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Abstract

This paper presents FAMA, a novel approach for learning STRIPS action models from observations of plan executions that compiles
the learning task into a classical planning task. Unlike all existing learning systems, FAMA is able to learn when the actions of the
plan executions are partially or totally unobservable and information on intermediate states is partially provided. This flexibility
makes FAMA an ideal learning approach in domains where only sensoring data are accessible. Additionally, we leverage the
compilation scheme and extend it to come up with an evaluation method that allows us to assess the quality of a learned model
syntactically, that is, with respect to the actual model; and, semantically, that is, with respect to a set of observations of plan
executions. We also show that the extended compilation scheme can be used to lay the foundations of a framework for action
model comparison. FAMA is exhaustively evaluated over a wide range of IPC domains and its performance is compared to ARMS,
a state-of-the-art benchmark in action model learning.
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1. Introduction

There is common agreement in the planning community that the unavailability of an adequate domain model is
a bottleneck in the applicability of planning technology to many real-world domains [1]. Motivated by the difficulty
and cost of crafting action models, research in action-model learning has seen huge advances. Since the emergence
of pioneer learning systems like ARMS [2], we have seen systems able to learn action models with quantifiers [3, 4],
from noisy actions or noisy states [5, 6], from null state information [7], from incomplete domain models [8, 9] and
many more.

A system for learning planning action models receives as an input observations of the agent’s plan execution and
outputs an approximation of the actions that embody the physics of the real-world domain being modeled. The pri-
mary underlying motivation for acquiring planning action models is to solve model-based planning tasks afterwards,
but there exists as well a large variety of planning-related tasks that rely upon the existence of a planning model.
Among these tasks, we might cite: goal and plan recognition approaches based on a domain theory [10, 11, 12];
transparent planning, in which an agent implicitly communicates its true goal by making its intentions and its ac-
tion selection transparent (recognizable) to observers [13]; or deceptive path-planning, which draws on the definition
of path-planning domains and aims at finding a path such that the probability of an observer identifying the final
destination is minimised [14]. Planning models are also used in explainable AI planning to form a common basis
for communicating with users and facilitate the generation of transparent and explainable decisions [15] as well as
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explanations in terms of the differences with a human mental model [16]. Counterplanning requires a model of the
opponent agent in order to recognize its goals [17] and model reconciliation aims to conform the models of two agents
with respect to an observation of a plan computed with one of the two models [18].

Motivated by the requirement for a planning model in many different tasks and the recent advances on the use of
classical planning for the generation of different types of planning models (regular automata, context-free grammars,
finite-state machines, STRIPS) [19, 20, 21, 22], in this paper we claim that a planning model is learnable even though
an accurate representation of the agent’s behavior is not available. Particularly, we present a novel learning algorithm,
called FAMA, capable of inferring the preconditions and effects of STRIPS action models, the vanilla action model for
automated planning [23], under minimal observability.

Current learning approaches assume that the observation of the agent’s plan execution (plan trace) encompasses
the fully observed sequence of the executed actions; i.e, they assume all the actions performed by the agent are
observable. This heavily restricts the applicability of the learning approaches to contexts where the behaviour of the
agent is fully observable, which also commonly entails a human annotator that correctly labels the executed actions.
On the other hand, learning approaches accept a varying degree of observability in the states traversed in the plan
trace, ranging from fully observable to fully unobservable states (see section 2.2 for details). In contrast, FAMA allows
for an incomplete or empty sequence of observable actions, and the minimum observability case acceptable by FAMA
is when the algorithm is only fed with the initial and final state of a plan trace. Like many Machine Learning (ML)
techniques, FAMA is able to operate with only input/output pairs of states and an unknown or a partially known model
of the agent. Unlike ML algorithms, FAMA requires a symbolic structured representation of the input knowledge.
In this sense, recent investigations tackle the problem of learning symbolic representations from low-level sensing
information and unstructured data [24, 25].

FAMA is a new learning approach, based on AI planning technology, that automatically compiles the task of
learning STRIPS actions into a planning task which is then solved with a planner [26]. The construction of a STRIPS
planning model starts out from a set of plan traces containing the observation of several plan executions. As mentioned
above, a plan trace may comprise none of the actions executed by the agent but must include, at least, the initial state s0
and final state sn of the execution. The compilation scheme lies in defining a planning task from the set of plan traces
using a set of building actions that insert the preconditions and effects of a learned action, and a set of validating
actions that validate the learned actions in the plan traces. Hence, a solution to this planning task is a plan that
determines the preconditions and effects of the actions of a STRIPS planning model M while ensuring consistency
with the input traces. We say that a model M is consistent with a plan trace when M can produce a solution π to
the planning problem 〈s0, sn〉 so that: (1) π contains the observed actions of the plan trace, if any, and (2) the states
generated by the application of π to s0 will encompass all the (possibly) partially observed states of the trace.

FAMA is thus a model-based approach that automatically builds its own planning model by logical inference from
the input plan traces that contain the observations of the agent execution. This behaviour largely differs from ML
techniques, which aim to minimize an error function on the training data. Moreover, FAMA requires far less sample
data (example plan traces) than typical ML algorithms, thus alleviating the dependency on the assumption that there
are enough data for learning the action models [27].

A key aspect in action-model learning is the evaluation method to assess the quality and performance of the
learning approach. The most common method is to use a syntax-based evaluation that compares the learned model
with a reference model. FAMA proposes instead two novel semantic evaluation metrics that build upon two well-
known ML metrics, precision and recall [28], to evaluate the learned action models with respect to observations of
plan executions. Our semantic evaluation is generally more informative than counting the number of errors between
two models and alleviates two important limitations of a purely syntax-based assessment: (a) that the learned model
is syntactically different from the reference model but semantically correct and (b) that the learned model comprises
correct though unnecessary preconditions in regards to the reference model. This latter issue is concerned with the
qualification problem, which is defined as the actual impossibility of listing all the preconditions required for a real
world action to have its intended effects [29].

Our semantic evaluation method is built on the same compilation scheme for solving a learning task. In particular,
FAMA also accepts an input initial action model M of the agent’s behaviour, either complete or partially specified [8, 9],
alongside the observation of the agent execution. In this case, FAMA returns a model M′ that follows the input model
M and is consistent with the observations. We designed an edition mechanism that serves to correct the input model
to the output model, which in turn defines an assessment of the accuracy with which M explains the observations.



Interpreting the edition measure as a distance-based concept between two models can also be exploitable in model
reconciliation [30].

In summary, FAMA is a novel learning approach characterized by:

• Compiling the task of learning a STRIPS planning model into a planning task that is automatically built from a
set of input plan traces.

• The plan traces are correct (no noise is considered in the observations) but may be incomplete in the number of
observed actions as well as in the number and contents of the observed states.

• The planning task resulting from the compilation comprises actions for programming the preconditions and
effects of the STRIPS actions and actions for validating the learned STRIPS actions.

• A semantic evaluation proposal that enables to assess a learned model beyond a merely syntactic comparison to
a reference model.

A first description of the FAMA compilation scheme already appeared in our previous conference paper [26]. This
paper brings the following contributions over the first version of the compilation:

• A unified formulation for learning and evaluating action models from observations of plan executions. In the
case of minimum observability, these executions only comprise the initial and final state of the plan traces.

• A thorough elaboration of two semantic evaluation metrics that build upon the notions of precision and recall
to evaluate the output action models with respect to observations of plan executions.

• An exhaustive empirical evaluation over 15 domains from the International Planning Competitions (IPCs).
We include an analysis of the impact that the size of the input knowledge has in the performance of FAMA, a
comparison with ARMS, and a detailed experimentation when FAMA is executed with minimal input knowledge.

The paper is organized as follows. Section 2 introduces classical planning concepts and reviews related work
on learning planning action models. Section 3 formally defines the learning task and motivates our compilation-
to-planning approach for learning action models. Section 4 presents the compilation scheme, the core of FAMA.
Sections 5 explains the evaluation of a learned model with respect to a reference model (syntactic evaluation) and
with respect to a set of plan traces (semantic evaluation). Section 6 reports the results of the experimental evaluation
and, finally, Section 7 discusses the strengths and weaknesses of the compilation approach and proposes several
opportunities for future research.

2. Background

This section serves two purposes; first, we introduce basic planning concepts and define the classical planning
model we aim to learn; secondly, we summarize the most relevant existing approaches to learn classical planning
action models.

2.1. Basic planning concepts

We use F to denote the set of fluents (propositional variables) describing a state. A literal l is a valuation of a
fluent f ∈ F, i.e. either l = f or l = ¬ f . A set of literals L represents a partial assignment of values to fluents (without
loss of generality, we will assume that L does not assign conflicting values to any fluent). The complement of L is
defined as ¬L = {¬l : l ∈ L}. We use L(F) to denote the set of all literal sets on F, i.e. all partial assignments of values
to fluents.

We will adopt the open world assumption, that is, what is not known to be true in a state is unknown, to implicitly
represent the unobserved literals of states. Consequently, states will explicitly include positive literals ( f ) and negative
literals (¬ f ) such that literals that are not in a state are unknown or unobserved. Hence, a state s is a full assignment
of values to fluents; i.e. |s| = |F|, so the size of the state space is 2|F|. Like in PDDL [31], we assume that fluents
F are instantiated from a set of predicates Ψ. Each predicate p ∈ Ψ has an argument list of arity ar(p). Given



a set of objects Ω, the set of fluents F is induced by assigning objects in Ω to the arguments of predicates in Ψ;
i.e. F = {p(ω) : p ∈ Ψ, ω ∈ Ωar(p)} such that Ωk is the k-th Cartesian power of Ω.

A classical planning frame is a tuple Φ = 〈F, A〉, where F is a set of fluents and A is a set of actions. An action
a ∈ A has a set of preconditions pre(a) ∈ L(F) and a set of effects eff(a) ∈ L(F). An action a ∈ A is applicable in a
given state s iff pre(a) ⊆ s, i.e. if the literals pre(a) hold in s. The result of executing an applicable action a ∈ A in a
state s is a new state θ(s, a) = {s \ ¬eff(a)∪ eff(a)}. Note that subtracting the complement of eff(a) from s ensures that
θ(s, a) remains a well-defined state with positive and negative literals. Then:

• eff+(a) ∈ L(F) is the positive effects of a, the subset of action effects that assert a positive literal in the state
resulting after the application of a

• eff−(a) ∈ L(F) is the negative effects of a, the subset of action effects that assert a negative literal in the state
resulting after the application of a

Since we restrict our attention to STRIPS action models learning, we will assume the set of syntactic constraints
imposed by STRIPS models, namely that eff−(a) ⊆ pre(a), eff−(a)∩eff+(a) = ∅ and pre(a)∩eff+(a) = ∅. Additionally,
actions a ∈ A are instantiated from given action schemas, as in PDDL.

A classical planning problem is a tuple P = 〈F, A, I,G〉, where I is an initial state and G ∈ L(F) is a goal condition.
A plan for P is an action sequence π = 〈a1, . . . , an〉 that induces the state trajectory s = 〈s0, s1, . . . , sn〉 such that s0 = I
and, for each 1 ≤ i ≤ n, ai is applicable in si−1 and generates the successor state si = θ(si−1, ai). The plan length is
denoted with |π| = n . A plan π solves P iff G ⊆ sn, i.e., if the goal condition is satisfied at the last state reached after
following the application of the plan π in the initial state I. A solution plan for P is optimal if it has minimum length.

In this work, the term plan trace refers to the observation of a plan execution that starts on a given initial state. A
plan trace τ = 〈s0, a1, s1, a2, s2, . . . , an, sn〉 is generally defined as an interleaved combination of a sequence of executed
actions 〈a1, . . . , an〉 and the induced state trajectory 〈s0, s1, . . . , sn〉. Plan traces constitute the input knowledge of the
learning tasks addressed in this paper.

Our approach copes with partial observability in the plan traces. Let π = 〈a1, . . . , an〉 be the plan executed by
an agent that induces the state trajectory s = 〈s0, s1, . . . , sn〉, and let τ = 〈s0, . . . , ai, . . . , s j, . . . , sn〉 be the plan trace
observed from the plan execution. With regards to the observed states of τ, that we will refer to as τs, we identify two
general cases of observability:

1. We say that τs is a fully-observable (FO) state trajectory if every observed intermediate state of τs is a full
assignment of values to fluents, and there exists a single action that transitions from every state si to state si+1
in τs; that is θ(si, 〈a〉) = si+1. This case clearly states that τs = s, meaning that ∀si ∈ τs, si comprises all the
literals of the corresponding state in the trajectory s of the plan π. Formally, ∀i, 1 ≤ i < n, |si| = |F|.

2. We say that τs is a partially-observable (PO) state trajectory if at least one intermediate state of τs is a partial
assignment of values to fluents. Formally, ∃i, 1 ≤ i < n, |si| < |F|. This means that one or more literals are
missing in the intermediate si, all of which may be missing. When all literals are missing, si is a missing or
empty state (si = ∅).

The general definition of a PO state trajectory gives rise to two special cases:

1. When all of the n − 1 intermediate states of s are missing in τs, τs is a non-observable (NO) state trajectory.
Formally, ∀i, 1 ≤ i < n, si = ∅; i.e., |si| = 0.

2. When none of the n − 1 intermediate states of s are missing in τs, we will refer to τs as a PO* state trajectory.
Formally, ∃i, 1 ≤ i < n, si , ∅; i.e., 0 < |si| < |F|.

Table 1 summarizes the four types of state trajectories according to the observed information, which ultimately
affects the number of observed intermediate states and the number of literals comprised in each intermediate state.
PO comprises both PO* and NO, and it thus encompasses trajectories with some missing state.

FAMA can also deal with partial observability in the observed actions of τ, that we will refer to as τa. We identify
three levels of observability, from the greatest to the lowest:



# intermediate states state type
FO n − 1 ∀i, 1 ≤ i < n

si is a full assignment |si| = |F|
PO* n − 1 ∃i, 1 ≤ i < n

si is a partial assignment 0 < |si| < |F|
PO ≤ n − 1 ∃i, 1 ≤ i < n

si is a partial assignment |si| < |F|
NO 0 ∀i, 1 ≤ i < n

si is an empty state |si| = 0

Table 1: Classification of state trajectories accordingly to the observed information.

1. When all of the actions of π appear in τa, we say that τa is a fully-observable (FO) action sequence; i.e., τa = π.
In this case, τa contains all the necessary actions to transit every state si−1 to its corresponding successor state
si, from s0 to sn. This is the type of input trace accepted by all the existing learning approaches (see section 2.2
for details).

2. When some of the actions of π appear in τa, we say that τa is a partially observable (PO) action sequence. In this
case, at least one of the necessary actions of the plan π is missing in τa. Formally, ∃i, 1 ≤ i ≤ n, ai ∈ π∧ ai < τa.

3. When none of the actions of π appear in τa, we say that τa is a non-observable (NO) action sequence. Formally,
∀i, 1 ≤ i ≤ n, ai ∈ π ∧ ai < τa. That is, τa = ∅.

Plan traces can be classified accordingly to the type of observed state trajectory (FO, PO*, PO or NO) and action
sequence (FO, PO or NO). In section 3, we expose the impact of the combinations of observed state trajectories and
observed action sequences when solving a learning task.

2.2. Related work
In this section we summarize the most recent and relevant approaches to learning action models found in the

literature. Approaches will be examined according to the following parameters: the observability of the plan traces
accepted by the system, the expressiveness of the learned action model and the principal technique used for learning
the action model (Table 2), as well as the characteristics of the evaluation method used to validate the learned models
(Table 3).

The first column of Table 2 shows the constraints imposed on the input plan traces with regard to observability.
Since all approaches except ours deal only with FO action sequences, constraints are exclusively concerned with the
type of state trajectory. This directly affects the complexity of the task, which can be sorted from the least to the most
constrained following this order: 1) NO, 2) PO, 3) PO*, and 4) FO. Note that PO is less constrained than PO* because
PO considers the possibility of having some missing state in the trajectory.

The task of learning from less constrained traces subsumes learning from more constrained ones. Consequently,
approaches to learning from, say traces with PO state trajectories, will also enable learning from traces with PO* state
trajectories. All the approaches analyzed in this work accept the more constrained definition of partial observations of
intermediate states PO*, two of them also allow the sequence of intermediate states to be empty (PO) and the majority
accept NO state trajectories. Exceptionally, LOCM is the only approach capable of learning from a fully-empty state
trajectory, with neither initial nor final state.

