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epted (Day Month Year)Obtaining multi-obje
tive optimization solutions with a small number of points smartlydistributed along the Pareto front is a 
hallenge. Optimization methods, su
h as the nor-malized normal 
onstraint (NNC), propose the use of a �lter to a
hieve a smart Paretofront distribution. The NCC optimization method presents several disadvantages relatedwith the pro
edure itself, initial 
ondition dependen
y, and 
omputational burden. Inthis arti
le, the epsilon-variable multi-obje
tive geneti
 algorithm (ev-MOGA) is pre-sented. This algorithm 
hara
terizes the Pareto front in a smart way and removes thedisadvantages of the NNC method. Finally, examples of a three-bar truss design and
ontroller tuning optimizations are presented for 
omparison purposes.Keywords: multi-obje
tive optimization; Pareto front; engineering design; evolutionaryalgorithms; multi-obje
tive evolutionary algorithms.1. Introdu
tionMany engineering design problems 
an be translated into multi-obje
tive optimiza-tion (MO) problems. MO te
hniques o�er advantages over single-obje
tive optimiza-tion approa
hes be
ause they enable a set of solutions to be found with di�erenttrade-o�s among the obje
tives. Therefore, the de
ision maker (DM) 
an analyze theset and sele
t the best solution. These three steps (measure, sear
h, and sele
tion)are fundamental for the su

essful appli
ation of the MO te
hnique.1In some engineering �elds, problem design is based on single-obje
tive optimiza-tion te
hniques that weigh di�erent obje
tive fun
tions to obtain the best solutionfrom the design variables. 2 Choosing weighting fa
tors for the 
ost index is usuallya tedious trial-and-error pro
ess, and due to the 
on�guration of the index (for ex-ample, linear or quadrati
), it is often impossible to �nd good trade-o� solutions. 3This is be
ause most the 
ost fun
tion to be optimized is usually stated from thepoint of view of the optimizer, despite a possible loss of �exibility when de�ning the1
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e among obje
tives.The MO methodology enables the designer to 
arry out a better sele
tion of the�nal solution, sin
e no part of the sear
hing spa
e is ignored. Solutions provided byMO algorithms should be representative of the whole design variable spa
e. Sin
e
omputational algorithms perform a dis
rete sear
h in the spa
e of design variables,the group of solutions found should be evenly distributed to avoid over- or under-explored areas. This group of solutions should not 
ontain non-optimal solutions,sin
e this situation 
ould lead the DM to sele
t a potentially inappropriate valuefor some design variables.Solving an MO problem 
ould be asso
iated with the approximation of thePareto front. Ea
h point of this Pareto front represents a solution to the MO prob-lem in the obje
tive fun
tion spa
e, whi
h is a Pareto optimal solution.4 That is, forany given pair of Pareto optimal solutions, an improvement in one of the 
ompo-nents entails a deterioration in the others. Therefore, we will have a set of optimalsolutions, with di�ering trade-o�s among the obje
tives. This is be
ause there isusually no overall optimal solution, whi
h is the best solution for ea
h individualobje
tive.MO algorithms based on numeri
al optimization and random sear
h are analyzedin 5 and a new numeri
al optimization method was proposed: the normalized normal
onstraint (NNC).a This approa
h o�ers a

eptable properties sin
e it generateswell-distributed Pareto front approximations. However, be
ause it uses a sear
h-based Gauss-Newton method, the solution obtained is highly dependent on theobje
tive sele
ted for optimization and on the initial optimization 
onditions.To avoid this major problem a modi�ed variant of the NNC (MNNC) 
an beused whi
h over
omes the above mentioned disadvantages.6,7 MNNC enables the
onstru
tion of the Pareto front regardless of the obje
tive sele
ted for optimization.It also presents an alternative to the 
onstru
tion of the Pareto front based on theredistribution of front points, and uses a geneti
 algorithm (GA) to a
hieve globaloptimum solutions - but without dependen
e on the initial 
onditions. The prin
ipaldrawba
k of this approa
h is its high 
omputational burden sin
e an independentoptimization pro
ess (using a GA) is needed to a
hieve ea
h point of the Paretofront.However, MNNC (and therefore also NNC) 
annot 
hara
terize 
ertain areas ofthe Pareto front (as will be shown in Se
tion 2.1) when:

