new
SEC-xAEC-DED Ultrafast code described in Section III.B is
included in two different versions: one with maximum cov-
erage (i.e. SEC-5AEC-DED), and a simplified version with
a SEC-DAEC-DED decoder (as described in Section III.D,
this technique allows flexibility to adjust the adjacent error
coverage to the design requirements).

All the compared codes share the ability of detecting dou-
ble errors. Although their correction coverage is different, our
aim is to compare our proposal with simple and fast codes.

Fig. 2 compares the propagation delays of their circuits.
Three different groups of measurements have been obtained:
encoder delays, decoder delays (considering only the correc-
tion logic), and decoder delays for the detection logic. The
correction logic is followed by the actual circuit logic. For
example, when protecting processor registers, the correction
logic is in the datapath. Hence, it increases directly the circuit
delay [27]. Thus, the delay of the correction logic is an
important parameter. Error detection is larger in most cases,
and it will only be used to signal an unrecoverable error.
Therefore, it only must be smaller than the clock cycle.

Regarding the encoder delays, Ultrafast codes achieve the
best scores, whereas the Low Delay code obtains the worst
result. Hsiao code outperforms Low Delay code due to a
better balance in the Hamming weights of the rows in the
parity check matrix. Anyway, the delays of both codes scale
with the word length, whereas Ultrafast codes maintain their
delay almost unchanged for longer data words.

Considering the propagation delay for the correction logic
of the decoder circuit, Ultrafast SEC-DED and SEC-DAEC-
DED codes obtain the best values. The Ultrafast SEC-DAEC-
DED decoder is considerably (over 30%) faster than Hsiao
and LowDelay codes, whereas increasing the error correction
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FIGURE 3. Silicon area for SEC-DED codes.

FIGURE 4. Power consumption for SEC-DED codes.

capabilities. The greatest delay is found on the Ultrafast SEC-
5AEC-DED. This is an expected result, as these codes are
designed for 8-bit data words, and 5 adjacent error correction
is a very high coverage. Nevertheless, the delay is in the same
order of magnitude, so it could be probably affordable if such
error coverage would be required.

Although less critical, as stated above, the propagation
delay for the detection signal is also included in the figure.
Again, the best score is achieved by the Ultrafast SEC-DED
code, and all other values are affordable, as explained before.

Fig. 3 shows the silicon area occupied by the encoder
and decoder circuits. Although Ultrafast codes present higher
redundancy, the area employed by their encoder circuits is
slightly smaller than Hsiao or Low Delay codes. Regarding
the decoder circuits, the codes with the same error coverage
(Hsiao, LowDelay and Ultrafast SEC-DED) occupy a similar
area, with small variances. As the error coverage is improved,
the decoder size increases, as expected.

Fig. 4 presents the power consumption of the circuits. The
trends are the same as observed for the silicon area: all the
encoder circuits have very similar values; there are small dif-
ferences in the decoders with the same error coverage; and the
power consumption grows as the error coverage augments.

To conclude this comparison, it is noticeable that Ultrafast
SEC-DED code gets the best scores in almost all ranks.
When it does not have the best value, the difference with
it is small. Ultrafast SEC-DAEC-DED code achieves very
good results. If the redundancy is affordable and the error

coverage meets the fault hypothesis, these codes can be a
good choice. If additional error coverage is required, Ultrafast
codes can correct longer adjacent errors. As an example,
the SEC-5AEC-DED code compared here shows the upper
bounds for the different values. Depending on the application
and design requirements (error coverage, speed, etc.) this
code (or 3AEC/ 4AEC versions) may result interesting.

C. CODES FOR LONGER DATA WORDS
The previous results show the good performance of Ultrafast
codes when k = 8. Nevertheless, from the delay viewpoint,
their main advantage becomes more evident as k raises. In
this section, we study the evolution of propagation delay,
silicon area and power consumption, for different codes and
typical values of k in registers (8, 16, 32, and 64 bits). In these
comparisons, we have analyzed different high-speed codes:

• SEC-DAEC-DED and SEC-5AEC-DED Ultrafast: the
(16, 8) compared previously, and (32, 16), (64, 32) and
(128, 64) codes obtained as explained in Section III.C.

• SEC-DED Low Delay [27]: in addition to the (13, 8)
used in previous comparisons, we have also included
here the (22, 16), (39, 32) and (73, 64) codes.

• SEC-DAEC Low Delay: the codes published in [28].
It is remarkable that these codes do not detect double
errors. Anyway, their low delay decoders make them an
interesting option for comparison.

• DEC Orthogonal Latin Square [25]: the (20, 8) code
described in [33], the (32, 16) code shown in [34], the
(55, 32) code presented in [35], and the (96, 64) code
defined in [36].

