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In this study, real-time and in-situ permittivity measurements under intense microwave 
electromagnetic fields are proposed as a powerful technique for the study of microwave-enhanced 
thermal processes in materials. In order to draw reliable conclusions about the temperatures at 
which transformations occur, we address how to accurately measure the bulk temperature of the 
samples under microwave irradiation. A new temperature calibration method merging data from 
four independent techniques is developed to obtain the bulk temperature as a function of the surface 
temperature in thermal processes under microwave conditions. Additionally, other analysis techniques 
such as Differential Thermal Analysis (DTA) or Raman spectroscopy are correlated to dielectric 
permittivity measurements and the temperatures of thermal transitions observed using each technique 
are compared. Our findings reveal that the combination of all these procedures could help prove the 
existence of specific non-thermal microwave effects in a scientifically meaningful way.

For many years, microwave energy has been increasingly and successfully used to process materials with unique 
properties at high temperatures (>1000 °C) in a broad range of traditional and emerging manufacturing fields of 
materials such as ceramics, metals or in nanotechnology.

The benefits of using microwaves for heating materials are well-known and have been widely recognized over 
the last decades. In microwave processing, energy is rapidly transformed into heat inside the materials through 
electromagnetic (EM) radiation, whereas in conventional heating, thermal energy is merely propagated through-
out the volume of the specimen by an external heating source.

Numerous studies on microwave processing have revealed that microwave technology significantly reduces 
reaction time and influences material properties1–7. Moreover, an important decrease has been reported in the 
reaction temperature of hundreds of degrees centigrade in comparison to conventional heating means1 which was 
associated to a substantial decrease in the apparent activation energy.

There is a constant debate, however, on whether the observed rate enhancement attained with this ultra-fast 
microwave dielectric heating is caused by purely thermal effects, or if this is connected to specific or non-thermal 
microwave effects arising from the interactions between the radiation fields and the material1,6,8–12. While there 
is no doubt that thermal microwave effects do exist, the specific or non-thermal microwave effects are more dif-
ficult to justify and are subject to constant speculation and discussion, as many previously reported non-thermal 
microwave effects have turned out to be purely thermal in nature8. Solving this significant yet basic problem is 
thus a major challenge for researchers in the field of microwave processing.

Exploiting the many facets of microwave processing requires a thorough and comprehensive understanding 
of the underlying processes at atomic level for which new and complex instruments and measurement capabili-
ties are needed. In this regard, several approaches have been developed for the in-situ monitoring of microwave 
reactions in combination with other characterization techniques for solid materials as X-Ray Diffraction, Neutron 
Scattering, FTIR or Raman Spectroscopy13–16. Schmink and Leadbeater15 and Vaucher et al.16 employed in-situ 
Raman spectrometers to examine heating selectivity during microwave exposure. However, although they are 
ground-breaking studies, additional experimental evidence is still required.

The interaction between electromagnetic waves and matter is quantified by complex physical parameters such 
as electrical conductivity and dielectric properties (or permittivity). These interactions depend on the structure of 
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the materials and chemical bonds between their atoms as electromagnetic fields couple directly to the electrons in 
atoms, molecules and crystals or cluster structures of materials. Hence, it has also been suggested that the meas-
urement of dielectric properties and the variations of this measurement with other process-related parameters 
(temperature, phase transitions, etc.) could shed light on the thermal processes of materials under microwave 
fields10,12,17–19.

There is a wide range of reported experimental techniques to determine the dielectric properties of materials 
as a function of temperature from very low frequencies to several hundred gigahertzes (a brief overview of these 
methods can be found18). For most of the permittivity experiments in the GHz range, especially around the 
Industrial Scientific and Medical (ISM) frequencies 0.915 GHz and 2.45 GHz, the thermal process was carried 
out by increasing the temperature of the materials using conventional means (infrared, electric) to moderate 
temperatures (200 °C to 500 °C), which does not allow us to observe microwave effects with the monitoring of 
permittivity changes with temperature.

As to experimental research into microwave applications, the in-situ and real-time observation of dielectric 
properties of materials during microwave heating, together with the synchronous recording of other process 
parameters, recently described by Catala-Civera et al.20 has provided the basis for a better understanding of the 
interaction of materials with electromagnetic fields.