• The optimal solution of two obje
tives (or more) is the same (for problemswith three or more obje
tives).
• The optimal solution of one obje
tive (or more) is multimodal.Both the NNC and MNNC algorithms approximate evenly distributed Paretofronts but they are not ne
essarily the most appropriate approximation. In some

aAn implementation of the NNC algorithm is available in MATLAB Central.http://www.mathworks.
om/matlab
entral/�leex
hange/38976
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ases, it 
ould be more interesting for the less desired parts of the Pareto front tohave a lower degree of 
hara
terization than the more desired parts.8 For example,the regions where the slope of the front is lower 
ould be 
hara
terized with a lowerdensity of solutions. This kind of distribution is known as a smart distribution.9To a
hieve a smart distribution, both NNC and MNNC �rst need to a

omplish auniform, dense distribution of solutions on the front; they then use a smart �lter toredu
e the number of points in the regions with less slope. Solutions with pra
ti
allyinsigni�
ant trade-o� (PIT) are omitted from the Pareto set approximation. Theresulting set will be smaller, alleviating the DM's need to 
ompare solutions withuninteresting trade-o�s. This is important, sin
e the sele
tion pro
edure is usuallymore time 
onsuming than the optimization pro
ess1. This also means that somepoints will be eliminated, despite the 
omputational burden invested in obtainingthem.Another interesting alternative for solving MO problems is based on the use ofevolutionary algorithms (EAs), whi
h allow several elements of the Pareto front tobe generated simultaneously (in parallel and in a single run) owing to the popula-tional nature of EAs. (10,11,12,13)Many di�erent operators or strategies have been developed that 
onvert theoriginal EAs into multiobje
tive evolutionary algorithms (MOEAs). MOEAs 
on-verge towards the Pareto optimal set and their solution is diverse enough to be ableto 
hara
terize it. The good results obtained with MOEAs and their 
apa
ity tohandle a wide variety of problems with di�erent degrees of 
omplexity explain whythey are being in
reasingly used; 14 indeed they are 
urrently one of the areas wheremost progress is being made within the �eld of EAs. 15,16,17,18,19,20In this work, a new MOEA algorithm 
alled the epsilon-variable multi-obje
tivegeneti
 algorithm (ev-MOGA)b has been designed to a
hieve a redu
ed but well-distributed representation of the Pareto front. Front solutions are smartly dis-tributed without using a �lter, so avoiding the need to eliminate solutions a pos-teriori, and ensuring that no 
omputational burdens are wasted. In addition, thealgorithm adjusts the limits of the Pareto front dynami
ally, and prevents solutionsbelonging to the ends of the front from being lost. This algorithm, as it will beshown, in
orporates the PIT 
riterion. This feature makes it an algorithm 
loser tothe de
ision making step that is fundamental in the MO te
hnique. This is impor-tant, sin
e MOEAs usually only fo
us on providing a dense set of Pareto optimalsolutions - regardless of the subsequent sele
tion pro
ess.21To evaluate the performan
e of the ev-MOGA algorithm we used two opti-mization problems and 
ompared the results with those obtained using the NNCalgorithm with a smart �lter. This paper is organized as follows. Se
tion 2 presentsthe mathemati
al foundations of the NNC method and the smart �lter. Se
tion 3presents the ev-MOGA algorithm based on the ǫ−dominan
e 
on
ept. Se
tions 4

bev-MOGA algorithm is now available in MATLAB Central.http://www.mathworks.
om/matlab
entral/�leex
hange/31080
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4 J.M. Herrero et al.and 5 
ompare the performan
e of the ev-MOGA and NNC algorithms with twooptimization problems: a three-bar truss example; and a proportional-integral (PI)
ontroller tuning problem. Finally, some 
on
luding remarks are provided in Se
tion6.2. NNC Method with Smart Pareto FilterThe MO problem 
an be formulated as follows:

minJ(θ) = min[J1(θ), J2(θ), . . . , Js(θ)] (1)subje
t to:
gq(θ) ≤ 0, (1 ≤ q ≤ r)

hk(θ) = 0, (1 ≤ k ≤ n)

θli ≤ θi ≤ θui, (1 ≤ i ≤ L)