The expressiveness of the learned action models varies across approaches (second column of Table 2). All the
presented systems are able to learn action models in a STRIPS representation [23] and some propose algorithms to
learn more expressive action models that include quantifiers, logical implications or the type hierarchy of a PDDL
domain.

Table 3 summarizes the main characteristics of the evaluation of the learned action models based on the type of
evaluation method (first column of Table 3), the metrics used in the evaluation (second column of Table 3) and the
number of tested domains alongside the size of the training dataset (third column of Table 3). Regarding the evaluation
method, almost all approaches rely on a comparison between the learned model and a Ground-Truth Model (GTM).
By GTM we refer to an engineered model that knowledge modelers have adopted as being correct with respect to a
domain, and that the planning community accepts as such.



Input plan traces Learned action model Technique

ARMS NO states STRIPS MAX-SAT
FO actions

SLAF PO* states universal quantifiers in eff logical inference
FO actions SAT solver

LAMP PO states quantifiers Markov logic networks
FO actions logical implications

AMAN NO states STRIPS graphical model estimation
noisy actions

NOISTA PO* and noisy states STRIPS classification
FO actions STRIPS rules derivation

CAMA PO states STRIPS crowdsourcing annotation
FO actions MAX-SAT

LOUGA NO states STRIPS Genetic algorithm
FO actions negative preconditions

LOCM2 — predicates and types Finite State Machines
FO actions

FAMA NO states STRIPS compilation to planning
NO actions

Table 2: Characteristics of action-model learning approaches

In the following, we present a comprehensive insight of the particularities of the eight systems presented in Table
2 and Table 3. This exposition will also help us to highlight in section 3 the value of our contribution FAMA.

The Action-Relation Modeling System (ARMS) [2] is one of the first learning algorithms able to learn from plan
traces with partial or null observations of intermediate states. ARMS uncovers a number of constraints from the plan
traces in the training data that must hold for the plans to be correct. These constraints are then used to build and solve
a weighted propositional satisfiability problem with a MAX-SAT solver. Three types of constraints are considered:
1) constraints imposed by general axioms of correct STRIPS actions, 2) constraints extracted from the distribution of
actions in the plan traces and 3) constraints obtained from the PO states, if available. Frequent subsets of actions in
which to apply the two latter types of constraints are found by means of frequent set mining.

ARMS defines an error metric and a redundancy metric to measure the correctness and conciseness of an action
model over the test set of input plan traces using a cross-validation evaluation. The model evaluation is posed as an
optimization task that returns the model that best explains the input traces by minimizing the error and redundancy
functions. This yields a model that is approximately correct (100% correctness is not required so as to ensure gener-
ality and avoid overfitting), approximately concise (low redundancy rates), and that can explain as many examples as
possible. Hence, there is no guarantee that the learned model of ARMS explains all observed plans, not even that it
correctly explains any of the plan traces of the test set.

The ARMS system became a benchmark in action-model learning, showing empirically that is is feasible lo learn
a model in a reasonably efficient way using a weighted MAX-SAT even with NO state trajectories.

A tractable and exact solution of action models in partially observable domains using a technique known as
Simultaneous Learning and Filtering (SLAF) is presented in [3]. SLAF alongside ARMS can be considered another
of the precursors of the modern algorithms for action-model learning, able to learn from partially observable states.
Given a formula representing the initial belief state, a sequence of executed actions and the corresponding partially
observed states, SLAF builds a complete explanation of observations by models of actions through a CNF formula.
The learning algorithm updates the formula of the belief state with every action and observation in the sequence
such that the new transition belief formula represents all possible transition relations consistent with the actions and
observations at every time step.

SLAF extracts all satisfying models of the learned formula with a SAT solver. For doing so, the training data set
for each domain is composed of randomly generated action-observation sequences (1,000 randomly selected actions
and 10 fluents uniformly selected at random per observation). Additional processing in the form of replacement
procedures or extra axioms are run into the SAT solver when finding the satisfying models. The experimentally tested



Evaluation method Metrics #tested domains/
training data size

ARMS cross-validation with a test set error counting of #pre satisfaction 6
of plan traces and redundancy 1,600-4,320 actions

(160 plan traces)
SLAF manual checking wrt GTM — 4

1,000 actions
LAMP checking wrt GTM error counting of extra 4

and missing #pre and #eff 1,300-6,100 actions
(100-200 plan traces)

AMAN checking wrt GTM error counting of extra 3
and missing #pre and #eff 40-200 plan traces

NOISTA checking wrt GTM error counting of extra 5
and missing #pre and #eff 5,000-20,000 actions

CAMA checking wrt GTM error counting of extra 3
and missing #pre and #eff 15-75 plan traces

LOUGA cross-validation with redundant effects 5
a test set of plan traces differences wrt the test set 800 - 3200 actions (160 traces)

LOCM2 manual checking wrt GTM — —
FAMA checking wrt GTM precision and recall 15

validation with a test set 20-50 actions

Table 3: Evaluation of action models (GTM: ground-truth model)

SLAF version is an algorithm that learns only effects for actions that have no conditional effects and assumes that
actions in the sequences are all executed successfully (without failures). This algorithm cannot effectively learn the
unknown preconditions of the actions and in the resulting models ‘one can see that the learned preconditions are
often inaccurate‘ [3]. On the other hand, it does not report any statistical evaluation of measurement error other than
a manually comparison of the learned models with a ground-truth model.

The Learning Action Models from Plan Traces (LAMP) [4] algorithm extends the expressiveness to learning
models with universal and existential quantifiers as well as logical implications. The input to LAMP is a set of plan
traces with intermediate states, which are encoded by the algorithm into propositional formulas. LAMP then uses
the action headers and predicates to build a set of candidate formulas that are validated against the input set using
a Markov Logic Network and effectively weighting each formula. The formulas with weights larger than a certain
threshold are chosen to represent preconditions and effects of the learned action models.

LAMP allows PO state trajectories up to a minimum observability of 1/5 of non-empty states as well as PO* state
trajectories with different degrees of observability in the number of propositions in each state. It uses an error metric
based on counting the differences in the number of precondition and effects between the ground-truth model and the
learned model. In general, the results show that the accuracy of the learned models is fairly sensitive to the threshold
chosen to learn the weights of the candidate formulas, and that domains that feature more conditional effects are
harder to learn.

The Action Model Acquisition from Noisy plan traces (AMAN) [5] introduces an algorithm able to learn action
models from plan traces with NO state sequences where actions have a probability of being observed incorrectly
(noisy actions). The first step of the AMAN algorithm is to build the set of candidate domain models that are consistent
with the action headers and predicates. AMAN then builds a graphical model to capture the domain physics; i.e.,
the relations between states, correct actions, observed actions and domain models. After that, the parameters of
the graphical model are learned, computing at the same time the probability distribution of each candidate domain
model. AMAN finally returns the model that maximizes a reward function defined in terms of the percentage of actions
successfully executed and the percentage of goal propositions achieved after the last successfully executed action.

AMAN uses the same metric as LAMP, namely counting the number of preconditions and effects that appear in
the learned model and not in the ground-truth model (extra fluents) and viceversa (missing fluents). In a comparison
between AMAN and ARMS on noiseless inputs, the results show that the accuracy of the learnt models are very close
to each other and neither dominates the other. The convergence property of AMAN guarantees that the accuracy of the



learned model with noisy input traces becomes more and more close to the case without noise because the distribution
of noise in the plan becomes gradually closer to real distribution with the number of iterations.

Another interesting approach that deals with noisy and incomplete observations of states is presented in [6]. We
will refer to this approach as NOISTA henceforth. In NOISTA, actions are correctly observed but they can obviously
be unsuccessfully executed in the possibly noisy application state. The basis of this approach consists of two parts:
a) the application of a voted Perceptron classification method to predict the effects of the actions in vectorized state
descriptions and b) the derivation of explicit STRIPS action rules to predict each fluent in isolation. Experimentally,
the error rates in NOISTA fall below 0.1 after 5,000 training samples for the five tested domains under a maximum of
5% noise and a minimum of 10% of observed fluents.

The Crowdsourced Action-Model Acquisition (CAMA) [27] explores knowledge from both crowdsourcing (human
annotators) and plan traces to learn action models for planning. CAMA relies on the assumption that obtaining enough
training samples is often difficult and costly because there is usually a limited number of plan traces available. In
order to overcome this limitation, CAMA builds on a set of soft constraints based on labels true or false given
by the crowd and a set of soft constraints based on the input plan traces. Then it solves the constraint-based problem
using a MAX-SAT solver and converts the solution to action models.

Plan traces in CAMA are composed of 80% of empty states and each partial state was selected by 50% of propo-
sitions in the corresponding full state. An experimental comparison reveals that a manual crowdsourcing of CAMA
outperforms ARMS and that as expected the difference becomes smaller as the number of plan traces becomes larger.
The accuracy of CAMA for a small number of plan traces (e.g., 30) is not less than 80%, thus revealing that exploiting
the knowledge of the crowd can help learning action models.

One of the latest incorporations to the family of action model learning algorithms is LOUGA. This system uses
a genetic algorithm to learn the effects of actions. In order to do this, each gene in the genome encodes whether a
predicate is a positive effect, negative effect or none for a particular action, and the fitness of an individual is evaluated
by reproducing the trace with the model encoded in the individual. After a solution for the effects is found, an ad-
hoc algorithm is used to infer preconditions by finding those literals that are always present before the execution of
an action. LOUGA evaluates the learned models via cross-validation using the same metrics they use in their fitness
function. In more detail, they measure (1) redundant positive and negative effects, (2) preconditions not met, and (3)
literals observed in the input trace but not in the corresponding execution of the plan with the learned model.

Finally, we present the Learning Object-Centred Models (LOCM), possibly the most distinctive learning system
due to its ability of learning with minimal input knowledge. LOCM only requires the FO action sequence of the plan
trace, without need for providing any information about the predicates or the state trajectory, not even the initial or
final state [32, 7]. The lack of available state information is overcome by exploiting assumptions about the structure of
the actions. Particularly, LOCM assumes that objects found in the same position in the header of actions are grouped
as a collection of objects named sort whose defined set of states is captured by a parameterized Finite State Machine
(FSM). The intuitive assumptions of LOCM, like the continuity of object transitions or the association of parameters
between consecutive actions in the training dataset, yield a learning model heavily reliant on the kind of domain
structure. A later work, LOCM2, extends the applicability of the LOCM algorithm to a wider range of domains by
introducing a richer representation that allows using multiple FSMs to represent the state of a sort [33].

LOCM2 is not experimentally evaluated, only the outcome of running the LOCM2 algorithm on several benchmark
domains wrt to the reference model is reported in [33]. It is worth noting the last contribution of the LOCM family,
called LOP (LOCM with Optimized Plans), addresses the problem of inducing static predicates [34]. LOP applies a
post-processing step after the LOCM analysis and it requires additional input information, particularly a set of optimal
plans besides the suboptimal FO action sequences.

The distinctive feature of the LOCM family lies in the capacity to learn the state variables (fluents) because pred-
icates are neither provided as input nor they are deducible from the plan trace as no state observability is allowed. In
contrast, FAMA and the rest of approaches either assume the set of predicates are provided alongside the input traces
or assume they are extractable from the observed states of the plan trace, in which case the plan trace must comprise
at least a grounded sample of every predicate. Similarly, the syntax of an action header (the action name and its
parameters) is either extractable from the action sequence of the plan trace or it must be explicitly provided.



3. Learning task

In this section, we firstly define the concept of learning task. Subsequently, we examine the particularities of the
learning task to the different types of plan traces according to the observed state trajectories and action sequences.
The analysis will serve to justify the use of planning for solving the learning task as well as to highlight the principal
distinctive features of our approach FAMA with respect to the related work reviewed in Section 2.2.

FAMA addresses the learning and evaluation of PDDL action models that follow the STRIPS requirement [35, 31].
A STRIPS action model is a tuple ξ = 〈name(ξ), pars(ξ), pre(ξ), add(ξ), del(ξ)〉 where:

• The name, name(ξ), and parameters, pars(ξ), of the action model define the header of the model.

• pre(ξ), del(ξ) and add(ξ) represent the preconditions, negative effects and positive effects of the action model,
respectively, which follow the set of syntactic STRIPS constraints defined in section 2.1; specifically, del(ξ) ⊆
pre(ξ), del(ξ) ∩ add(ξ) = ∅ and pre(ξ) ∩ add(ξ) = ∅.

As an example, Figure 1 shows the action model of the stack operator from the four-operator blocksworld do-
main [36] encoded in PDDL.

(:action stack
:parameters (?v1 ?v2 - object)
:precondition (and (holding ?v1) (clear ?v2))
:effect (and (not (holding ?v1)) (not (clear ?v2)) (handempty) (clear ?v1) (on ?v1 ?v2)))

Figure 1: PDDL encoding of the action model of the stack operator from the four-operator blocksworld domain.

Our learning task consists in learning a classical domain model by observing one or more agents acting in a world
definable by a classical planning frame Φ = 〈F, A〉. The learning task is formalized by the pair Λ = 〈M, τ〉:

• M is the initial domain model (set of action models). This set is empty, when learning from scratch, or partially
specified, when some fragments of the action models are known a priori.

• τ is the observed plan trace such that:

1. Observations in τ are noiseless, meaning that if the value of a fluent or an action is observed in τ, then the
observation is correct.

2. The initial state s0 ∈ τ is a fully observed state including positive and negative fluents; i.e. |s0| = |F|.
Consequently, the corresponding set of predicates Ψ and objects Ω that shape the fluents in F can be
inferred from s0.

3. The header of an action model is either given byM or inferable from τ. In the latter case, τ must contain
at least one instantiation of the respective action model header.

4. We allow plan traces with NO state trajectories and NO action sequences. In the extreme, all actions and
intermediate states may be missing, provided that the final state is at least partially observed. The least
informative plan trace is thus τ = 〈s0, sn〉.

Ultimately, we can always assume that Λ will contain the predicates Ψ as well as the headers of the actions models,
either explicitly provided inM or deducible from τ.

Figure 2 shows an example of a learning task Λ = 〈M, τ〉 corresponding to the observation of the execution of
the four-action plan π = 〈(unstack B A), (putdown B), (pickup A), (stack A B)〉 for inverting a two-block tower. In
this example τ = 〈s0,(putdown B),(stack A B), s4〉. Therefore, τ contains a NO state trajectory because only
the initial and final state are observed and the three intermediate states, s1, s2 and s3, are missing; and a PO action
sequence where actions a2 and a3 are observed while a1 and a4 are unknown. The initial domain model M only
contains two of the four needed headers, but can be completed with the headers (putdown ?v1) and (stack ?v1

?v2) inferred from τ.



;;;;;; Action headers in M

(pickup ?v1) (unstack ?v1 ?v2)

;;;;;; Plan trace τ

;;; Initial state observation
(clear B) (ontable A) (handempty) (on B A)
(not (clear A)) (not (ontable B)) (not (holding A)) (not (holding B))
(not (on A A)) (not (on A B)) (not (on B B))

;;; Action observation
(putdown B)

;;; Action observation
(stack A B)

;;; Final state observation
(clear A) (on A B) (ontable B)

Figure 2: Task Λ = 〈M, τ〉 associated to the observation τ = 〈s0,(putdown B),(stack A B), s4〉

A solution to a learning task Λ = 〈M, τ〉 is a domain modelM′ that is consistent with the information ofM and
with the observed plan trace τ. This means that the action sequence (plan) that solves the planning problem 〈s0, sn〉

withM′ along with the state trajectory induced by this plan encompass the plan trace τ.
Our definition of the learning task is extensible to the more general case where the execution of several plans from

the same action models are observed. In this case, Λ = 〈M,T〉, where T = {τ1, . . . , τk} such that each τ ∈ T is a plan
trace that satisfies the previous 1–4 assumptions. In this case, the learned domain modelM′ must be consistent with
the input modelM and with every observed plan trace τ ∈ T .

3.1. On the use of planning for solving the task.

The key to understanding the intricacies of solving a learning task Λ = 〈M, τ〉 lies in the type of plan trace
τ = 〈s0, . . . , sn〉. Let π be the plan that solves the planning problem 〈s0, sn〉 with a learned domain modelM′ and τ be
the observation of π. Since τ is a (partial) observation of the execution of π, actions, fluents or states traversed by π
may be missing in τ (we will use τs and τa to refer to the observed states and observed actions of τ, respectively). We
distinguish two well differentiated cases:

1. τ determines the length of π. This happens in three scenarios: (1) when τa is a FO action sequence (we know
the actions of π); (2) when τs is a FO state trajectory (the states induced by the actions of π are fully known); or
(3) when τ is a PO* state trajectory (we have at least one fluent for every state induced by π, in which case we
know there is a single action that transitions from every state of τs).