However, there are three particular issues to be dealt with in order to further develop these techniques: (i) the 
ultrafast nature of microwave reactions; (ii) the compatibility of experimental methods with microwave technol-
ogy; and (iii) the complexity of the temperature measurement procedures.

In order to demonstrate the existence of the above mentioned specific microwave effects, the bulk temperature 
reached during the microwave reaction process must be determined accurately. The vast majority of experiments 
conducted under microwave conditions have demonstrated that what controls the outcome of a chemical reaction 
is solely the bulk temperature in the material8.

The precise measurement of reaction temperature is a non-trivial and complex matter which entails basic 
knowledge of the effects caused by microwave dielectric heating21–24. In the past, the reaction temperatures under 
microwave heating conditions were very often measured inappropriately which led to many misguided claims of 
certain non-thermal microwave effects. When the experiments were repeated using adequate temperature mon-
itoring and controls, it was proven that some of the originally proposed specific non-thermal effects were simply 
thermal in nature21.

Apart from the singularities of the microwave heating process, what makes measuring reaction tempera-
tures under microwave conditions such a complicated task is the inconvenience of using classical temperature 
measurement instruments such as thermocouples, since these devices are metallic and will couple with the EM 
fields. Also, as fiber-optic sensors are extremely fragile, the sample temperature is usually measured with an 
IR pyrometer pointing at the sample surface from outside the microwave heating chamber19–24. There are also 
reasonable doubts about the accuracy of temperature measurements, given that microwave heating can lead to 
important temperature gradients between the center and the surface of the sample, which increase particularly 
at high temperatures.

Thus, determining the real bulk temperature during the microwave irradiation could allow us to verify 
whether specific non-thermal microwave effects actually exist in a scientifically robust way.

In this study, a new temperature calibration method merging data from four independent techniques is 
developed to obtain the bulk temperature as a function of the surface temperature. We propose real-time and 
in-situ permittivity measurements under intense microwave electromagnetic fields together with the simultane-
ous determination of dielectric properties and synchronous recording of some thermo-physical and mechanical 
properties as a powerful technique for the study of thermal processes in materials.

In order to draw reliable conclusions from the temperatures at which the transformations occur, we first 
address the accurate measurement of the bulk temperature under microwave conditions. Also carried out are 
comparative permittivity measurements with other analysis techniques such as Differential Thermal Analysis 
(DTA) or Raman spectroscopy to contrast thermal transitions with some selected materials.

Our findings allow for deeper theoretical insight into the high-temperature ultrafast interaction of materials 
with microwaves and its kinetics, and most importantly, provide a solid experimental basis which, for the first 
time, could assess the existence of thermal or non-thermal effects in upcoming microwave heating experiments 
leading to new developments in microwave technology.

Results and Discussion
experimental setup. The experimental setup (Fig. 1) used in our study for microwave heating and in-situ 
permittivity measurements of dielectric samples consisted of a dual-mode microwave cylindrical cavity capable 
to heat and measure with two separate microwave systems without interferences. The first of these systems, used 
for the heating process and coupled to the cavity by the horizontal probe located on the back sidewall of the cavity, 
delivered a microwave power signal (~150 W) around the ISM frequency of 2.45 GHz (from 2.4 to 2.5 GHz), while 
the second system, coupled to the vertical probe located at the bottom wall, generated low power microwaves 
between 1.8 and 2.2 GHz to characterize the dielectric properties of the materials by the Cavity Perturbation 
Method (see Methods section).

Samples of dielectric materials were prepared in a cylindrical shape (10 mm diameter, 15 mm height) to fit 
inside the quartz vials (1 mm wall thickness) which were inserted into the center of the cavity through a hole 
located on the top wall. The reactor was designed to ensure a strong and uniform electric field distribution in the 
cavity where the sample was positioned during both operation modes (heating and measuring). Quartz holders 
were employed as they are transparent to microwave radiation and can withstand temperatures above 1000 °C.