(2)where Ji(θ), i ∈ B := [1 . . . s] are the obje
tives to be optimized, θ is a solu-tion inside the L-dimensional solution spa
e D, gq(θ) and hk(θ) are ea
h of the rinequality and n equality problem 
onstraints respe
tively, and θli and θui are thelower and upper 
onstraints that de�ned the solution spa
e D.To solve the MO problem the Pareto optimal set ΘP (solutions where nonedominate any of the others) must be found. Pareto dominan
e is de�ned as follows:A solution θ
1 dominates another solution θ

2, denoted by θ
1 ≺ θ

2, if
∀i ∈ B, Ji(θ

1) ≤ Ji(θ
2) and ∃k ∈ B : Jk(θ

1) < Jk(θ
2) .Therefore, the Pareto optimal set ΘP is given by

ΘP = {θ ∈ D | ∄ θ̃ ∈ D : θ̃ ≺ θ} . (3)
ΘP is unique and normally in
ludes in�nite solutions. Hen
e a set Θ∗

P , with a�nite number of elements from ΘP , should be obtained.cBelow, an extra
t of the NNC method to solve an n-obje
tives optimizationproblem is presented. A detailed des
ription of the method 
an be found in 5.Step 1: An
hor points 
omputation. Firstly, the minimum of ea
h obje
tivefun
tion, J∗
i (i ∈ B), is 
al
ulated by solving the following optimizationproblems:

θ
i∗ = min Ji(θ) (i ∈ B) (4)subje
t to (2).

cNoti
e that Θ∗

P
is not unique.
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hor points thus obtained determine the ends of the Pareto front

J∗
i = J(θi∗). Additionally, the utopia point,d denoted by J

u, 
omprises thegood elements of ea
h an
hor point.
J
u = [J1(θ

1∗) J2(θ
2∗) · · · Js(θ

s∗) ]T (5)Step 2: Obje
tive spa
e normalization. By de�ning the matrix Ls as the max-imum distan
es in ea
h 
omponent of the an
hor points relative to theutopia plane, a normalization of the sear
hing spa
e 
an be performed.
Ls =

[

l1 l2 · · · ls
]T

= J
S − J

u (6)where J
S is the nadir point

J
S =

[

J1
S J2

S · · · Js
S
] (7)

Ji
S = max

[

Ji(θ
1∗) Ji(θ

2∗) · · · Ji(θ
s∗)

] (8)whi
h leads to the normalized design metri
 as
J i =

Ji − Ji(θ
i∗)

li
, i ∈ B (9)Step 3: Utopia line ve
tor generation. Let ve
tors Nk be de�ned as the dif-feren
e between the normalized an
hor ve
tors (Figure 1), from J

k∗ to J
s∗for k ∈ 1, 2, ..., s− 1.

Nk = J
s∗

− J
k∗ (10)Step 4: Normalized in
rement de�nition. The normalized in
rement δk is de-�ned, in dire
tion Nk for a pres
ribed number of solutions, as mk.

δk =
1

mk − 1
, (1 ≤ k ≤ s− 1) (11)where the resulting segment size 
an be expressed as

∆k = δk|Nk| (12)Step 5: Generate utopia line points. The points distributed over the utopiahyperplane are des
ribed as
Xpj =

s
∑

k=1

αkjJ
k∗ (13)where

∑s
k=1 αkj = 1 0 ≤ αkj ≤ 1 (14)

dSin
e it is the best point, but 
annot be a
hieved.
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6 J.M. Herrero et al.Step 6: Pareto front approximation. The NNC method states that the solu-tion to the MO problem (1) 
an be transformed into the minimization ofXpjsingle-obje
tive problems, but in the normalized domain. The optimizationproblem 
an be formulated as:

min Js(θ) (15)subje
t to:
gq(θ) ≤ 0, (1 ≤ q ≤ r)

hk(θ) = 0, (1 ≤ k ≤ n)

θli ≤ θi ≤ θui, (1 ≤ i ≤ L)

(16)
N

T

k (J −Xpj) ≤ 0 k = 1 . . . s− 1

J = [J1(θ) · · · Js(θ)]
T

(17)Note that for ea
h problem j, s− 1 additional 
onstraints (17) are added. Ea
h
onstraint represents the s
alar produ
t of ve
tor Nk and the ve
tor formed bythe di�eren
e between the points of the feasible area J and point Xpj . By makingthis s
alar produ
t smaller than zero, the optimization is for
ed to sear
h for theminimum value when the hyperplanes are in opposition.e This ensures that thisminimum (θj∗) in the Pareto front will be found for ea
h point Xpj (see Figure 1).
2