• The common assumption of having FO action sequences in a learning task, as is the case of all the learn-
ing approaches presented in section 2.2 except for FAMA, is unrealistic in many domains as it commonly
implies the existence of human observers that annotate the observed action sequences. In some real-world
applications, the observed and collected data are sensory data (e.g., home automation, robotics) or images
(e.g. traffic) and one cannot rely on human intervention for labeling actions. Actually, learning the exe-
cuted actions can also be part of the action-model learning task. Learning, for instance, from unstructured
data involves transforming the sensor or image information into a predicate-like format before applying
the action-model learning approach, and it also requires the ability of identifying action symbols [25].

• The assumption of having FO state trajectories means that the sensors are able to capture every state change
at every instant, which is also typically unrealistic. Normally, the process of obtaining state feedback from
sensors (or the processing of the sensor readings) is associated with a given sampling frequency that misses
intermediate data between two subsequent sensor readings.



• The assumption of having PO* state trajectories seems more appropriate to reflect a real-world sensor
reading but still requires that at least one fluent of every state traversed by π is captured by the sensors.

When the length of π is given by τ, the learning task is SAT compilable, and it is known that a Boolean
satisfiability problem is a NP-complete task [37]. This is the reason why SAT solvers are commonly used in
the approaches presented in section 2.2. Particularly, when τa is a FO action sequence and τs is a FO state
trajectory, learning STRIPS action models is straightforward [38]. In this case the pre- and post-states of every
action are available and so action effects are derived lifting the literals that change between the pre and post-state
of the corresponding action executions. Likewise preconditions are derived lifting the minimal set of literals
that appears in all the pre-states of the corresponding action. The challenge in this case comes from computing
the least number of examples that are necessary to learn models within a given error rate [39].

2. τ does not identify the length of π. This happens when τa and τs are both partially observed (PO) or non-
observable (NO) action/state trajectories. In this case, we are unaware of the number of actions of π and the
number of states induced by π. This gives rise to a completely different scenario and a more challenging learning
task that brings one key difference: the transition between two given observed states of τ may now involve more
than one action; i.e., θ(si, 〈a1, . . . , ak〉) = si+1, with k ≥ 1, k unknown and unbounded, and so the horizon of
π is no longer known. This justifies the use of planning techniques for solving the learning task, which can
now be interpreted as filling the gap between two observable points of τ. SAT approaches, on the other hand,
are no longer straightforwardly applicable given the lack of a length bound for the observed plan trace. In this
particular scenario, the actual number of plans consistent with the given observed plan trace is also unbounded
and grows exponentially with the actual length of the plans (that is now unknown). Therefore, when we assume
partial observability in both actions and states, a learning approach must consider that the length of the observed
plan traces is not an indication of the actual length of the plan, which motivates and justifies the use of planning,
as our proposal of compiling the learning task to a classical planning problem.

4. Learning action models from plan executions

Our proposal to address a learning task Λ = 〈M, τ〉 is to transform Λ into a planning task PΛ. The intuition
behind the compilation is that when PΛ is solved with a planner, the solution plan πΛ is a sequence of actions that
build the action models of the output domain modelM′ and verify thatM′ is consistent with the actions and states
of the observed plan trace τ = 〈s0, . . . , sn〉. Hence, πΛ will comprise two differentiated blocks of actions: a first
set of actions each defining the insertion of a fluent as a precondition, a positive effect or a negative effect of an
action model ξ ∈ M′; and a second set of actions that determine the application of the learned ξs while successively
validating the effects of the action application in every observable point of τ, including that the final reached state
comprises sn. Roughly speaking, in the blocksworld domain, the format of the first set of actions of πΛ will look like
(insert pre stack holding v1),(insert eff stack clear v1),(insert eff stack clear v2), where the
first effect denotes a positive effect and the second one a negative effect to be inserted in name(ξ) =stack; and
the format of the second set of actions of πΛ will be like (apply unstack blockB blockA),(apply putdown

blockB) and (validate 1),(validate 2), where the last two actions denote the points at which the states gen-
erated through the action application must be validated with the observed states of τ.

The specification of PΛ requires a propositional encoding of the components of the action models ξs, which is
explained in the following section. The compilation approach is fully detailed in section 4.2 and section 4.3 presents
some theoretical properties of the compilation scheme.

4.1. A propositional encoding for STRIPS action models

In this section we formalize a propositional encoding of an STRIPS action model ξ. This encoding is at the core
of the FAMA compilation approach for addressing the learning task defined in section 3.

Let Ωv = {vi}
maxa∈A ar(a)
i=1 be a new set of objects (Ω ∩ Ωv = ∅), denoted as variable names, which is bounded

to the maximum arity of an action in a given planning frame. For instance, in a three-block blocksworld Ω =

{block1, block2, block3} while Ωv = {v1, v2} because the actions with the maximum arity have arity two; i.e., any
instantiation of the stack or the unstack models.



We define Ψv as the set of predicates Ψ parameterized with the variable names of Ωv as arguments. The set Ψv de-
fines the elements that can appear in the preconditions and effects of the action models. In the blocksworld domain, this
set contains eleven elements, Ψv={handempty, holding(v1), holding(v2), clear(v1), clear(v2), ontable(v1),

ontable(v2), on(v1, v1), on(v1, v2), on(v2, v1), on(v2, v2)}. For a given action model ξ, we define Ψξ ⊆ Ψv

as the subset of elements of Ψv that can appear in ξ. For instance, Ψstack = Ψv whereas Ψpickup={handempty,
holding(v1),clear(v1),ontable(v1),on(v1, v1)} excludes the elements from Ψv that involve v2 because pickup
actions have arity one. The size of the space of possible STRIPS models for a given ξ is 22|Ψξ | (recall that negative
effects appear as preconditions and that they cannot be positive effects, and also that a positive effect cannot appear as
a precondition). For the blocksworld, 22|Ψstack | = 4, 194, 304 while for the pickup operator this number is only 1024.

We are now ready to define the propositional encoding of the model fluents of pre(ξ), del(ξ) and add(ξ). For every
ξ and p ∈ Ψξ, we create:

• prep(ξ): model fluent formed by the combination of the prefixes pre and name(ξ) plus a fluent of arity 0 that
results from appending the elements of p (e.g. pre stack on v1 v2, for name(ξ) = stack and p = on(v1, v2))

• delp(ξ): model fluent formed by the combination of the prefixes del and name(ξ) plus a fluent of arity 0 that
results from appending the elements of p (e.g. del stack on v1 v2)

• addp(ξ): model fluent formed by the combination of the prefixes add and name(ξ) plus a fluent of arity 0 that
results from appending the elements of p (e.g. add stack on v1 v2)

For a given action model ξ, if a fluent prep(ξ)/delp(ξ)/addp(ξ) holds in a state, it means that p is a precondi-
tion/negative/positive effect of ξ. For instance, Figure 3 shows the conjunction of model fluents that represents the
propositional encoding of the preconditions, negative effects and positive effects of the action model corresponding
to the stack operator shown in Figure 1.

(pre_stack_holding_v1) (pre_stack_clear_v2)
(del_stack_holding_v1) (del_stack_clear_v2)
(add_stack_handempty) (add_stack_clear_v1) (add_stack_on_v1_v2)

Figure 3: Propositional encoding for the stack action model from a four-operator blocksworld.

4.2. Compilation

Our compilation scheme builds upon the approach presented in [26] but FAMA comes up with a more general and
flexible scheme able to capture any type of input plan trace.

A learning task Λ = 〈M, τ〉 is compiled into a planning task PΛ with conditional effects in the context of a
planning frame Φ = 〈F, A〉. We use conditional effects because they allow us to compactly define actions whose
effects depend on the current state. An action a ∈ A with conditional effects is defined as a set of preconditions
pre(a) ∈ L(F) and a set of conditional effects cond(a). Each conditional effect C B E ∈ cond(a) is composed of two
sets of literals C ∈ L(F), the condition, and E ∈ L(F), the effect. An action a ∈ A is applicable in a state s if and only
if pre(a) ⊆ s, and the triggered effects resulting from the action application are the effects whose conditions hold in s;
that is, triggered(s, a) =

⋃
CBE∈cond(a),C⊆s

E. The result of applying a in state s follows the same definition of successor

state, θ(s, a), introduced in section 2.1 but applied to the conditional effects in triggered(s, a).

A solution plan πΛ to PΛ induces the output domain model M′ that solves the learning task Λ. Specifically, a
solution plan πΛ serves two purposes:

1. To build the action models of M′. πΛ comprises a first block of actions (plan prefix) that set the predicates
p ∈ Ψξ of pre(ξ), del(ξ) and add(ξ) for each ξ ∈ M.

2. To validate the action models of M′. πΛ also comprises a second block of actions (plan postfix) which is
aimed at validating of the observed plan trace τ with the built action modelsM′.



Given a learning task Λ = 〈M, τ〉, with τ formed by an n-action sequence 〈a1, . . . , an〉 and a m-state trajectory
〈s0, s1, . . . , sm〉 (τ = 〈s0, a1, . . . , an, sm〉), the compilation outputs a classical planning task PΛ = 〈FΛ, AΛ, IΛ,GΛ〉 such
that:

• FΛ extends F with the model fluents to represent the preconditions and effects of each ξ ∈ M as well as some
other fluents to keep track of the validation of τ. Specifically, FΛ contains:

– The set of fluents obtained from s0; i.e., F.

– The model fluents prep(ξ), delp(ξ) and addp(ξ), for every ξ ∈ M and p ∈ Ψξ, defined as explained in
section 4.1

– A set of fluents Fπ = {plan(name(ai),Ωar(ai), i)}1≤i≤n to represent the ith observable action of τ. In the
example of Figure 2, the two observed actions (putdown B) and (stack A B) would be encoded as
fluents (plan-putdown B i1) and (plan-stack A B i2) to indicate that (putdown B) is observed
in the first place and (stack A B) is the second observed action.

– Two fluents, ati and nexti,i+1, 1 ≤ i ≤ n, to iterate through the n observed actions of τ. The former is used
to ensure that actions are executed in the same order as they are observed in τ. The latter is used to iterate
to the next planning step when solving PΛ.

– A set of fluents {test j}0≤ j≤m, to point at the state observation s j ∈ τ where the action model is validated. In
the example of Figure 2 two tests are required to validate the programmed action model, one test at s0 and
another one at s4.

– A fluent, modeprog, to indicate whether action models are being programmed or validated.

– A fluent, actionapplied, to force the execution of at least one action between two observed states.

• IΛ encodes s0 and the following fluents set to true: modeprog, test0, Fπ, at1 and {nexti,i+1}, 1 ≤ i ≤ n. Our
compilation assumes that action models are initially programmed with no precondition, no negative effect and
no positive effect.

• GΛ includes the positive literals atn and testm. When these two goals are achieved by the solution plan πΛ, we
will be certain that the action models ofM′ are validated in all the actions and states observed in the input plan
trace τ.

• AΛ includes three types of actions that give rise to the actions of πΛ.

1. Actions for inserting a component (precondition, positive effect or negative effect) in ξ ∈ M following
the syntactic constraints of STRIPS models. These actions will form the prefix of the solution plan πΛ.
Among the inserting actions, we find:

– Actions which support the addition of a precondition p ∈ Ψξ to the action model ξ ∈ M. A precon-
dition p is inserted in ξ when neither prep, delp nor addp exist in ξ.

pre(insertPrep,ξ) ={¬prep(ξ),¬delp(ξ),¬addp(ξ),modeprog},

cond(insertPrep,ξ) ={∅}B {prep(ξ)}.

– Actions which support the addition of a negative or positive effect p ∈ Ψξ to the action model ξ ∈ M.
A positive effect is inserted in ξ under the same conditions of a precondition insertion, and a negative
effect is inserted in ξ when neither delp nor addp appear in ξ but prep does.

pre(insertEffp,ξ) ={¬delp(ξ),¬addp(ξ),modeprog},

cond(insertEffp,ξ) ={prep(ξ)}B {delp(ξ)},

{¬prep(ξ)}B {addp(ξ)}.



For instance, given name(ξ) =stack and Cpre−stack = {(pre stack holding v1),(pre stack holding v2),

(pre stack on v1 v2),(pre stack clear v1),(pre stack clear v1),. . .}, the insertion of each
item c ∈ Cpre−stack in ξ will generate a different alternative in the search space when solving PΛ as long
as c < pre(ξ), c < add(ξ) and c < del(ξ). The same applies to effects with respect to sets Cadd−stack and
Cdel−stack that would include all fluents starting with prefix add and del, respectively.
Note that executing an insert action, e.g.(insert pre stack holding v1), will add the corresponding
model fluent (pre stack holding v1) to the successor state. Hence, the execution of the insert actions
of πΛ yield a state containing the valuation of the model fluents that shape every ξ ∈ M. For example,
executing the insert actions that shape the action model name(ξ) =putdown leads to a state containing the
positive literals (pre putdown holding v1),(eff putdown holding v1),

(eff putdown clear v1), (eff putdown ontable v1),(eff putdown handempty).
2. Actions for applying the action models ξ ∈ M built by the insert actions and bounded to objectsω ⊆ Ωar(ξ).

Since action headers are known, the variables pars(ξ) are bounded to the objects in ω that appear in the
same position.

pre(applyξ,ω) ={prep(ξ) =⇒ p(ω)}∀p∈Ψξ
,

cond(applyξ,ω) ={delp(ξ)}B {¬p(ω)}∀p∈Ψξ
,

{addp(ξ)}B {p(ω)}∀p∈Ψξ,

{∅}B {actionapplied},

{modeprog}B {¬modeprog}.

These actions will be part of the postfix of the plan πΛ and they determine the application of the learned
action models according to the values of the model fluents in the current state configuration. Figure 4
shows the PDDL encoding of (apply stack) for applying the action model of the stack operator. Let’s
assume the action (apply stack blockB blockA) is in πΛ. Executing this action in a state s implies
activating the preconditions and effects of (apply stack) according to the values of the model fluents
in s. For example, if {(pre stack holding v1),(pre stack clear v2)} ⊂ s then it must be checked
that positive literals (holding blockB) and (clear blockA) hold in s. Otherwise, a different set of
precondition literals will be checked. The same applies to the conditional effects, generating the corre-
sponding literals according to the values of the model fluents of s.
Note that executing an apply action, e.g.(apply stack blockB blockA), will add the literals (on

blockB blockA),(clear blockB),(not(clear blockA)),(handempty) and (not(clear blockB))

to the successor state if name(ξ) =stack has been correctly programmed by the insert actions. Hence,
while insert actions add the values of the model fluents that shape ξ, the apply actions add the values of
the fluents of F that result from the execution of ξ.
When the input plan trace contains PO observed actions, the extra conditional effects {ati, plan(name(ai),Ωar(ai), i)}B
{¬ati, ati+1}∀i∈[1,n] are included in the applyξ,ω actions to ensure that actions are applied in the same order
as they appear in τ. If the sequence of actions is FO, then this conditional effect is redefined as regular
preconditions and effects in the apply actions. Doing so will make it impossible for the planner to execute
apply actions other than the observed actions in the plan trace. Furthermore, for traces with PO* or FO
state trajectories, we force that only one apply action is executed between two observed states by adding
the precondition ¬actionapplied in every apply action.

3. Actions for validating the partially observed state s j ∈ τ, 1 ≤ j < m. These actions are also part of the
postfix of the solution plan πΛ and they are aimed at checking that the observable data of the input plan
trace τ follows after the execution of the apply actions.

pre(validatej) =s j ∪ {test j−1},

cond(validatej) ={∅}B {¬test j−1, test j}.