Figure 1 also shows the access holes on the sidewall of the reactor which allow sample inspection during the 
microwave heating process. An infrared (IR) pyrometer (Optris CT-Laser LT) was used to measure the surface 
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temperature of the quartz holder from the outside of one of these holes, and a portable Raman spectrometer 
(ProRaman-L-532-B1S) was installed in another access hole to observe in-situ structural transformations. In 
addition, a video camera was installed in a third hole (not visible in Fig. 1) to record the changes in shape during 
processing. Every access was designed to prevent the leakage of microwave energy outside the cavity and to avoid 
interferences in the measurement procedures. More details about the setup can be found20.

temperature Calibration. The previously described experimental setup has, however, a few limitations. 
One of them is that the low thermal conductivity of the quartz tubes can delay the detection of thermal effects in 
the samples. The second, and most important limitation, comes from the fact that, although the microwave reac-
tor was designed to generate heat uniformly, the air surrounding the sample remains cool at room temperature 
which causes a decrease in the surface temperature of the sample leading to the well-known inverted tempera-
ture gradients of microwave heating that are not found in conventional heating. Thus, the measurement of the 
surface temperature of the quartz holder provided by the IR pyrometer, as shown in Fig. 1, cannot be considered 
as representative of the sample temperature and a new calibration procedure is required to determine the bulk 
temperature of the sample, at which the reactions takes place.

In this study, we propose a calibration procedure to determine the average value of the bulk temperature of a 
dielectric sample heated by microwave energy. The mean value of the sample temperature is obtained as a func-
tion of the surface temperature of the holder measured by the IR pyrometer. To minimize the errors and uncer-
tainties that would arise from a single calibration method, four different independent calibration techniques are 
developed. We utilize the described equipment together with a conventional heater, fiber optic sensors, a Raman 
spectrometer and pure salts. The various techniques are described in the following subsections.

A. Calibration through conventional heating. The temperature calibration with a conventional heater 
consisted in inserting a cartridge heater with controllable temperature inside the quartz tube of the microwave 
cavity and then comparing its temperature with that of the tube’s surface measured by the IR thermometer.

To incorporate the effect of temperature gradients from the core of the sample to the surface of the sample and 
container which dielectric samples of different composition might show, the cartridge heater was also surrounded 
by a hollow cylinder of a second material with different thermal conductivity which filled the space between it 
and the quartz holder (see Fig. 2a). Materials ranging from highly insulating such as alumina (Al2O3) to highly 
conductive like aluminium were employed to encase the heater during the experimental work.

As the microwaves were switched off during the calibration procedure, we were able to use a metallic ther-
mocouple capable of reading temperatures over 1000 °C to measure the temperature of the cartridge heater core. 
Figure 3 shows the average temperature of two extreme materials of different conductivity given by the thermo-
couple sensor as a function of the surface temperature measured from outside by the IR thermometer. A heating 
rate of 1 °C/min was fixed for all heating experiments.

The uncertainty range in the determination of the bulk temperature from the measurement of the holder 
surface temperature is also represented in Fig. 3 (right axis). It refers to the maximum difference observed in the 
bulk temperature between the different materials for a given surface temperature. This range is below ± 5.5 °C in 
the bulk temperature range from 22 °C to 1100 °C, which is a percentage lower than 2%.

B. Calibration with Fiber optic sensor. Fiber optic (FO) sensors represent an accurate alternative to 
determine the temperature of bodies under microwave heating by placing them in direct contact with the material 

Figure 1. Experimental Setup. Cylindrical reactor for microwave heating and dielectric measurements together 
with the IR temperature and Raman sensors for in-situ material inspection during microwave exposure.
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of interest. Unlike thermocouples, FO measurement devices are immune to electromagnetic interferences and 
do not require shielding. However, FO probes are extremely fragile and their main limitation, as compared to IR 
thermometers is that their narrow temperature measurement range normally only reaches up to 300 °C21.

The FO calibration procedure consisted in heating a sample within the microwave cavity described in Fig. 1 
and comparing the bulk temperature measured by the FO with the surface temperature given by the IR pyrometer 
(Fig. 2b).

The materials selected for this technique were distilled water and silicon carbide (SiC), which have good 
microwave absorbing properties and dissimilar thermal conductivities. Samples of these materials were poured 
into the quartz container to a height of 15 mm and subjected to microwave heating. The microwave power was 
adjusted at an approximate rate of 5 °C/min.