• SEC-4AEC Two-Dimensional [26]: (20, 8), (32, 16),
(56, 32) and (104, 64) codes. They achieve very fast
decoding due to a simple but efficient layout.

In addition, we have also obtained synthesis data for (13,
8), (22, 16), (39, 32) and (72, 64) Hsiao codes. They are not
included in the figures, as their results are very similar to the
SEC-DED Low Delay codes.

Fig. 5 plots the delay introduced by the correction logic
of the decoder circuits. As expected, the decoding delay for
all non-Ultrafast codes raises as k does. This is mainly due
to the increasing number of bits to be considered during
syndrome computation, and the difficulty for obtaining good
simplifications. The worst results for higher values of k can
be observed for the SEC-DAEC Low Delay codes.

Regarding Ultrafast codes, the SEC-DAEC-DED version
offers the best results when k = 64, which is 160% faster
than the worst code. In addition, it has a constant decoding
delay. This is an expected result, although small differences
may appear depending on the implementation, due to logical
synthesis details, such as the types of logic gates employed
or their number of inputs. For example, although the logic
expressions have the same complexity for the different SEC-
5AEC-DED Ultrafast decoders, small variations arise, as it
can be observed in Fig. 5. This slight dependency on the word
length is due to logical implementation details, not to a higher
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FIGURE 5. Propagation delay evolution for different values of k .

FIGURE 6. Silicon area evolution for different values of k .

logic complexity. Anyway, the increment has a significantly
smoother slope, with a negligible difference between the
32- and 64-bit data word versions. Although this code has
the worst delay when k = 8, the k = 64 version is only
slower than the Two-Dimensional and the Ultrafast SEC-
DAEC-DED codes, while having higher error coverage than
both of them.

Notice the low latencies achieved by the Two-Dimensional
codes. The 8-bit version is the fastest code, at the cost of
a higher redundancy than Ultrafast codes. Faster results are
also obtained by the 16-bit code. Anyway, these codes do not
detect double errors, and the latency raises as k does, whereas
it does not in Ultrafast codes.

Fig. 6 shows the silicon area employed by the encoder
and decoder circuits for the different codes. In this case,
the value compared is the sum of the area of encoders and
decoders. In general, codes with more error coverage get

FIGURE 7. Power consumption evolution for different values of k .

higher values. When k raises the area occupied augments
proportionally. The lowest values correspond to the SEC-
4AEC Two-Dimensional codes. Obviously, as they do not
implement double error detection, their decoders are very
simple. On the other side, the highest values are obtained
for the SEC-5AEC-DED Ultrafast codes. The SEC-DAEC-
DED Ultrafast codes reach affordable values, lower than the
DEC OLS codes, eventually employed for the register file
protection [37].

Fig. 7 presents the evolution of the power consumption for
the different data word lengths. Again, the sum of the power
employed for both encoder and decoder circuits is consid-
ered. The trends are similar to those observed for the silicon
area in Fig. 6. Again, the lowest consumption is achieved
by the SEC-4AEC Two-Dimensional codes (remember that
they lack of the detection circuitry), and the highest values
belong to Ultrafast SEC-5AEC-DED codes. The Ultrafast
SEC-DAEC-DED codes are less power consumers than the
OLS codes.

To conclude this comparison, we must consider the differ-
ent error coverages that each code can offer. OLS codes are
the only compared codes that can correct all double errors.
LD SEC-DED codes correct single errors and detect double
errors. LD SEC-DAEC codes correct single and double adja-
cent errors. Finally, the SEC-4AEC Two-Dimensional codes
correct single and up to 4-bit burst errors.

In the case of Ultrafast codes, if we consider the code con-
struction proposed in (6) and (8), the delays will be the same
(or almost the same) whereas the error coverage augments:
due to the alternated columns in the parity check matrices, the
(16, 8) SEC-DAEC-DED decoder becomes a (32, 16) SEC-
4AEC-DED, a (64, 32) SEC-8AEC-DED, and a (128, 64)
SEC-16AEC-DED. Likewise, the (16, 8) SEC-5AEC-DED
can correct up to 40 adjacent errors when k = 64. This causes
the high area required and power consumption.

As stated above, depending on the error coverage require-
ments and the constraints about delay, area or power
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consumption, designers may use different Ultrafast codes.
3AEC/4AEC versions can also be employed to flexibly adjust
the desired error coverage.

D. CASE EXAMPLE: A REGISTER FILE
The previous comparisons show the validity of the codes pro-
posed in this paper: Ultrafast codes achieve the lowest delays
with moderate area usage and power consumption, probably
affordable by several applications. Nevertheless, data shown
only consider the overhead generated by the encoder and
decoder circuits. Is the additional memory required to store
the redundant bits a problem? As commented previously, it
could be a problem for high storage memories, but it is less
important for small memory structures.