(:action apply_stack
:parameters (?o1 - object ?o2 - object)
:precondition
(and (or (not (pre_stack_on_v1_v1)) (on ?o1 ?o1))

(or (not (pre_stack_on_v1_v2)) (on ?o1 ?o2))
(or (not (pre_stack_on_v2_v1)) (on ?o2 ?o1))
(or (not (pre_stack_on_v2_v2)) (on ?o2 ?o2))
(or (not (pre_stack_ontable_v1)) (ontable ?o1))
(or (not (pre_stack_ontable_v2)) (ontable ?o2))
(or (not (pre_stack_clear_v1)) (clear ?o1))
(or (not (pre_stack_clear_v2)) (clear ?o2))
(or (not (pre_stack_holding_v1)) (holding ?o1))
(or (not (pre_stack_holding_v2)) (holding ?o2))
(or (not (pre_stack_handempty)) (handempty)))

:effect
(and (when (del_stack_on_v1_v1) (not (on ?o1 ?o1)))

(when (del_stack_on_v1_v2) (not (on ?o1 ?o2)))
(when (del_stack_on_v2_v1) (not (on ?o2 ?o1)))
(when (del_stack_on_v2_v2) (not (on ?o2 ?o2)))
(when (del_stack_ontable_v1) (not (ontable ?o1)))
(when (del_stack_ontable_v2) (not (ontable ?o2)))
(when (del_stack_clear_v1) (not (clear ?o1)))
(when (del_stack_clear_v2) (not (clear ?o2)))
(when (del_stack_holding_v1) (not (holding ?o1)))
(when (del_stack_holding_v2) (not (holding ?o2)))
(when (del_stack_handempty) (not (handempty)))
(when (add_stack_on_v1_v1) (on ?o1 ?o1))
(when (add_stack_on_v1_v2) (on ?o1 ?o2))
(when (add_stack_on_v2_v1) (on ?o2 ?o1))
(when (add_stack_on_v2_v2) (on ?o2 ?o2))
(when (add_stack_ontable_v1) (ontable ?o1))
(when (add_stack_ontable_v2) (ontable ?o2))
(when (add_stack_clear_v1) (clear ?o1))
(when (add_stack_clear_v2) (clear ?o2))
(when (add_stack_holding_v1) (holding ?o1))
(when (add_stack_holding_v2) (holding ?o2))
(when (add_stack_handempty) (handempty))
(when (modeProg) (not (modeProg)))))

Figure 4: PDDL action for applying an already programmed model for stack (implications are coded as disjunctions).

There will be a validate action in πΛ for every observed state in τ. The position of the validate actions in
πΛ will be determined by the planner by checking that the state resulting after the execution of an apply
action comprises the observed state s j ∈ τ. If the input plan trace contains observed actions, we add an
extra precondition, ati+1, where i is the index of the last observed action before the state we are validating.
This additional precondition ensures that applied actions are also ordered with respect to the observed
states.

In some contexts, it is reasonable to assume that some parts of the action model are known and so there is no
need to learn the entire model from scratch [8]. In FAMA, when an action model ξ is partially specified, the known
preconditions and effects are encoded as fluents prep(ξ), delp(ξ) and addp(ξ) set to true in the initial state IΛ. In this
case, the corresponding insert actions, insertPrep,ξ and insertEffp,ξ, become unnecessary and are removed from AΛ,
thereby making the classical planning task PΛ easier to be solved.

So far we have explained the compilation for learning from a single input trace. However, the compilation is
extensible to the more general case Λ = 〈M,T〉, where T = {τ1, . . . , τk} is a set of plan traces. Taking this into
account, a small modification is required in our compilation approach. In particular, the actions in PΛ for validating
the last state st

m ∈ τt, 1 ≤ t ≤ k of a plan trace τt reset the current state and the current plan. These actions are now
redefined as:



pre(validatej) =st
m ∪ {test j−1} ∪ {¬modeprog},

cond(validatej) ={∅}B {¬test j−1, test j}∪

{¬actionapplied}∪

{¬ f }∀ f∈st
m , f<st+1

0
∪ { f }∀ f∈st+1

0 , f<st
m
∪

{¬ f }∀ f∈Fπt
∪ { f }∀ f∈Fπt+1

.

Finally, we will detail the composition of a solution plan πΛ to a planning task PΛ and the mechanism to extract
the action models ofM′ from πΛ. The plan of Figure 5 shows a solution to the task PΛ that encodes a learning task
Λ = 〈M, τ〉 for obtaining the action models of the blocksworld domain, where the models for pickup, putdown and
unstack are already specified inM. Therefore, the plan shows the insert actions and validate action for the action
model stack using the input plan trace of Figure 2. Plan steps 00 − 01 insert the preconditions of the stack model,
steps 02 − 06 insert the action model effects, and steps 07 − 11 form the plan postfix that applies the action models
(only the stack model is learned) and validates the result in the plan trace of Figure 2.

00 : (insert pre stack holding v1)

01 : (insert pre stack clear v2)

02 : (insert eff stack clear v1)

03 : (insert eff stack clear v2)

04 : (insert eff stack handempty)

05 : (insert eff stack holding v1)

06 : (insert eff stack on v1 v2)

07 : (apply unstack blockB blockA i1 i2)

08 : (apply putdown blockB i2 i3)

09 : (apply pickup blockA i3 i4)

10 : (apply stack blockA blockB i4 i5)

11 : (validate 1)

Figure 5: Plan for programming and validating the stack action model (using the plan trace τ of Figure 2) as well as previously
specified action models for pickup, putdown and unstack.

Given a solution plan πΛ that solves PΛ, the set of action modelsM′ that solves Λ = 〈M, τ〉 is computed in linear
time and space. In order to do so, πΛ is executed in the initial state IΛ and the action modelM′ will be given by the
fluents pre f (ξ), del f (ξ) and add f (ξ) that are set to true in the last state reached by πΛ, sg = θ(IΛ, πΛ). For each ξ ∈ M′,
we build the sets of preconditions, positive effects and negative effects as follows:

pre(ξ) ={p | prep(ξ) ∈ sg}∀p∈Ψξ
,

add(ξ) ={p | addp(ξ) ∈ sg}∀p∈Ψξ
,

del(ξ) ={p | delp(ξ) ∈ sg}∀p∈Ψξ
.

The logical inference process our approach is based on has trouble learning preconditions that do not appear as
negative effects since in this case no change is observed between the pre-state and post-state of an action. This is
specially relevant for static predicates that never change and, hence, only appear as preconditions in the actions. In
order to address this shortcoming and complete the list of learned preconditions, we apply a post-process based on the
one proposed in [40]. The idea lies in going through every action and counting the number of cases where a literal is
present before the action is executed and the number of cases where it is not present. If a literal is present in all the
cases before the action, the literal is considered to be a precondition.



In order to obtain a complete trace, the proposal in [40] applies the sequence of actions of the input trace and
infers the preconditions from this FO action sequence. In our case, since the sequence of actions of the input trace
might not be fully observable, we produce the traces by applying the actions found in the validation part of the solution
plan. For instance, in the example of the figure 5, the sequence of actions used to produce the complete trace would
be (unstack blockB blockA), (put-down blockB), (pick-up blockA), and (stack blockA blockB).

4.3. Properties of the compilation

Lemma 1. Soundness. Any classical plan πΛ that solves PΛ induces a set of action modelsM′ that solves Λ = 〈M, τ〉.

Proof sketch. Once action modelsM′ are programmed, they can only be applied and validated because of the modeprog fluent.
In addition, PΛ is only solvable if fluents atn and testm hold at the last state reached by πΛ. By the definition of the applyξ,ω and
the validatej actions, these goals can only be achieved executing an applicable sequence of programmed action models that reaches
every state s j ∈ τ, starting in the corresponding initial state and following the sequence of n observed actions of τ. This means that
the programmed action modelM′ is consistent with the provided input knowledge and hence, thatM′ is a solution to Λ.

Lemma 2. Completeness. Any set of action modelsM′ that solves Λ = 〈M, τ〉 is computable solving the correspond-
ing classical planning task PΛ.

Proof sketch. By definition, Ψξ ⊆ Ψv fully captures the set of elements that can appear in an action model ξ ∈ M. The compilation
does not discard any possible set of action models M′ definable within Ψv that satisfies the observed state trajectory and action
sequence of τ. This means that for every M′ that solves Λ, there exists a plan πΛ that can be built selecting the appropriate
programming, apply and validate actions from the PΛ compilation.

The size of the planning task PΛ output by the compilation approach depends on:

• The arity of the actions and the fluents in τ given as input in Λ. The larger the arity, the larger the size of the Ψξ

sets. This is the term that dominates the compilation size because it defines the prep(ξ)/delp(ξ)/addp(ξ) fluents
and the corresponding set of programming actions.

• The length of the observed action sequence and state trajectory of τ. The larger the number of observed actions,
ai ∈ τ s.t. 1 ≤ i ≤ n, the more {ati} fluents. The larger the number of observed states, s j ∈ τ s.t. 1 ≤ j ≤ m, the
more {test j} fluents and {validatej} actions in PΛ.

An interesting aspect of our approach is that when a fully or partially specified STRIPS action modelM is given
in Λ, the PΛ compilation also serves to validate whether the observed τ follows the given modelM:

• M is proved to be a valid action model for the given input data in τ iff a solution plan for PΛ can be found.

• M is proved to be a invalid action model for the given input data τ iff PΛ is unsolvable. This means that M
cannot be consistent with the given observation of the plan execution.

The validation capacity of our compilation is beyond the functionality of VAL (the plan validation tool [41])
because our PΛ compilation is able to address model validation of a partial (or even an empty) action model with a
partially observed plan trace. VAL, however, requires a full plan and a full action model for plan validation.

5. Evaluation of action models

In this section we introduce the metrics used by FAMA to evaluate the action models that result from solving a
learning task Λ. First, we will motivate the use of two standard syntactic metrics (precision and recall). Then, section
5.1 will define these metrics for planning models, and section 5.2 will introduce a semantic evaluation measure that
builds upon precision and recall. Finally, section 5.3 explains how FAMA computes our novel semantic-based metrics.

As commented before, the large majority of approaches shown in Table 3 evaluate the learned action models
wrt a GTM. These GTM are also used to generate the learning plan traces and they are normally domain definitions
taken from the IPC. We can also observe in Table 3 that most of the approaches use a similar syntax-based metric



that consists in (1) counting the missing and extra fluents that appear in the learned model wrt the GTM and (2)
normalizing this error by the total number of all the possible preconditions and effects of an action model. This is
an optimistic metric since error rates are not normalized by the size of the actual GTM. The set of preconditions and
effects of the GTM is usually smaller than the set of all possible preconditions and effects and thereby it turns out that
these syntax-based metrics may output error rates below 100% for totally wrong learned models.

In order to overcome this limitation we propose to use two standard metrics from ML, precision and recall, that
are frequently used in pattern recognition, information retrieval and binary classification [28]. These two syntactic
metrics are generally more informative than counting the number of errors between the learned action models and the
GTM:

• Precision =
tp

tp+ f p , where tp is the number of true positives (in our particular case, predicates that correctly
appear in the action model) and f p is the number of false positives (predicates of the learned model that should
not appear).

• Recall =
tp

tp+ f n , where f n is the number of false negatives (predicates that should appear in the learned model
but are missing).

5.1. Syntactic-based precision and recall for planning models

The rationale behind the adaptation of precision and recall for planning models lies in counting the edit operations
that need to be applied in domain modelM to transform it into the reference modelM′. Given a domain modelM,
the two allowed edit operations are:

• Deletion. A fluent prep(ξ)/delp(ξ)/addp(ξ) is removable from ξ ∈ M.

• Insertion. A fluent prep(ξ)/delp(ξ)/addp(ξ) can be added to ξ ∈ M.

We now provide formal definitions of INS (M,M′) and DEL(M,M′), the sets of insertions and deletions, respec-
tively, that are needed to transform a domain modelM into a new domain modelM′.

Definition 3. Let PRE(ξ) =
⋃

p∈pre(ξ)
prep(ξ), ADD(ξ) =

⋃
p∈add(ξ)

addp(ξ), and DEL(ξ) =
⋃

p∈del(ξ)
delp(ξ) be the set of

propositional fluents that represent preconditions, positive and negative effects of a given action model ξ. We define:

INS (M,M′) =
⋃

ξ∈M,ξ′∈M′ s.t. name(ξ)=name(ξ′)

PRE(ξ′)\PRE(ξ) ∪ ADD(ξ′)\ADD(ξ) ∪ DEL(ξ′)\DEL(ξ)

DEL(M,M′) =
⋃

ξ∈M,ξ′∈M′ s.t. name(ξ)=name(ξ′)

PRE(ξ)\PRE(ξ′) ∪ ADD(ξ)\ADD(ξ′) ∪ DEL(ξ)\DEL(ξ′)

With these ingredients in mind, we adapt the definitions of syntactic precision and recall to domain models. Let
M be a domain model and letM′ be the GTM. We know that size(M) =

∑
ξ∈M |pre(ξ)| + |add(ξ)| + |del(ξ)| and by

definition the number of preconditions and effects of the learned action models is equal to the sum of true positives
and false positives; that is, size(M) = tp + f p.

The number of deletions required to transformM intoM′ (|DEL(M,M′)|) matches our previous definition of the
number of false positives; and |INS (M,M′)|, the number of insertions required to transformM intoM′, corresponds
to the number of false negatives ofM. Then we can affirm that size(M′) = size(M)−|DEL(M,M′)|+ |INS (M,M′)|.

Definition 4. The precision of M relative to the GTM is defined as the fraction of the common preconditions and
effects betweenM and the GTM among all prediconditions and effects ofM.

Precision =
tp

tp + f p
=

size(M) − |DEL(M,GT M)|
size(M)



Definition 5. The recall ofM relative to the GTM is defined as the fraction of the common preconditions and effects
betweenM and the GTM among all preconditions and effects of the GTM.

Recall =
tp

tp + f n
=

size(M) − |DEL(M,GT M)|
size(M) − |DEL(M,GT M)| + |INS (M,GT M)|

Intuitively, precision gives a notion of soundness while recall gives a notion of the completeness of the learned
models. We interpret a sound learned model as one in which all preconditions and effects are correct with respect to
the GTM, and so there is no need to remove anything. A complete model is one in which no precondition or effect
is missing. As an example, a precision of 0.5 means that only half of the predicates that make up the learned domain
model are present in the GTM, while a recall of 0.5 means that only half of the predicates that make up the GTM are
present in the learned domain model.

5.2. Semantic-based precision and recall for planning models

Pure syntax-based evaluation metrics can report low scores for learned models that are actually sound and complete
but syntactically different from the GTM. Semantic evaluation metrics add a distinctive value over the syntactic ones,
which is that they evaluate the learned model with a set of observations of plan executions. These metrics measure
how well a model can reproduce a given plan execution, so the use of the word ”semantic” here is in reference to the
degree to which the learned model is able to capture the physics of the domain. Semantic metrics are appropriate for
scenarios where:

1. The GTM is unknown. This is the most common scenario in ML, where models are both learned and evaluated
with respect to datasets.

2. We are interested in measuring the ability of a model to explain a given plan trace, which is a good indicator
of how the model will perform in actual planning tasks. As a rule of thumb, it is preferable to evaluate the
learned models wrt a dataset because a learned model can be semantically correct though syntactically incorrect
(different from the GTM). We refer to this phenomenon as model reformulation.

An example of model reformulation is the swapping of the roles of two comparable action models. Two action
models ξ and ξ′ are comparable if both have the same parameters (iff pars(ξ) = pars(ξ′)) and so they share the same
space of possible models. Hence, the blocksworld operator stack could be learned with the preconditions and effects
of the unstack operator, and viceversa, because they are comparable. On the contrary, this reformulation will not
happen between the stack and pickup because they are not comparable. In the same way, the roles of two action
parameters that share the same type can also be swapped (e.g., interchanging the role of the two parameters of the
operator stack or the opreator unstack) and yet the learned models would be semantically correct with respect
to the given input observations. A more complex kind of reformulation occurs when two or more action models are
learned in a single macro-action. These semantic alterations typically appear in the learned models when the observed
input data given in τ is scarce.

The ARMS system was the first to show that a semantic evaluation can be done via validation of a set of plan traces
with the learned model [2]. The underlying idea is that an error indication of the learned action models is obtained
by counting the number of preconditions that are not satisfied during the execution of the plan trace with the learned
models, similarly to the functionality provided by the automatic validation tool VAL [41] used in the IPCs. This
approach can be understood as modifying the plan trace (by adding the necessary preconditions to the intermediate
states) so as to allow the execution of the observed actions using the learned models. In other words, modifying the
plan trace to fit the model. Inspired by this approach, we present novel semantic-based error measure that builds upon
the precision and recall metrics, and instead, determines the modifications required by a learned model to explain the
given plan traces.