The ratio between the measured surface and FO bulk temperature is also plotted in Fig. 3. Our results with this 
procedure are in good agreement with the relationship found in the previous section.

C. Calibration with pure salts. The temperature calibration procedure described in this section consisted 
in using the information given by the continuous measurement of dielectric properties as a function of the sur-
face temperature during microwave heating to identify thermal phenomena in some reference materials with 
well-known transition bulk temperatures (Fig. 2c). For this procedure we selected pure salts, which are commonly 
used for temperature calibration in thermal analysis devices (e.g. DTA).

For our first experiment we chose silver sulfate (Ag2SO4), which undergoes a change in its crystalline structure 
from an orthorhombic configuration to a hexagonal one at 425 ± 4.8 °C, according to bibliography25–30. A sample 

Figure 2. Schematic view of the sample in the different calibration techniques: a) using conventional heating 
(1-cartridge heater, 2-thermocouple, 3-sample tube, 4-quartz holder); b) with fiber optic sensor; c) using 
calibration salts and d) with Raman spectrometer.

Figure 3. Temperature calibration curve obtained with two calibration techniques: using conventional heating 
(calibration materials: alumina, distilled water, silicon carbide and aluminium) and with fiber optic (FO) sensor 
respectively.
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of this salt was poured into the quartz tube. It was then heated by microwave irradiation in the microwave cavity 
shown in Fig. 1, adjusting the heating power at an approximate rate of 5 °C/min.

Figure 4 illustrates the measured dielectric properties (dielectric constant and loss factor) of silver sulfate as 
a function of the holder surface temperature. As can be observed, the dielectric properties show a progressive 
increase with temperature to approximately 300 °C where a fast change takes place. Previous studies29 showed 
that the change from β-Ag2SO4 to α-Ag2SO4 leads to a different deformability of the Ag + ion electron cloud, 
increasing the polarizability of the Ag + ion. This is consistent with the observed higher dielectric constant after 
the transition.

To better identify the transition temperatures around the changes in the salt, we made use of a second derivate 
that emphasized the variations of the dielectric properties around the measured surface temperature of 340 °C, 
which we assume corresponds to the phase transformation at a bulk temperature of 425 °C in the sample.

To further determine temperature calibration points, we experimented with another salt: potassium perchlo-
rate (KClO4). This material undergoes a sharp orthorhombic to cubic phase transition at a bulk temperature of 
298.9 ± 0.9 °C26,27,29,30. The phase transition was also identified by a strong change in the dielectric properties 
when the pyrometer indicated a surface temperature of 245 °C (see details in supplementary Fig. S1).

This technique is valid for other salts and materials whose thermal transformations are visible by dielectric 
measurements.

D. Calibration with A Raman spectrometer. Following a similar procedure as before to identify thermal 
effects this time we used reference materials with well-known Raman shifts. We first selected bismuth titanate 
(Bi4Ti3O12) which belongs to the Aurivillius family and shows ferroelectric and piezoelectric properties up to high 
temperatures. Its Raman response reflects an orthorhombic to tetragonal phase transition at a bulk temperature 
of 677.5 °C ± 2.5 °C31–33.

A sample of bismuth titanate was placed in the quartz holder and subjected to microwave heating in the reac-
tor (Fig. 2d). The heating rate was fixed at 10 °C/min. Figure 5 illustrates the variation of the dielectric properties 
of the sample and compares the holder surface temperature with the Raman shift. Close to the transition temper-
ature, there is a decrease of the dielectric constant related to an arrangement of the structure32. In particular, this 
perovskite structure presents 3 octahedrons made of TiO6 units. These octahedrons are linked by apical oxygen 
atoms and, initially, the octahedrons present displacement between them. When the temperature increases, the 
octahedrons stay in the same axis, eliminate the displacement, the structure modifies its behavior from ferroe-
lectric to paraelectric and the polarizability of the structure decreases. As a result, the dielectric constant also 
decreases.