J

2*

J

Feasible Region

Unfeasible Region

1
N

1

10

pjX

1
J

1*

J

J

Figure 1. NNC in the bi-obje
tive 
ase and m1 = 6. For the sake of simpli
ity, only the bi-obje
tive 
ase is presented graphi
ally.
eIn the bi-obje
tive 
ase, hyperplanes are singled-out ve
tors (Figure 1).
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 7The 
onstru
tion of the Pareto front from equation 15 
an in
lude non-Paretoor lo
al Pareto points in its solution.f Θ

∗ is de�ned as the dis
rete set of all thesolutions found in the optimization problems (15) and (4) that are 
arried out. A�lter is used to eliminate the solutions that do not belong to the Pareto front andto obtain the �nal Θ∗
P .

Θ
∗
P = {θ∗ ∈ Θ

∗| ∄ θ̃ ∈ Θ
∗ : θ̃ ≺ θ

∗}. (18)Noti
e that Θ∗
P will 
ontain Pareto points that are evenly distributed a
ross thePareto front.The density of the points should be high enough to allow 
hara
terization ofthis front. To obtain a redu
ed sample of points of Θ∗

P in 9 the appli
ation of asmart �lter to Θ
∗
P to obtain Θ

∗
SP is proposed. Therefore, from Θ

∗
P several pointsare eliminated using the PIT 
riterion to obtain Θ

∗
SP (see 9 for more details aboutPIT and the smart �lter).

Figure 2. Regions of the PIT for the bi-obje
tive 
ase. The gray area is the Ji PIT. J̃2 and J̃1represent deviations of the respe
tive obje
tives from the point Ji. J2 belongs to the Ji PIT, andtherefore it will be removed when the smart �lter is applied, whereas J1 and J3 do not belong to
Ji PIT and so they will 
ontinue in Θ∗.Given a Pareto front point J

i, its PIT is de�ned by means of ∆m and ∆Mdesigner parameters as shown in Figure 2g. For two Pareto points in Θ
∗
P whosedi�eren
e between their obje
tives values is less than∆m, the PIT 
riterion prevents

fLo
al Pareto points are those that are not lo
ally dominated by any other point. Non-Paretopoints are lo
ally dominated.
gSin
e the smart �lter is applied to Θ∗

P
Pareto points, the �rst and third quadrants are notpopulated and 
onsequently are not 
onsidered.
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∗
SP - unless the di�eren
e between any other obje
tives is greaterthan ∆M .Let ν be the absolute ve
tor between the two points being 
ompared:

ν = abs(Ji − J
k).Therefore J

k is removed when it is 
ompared to J
i, if

νm < ∆m and νM < ∆Mwhere νm and νM are minimum and maximum ve
tor 
omponents of ν.In Figure 2, for instan
e, as J2 belongs to the J
i PIT it will be removed whenthe smart �lter is applied to Θ

∗, whereas J1 and J
3 do not belong to J

i PIT andso they will 
ontinue in Θ
∗ for the moment.A smart �lter starts with a J

i in Θ
∗
P whi
h is de
lared smart and 
omparedwith su

essive points J

k in Θ
∗
P . Points in J

i PIT are eliminated from Θ
∗
P . Thispro
edure is repeated with other Ji points in Θ

∗
P until every point in Θ

∗
P has beende
lared a smart point. The points �nally remaining in Θ

∗
P 
onstitute Θ

∗
SP .Figure 3 shows the pro
ess of smart �ltering. ◦ points are eliminated be
ausethey belong to PIT regions of • points whi
h are de
lared smart. Given a Θ

∗
P set,the resulting Θ

∗
SP is not unique sin
e it depends on the analysis order followed, asshown in 
ases (a) and (b) in Figure 3.

2J (a)

(b)2J
1J

1JFigure 3. • and ◦ 
onstitute Θ∗

P
. • represents the Θ∗

SP
obtained after eliminating points in PITregions. (a) Analysis order 1. (b) Analysis order 2.
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 92.1. NNC algorithm drawba
ksThe pro
edure used by the NNC algorithm is extremely dependent on the an
horpoint 
al
ulation. Therefore, if these are not 
orre
t the algorithm may not ade-quately 
hara
terize parts of the Pareto front. Two examples of this situation areshown in this se
tion. An example is shown in Figure 4 when obje
tive fun
tionsare multimodal and therefore the an
hor points obtained 
ould not 
orrespond withthe real ends of the Pareto front. This is be
ause the an
hors are stati
 and are notupdated in the NNC algorithm on
e 
al
ulated.