We interpret the semantic evaluation of action models as a learning task Λ = 〈M,T〉, where:

• M is a learned domain model obtained using any learning approach such as FAMA; in general,M can be any
given input domain model even manually encoded.

• T is a set of plan traces used for testing.



A solution to this task is an edited domain modelM′ such that (1)M′ is obtained by exclusively applying a finite
sequence of deletion and insertion operations toM and (2)M′ explains T ; i.e. M′ is consistent with every plan trace
τ ∈ T . It is always recommended for the test set to be different from the one used during learning and this is specially
important for satisfying approaches such as FAMA; otherwiseM′ =M sinceM would be able to explain T without
any modification.

Since we are defining the semantic evaluation task in terms of a learning task Λ, there might exist potentially many
edited modelsM′ which are solution to this task. Although the actual GTM is included among the solution set, it is
impossible to identify it, so we define the best solution based on its proximity to the input model.

Definition 6. Given a domain modelM, and all the domain modelsM′ able to explain the plan traces T . The closest
consistent domain model, M∗, is the comparable domain model closest toM (in terms of editions) that is able to
explain T ;

M∗ = arg min
∀M′→T

∣∣∣INS (M,M′) ∪ DEL(M,M′)
∣∣∣

The closest consistent domain modelM∗ allows us to define a semantic version of precision and recall following
definitions 4 and 5.

sem-Precision =
size(M) − |DEL(M,M∗)|

size(M)

sem-Recall =
size(M) − |DEL(M,M∗)|

size(M) − |DEL(M,M∗)| + |INS (M,M∗)|

Proposition 7. When the closest consistent domain model M∗ of an evaluation task Λ = 〈M,T〉 is the GTM, the
syntactic and semantic evaluation of M return the same values; that is, Precision = sem-Precision and Recall =

sem-Recall.

The intuition behind this evaluation is to semantically assess how well the learned domain modelM explains a set
of given observations of plan executions according to the amount of edition required byM to induce the observations.
The interpretation of a sound and complete model in the semantic perspective is slightly different from the syntactic
one. In this case, a sound model is one were there is no need to remove any precondition or effect in order to
be consistent with some given plan traces. A complete model is one that is consistent with the given plan traces
without adding any of its preconditions and effects. Unlike the semantic metric defined by ARMS, our novel semantic
definitions of precision and recall are not sensitive to flaws in the action model that manifest more than once in the
plan traces since the flaws are corrected only once in the learned models instead of at every intermediate state of the
plan traces.

5.3. Semantic evaluation with classical planning
The compilation scheme presented in section 4.2 is extensible to address the evaluation task Λ = 〈M,T〉 defined

in section 5.2. In this extended task,M represents a previously learned domain model; therefore, rather than learning
the action models from scratch, we simply editM until it satisfies the given test set of plan traces T . A solution to
the classical planning task resulting from the extended compilation is a plan that:

1. Edits the domain modelM to buildM′. A solution plan starts with a prefix that modifies the preconditions
and effects of the action schemes inM using the two edit operations defined above, deletion and insertion.

2. Validates the edited modelM′ in the observed plan traces. The solution plan continues with a postfix that
validates the edited modelM′ on the given observations T , as explained in Section 4.2 for the models that are
programmed from scratch.

Given Λ = 〈M,T〉, the output of the extended compilation is a planning task P′
Λ

= 〈FΛ, A′Λ, IΛ,GΛ〉 such that:

• FΛ, IΛ and GΛ are defined as in the previous compilation. Note that, the input action modelM is encoded in
the initial state. This means that the fluents prep(ξ)/delp(ξ)/addp(ξ), p ∈ Ψξ, hold in IΛ iff they appear inM.



• A′
Λ

, comprises the same three kinds of actions of AΛ. The actions for applying an already programmed action
model and the actions for validating an observation are defined exactly as in the previous compilation. The
only difference here is that the programming actions now implement the two editing operations (i.e., they also
include the actions for deleting a precondition or negative/positive effect from an action model).

Figure 6 shows the plan for editing the action model of the operator stack of the blocksworld domain where only
the two positive effects (handempty) and (clear ?v1) are missing. In this case the edited action model is again
validated in the plan trace shown in Figure 2.

00 : (insert add stack handempty)

01 : (insert add stack clear var1)

02 : (apply unstack blockB blockA i1 i2)

03 : (apply putdown blockB i2 i3)

04 : (apply pickup blockA i3 i4)

05 : (apply stack blockA blockB i4 i5)

06 : (validate 1)

Figure 6: Plan for editing and validating the action model stack in which the positive effects (handempty) and (clear ?v1)
are missing.

Assuming we are using an optimal planner to solve P′
Λ

, the solution plan of this problem will induce the closest
consistent domain model M∗. Therefore, our compilation enables the straightforward computation of the semantic
versions of precision and recall. An argument can be made, however, that solving optimally P′

Λ
may turn the eval-

uation process very time consuming. Considering this, sem-Precision and sem-Recall can be approximated if P′
Λ

is
solved with a satisfying planner. In this case, no guarantees can be made that the edited model will be the closest
consistent one, but a classical planner will always try to minimize the solution plan length and hence the number of
edit operations applied to the input model.

6. Experimental evaluation

This section presents several experiments to evaluate the performance of FAMA and the quality of the learned mod-
els. Whenever applicable, we will consider scenarios with both known and unknown plan horizon to draw conclusions
at both levels of complexity.

After presenting the setup of the experiments in section 6.1, we introduce three experiments that measure different
aspects like the minimal number of traces necessary to obtain good quality models (section 6.2), a comparison of
the quality of models obtained by FAMA compared to ARMS (section 6.3) and an analysis of the quality of models
when using a very small number of input traces in section 6.4 In these three experiments, the quality of the models
is measured using the syntactic-based precision and recall metrics presented in section 5.1, that is, we measure the
precision and recall of the learned models with respect to the GTM for each domain. Finally, the syntactic evaluation
of section 6.4 is compared against a semantic evaluation, i.e. how well the learned models are able to reproduce the
input plan traces, in section 6.5.

6.1. Setup

We evaluate FAMA on 15 IPC domains that satisfy the STRIPS requirement [31], all taken from the PLAN-
NING.DOMAINS repository [42]. Table 4 presents the features of the tested domains that affect the size of the planning
task PΛ that results from the compilation. For each domain, the columns report, from left to right, the number of ac-
tions, the number of predicates, the maximum arity of the actions, and the maximum arity of the predicates.

The details of our experimental setup are the following:

• Plan traces. For each domain, we generated 10 plan traces, each with 10 actions and 10 intermediate states,
using random walks. Depending on the experiment, the traces are used for training or testing purposes (more
details on this issue are provided at the particular experiment).



• Planner. The classical planner we used to solve the instances of PΛ that result from our compilations is
MADAGASCAR [43]. We used MADAGASCAR for several reasons:

1. Other planners such as FASTDOWNWARD were also tested but provided worse experimental results
2. The ability of MADAGASCAR to deal with instances populated with dead-ends, such as our compiled

problem PΛ, is very helpful [44].
3. A SAT-based planner like MADAGASCAR is particularly suitable for tasks where the observed plan trace τ

determines the horizon of the solution plan (case 1 presented in section 3). In this case, a SAT-based plan-
ner solves the prefix of the solution plan in two time steps because the actions for inserting preconditions
can be applied in parallel in a single time step and the same for the actions inserting the effects.

• Hardware. All experiments were run on an Intel Core i5 3.50 GHz x 4 with 16 GB of RAM.

• Reproducibility. We make fully available the compilation source code, the evaluation scripts and the used
benchmarks at this repository https://github.com/daineto/meta-planning so any experimental data reported in
the paper is fully reproducible.

Domain features
# actions # predicates max action arity max predicate arity

Blocks 4 5 2 2
Driverlog 6 5 4 2
Ferry 3 5 2 2
Floortile 7 10 4 2
Grid 5 9 4 2
Gripper 3 4 3 2
Hanoi 1 3 3 2
Miconic 4 6 2 2
Npuzzle 1 3 3 2
Parking 4 5 3 2
Rovers 9 25 6 3
Satellite 5 8 4 2
Transport 3 5 5 2
Visitall 1 3 2 2
Zenotravel 5 4 5 2

Table 4: Feature description of the domains used in the experiments.

6.2. Impact of the size of the input knowledge

This experiment evaluates the impact of |T |, the size of the input knowledge, on the performance of FAMA in order
to:

1. Identify the minimal amount of input knowledge required by FAMA to learn sound and complete models,
2. Evaluate the scalability of FAMA with respect to the size of the input knowledge.

The experiment analyzes the evolution of the CPU-time and the precision and recall of the learned models wrt the
GTM as |T | increases from 1 to 10 plan traces. To keep the experiment practicable, we introduced a 1000s timeout,
after which the learning process is killed and a score of 0 is given to both the precision and recall of the learned model.
We defined two case studies:

• FO action sequence and PO state trajectory (known plan horizon): This is the common case addressed by
most of the state-of-the-art learning approaches, which corresponds to a scenario where the plan horizon is
given by the action sequence. In this experiment we assume a degree of observability of only 10% for the state
trajectory, meaning that each literal of a state has a 10% chance of being observed.



• NO action sequence and NO state trajectory (unknown plan horizon): In this case study, both the input
action sequence and state trajectory are empty and the length of the plan is unknown. Only the initial and final
states are observed; i.e., τ = 〈s0, sm〉,∀τ ∈ T .

Figures 7 and 8 show the quality of the models and computation time, respectively, for the case FO/PO. The values
plotted in these figures are averages over the 15 domains. In Figure 7 we see that, after three traces, precision stabilizes
at 0.84 whereas recall stabilizes at 0.95. These results show that FAMA does, in fact, not need big amounts of input
knowledge to learn sound and complete models as opposite to other approaches in the literature where models are
learned using around 100 traces (see Table 3).

Figure 8 displays the scalability of FAMA. Interestingly, we can observe an exponential increase in computation
time for input sizes beyond five traces. Until an input size of four traces the computation time is below 1 sec but
it reaches 166 secs when the input is composed of 10 traces. These results match the expected performance of
MADAGASCAR since this planner is known to struggle with plan horizons beyond 150-200 steps (in our case 160
steps corresponds to 8 traces since each trace has 10 actions and 10 intermediate states).
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Figure 7: Precision and recall when learning from [1-10] plan traces with FO action sequences and PO state trajectories with 10% observability.

Figure 9 displays the average precision and recall of the 15 learned models in the scenario with unknown plan
horizon. As expected, the quality of the learned models is lower than when the horizon of the plan is known. The
higher complexity of this setting is also reflected in the appearance of some timeouts when solving the learning task.
The first timeout is found in the grid domain at |T | = 3; the floortile times out with |T | = 4; and by the time |T |
reaches 10 the number of domains where no solution is found is 6, adding the npuzzle, parking, rovers and zenotravel
domains. We can observe in Figure 9 the opposite behaviour to Figure 7; that is, we find a drop of the quality as the
input knowledge increases. The drop in the score is caused by the increasing number of timeouts, meaning that no
solution is found in many tasks within the given time-bound, and consequently a value of 0 for precision and recall
is assigned to these experiments. Figure 10, on the other hand, reflects that the computation time of the second case
study is also higher than in the first case, which is explained by both the higher complexity and the large number of
timeouts.

The conclusions we draw from these experiments is that, when the plan horizon is known, learning with few
input samples yield action models that contain 95% of the preconditions and effects of the GTM plus some extra
ones as indicated by the values of precision and recall. With unknown plan horizons, on the other hand, the learned
models are generally more different from the GTM; while timeouts are the main cause of the drop in the score, we
must point out that pure syntax-based metrics are not adequate to evaluate such under-constrained tasks since the
phenomenon of reformulation occurs and this largely impacts the results (we will provide experimental evidence of
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Figure 8: Computation time when learning from [1-10] plan traces with FO action sequences and PO state trajectories with 10% observability.

this in section 6.4). These results emphasize a relevant feature our approach: the small size of the training set required
by FAMA in comparison with other approaches (see Table 3). Unlike extensive-data approaches, our work explores an
alternative research direction to learn action models from small amounts of plan traces. This is an important advantage,
particularly in domains in which it is costly or impossible to obtain a significant number of training samples.
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Figure 9: Precision and recall when learning from [1-10] plan traces with NO action sequences and NO state trajectories.

6.3. Comparison with ARMS
In this section we analyze the performance of FAMA compared to ARMS, one of the most well-known approaches

to learning planning models. ARMS, as well as most of the existing current learning systems, works under the assump-
tion of plan traces with FO action sequences and NO state trajectories and therefore is not able to handle the scenarios
where the plan horizon is unknown. We will thereby restrict the experimentation to the cases manageable by ARMS.
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Figure 10: Computation time when learning from [1-10] plan traces with NO action sequences and NO state trajectories.

In this experiment, we defined a degree of observability σ for the state trajectory, ranging from 0% to 100%,
that measures the probability of observing a literal, and evaluated both FAMA and ARMS for increasing values of σ
using five traces as input knowledge. When σ = 0 we have a NO state trajectory, when σ = 100 we have a FO state
trajectory and all cases in-between correspond to the PO scenario.

Figures 11 and 12 compare FAMA and ARMS in terms of precision and recall. The horizontal axes represent the
degree of observability and vertical axes show the average precision (Figure 11) and recall (Figure 12) computed
over the 15 tested domains. Remarkably, FAMA dominates in terms of precision in all cases except for the FO state
trajectories. Particularly, the models learned by FAMA are between 13% to 34% more precise than those learned by
ARMS. A similar trend is observed for recall (Figure 12), where the difference is even larger, meaning that our learned
models are more complete.

The results highlight that FAMA outperforms ARMS when very few plan traces are available. This by no means
is conclusive that FAMA is overall better in NP-complete scenarios but only that it is able to learn better with very
limited input knowledge (actually, Figure 8 reflects the exponential behaviour of FAMA with more than five traces).

6.4. Learning with minimal input knowledge

In this section, we will take a closer look at the action models learned from minimal input knowledge. To that
end, we will limit the input to only two plan traces and analyze the results under different degrees of observability.
We evaluate three case studies:

• FO action sequence and PO state trajectory: We are, once again, assuming a degree of observability of 10%
for the state trajectory. Results of this case study are detailed in Table 5.

• PO action sequence and PO state trajectory: In this case study we are assuming a degree of observability of
30% for both the action sequence and state trajectory. Results are shown in Table 6.

• NO action sequence and NO state trajectory: Both the action sequence and state trajectory are completely
empty so only the initial and final states are observed; i.e., τ = 〈s0, sm〉,∀τ ∈ T . Results of this case study are
reported in Table 7.

All tables in this section (Tables 5, 6 and 7) follow the same structure. precision (P) and recall (R) scores are
computed separately for the preconditions (Pre), positive effects (Add) and negative effects (Del), and also globally
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Figure 11: Precision comparison between FAMA and ARMS for different degrees of observability.
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Figure 12: Recall comparison between FAMA and ARMS for different degrees of observability.

(Global). The last column reports the computation time (in seconds) needed to obtain the learned models. Missing
values in the tables (reported as -) correspond to domains where no solution was found within a 1800s timeout.

Table 5 shows the results of the case study FO/PO. Recall scores are generally higher than the precision ones, and,
in fact, the models learned for six out of the 15 domains were perfectly complete. Although precision is overall lower,
it is interesting to notice that the learned sets of negative effects are mostly flawless. With regards to the computation
time, we can observe times are below one second in most cases except for some of the more complex domains.