The transition was evidenced by the behavior of the Raman mode around 500–650 cm−1, which correlates 
fairly well with other studies31. The inset shows some of the Raman spectrums recorded at different temperatures 
during the experiment. The dielectric and Raman spectroscopy measurements and their comparison in Fig. 5 
allowed us to identify the surface temperature of the structural change at 529.5 °C which is assumed to reflect the 
bulk material temperature of 677.5 °C.

Next we applied a similar technique to a sample of potassium sulfate (K2SO4). This salt undergoes a change 
in its crystal structure from an orthorhombic to a hexagonal system at a bulk temperature of 585 ± 2 °C26,27,29,34. 
The Raman response of the mode around 980 cm−1 experienced a sharp shift at a holder surface temperature of 
463 °C, which was correlated with the dielectric measurements (see details in supplementary Fig. S2).

Finally, all the temperature calibration results of the above described procedures were merged together into 
one single graph (Fig. 6). As can be appreciated, the results obtained from the different techniques are consistent 
and fall in the same straight line. Thus, the application of any of the four, or a combination of them, could be used 
as a reliable method for estimating the bulk temperature of samples in this microwave system. As expected, the 

Figure 4. Dielectric properties (Dielectric constant and loss factor) of silver sulfate as a function of the holder 
surface temperature measured by the pyrometer. The second derivative of the dielectric constant facilitates the 
identification of the temperature at which the sample changes its crystalline structure.
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calibration curve shows that the difference between surface and bulk temperature gradually increases at higher 
temperatures, showing that non-adequate calibration of this difference could lead to errors in the bulk tempera-
ture determination of the order of 200 °C at high temperatures. It should be noted that the maximum deviation 
between the measurements and the represented calibration curve (dashed line in Fig. 6) is only ± 4 °C in the range 
from 20 °C to 1000 °C.

Demonstration. In order to obtain reliable information about the influence of microwave fields on heating 
mechanisms, the calibration procedures described above were applied to study thermal phenomena in two dif-
ferent materials.

The first material chosen for our demonstration was the Standard Reference Material 717 A provided by NIST 
(National Institute of Standards and Technology in Boulder, Colorado), a borosilicate glass known for its inter-
esting physical and chemical features and commonly used to calibrate equipment for testing viscosity and other 
glass properties in accordance with ASTM procedure C 965–8135.

Annealing and strain temperatures are both thermal parameters directly related to the stress in the molecular 
structure of glass and have a direct influence on the variation of viscosity of this material at these temperatures. 
Some studies that have measured the electric properties of glass have revealed that the viscosity of this material 
can be directly correlated with its internal structure. As the glass temperature rises, there is an increase in the 
polarization of atomic bonds and in the bonding distance between atoms, which means that there is a continuous 
increase in the dielectric constant, while the viscosity of the sample diminishes36–38.

The strain and annealing temperatures of 717 A glass, certified by NIST and several other laboratories35, are 
470 ± 9 °C and 513 ± 6 °C, respectively.

To measure the variation of the dielectric properties of borosilicate glass under microwave irradiation, we 
produced a cylindrical rod 10 mm wide and 15 mm high which was inserted into the quartz vial at the cavity 

Figure 5. Dielectric constant and Raman shift of the mode placed around 500–650 cm−1 during microwave 
heating of a bismuth titanate sample. Inset: Raman shift spectrums obtained at different temperatures during 
the heating process (the dashed line shows the Raman mode of interest).

Figure 6. Temperature calibration curve obtained with the combination of the four techniques.
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center. As expected, the changes in glass viscosity due to the increasing temperature led to perceptible changes in 
the dielectric constant.

Figure 7 plots the measured dielectric constant of the 717 A sample as a function of the temperature that 
shows a steady variation up to approximately 450 °C following which there is a clear increase in the slope indicat-
ing material changes around this temperature. The dashed lines show the dielectric measurement of the holder 
surface temperature whereas the solid lines correspond to that of the sample bulk temperature, after calibration.

A second derivative of the dielectric constant was employed to allow a rapid identification of the temperatures 
at which the growth tendency changes. The peak temperatures (479 °C and 511 °C), visible in Fig. 7, correlate well 
with the strain and annealing temperatures certified by NIST for this glass composition. Furthermore, the good 
correspondence between the strain and annealing temperatures of this glass under conventional and microwave 
heating suggests that there are no specific effects caused by the application of microwave fields.