To validate this sentence, we have implemented and syn-
thesized a MIPS-like register file. It has 32 registers to store
32-bit data words. It has two read ports and one write port,
allowing two reads and one store in the same clock cycle. We
have compared a TripleModular Redundancy (TMR) version
and four ECC-based schemes. The first scheme employs
the (64, 32) Ultrafast SEC-8AEC-DED code obtained using
matrix (4), simplifying the decoder to obtain the SEC-DAEC-
DED version, and combined with the construction proposed
in (8). The second scheme interleaves four (13, 8) Hsiao SEC-
DED codes, allowing the correction of four adjacent errors.
The third code employed is the (40, 32) SEC-4AEC code
proposed in [21]; and the last scheme is the (56, 32) SEC-
4AEC Two-Dimensional code [26]. These last codes correct
up to four adjacent errors, but they do not detect all double
errors.

The TMR design allows fast write operations, as it has to
store the same information three times in parallel. It also has
fast read operations, as it only requires 3-bit voters working in
parallel. The error coverage is high, as it corrects all possible
errors if they occur only in one of the copies of a register. The
main drawback of this design is the high redundancy required
(200%), as each data bit needs two additional copies.

The Ultrafast-protected scheme has 100% redundancy.
Ultrafast SEC-DAEC-DED code is the fastest ECC with
double error detection, in our best knowledge (at least, it
is the fastest ECC from those compared in Sections IV.B
and IV.C). Using matrix (8), this code becomes SEC-8AEC-
DED with the same delays, and a good error coverage.

The Hsiao-interleaved design has 62.5% redundancy.
Interleaving simple codes is frequently employed for multi-
ple adjacent error correction. Interleaving a SEC-DED code
using distance four, the result is a SEC-4AEC-DED coverage.

The (40, 32) SEC-4AEC code proposed in [21] has 25%
redundancy, the lowest value of all proposals. The (56, 32)
Two-Dimensional code [26] has 75% redundancy.

Table 1 shows the results obtained. The fastest solution is
TMR (30% faster than Ultrafast design), but at the cost of a
high power consumption (39% higher) and silicon area usage
(44% higher). All other proposals are slower.

The best area and power records belong to the (40, 32)
SEC-4AEC scheme, mainly due to its low redundancy.

TABLE 1. Synthesis results for different register file implementations.

TABLE 2. Different techniques applied by ECCs to reduce the delay.

Ultrafast solution employs 47% more area, but only 18%
more power consumption. In return, Ultrafast solution is
103% faster and has higher error coverage.

Designers may decide between different solutions, which
one fits better to the design constrains and requirements. Our
proposal offers fast decoding and flexible error coverage with
moderate area and power overheads.

E. SUMMARY OF METHODS EMPLOYED
TO REDUCE THE DELAY
The analysis performed in this section allows concluding that
Ultrafast codes achieve the lowest delay with a high error
coverage. Table 2 summarizes the main methods employed
by the different codes to reduce the delay and the improved
component of the ECC.

V. CONCLUSION
This paper presents Ultrafast codes, a family of error con-
trol codes especially designed for very fast encoding and
decoding operations. These codes are particularly well suited
for applications where the key requirement is a very low
latency in the encoder and decoder circuits. This is the case
of the protection of the information stored in registers in a
microprocessor, for example. As the number of registers is
small, the use of ECCs with high redundancy, like Ultrafast
codes, may be affordable. In return, Ultrafast codes offer
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high-speed encoder and decoder circuits, and interesting error
coverages. These codes can also be useful to protect high-
speed memories or caches.

Firstly, we have summarized Ultrafast SEC, SEC-DED
and SEC-DAEC codes, presented in previous works. Then,
new Ultrafast SEC-xAEC-DED codes have been introduced,
describing the design methodology and the implementation
details. Several examples of Ultrafast codes have been imple-
mented and simulated in order to validate the error coverage,
as well as they have been synthesized by using a standard
cell library to evaluate the overhead induced by the encoder
and decoder circuits. Ultrafast codes have been compared
to several fast existing alternatives. The results confirm that
Ultrafast codes achieve very low propagation delays, whereas
adding very reasonable increments in the silicon area and the
power consumption. Using the method proposed in Section
III.C to construct codes for longer data words, delays do
not depend on the word length from a logic viewpoint, but
it may appear a small dependency due to implementation
details. This is a distinguishing characteristic of Ultrafast
codes versus other error control codes, as they take great
advantage of the simplification of logic functions and the low
Hamming weights of rows and columns of their parity check
matrices. The speed-ups obtained for longer data words are
very interesting (up to 160% for 64-bit data words).

There is still a lot of ongoing work. The simplifications
depend on the parity check matrix employed. A deeper study
is required to determine how to find the matrix with the
best simplifications. Additional research on Ultrafast codes
for long data words, and applications to different memory
structures, are part of the ongoing and future work.
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