Table 6 gathers the results of the case study PO/PO with 30% observability. We can see in the table that the scores
of some domains are missing. This is the case of floor-tile and grid, which not only are fairly complex domains,
but also categorized as puzzle-like domains, a feature that is known for putting a strain in the planners. Interestingly
enough, we note the high computation time of hanoi and parking, which also qualify as a puzzle-like domains. Re-



Pre Add Del Global
P R P R P R P R Time

Blocks 0.86 0.67 1.0 0.67 0.8 0.44 0.89 0.59 0.24
Driverlog 0.6 0.86 0.36 0.57 0.67 0.29 0.53 0.64 0.58
Ferry 0.7 1.0 0.36 1.0 1.0 1.0 0.6 1.0 0.37
Floortile 0.69 1.0 0.55 1.0 1.0 0.82 0.69 0.95 1.38
Grid 0.68 0.88 0.5 0.86 0.88 1.0 0.67 0.9 0.65
Gripper 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.18
Hanoi 0.67 1.0 1.0 1.0 1.0 1.0 0.8 1.0 0.36
Miconic 1.0 1.0 0.57 1.0 1.0 1.0 0.84 1.0 0.3
Npuzzle 0.75 1.0 1.0 1.0 1.0 1.0 0.88 1.0 0.26
Parking 0.78 1.0 0.69 1.0 1.0 1.0 0.8 1.0 0.24
Rovers 0.54 1.0 0.3 0.76 1.0 0.46 0.48 0.85 2.14
Satellite 0.93 1.0 0.56 1.0 1.0 0.75 0.81 0.96 0.4
Transport 0.83 1.0 0.5 1.0 0.6 0.6 0.67 0.9 0.19
Visitall 1.0 1.0 0.25 0.5 1.0 1.0 0.57 0.8 1.31
Zenotravel 0.9 0.64 0.5 0.71 0.83 0.71 0.73 0.68 0.25

0.8 0.94 0.61 0.87 0.92 0.8 0.73 0.88 0.59

Table 5: Precision and recall scores for learning tasks with FO action sequences and PO state trajectories with 10% observability.

garding quality, we find that the learned models retain a level of soundness similar to Table 5 but the completeness
is lower than in the previous case study. This is specially noticeable in the preconditions, where recall values drop
from 0.88 to 0.64. This is because the input actions act as strong constraints playing a key role on the closeness of the
learned model to the GTM. The more actions are missing in the input knowledge, the more likely the occurrence of
reformulations.

Pre Add Del Global
P R P R P R P R Time

Blocks 0.89 0.89 0.8 0.89 0.83 0.56 0.84 0.78 0.77
Driverlog 0.57 0.29 0.31 0.57 0.4 0.29 0.4 0.36 7.35
Ferry 0.83 0.71 0.36 1.0 1.0 1.0 0.62 0.87 3.38
Floortile - - - - - - - - -
Grid - - - - - - - - -
Gripper 1.0 1.0 0.8 1.0 1.0 1.0 0.93 1.0 0.17
Hanoi 0.67 0.5 1.0 1.0 1.0 1.0 0.86 0.75 132.69
Miconic 1.0 0.33 1.0 1.0 1.0 0.67 1.0 0.56 0.71
Npuzzle 1.0 0.67 1.0 1.0 1.0 1.0 1.0 0.86 13.48
Parking 0.83 0.36 1.0 0.89 0.83 0.56 0.9 0.56 160.64
Rovers 0.43 0.73 0.24 0.47 0.56 0.38 0.39 0.61 31.13
Satellite 0.6 0.21 0.56 1.0 0.5 0.5 0.56 0.43 11.55
Transport 1.0 0.2 0.57 0.8 1.0 0.4 0.73 0.4 23.39
Visitall 0.67 1.0 0.5 0.5 1.0 1.0 0.67 0.8 3.13
Zenotravel 1.0 0.36 0.4 0.29 1.0 0.43 0.77 0.36 226.27

0.81 0.56 0.66 0.8 0.86 0.68 0.74 0.64 47.28

Table 6: Precision and recall when learning with PO action sequences and PO state trajectories, 30% observability in both cases.

We now analyze the case study with NO action sequences and NO state trajectories (Table 7). A first outstanding
observation is that, contrary to what might be expected by looking at the previous table, we are able in this case to
find solutions for all the domains. This happens because the search is less constrained and consequently there are far
more possible solutions for this learning task. This broader space of solutions is also stressed in a diminished quality
of the learned models. Thus, despite the learned models being consistent with the input data, they are further from the
original GTM. In Table 7 we can observe the global values of precision and recall drop to 0.57 and 0.48, respectively.

We argue, however, that syntax-based metrics are not appropriate for scenarios with minimal observability as they
cannot cope with the reformulations that frequently occur in these circumstances. To illustrate this, Figure 13 shows
the PDDL encoding of the action model of the stack operator learned from plan traces with NO action sequences and
NO state trajectories. This learned action model removes a block from on top of another block and puts it down on the



table in a single step. There are two main differences with respect to the model of the stack operator of the GTM: (1)
the learned action is actually unstacking a block instead of stacking it and (2) the block on the top ends on the table,
not held by the robot arm. We refer to the first difference as role swapping and it happens when there are missing
actions in the input plan trace. If no actions are present in the input traces, the names of actions become meaningless,
in which case the effectively anonymous actions can interchange their behaviour with any other comparable action
model. The second difference indeed reveals that the learned action model is working as an unstack+put-down

macro-action. This happens when there are missing states in the input traces since a macro-action can be seen as the
application of more than one action in a single step, thus skipping some intermediate states.

Reformulated action models, like the one in Figure 13, are indeed sound models that can be used to solve planning
tasks. For instance, any blocks-world problem can be solved unstacking all the blocks to the table (unstack+put-down)
and then stacking them to meet the goal conditions (pick-up+stack). Hence, the NO/NO case study features all the
conditions for reformulation to happen, and this is the reason why scenarios such as this one are better evaluated using
semantic-based metrics.

Pre Add Del Global
P R P R P R P R Time

Blocks 0.6 0.67 0.33 0.22 0.67 0.44 0.55 0.44 0.26
Driverlog 0.5 0.29 0.33 0.57 0.0 0.0 0.38 0.29 0.88
Ferry 0.5 0.43 0.5 0.25 0.67 0.5 0.55 0.4 0.45
Floortile 0.48 0.45 0.27 0.36 0.46 0.55 0.41 0.45 58.38
Grid 0.25 0.24 0.33 0.43 0.14 0.14 0.25 0.26 234.63
Gripper 1.0 0.67 1.0 1.0 1.0 1.0 1.0 0.86 0.16
Hanoi 0.6 0.75 1.0 1.0 1.0 1.0 0.78 0.88 6.32
Miconic 0.63 0.56 0.6 0.75 0.25 0.33 0.53 0.56 0.25
Npuzzle 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.52
Parking 0.57 0.29 0.2 0.11 0.8 0.44 0.53 0.28 17.43
Rovers 0.38 0.64 0.07 0.24 0.13 0.54 0.22 0.53 1.74
Satellite 0.86 0.43 0.43 0.6 0.75 0.75 0.67 0.52 3.15
Transport 0.29 0.2 0.38 0.6 0.67 0.4 0.39 0.35 1.06
Visitall 0.0 0.0 1.0 0.5 0.0 0.0 1.0 0.2 1.21
Zenotravel 0.4 0.29 0.25 0.29 0.2 0.14 0.3 0.25 17.48

0.54 0.46 0.51 0.53 0.52 0.48 0.57 0.48 22.99

Table 7: Precision and recall scores for learning tasks with NO action sequences and NO state trajectories.

(:action stack
:parameters (?o1 - object ?o2 - object)
:precondition (and (on ?o1 ?o2)(handempty ))
:effect (and (not (on ?o1 ?o2))(clear ?o1)(clear ?o2)(ontable ?o1)))

Figure 13: PDDL encoding of the learned action model of the stack operator from the four-operator blocksworld domain.

6.5. Syntactic versus semantic evaluation
Our last experiment is devoted to compare the scores provided by the syntactic and semantic versions of precision

and recall. For that purpose, we will evaluate the models learned in Section 6.4 both syntactically, using the GTM,
and semantically, computing the set of action models closest to the learned models that is consistent with a testing
set of five traces (see Definition 6). We must note that since we are using MADAGASCAR, a satisficing planner, the
solution to the model evaluation may not be the closest consistent domain model, so the scores of sem-Precision and
sem-Recall are approximate values. Our goal with this experiment is to gauge the suitability of the semantic metrics
proposed in section 5 with respect to their well-known counterparts. With that in mind, we define two case studies:

• FO action sequence and PO state trajectory: In this case study the full sequence of actions is known and no
states are missing, which makes it practically impossible for reformulated models to appear. In fact, in all our
experimentation with FAMA and other approaches we never observed reformulations when the full sequence of
actions is known.



• NO action sequence and NO state trajectory: This is a case study that favors reformulations in the learned
models, as previously discussed.

Precision Recall sem-Precision sem-Recall
Blocks 0.89 0.59 0.89 0.64
Driverlog 0.53 0.64 0.71 0.83
Ferry 0.6 1.0 0.96 1.0
Floortile 0.69 0.95 0.97 0.95
Grid 0.67 0.9 0.95 0.98
Gripper 1.0 1.0 1.0 1.0
Hanoi 0.8 1.0 0.9 1.0
Miconic 0.84 1.0 1.0 1.0
Npuzzle 0.88 1.0 1.0 1.0
Parking 0.8 1.0 0.98 1.0
Rovers 0.48 0.85 0.94 0.99
Satellite 0.81 0.96 0.93 1.0
Transport 0.67 0.9 1.0 1.0
Visitall 0.57 0.8 1.0 1.0
Zenotravel 0.73 0.68 0.85 0.88

0.73 0.88 0.94 0.95

Table 8: Syntactic and semantic scores when learning with FO action sequences and PO state trajectories with 10% observability.

Table 8 shows the results of the case study FO/PO. Looking at the high scores of the syntactic metrics, specially
the value of recall, we can conclude that the learned models are, in fact, fairly similar to the GTM. This supports
our conclusion that no reformulation occurs in this case study, which also means that the space of possible solutions
is restricted to models close to the GTM. The values of sem-Precision and sem-Recall are also very high across
the table, which is exactly the desired behavior for these metrics given that solutions are very close to the GTM. In
comparison, recall and sem-Recall show similar scores, while sem-Precision is significantly higher than precision, thus
showing that the sem-Precision is more lenient towards extra preconditions or effects. This is in line with the results
of the previous experiments, where the common appearance of redundant or implicit preconditions in the learned
models is penalized by the precision metric. We can interpret this phenomenon as a manifestation of the qualification
problem [29]. For instance, the model learned for the move action of the hanoi domain specifies that both the origin
and destination disks must be bigger than the one moving, but the GTM contains only one of these preconditions. This
learned model is semantically correct but syntactically different from the GTM and hence penalized by the precision
metric.

Table 9 details the results of the case study NO/NO. One first observation is the impossibility of applying a semantic
evaluation in some of the most complex domains with five traces. Contrary to the previous case study, the difference
between the syntactic and semantic metrics is larger in this scenario with unknown plan horizon. Comparing the
scores of both versions, we find that learned models that achieved mediocre scores when using the GTM as reference
(syntactic metrics), are in fact reasonably sound and complete, reaching overall scores of 0.92 and 0.89 in sem-
Precision and sem-Recall. This is an indication that the models learned by our approach, despite syntactically different
from the GTM, require very few editions to explain the testing set of traces.

Looking at the results of both case studies we can draw two conclusions with regards to the semantic metrics
proposed in this paper. The first one is that, when no reformulation occurs, these metrics behave similarly to their
syntactic counterparts, which means they are a good substitute when the GTM is not available. The second conclusion
is that sem-Precision and sem-Recall are better suited to evaluate reformulated models than the original syntactic
metrics since they contemplate valid solutions outside the GTM that successfully explain the given input data.

7. Conclusions

In this paper we have presented FAMA, an approach for learning STRIPS action models based on the compilation of
the learning task into a planning task. The distinctive characteristic of FAMA over other state-of-the-art approaches is
its ability to learn from minimal observability, i.e., plan traces with no observed actions and no observed intermediate



Precision Recall sem-Precision sem-Recall
Blocks 0.55 0.44 0.77 0.77
Driverlog 0.38 0.29 0.86 0.86
Ferry 0.55 0.4 0.82 0.53
Floortile 0.41 0.45 - -
Grid 0.25 0.26 - -
Gripper 1.0 0.86 1.0 1.0
Hanoi 0.78 0.88 0.89 1.0
Miconic 0.53 0.56 1.0 0.89
Npuzzle 1.0 1.0 1.0 1.0
Parking 0.53 0.28 - -
Rovers 0.22 0.53 - -
Satellite 0.67 0.52 - -
Transport 0.39 0.35 0.94 1.0
Visitall 1.0 0.2 1.0 1.0
Zenotravel 0.3 0.25 - -

0.57 0.48 0.92 0.89

Table 9: Syntactic and semantic metric scores for learning tasks with NO action sequences and NO state trajectories.

states. By relaxing the input constraints, FAMA opens up the way for action model learning to operate on real-world
problems, as opposite to current approaches where the heavy input restrictions have limited their applicability to
synthetic benchmarks. Our approach is thus suitable for learning action models in data-based applications where the
only observable information is a possibly incomplete sequence of partially observed states.

The lack of observed actions and of a length bound in the input examples is addressed using a compilation-to-
planning scheme, which allows a planner to fill the gaps in the input traces in a way that is consistent with what is
observed. Additionally, our planning-based solving scheme allows us to leverage off-the-shelf classical planners and
benefit from the multiple advances in classical planning research.

Besides its capacity of working with minimal observability, FAMA is also able to learn from very small amounts
of input knowledge, a clear advantage in domains where obtaining enough training samples is difficult or costly.
While the experimental evaluation shows in general an exponential increase of the computation time as the number of
training traces augments, FAMA is able to learn action models more accurate than those of ARMS with very limited
input knowledge. Unlike extensive-data ML approaches, our work explores an alternative research direction that
exploits logic reasoning to learn sound models from minimal input observability.

A key contribution of this work is the proposal of two novel metrics to semantically evaluate the learned action
models. These two metrics build upon the well-known syntax-based metrics precision and recall. Our semantic eval-
uation mitigates the common issue known as reformulation that appears when training sets of minimal observability
are used. Due to the lack of observable information, FAMA can learn semantically valid models that are syntactically
different from the reference model. The application of the semantic-based precision and recall allows us to assess the
validity of the learned models even in domains where a reference model is not available.

We highlight that the semantic evaluation of FAMA is done via the same compilation-to-planning scheme that we
use to learn the action models. Given that the input of our learning task definition accepts an initial action model of
the agent’s behaviour, either complete or partially specified, this solving scheme is exploitable to computing a model
that follows the initial model and is consistent with a test set of plan traces. In other words, FAMA is applicable in
model reconciliation tasks by defining a distance metric that measures how close the two models are [30].

More importantly, FAMA is applicable not only in environments where the domain model is unknown but also in
environments where the executable actions are unknown as well. This ability broadens the range of application to
goal reasoning tasks such as plan recognition under imperfect observability [12], planning for transparency [13] or
counterplanning [17]. The application of FAMA to these tasks offers a plan-based solution where the assumption of a
known domain model can be removed. In other words, FAMA opens up the way towards domain-free goal reasoning.

Finally, we would like to add a note on the open issue of generating informative plan traces for learning plan-
ning action models. Planning actions include preconditions that are only satisfied by specific sequences of actions
which have low probability of being chosen by chance [45]. The success of recent algorithms for exploring planning
tasks [46] motivates the development of novel techniques that enable to autonomously collect informative learning ex-



amples. The combination of such exploration techniques with our learning approach is an appealing research direction
towards the bootstrapping of planning action models.
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Appendix

(define (domain BLOCKS)
(:requirements :strips)
(:predicates (on ?x ?y)(ontable ?x)(clear ?x)(handempty)(holding ?x))

(:action pick-up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (holding ?x)))

(:action put-down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty) (on ?x ?y)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (holding ?x) (clear ?y) (not (clear ?x)) (not (handempty)) (not (on ?x ?y)))))

Figure 14: PDDL domain file for the blocksworld domain.

Compiled PDDL domain file for learning the blocksworld action models from two initial and final states.