Based on these results, the measurement of dielectric properties as a function of the temperature at micro-
wave frequencies can be also considered as a suitable methodology to determine thermal parameters of interest 
in glass, such as strain and annealing temperatures, especially for those types of glass that present limitations 
when more common measurement procedures at lower frequency ranges (in the KHz-MHz) are employed. These 
measurement problems are due to the reduced sensitivity since viscosity can be masked by conductivity at low 
frequencies39–41.

For a second microwave experiment we used a ceramic frit composed of a mixture of raw materials (quartz, 
feldspars, calcium carbonate and zinc oxide), which undergoes phase transformations at high temperatures.

A sample was placed in the quartz container, inside the microwave reactor, and heated to more than 1000 °C. 
In addition to measuring this material’s dielectric properties, a DTA measurement was carried out separately for 
the comparison of the phase transformations and transition temperatures.

Figure 8 shows the variation of the dielectric properties as a function of the temperature, before and after 
temperature calibration, as well as the results of the DTA measurement for comparison. As Fig. 8 illustrates, there 
were no significant variations in the dielectric properties of the frit sample until approximately 700 °C, where a 
first sharp transition occurred together with a rapid increase in the sample temperature.

Although different mechanisms have been attributed to this process, practically all of them show the exist-
ence of alkaline-earth cation diffusion in the sample up to achieve the complete de-carbonation of the sample42. 
Moreover, the increase of dielectric properties of the frit sample could be caused by the movement of charges in 
the sample until the accommodation of the final structure during the dolomite decarbonation process.

In addition, a second change is observed in the dielectric properties response around 1100 °C, especially 
noticeable in the loss factor, which may be explained by the change in the viscosity of the sample due to melting. 
It should be noted that in changes of state at high temperature there is an initial increase of the atomic bond dis-
tances and, in some cases, an atomic breakdown. Furthermore, in the case of ceramic frit, the mixture of different 
raw materials triggers chemical reactions and mass transport in the sample. Hence, in our case, the variations in 
the dielectric properties cannot be attributed to a single cause but to all the above mentioned ones.

The DTA measurement revealed a first transition at approximately 700 °C, which is related to the dolomite 
decarbonation together with an endothermic reaction, and a second one around 1100 °C associated to the frit 
melting.

Figure 7. Dielectric constant of borosilicate glass 717 A and second derivative vs. temperature. Dashed lines 
represent the measurements vs. the surface temperature. Solid lines represent the measurements vs. the bulk 
temperature of the sample, after temperature calibration. Peaks in the second derivative correspond to the strain 
and annealing temperatures.
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As in the first experiment, after temperature corrections, the transition temperatures identified by the die-
lectric measurements under microwave heating in both thermal phenomena of the ceramic frit were in good 
agreement with the results obtained by conventional techniques as DTA.

Again, the material studied in the second microwave heating experiment underwent similar transformations 
to those which occur under conventional heating and no special mechanisms were evidenced due to the presence 
of the microwave fields.

Several studies have recently reported that microwave heating could trigger transformations in materials 
at temperatures several hundred degrees centigrade lower than under conventional heating, leading them to 
claim that non-thermal or specific microwave effects do exist. Nevertheless, our findings revealed that differences 
between the bulk temperature and the surface temperature of the sample can be of the order of several hundred 
degrees. Consequently, there are reasonable doubts about the accuracy of the temperature measurement proce-
dures employed in these studies, which needs to be corrected.

The temperature calibration during microwave heating in our system has been achieved, among others, by 
measuring materials with phase changes. In the phase transition, structural changes occur in the solids at fixed 
temperatures that entail changes in their polarizability. Despite of the fact that the calibration procedure made 
use of solid materials, the calibration line defines the real bulk temperature of a material during the heating pro-
cess using our recently developed microwave reactor described here and it can be extended to liquids, solids and 
their mixtures. The results presented open a field of work that allows discriminating accurately the different phe-
nomena during the heating with microwave energy, eliminating the uncertainty about temperature. Considering 
the above findings, we believe that the new approach to calibrate temperature measurements in our microwave 
reactor serves not only to assess the bulk temperature of materials when heated by microwaves, but can also be 
used as a basis for research about thermal and non-thermal effects under microwave irradiation in upcoming 
experiments.