(define (domain blocks)



(:requirements :strips)
(:types object - None )
(:constants a - object b - object c - object d - object e - object f - object g - object)
(:predicates (add_clear_pick-up_var1) (add_clear_put-down_var1) (add_clear_stack_var1) (add_clear_stack_var2)
(add_clear_unstack_var1) (add_clear_unstack_var2) (add_handempty_pick-up) (add_handempty_put-down)
(add_handempty_stack) (add_handempty_unstack) (add_holding_pick-up_var1) (add_holding_put-down_var1)
(add_holding_stack_var1) (add_holding_stack_var2) (add_holding_unstack_var1) (add_holding_unstack_var2)
(add_on_stack_var1_var1) (add_on_stack_var1_var2) (add_on_stack_var2_var1) (add_on_stack_var2_var2)
(add_on_unstack_var1_var1) (add_on_unstack_var1_var2) (add_on_unstack_var2_var1) (add_on_unstack_var2_var2)
(add_ontable_pick-up_var1) (add_ontable_put-down_var1) (add_ontable_stack_var1) (add_ontable_stack_var2)
(add_ontable_unstack_var1) (add_ontable_unstack_var2) (clear ?o1 - object) (del_clear_pick-up_var1)
(del_clear_put-down_var1) (del_clear_stack_var1) (del_clear_stack_var2) (del_clear_unstack_var1)
(del_clear_unstack_var2) (del_handempty_pick-up) (del_handempty_put-down) (del_handempty_stack)
(del_handempty_unstack) (del_holding_pick-up_var1) (del_holding_put-down_var1) (del_holding_stack_var1)
(del_holding_stack_var2) (del_holding_unstack_var1) (del_holding_unstack_var2) (del_on_stack_var1_var1)
(del_on_stack_var1_var2) (del_on_stack_var2_var1) (del_on_stack_var2_var2) (del_on_unstack_var1_var1)
(del_on_unstack_var1_var2) (del_on_unstack_var2_var1) (del_on_unstack_var2_var2) (del_ontable_pick-up_var1)
(del_ontable_put-down_var1) (del_ontable_stack_var1) (del_ontable_stack_var2) (del_ontable_unstack_var1)
(del_ontable_unstack_var2) (handempty) (holding ?o1 - object) (modeProg) (on ?o1 - object ?o2 - object)
(ontable ?o1 - object) (pre_clear_pick-up_var1) (pre_clear_put-down_var1) (pre_clear_stack_var1)
(pre_clear_stack_var2) (pre_clear_unstack_var1) (pre_clear_unstack_var2) (pre_handempty_pick-up)
(pre_handempty_put-down) (pre_handempty_stack) (pre_handempty_unstack) (pre_holding_pick-up_var1)
(pre_holding_put-down_var1) (pre_holding_stack_var1) (pre_holding_stack_var2) (pre_holding_unstack_var1)
(pre_holding_unstack_var2) (pre_on_stack_var1_var1) (pre_on_stack_var1_var2) (pre_on_stack_var2_var1)
(pre_on_stack_var2_var2) (pre_on_unstack_var1_var1) (pre_on_unstack_var1_var2) (pre_on_unstack_var2_var1)
(pre_on_unstack_var2_var2) (pre_ontable_pick-up_var1) (pre_ontable_put-down_var1) (pre_ontable_stack_var1)
(pre_ontable_stack_var2) (pre_ontable_unstack_var1) (pre_ontable_unstack_var2) (test1) (test2) (test3))

(:action pick-up
:parameters (?o1 - object)
:precondition (and (not (modeProg ))(or (not (pre_ontable_pick-up_var1 ))(ontable ?o1))

(or (not (pre_clear_pick-up_var1 ))(clear ?o1))(or (not (pre_handempty_pick-up ))(handempty ))
(or (not (pre_holding_pick-up_var1 ))(holding ?o1)))

:effect (and (when (and (del_ontable_pick-up_var1 ))(not (ontable ?o1)))
(when (and (add_ontable_pick-up_var1 ))(ontable ?o1))(when (and (del_clear_pick-up_var1 ))(not (clear ?o1)))
(when (and (add_clear_pick-up_var1 ))(clear ?o1))(when (and (del_handempty_pick-up ))(not (handempty )))
(when (and (add_handempty_pick-up ))(handempty ))(when (and (del_holding_pick-up_var1 ))(not (holding ?o1)))
(when (and (add_holding_pick-up_var1 ))(holding ?o1))))

(:action put-down
:parameters (?o1 - object)
:precondition (and (not (modeProg ))(or (not (pre_ontable_put-down_var1 ))(ontable ?o1))

(or (not (pre_clear_put-down_var1 ))(clear ?o1))(or (not (pre_handempty_put-down ))(handempty ))
(or (not (pre_holding_put-down_var1 ))(holding ?o1)))

:effect (and (when (and (del_ontable_put-down_var1 ))(not (ontable ?o1)))
(when (and (add_ontable_put-down_var1 ))(ontable ?o1))(when (and (del_clear_put-down_var1 ))(not (clear ?o1)))
(when (and (add_clear_put-down_var1 ))(clear ?o1))(when (and (del_handempty_put-down ))(not (handempty )))
(when (and (add_handempty_put-down ))(handempty ))(when (and (del_holding_put-down_var1 ))(not (holding ?o1)))
(when (and (add_holding_put-down_var1 ))(holding ?o1))))

(:action stack
:parameters (?o1 - object ?o2 - object)
:precondition (and (not (modeProg ))(or (not (pre_on_stack_var1_var1 ))(on ?o1 ?o1))

(or (not (pre_on_stack_var1_var2 ))(on ?o1 ?o2))(or (not (pre_on_stack_var2_var1 ))(on ?o2 ?o1))
(or (not (pre_on_stack_var2_var2 ))(on ?o2 ?o2))(or (not (pre_ontable_stack_var1 ))(ontable ?o1))
(or (not (pre_ontable_stack_var2 ))(ontable ?o2))(or (not (pre_clear_stack_var1 ))(clear ?o1))
(or (not (pre_clear_stack_var2 ))(clear ?o2))(or (not (pre_handempty_stack ))(handempty ))
(or (not (pre_holding_stack_var1 ))(holding ?o1))(or (not (pre_holding_stack_var2 ))(holding ?o2)))

:effect (and (when (and (del_on_stack_var1_var1 ))(not (on ?o1 ?o1)))(when (and (add_on_stack_var1_var1 ))(on ?o1 ?o1))
(when (and (del_on_stack_var1_var2 ))(not (on ?o1 ?o2)))(when (and (add_on_stack_var1_var2 ))(on ?o1 ?o2))
(when (and (del_on_stack_var2_var1 ))(not (on ?o2 ?o1)))(when (and (add_on_stack_var2_var1 ))(on ?o2 ?o1))
(when (and (del_on_stack_var2_var2 ))(not (on ?o2 ?o2)))(when (and (add_on_stack_var2_var2 ))(on ?o2 ?o2))
(when (and (del_ontable_stack_var1 ))(not (ontable ?o1)))(when (and (add_ontable_stack_var1 ))(ontable ?o1))
(when (and (del_ontable_stack_var2 ))(not (ontable ?o2)))(when (and (add_ontable_stack_var2 ))(ontable ?o2))
(when (and (del_clear_stack_var1 ))(not (clear ?o1)))(when (and (add_clear_stack_var1 ))(clear ?o1))
(when (and (del_clear_stack_var2 ))(not (clear ?o2)))(when (and (add_clear_stack_var2 ))(clear ?o2))
(when (and (del_handempty_stack ))(not (handempty )))(when (and (add_handempty_stack ))(handempty ))
(when (and (del_holding_stack_var1 ))(not (holding ?o1)))(when (and (add_holding_stack_var1 ))(holding ?o1))
(when (and (del_holding_stack_var2 ))(not (holding ?o2)))(when (and (add_holding_stack_var2 ))(holding ?o2))))

(:action unstack
:parameters (?o1 - object ?o2 - object)
:precondition (and (not (modeProg ))(or (not (pre_on_unstack_var1_var1 ))(on ?o1 ?o1))

(or (not (pre_on_unstack_var1_var2 ))(on ?o1 ?o2))(or (not (pre_on_unstack_var2_var1 ))(on ?o2 ?o1))
(or (not (pre_on_unstack_var2_var2 ))(on ?o2 ?o2))(or (not (pre_ontable_unstack_var1 ))(ontable ?o1))
(or (not (pre_ontable_unstack_var2 ))(ontable ?o2))(or (not (pre_clear_unstack_var1 ))(clear ?o1))
(or (not (pre_clear_unstack_var2 ))(clear ?o2))(or (not (pre_handempty_unstack ))(handempty ))



(or (not (pre_holding_unstack_var1 ))(holding ?o1))(or (not (pre_holding_unstack_var2 ))(holding ?o2)))
:effect (and (when (and (del_on_unstack_var1_var1 ))(not (on ?o1 ?o1)))

(when (and (add_on_unstack_var1_var1 ))(on ?o1 ?o1))(when (and (del_on_unstack_var1_var2 ))(not (on ?o1 ?o2)))
(when (and (add_on_unstack_var1_var2 ))(on ?o1 ?o2))(when (and (del_on_unstack_var2_var1 ))(not (on ?o2 ?o1)))
(when (and (add_on_unstack_var2_var1 ))(on ?o2 ?o1))(when (and (del_on_unstack_var2_var2 ))(not (on ?o2 ?o2)))
(when (and (add_on_unstack_var2_var2 ))(on ?o2 ?o2))(when (and (del_ontable_unstack_var1 ))(not (ontable ?o1)))
(when (and (add_ontable_unstack_var1 ))(ontable ?o1))(when (and (del_ontable_unstack_var2 ))(not (ontable ?o2)))
(when (and (add_ontable_unstack_var2 ))(ontable ?o2))(when (and (del_clear_unstack_var1 ))(not (clear ?o1)))
(when (and (add_clear_unstack_var1 ))(clear ?o1))(when (and (del_clear_unstack_var2 ))(not (clear ?o2)))
(when (and (add_clear_unstack_var2 ))(clear ?o2))(when (and (del_handempty_unstack ))(not (handempty )))
(when (and (add_handempty_unstack ))(handempty ))(when (and (del_holding_unstack_var1 ))(not (holding ?o1)))
(when (and (add_holding_unstack_var1 ))(holding ?o1))(when (and (del_holding_unstack_var2 ))(not (holding ?o2)))
(when (and (add_holding_unstack_var2 ))(holding ?o2))))

(:action program_pre_ontable_pick-up_var1
:parameters ()
:precondition (and (modeProg )(not (pre_ontable_pick-up_var1 ))(not (del_ontable_pick-up_var1 ))
(not (add_ontable_pick-up_var1 )))
:effect (and (pre_ontable_pick-up_var1 )))

(:action program_eff_ontable_pick-up_var1
:parameters ()
:precondition (and (modeProg )(not (del_ontable_pick-up_var1 ))(not (add_ontable_pick-up_var1 )))
:effect (and (when (pre_ontable_pick-up_var1 )(del_ontable_pick-up_var1 ))
(when (not (pre_ontable_pick-up_var1 ))(add_ontable_pick-up_var1 ))))

(:action program_pre_clear_pick-up_var1
:parameters ()
:precondition (and (modeProg )(not (pre_clear_pick-up_var1 ))(not (del_clear_pick-up_var1 ))
(not (add_clear_pick-up_var1 )))
:effect (and (pre_clear_pick-up_var1 )))

(:action program_eff_clear_pick-up_var1
:parameters ()
:precondition (and (modeProg )(not (del_clear_pick-up_var1 ))(not (add_clear_pick-up_var1 )))
:effect (and (when (pre_clear_pick-up_var1 )(del_clear_pick-up_var1 ))
(when (not (pre_clear_pick-up_var1 ))(add_clear_pick-up_var1 ))))

(:action program_pre_handempty_pick-up
:parameters ()
:precondition (and (modeProg )(not (pre_handempty_pick-up ))(not (del_handempty_pick-up ))
(not (add_handempty_pick-up )))
:effect (and (pre_handempty_pick-up )))

(:action program_eff_handempty_pick-up
:parameters ()
:precondition (and (modeProg )(not (del_handempty_pick-up ))(not (add_handempty_pick-up )))
:effect (and (when (pre_handempty_pick-up )(del_handempty_pick-up ))
(when (not (pre_handempty_pick-up ))(add_handempty_pick-up ))))

(:action program_pre_holding_pick-up_var1
:parameters ()
:precondition (and (modeProg )(not (pre_holding_pick-up_var1 ))(not (del_holding_pick-up_var1 ))
(not (add_holding_pick-up_var1 )))
:effect (and (pre_holding_pick-up_var1 )))

(:action program_eff_holding_pick-up_var1
:parameters ()
:precondition (and (modeProg )(not (del_holding_pick-up_var1 ))(not (add_holding_pick-up_var1 )))
:effect (and (when (pre_holding_pick-up_var1 )(del_holding_pick-up_var1 ))
(when (not (pre_holding_pick-up_var1 ))(add_holding_pick-up_var1 ))))

(:action program_pre_ontable_put-down_var1
:parameters ()
:precondition (and (modeProg )(not (pre_ontable_put-down_var1 ))(not (del_ontable_put-down_var1 ))
(not (add_ontable_put-down_var1 )))
:effect (and (pre_ontable_put-down_var1 )))

(:action program_eff_ontable_put-down_var1
:parameters ()
:precondition (and (modeProg )(not (del_ontable_put-down_var1 ))(not (add_ontable_put-down_var1 )))
:effect (and (when (pre_ontable_put-down_var1 )(del_ontable_put-down_var1 ))
(when (not (pre_ontable_put-down_var1 ))(add_ontable_put-down_var1 ))))

(:action program_pre_clear_put-down_var1
:parameters ()
:precondition (and (modeProg )(not (pre_clear_put-down_var1 ))(not (del_clear_put-down_var1 ))



(not (add_clear_put-down_var1 )))
:effect (and (pre_clear_put-down_var1 )))

(:action program_eff_clear_put-down_var1
:parameters ()
:precondition (and (modeProg )(not (del_clear_put-down_var1 ))(not (add_clear_put-down_var1 )))
:effect (and (when (pre_clear_put-down_var1 )(del_clear_put-down_var1 ))
(when (not (pre_clear_put-down_var1 ))(add_clear_put-down_var1 ))))

(:action program_pre_handempty_put-down
:parameters ()
:precondition (and (modeProg )(not (pre_handempty_put-down ))(not (del_handempty_put-down ))
(not (add_handempty_put-down )))
:effect (and (pre_handempty_put-down )))

(:action program_eff_handempty_put-down
:parameters ()
:precondition (and (modeProg )(not (del_handempty_put-down ))(not (add_handempty_put-down )))
:effect (and (when (pre_handempty_put-down )(del_handempty_put-down ))
(when (not (pre_handempty_put-down ))(add_handempty_put-down ))))

(:action program_pre_holding_put-down_var1
:parameters ()
:precondition (and (modeProg )(not (pre_holding_put-down_var1 ))(not (del_holding_put-down_var1 ))
(not (add_holding_put-down_var1 )))
:effect (and (pre_holding_put-down_var1 )))

(:action program_eff_holding_put-down_var1
:parameters ()
:precondition (and (modeProg )(not (del_holding_put-down_var1 ))(not (add_holding_put-down_var1 )))
:effect (and (when (pre_holding_put-down_var1 )(del_holding_put-down_var1 ))
(when (not (pre_holding_put-down_var1 ))(add_holding_put-down_var1 ))))

(:action program_pre_on_stack_var1_var1
:parameters ()
:precondition (and (modeProg )(not (pre_on_stack_var1_var1 ))(not (del_on_stack_var1_var1 ))
(not (add_on_stack_var1_var1 )))
:effect (and (pre_on_stack_var1_var1 )))

(:action program_eff_on_stack_var1_var1
:parameters ()
:precondition (and (modeProg )(not (del_on_stack_var1_var1 ))(not (add_on_stack_var1_var1 )))
:effect (and (when (pre_on_stack_var1_var1 )(del_on_stack_var1_var1 ))
(when (not (pre_on_stack_var1_var1 ))(add_on_stack_var1_var1 ))))

(:action program_pre_on_stack_var1_var2
:parameters ()
:precondition (and (modeProg )(not (pre_on_stack_var1_var2 ))(not (del_on_stack_var1_var2 ))
(not (add_on_stack_var1_var2 )))
:effect (and (pre_on_stack_var1_var2 )))

(:action program_eff_on_stack_var1_var2
:parameters ()
:precondition (and (modeProg )(not (del_on_stack_var1_var2 ))(not (add_on_stack_var1_var2 )))
:effect (and (when (pre_on_stack_var1_var2 )(del_on_stack_var1_var2 ))
(when (not (pre_on_stack_var1_var2 ))(add_on_stack_var1_var2 ))))

(:action program_pre_on_stack_var2_var1
:parameters ()
:precondition (and (modeProg )(not (pre_on_stack_var2_var1 ))(not (del_on_stack_var2_var1 ))
(not (add_on_stack_var2_var1 )))
:effect (and (pre_on_stack_var2_var1 )))

(:action program_eff_on_stack_var2_var1
:parameters ()
:precondition (and (modeProg )(not (del_on_stack_var2_var1 ))(not (add_on_stack_var2_var1 )))
:effect (and (when (pre_on_stack_var2_var1 )(del_on_stack_var2_var1 ))
(when (not (pre_on_stack_var2_var1 ))(add_on_stack_var2_var1 ))))