Methods
The samples employed in the measurements are summarized in Table 1:

To prepare the Bi4Ti3O12 sample, commercial Rutile (TiO2) (Alfa Aesar, CAS number 13463–67–13 mean 
particle size 1.04 μm, purity >99.9%) and μ-Bi2O3 (Aldrich, CAS number 11078–74–3 particle size 11.89μm, 
purity 99.9%) were used as starting materials. The appropriate stoichiometric amounts of the starting materials 
were mixed in an attrition-mill (in a PTFE Teflon container) with 100 g of 1.2 mm zirconia (ZrO2) balls in water 
for 3 hours. T5003 Rohm&Haas dispersant (0.6 wt%) was added to improve homogenization. The powders were 
overnight dried at 75 °C and sieved through a 0.1 mm mesh and sintered at 1200 °C for 2 hours in an Agni GmbH 
electrical furnace with a 3 °C/min heating rate.

Borosilicate glass (Standard Reference Glass 717 A) employed in the experiments was provided by NIST 
(National Institute of Standards and Technology) as a piece with dimensions 20 cm × 10 cm × 10 cm. The sample 
was machined with a crown drill bit with adequate dimensions to be inserted in the quartz holder (10 mm diam-
eter, 15 mm height).

Dielectric properties of materials and their variation with the temperature were calculated by the Cavity 
Perturbation Method (CPM)43. For the dielectric properties measurement under microwave heating, the samples 
were prepared in a cylindrical shape (10 mm diameter, 15 mm height) and placed at the center of the microwave 
cavity inserted in a quartz tube.

Figure 8. Dielectric properties (Dielectric constant and Loss factor) and Differential Thermal Analysis (DTA) 
of ceramic frit raw materials vs. temperature. Solid lines represent the measurements vs. the bulk temperature of 
the sample, after temperature calibration.
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For the dielectric properties measurement, the low power microwave source of a vectorial network analyzer 
(VNA) coupled at the bottom wall of the microwave cavity (see Fig. 1) generated a signal from 1.6 to 2.2 GHz and 
the reflected signal from the microwave cavity was continuously measured to determine the resonant frequency 
and quality factor variations of the cavity as a function of the temperature in the material under test (MUT). These 
parameters (resonant frequency and quality factor) were introduced in the CPM formulas for dielectric constant 
and loss factor calculations. A complete and detailed information of these calculations is given in reference20.

The heating rate was 5–10 °C/min depending on the sample. The microwave heating system is based on 
another frequency sweeping source (from 2.2 to 2.6 GHz) and a microwave amplifier that, together with an 
adjustable coupling device (electric probe with variable penetration) and a double directional coupler (MECA’s 
722–40–1.950), allows for generating, adjusting and measuring the microwave forward and reflected signals in 
the microwave cavity as a function of the frequency and temperature. By selecting the appropriate frequencies 
of the source around the frequency peak of the cavity, we provide an excitation with a pulsed shape to supply the 
required microwave power depending on a desirable level of heating rate in the sample (maximum delivered 
power was 150 W). More detailed information has been included in supplementary information.

The infrared (IR) pyrometer (Optris CT-Laser LT) was used to measure the surface temperature of the quartz 
holder. Since the temperature calibration is performed through the described procedures, the emissivity was fixed 
to 0.97 during the experiments.

The portable Raman spectrometer (ProRaman-L-532-B1S) has a 532 nm excitation, typical linewidth of 
2 cm−1, and maximum power of 100 mW. It was calibrated following the procedure that involves the measurement 
of two NIST traceable standards: silicon and acrylonitrile.

For the DTA measurements, an equipment Netzcsh model STA-409 was used. The furnace of the equipment 
has a temperature controller TASC 414/2 Netzsch. The samples were placed on platinum crucibles. Calcined 
α-Al2O3 was used as reference material. The temperature range for the measurement was 30–1250 °C, under air 
flux of 0.04 l/min, and the heating speed was 10 °C/min.
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