(:action program_pre_on_stack_var2_var2
:parameters ()
:precondition (and (modeProg )(not (pre_on_stack_var2_var2 ))(not (del_on_stack_var2_var2 ))
(not (add_on_stack_var2_var2 )))
:effect (and (pre_on_stack_var2_var2 )))

(:action program_eff_on_stack_var2_var2
:parameters ()



:precondition (and (modeProg )(not (del_on_stack_var2_var2 ))(not (add_on_stack_var2_var2 )))
:effect (and (when (pre_on_stack_var2_var2 )(del_on_stack_var2_var2 ))
(when (not (pre_on_stack_var2_var2 ))(add_on_stack_var2_var2 ))))

(:action program_pre_ontable_stack_var1
:parameters ()
:precondition (and (modeProg )(not (pre_ontable_stack_var1 ))(not (del_ontable_stack_var1 ))
(not (add_ontable_stack_var1 )))
:effect (and (pre_ontable_stack_var1 )))

(:action program_eff_ontable_stack_var1
:parameters ()
:precondition (and (modeProg )(not (del_ontable_stack_var1 ))(not (add_ontable_stack_var1 )))
:effect (and (when (pre_ontable_stack_var1 )(del_ontable_stack_var1 ))
(when (not (pre_ontable_stack_var1 ))(add_ontable_stack_var1 ))))

(:action program_pre_ontable_stack_var2
:parameters ()
:precondition (and (modeProg )(not (pre_ontable_stack_var2 ))(not (del_ontable_stack_var2 ))
(not (add_ontable_stack_var2 )))
:effect (and (pre_ontable_stack_var2 )))

(:action program_eff_ontable_stack_var2
:parameters ()
:precondition (and (modeProg )(not (del_ontable_stack_var2 ))(not (add_ontable_stack_var2 )))
:effect (and (when (pre_ontable_stack_var2 )(del_ontable_stack_var2 ))
(when (not (pre_ontable_stack_var2 ))(add_ontable_stack_var2 ))))

(:action program_pre_clear_stack_var1
:parameters ()
:precondition (and (modeProg )(not (pre_clear_stack_var1 ))(not (del_clear_stack_var1 ))
(not (add_clear_stack_var1 )))
:effect (and (pre_clear_stack_var1 )))

(:action program_eff_clear_stack_var1
:parameters ()
:precondition (and (modeProg )(not (del_clear_stack_var1 ))(not (add_clear_stack_var1 )))
:effect (and (when (pre_clear_stack_var1 )(del_clear_stack_var1 ))
(when (not (pre_clear_stack_var1 ))(add_clear_stack_var1 ))))

(:action program_pre_clear_stack_var2
:parameters ()
:precondition (and (modeProg )(not (pre_clear_stack_var2 ))(not (del_clear_stack_var2 ))
(not (add_clear_stack_var2 )))
:effect (and (pre_clear_stack_var2 )))

(:action program_eff_clear_stack_var2
:parameters ()
:precondition (and (modeProg )(not (del_clear_stack_var2 ))(not (add_clear_stack_var2 )))
:effect (and (when (pre_clear_stack_var2 )(del_clear_stack_var2 ))
(when (not (pre_clear_stack_var2 ))(add_clear_stack_var2 ))))

(:action program_pre_handempty_stack
:parameters ()
:precondition (and (modeProg )(not (pre_handempty_stack ))(not (del_handempty_stack ))
(not (add_handempty_stack )))
:effect (and (pre_handempty_stack )))

(:action program_eff_handempty_stack
:parameters ()
:precondition (and (modeProg )(not (del_handempty_stack ))(not (add_handempty_stack )))
:effect (and (when (pre_handempty_stack )(del_handempty_stack ))
(when (not (pre_handempty_stack ))(add_handempty_stack ))))

(:action program_pre_holding_stack_var1
:parameters ()
:precondition (and (modeProg )(not (pre_holding_stack_var1 ))(not (del_holding_stack_var1 ))
(not (add_holding_stack_var1 )))
:effect (and (pre_holding_stack_var1 )))

(:action program_eff_holding_stack_var1
:parameters ()
:precondition (and (modeProg )(not (del_holding_stack_var1 ))(not (add_holding_stack_var1 )))
:effect (and (when (pre_holding_stack_var1 )(del_holding_stack_var1 ))
(when (not (pre_holding_stack_var1 ))(add_holding_stack_var1 ))))

(:action program_pre_holding_stack_var2



:parameters ()
:precondition (and (modeProg )(not (pre_holding_stack_var2 ))(not (del_holding_stack_var2 ))
(not (add_holding_stack_var2 )))
:effect (and (pre_holding_stack_var2 )))

(:action program_eff_holding_stack_var2
:parameters ()
:precondition (and (modeProg )(not (del_holding_stack_var2 ))(not (add_holding_stack_var2 )))
:effect (and (when (pre_holding_stack_var2 )(del_holding_stack_var2 ))
(when (not (pre_holding_stack_var2 ))(add_holding_stack_var2 ))))

(:action program_pre_on_unstack_var1_var1
:parameters ()
:precondition (and (modeProg )(not (pre_on_unstack_var1_var1 ))(not (del_on_unstack_var1_var1 ))
(not (add_on_unstack_var1_var1 )))
:effect (and (pre_on_unstack_var1_var1 )))

(:action program_eff_on_unstack_var1_var1
:parameters ()
:precondition (and (modeProg )(not (del_on_unstack_var1_var1 ))(not (add_on_unstack_var1_var1 )))
:effect (and (when (pre_on_unstack_var1_var1 )(del_on_unstack_var1_var1 ))
(when (not (pre_on_unstack_var1_var1 ))(add_on_unstack_var1_var1 ))))

(:action program_pre_on_unstack_var1_var2
:parameters ()
:precondition (and (modeProg )(not (pre_on_unstack_var1_var2 ))(not (del_on_unstack_var1_var2 ))
(not (add_on_unstack_var1_var2 )))
:effect (and (pre_on_unstack_var1_var2 )))

(:action program_eff_on_unstack_var1_var2
:parameters ()
:precondition (and (modeProg )(not (del_on_unstack_var1_var2 ))(not (add_on_unstack_var1_var2 )))
:effect (and (when (pre_on_unstack_var1_var2 )(del_on_unstack_var1_var2 ))
(when (not (pre_on_unstack_var1_var2 ))(add_on_unstack_var1_var2 ))))

(:action program_pre_on_unstack_var2_var1
:parameters ()
:precondition (and (modeProg )(not (pre_on_unstack_var2_var1 ))(not (del_on_unstack_var2_var1 ))
(not (add_on_unstack_var2_var1 )))
:effect (and (pre_on_unstack_var2_var1 )))

(:action program_eff_on_unstack_var2_var1
:parameters ()
:precondition (and (modeProg )(not (del_on_unstack_var2_var1 ))(not (add_on_unstack_var2_var1 )))
:effect (and (when (pre_on_unstack_var2_var1 )(del_on_unstack_var2_var1 ))
(when (not (pre_on_unstack_var2_var1 ))(add_on_unstack_var2_var1 ))))

(:action program_pre_on_unstack_var2_var2
:parameters ()
:precondition (and (modeProg )(not (pre_on_unstack_var2_var2 ))(not (del_on_unstack_var2_var2 ))
(not (add_on_unstack_var2_var2 )))
:effect (and (pre_on_unstack_var2_var2 )))

(:action program_eff_on_unstack_var2_var2
:parameters ()
:precondition (and (modeProg )(not (del_on_unstack_var2_var2 ))(not (add_on_unstack_var2_var2 )))
:effect (and (when (pre_on_unstack_var2_var2 )(del_on_unstack_var2_var2 ))
(when (not (pre_on_unstack_var2_var2 ))(add_on_unstack_var2_var2 ))))

(:action program_pre_ontable_unstack_var1
:parameters ()
:precondition (and (modeProg )(not (pre_ontable_unstack_var1 ))(not (del_ontable_unstack_var1 ))
(not (add_ontable_unstack_var1 )))
:effect (and (pre_ontable_unstack_var1 )))

(:action program_eff_ontable_unstack_var1
:parameters ()
:precondition (and (modeProg )(not (del_ontable_unstack_var1 ))(not (add_ontable_unstack_var1 )))
:effect (and (when (pre_ontable_unstack_var1 )(del_ontable_unstack_var1 ))
(when (not (pre_ontable_unstack_var1 ))(add_ontable_unstack_var1 ))))

(:action program_pre_ontable_unstack_var2
:parameters ()
:precondition (and (modeProg )(not (pre_ontable_unstack_var2 ))(not (del_ontable_unstack_var2 ))
(not (add_ontable_unstack_var2 )))
:effect (and (pre_ontable_unstack_var2 )))



(:action program_eff_ontable_unstack_var2
:parameters ()
:precondition (and (modeProg )(not (del_ontable_unstack_var2 ))(not (add_ontable_unstack_var2 )))
:effect (and (when (pre_ontable_unstack_var2 )(del_ontable_unstack_var2 ))
(when (not (pre_ontable_unstack_var2 ))(add_ontable_unstack_var2 ))))

(:action program_pre_clear_unstack_var1
:parameters ()
:precondition (and (modeProg )(not (pre_clear_unstack_var1 ))(not (del_clear_unstack_var1 ))
(not (add_clear_unstack_var1 )))
:effect (and (pre_clear_unstack_var1 )))

(:action program_eff_clear_unstack_var1
:parameters ()
:precondition (and (modeProg )(not (del_clear_unstack_var1 ))(not (add_clear_unstack_var1 )))
:effect (and (when (pre_clear_unstack_var1 )(del_clear_unstack_var1 ))
(when (not (pre_clear_unstack_var1 ))(add_clear_unstack_var1 ))))

(:action program_pre_clear_unstack_var2
:parameters ()
:precondition (and (modeProg )(not (pre_clear_unstack_var2 ))(not (del_clear_unstack_var2 ))
(not (add_clear_unstack_var2 )))
:effect (and (pre_clear_unstack_var2 )))

(:action program_eff_clear_unstack_var2
:parameters ()
:precondition (and (modeProg )(not (del_clear_unstack_var2 ))(not (add_clear_unstack_var2 )))
:effect (and (when (pre_clear_unstack_var2 )(del_clear_unstack_var2 ))
(when (not (pre_clear_unstack_var2 ))(add_clear_unstack_var2 ))))

(:action program_pre_handempty_unstack
:parameters ()
:precondition (and (modeProg )(not (pre_handempty_unstack ))(not (del_handempty_unstack ))
(not (add_handempty_unstack )))
:effect (and (pre_handempty_unstack )))

(:action program_eff_handempty_unstack
:parameters ()
:precondition (and (modeProg )(not (del_handempty_unstack ))(not (add_handempty_unstack )))
:effect (and (when (pre_handempty_unstack )(del_handempty_unstack ))
(when (not (pre_handempty_unstack ))(add_handempty_unstack ))))

(:action program_pre_holding_unstack_var1
:parameters ()
:precondition (and (modeProg )(not (pre_holding_unstack_var1 ))(not (del_holding_unstack_var1 ))
(not (add_holding_unstack_var1 )))
:effect (and (pre_holding_unstack_var1 )))

(:action program_eff_holding_unstack_var1
:parameters ()
:precondition (and (modeProg )(not (del_holding_unstack_var1 ))(not (add_holding_unstack_var1 )))
:effect (and (when (pre_holding_unstack_var1 )(del_holding_unstack_var1 ))
(when (not (pre_holding_unstack_var1 ))(add_holding_unstack_var1 ))))

(:action program_pre_holding_unstack_var2
:parameters ()
:precondition (and (modeProg )(not (pre_holding_unstack_var2 ))(not (del_holding_unstack_var2 ))
(not (add_holding_unstack_var2 )))
:effect (and (pre_holding_unstack_var2 )))

(:action program_eff_holding_unstack_var2
:parameters ()
:precondition (and (modeProg )(not (del_holding_unstack_var2 ))(not (add_holding_unstack_var2 )))
:effect (and (when (pre_holding_unstack_var2 )(del_holding_unstack_var2 ))
(when (not (pre_holding_unstack_var2 ))(add_holding_unstack_var2 ))))

(:action validate_1
:parameters ()
:precondition (and (modeProg ))
:effect (and (not (modeProg ))(clear a)(not (clear b))(clear c)(not (clear d))(not (clear e))(not (clear f))
(not (clear g))(handempty )(not (holding a))(not (holding b))(not (holding c))(not (holding d))
(not (holding e))(not (holding f))(not (holding g))(not (on a a))(not (on a b))(not (on a c))(not (on a d))
(not (on a e))(not (on a f))(on a g)(not (on b a))(not (on b b))(not (on b c))(not (on b d))(on b e)
(not (on b f))(not (on b g))(not (on c a))(not (on c b))(not (on c c))(on c d)(not (on c e))(not (on c f))
(not (on c g))(not (on d a))(on d b)(not (on d c))(not (on d d))(not (on d e))(not (on d f))(not (on d g))
(not (on e a))(not (on e b))(not (on e c))(not (on e d))(not (on e e))(on e f)(not (on e g))(not (on f a))
(not (on f b))(not (on f c))(not (on f d))(not (on f e))(not (on f f))(not (on f g))(not (on g a))



(not (on g b))(not (on g c))(not (on g d))(not (on g e))(not (on g f))(not (on g g))(not (ontable a))
(not (ontable b))(not (ontable c))(not (ontable d))(not (ontable e))(ontable f)(ontable g)(test1 )))

(:action validate_2
:parameters ()
:precondition (and (not (modeProg ))(clear a)(clear b)(clear c)(clear d)(clear e)(not (clear f))(not (clear g))
(handempty )(not (holding a))(not (holding b))(not (holding c))(not (holding d))(not (holding e))
(not (holding f))(not (holding g))(not (on a a))(not (on a b))(not (on a c))(not (on a d))(not (on a e))
(not (on a f))(on a g)(not (on b a))(not (on b b))(not (on b c))(not (on b d))(not (on b e))(not (on b f))
(not (on b g))(not (on c a))(not (on c b))(not (on c c))(not (on c d))(not (on c e))(not (on c f))(not (on c g))
(not (on d a))(not (on d b))(not (on d c))(not (on d d))(not (on d e))(not (on d f))(not (on d g))(not (on e a))
(not (on e b))(not (on e c))(not (on e d))(not (on e e))(on e f)(not (on e g))(not (on f a))(not (on f b))
(not (on f c))(not (on f d))(not (on f e))(not (on f f))(not (on f g))(not (on g a))(not (on g b))(not (on g c))
(not (on g d))(not (on g e))(not (on g f))(not (on g g))(not (ontable a))(ontable b)(ontable c)(ontable d)
(not (ontable e))(ontable f)(ontable g)(test1 ))
:effect (and (test2 )(not (test1 ))))

(:action validate_3
:parameters ()
:precondition (and (not (modeProg ))(clear a)(clear b)(clear c)(clear d)(clear e)(clear f)(clear g)(handempty )
(not (holding a))(not (holding b))(not (holding c))(not (holding d))(not (holding e))(not (holding f))
(not (holding g))(not (on a a))(not (on a b))(not (on a c))(not (on a d))(not (on a e))(not (on a f))
(not (on a g))(not (on b a))(not (on b b))(not (on b c))(not (on b d))(not (on b e))(not (on b f))(not (on b g))
(not (on c a))(not (on c b))(not (on c c))(not (on c d))(not (on c e))(not (on c f))(not (on c g))(not (on d a))
(not (on d b))(not (on d c))(not (on d d))(not (on d e))(not (on d f))(not (on d g))(not (on e a))(not (on e b))
(not (on e c))(not (on e d))(not (on e e))(not (on e f))(not (on e g))(not (on f a))(not (on f b))(not (on f c))
(not (on f d))(not (on f e))(not (on f f))(not (on f g))(not (on g a))(not (on g b))(not (on g c))(not (on g d))
(not (on g e))(not (on g f))(not (on g g))(ontable a)(ontable b)(ontable c)(ontable d)(ontable e)(ontable f)
(ontable g)(test2 ))
:effect (and (not (test2 ))(test3 )))

)

(define (problem learning_problem)
(:domain blocks)
(:objects g - object c - object d - object e - object a - object b - object f - object )
(:init (modeProg ) )
(:goal (and (test3 ))))

Figure 15: Compiled PDDL problem file for learning the blocksworld action models from two initial and final states.