0

0

J2

J3

J1

Minima of J1

Pareto Front

J( )θ
1*

J( )θ
3*

J( )θ
2*

J3

J2

J1

s

s

s

(1,0,1)

(1,1,0)

(0,1,1)
Xpj

J( )θ
j*

Figure 4. NNC in a three obje
tive 
ase when the obje
tive fun
tions are multimodal.For instan
e, if J1 is minimized any solution in the highlighted line (minimumof J1) 
ould be obtained. Assume that the J(θ1∗) solution is obtained and that
J(θ2∗) and J(θ3∗) are also obtained when J2 and J3 are minimized, respe
tively.These solutions de�ne the utopia point (0, 0, 0) and the nadir point (JS

1 , J
S
2 , J

S
3 )used to normalize the obje
tive spa
e and to de�ne the utopia plane (limited bythe points represented by squares in the �gure). For ea
h point Xpj in the utopiaplane, a single-obje
tive optimization is made and a Pareto front point J(θj∗) willbe obtained that 
hara
terises the Pareto front under the utopia plane. However, asthe utopia plane does not 
ompletely 
over the Pareto front, it would not be totally
hara
terized and parts of it would not be obtained.Another example is shown in Figure 5. In this three obje
tive 
ase, the minimumsolution for obje
tives J1 and J2 is the same, and the utopia plane is redu
ed to a
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t, means that only Pareto points under this line would be obtained,and therefore, the Pareto front would be in
ompletely 
hara
terized.

J1

J2

J3

Pareto Front

1

1

1

J = J
1* 2*

J
3*

N = N
1 2

Xpj

J

Figure 5. NNC in a three obje
tive 
ase when two an
hor points are the same J
1∗

= J
2∗.3. ev-MOGAThe ev-MOGA 22 is an elitist multi-obje
tive evolutionary algorithm based on the
on
ept of ǫ-dominan
e, 23 whi
h is used to 
ontrol the 
ontent of the ar
hive A(t)where the result of the optimization problem is stored. ev-MOGA tries to ensurethat A(t) 
onverges toward an ǫ-Pareto set, Θ∗

Pǫ in a smart distributed manneralong the Pareto front J(ΘP ) with limited memory resour
es. This is due to the
ǫ-dominan
e 
on
ept whi
h helps maintain solutions with signi�
ant trade-o� andthe dynami
 adjustment of the limits of the Pareto front by preserving its extremes(an
hors). This 
reates the possibility of over
oming the aforementioned problemsin the NNC algorithm.For this reason, the obje
tive spa
e is split into a �xed number of boxes. Forea
h dimension i ∈ B, n_boxi 
ells of ǫi width are 
reated where

ǫi = (Jmax
i − Jmin

i )/n_boxi, (19)
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Jmax
i = max

θ∈Θ∗

Pǫ

Ji(θ), J
min
i = min

θ∈Θ∗

Pǫ

Ji(θ). (20)This grid preserves the diversity of J(Θ∗
Pǫ) sin
e ea
h box 
an be o

upied byonly one solution in A(t), and at the same time produ
es a smart distribution aswill be shown later.hThe 
on
ept of ǫ-dominan
e is de�ned as follows. For a solution θ ∈ D, boxi(θ)is de�ned by

boxi(θ) =

⌈

Ji(θ)− Jmin
i

Jmax
i − Jmin

i

· n_boxi

⌉

∀i ∈ B. (21)Let box(θ) = {box1(θ), . . . , boxs(θ)}. A solution θ
1 with value J(θ1) ǫ-dominates the solution θ

2 with value J(θ2), denoted by θ
1 ≺ǫ θ

2, if and onlyif
box(θ1) ≺ box(θ2) ∨

(

box(θ1) = box(θ2)andθ1 ≺ θ
2
)

. (22)Hen
e, a set Θ∗
Pǫ ⊆ ΘP is ǫ-Pareto if and only if

∀θ1, θ2 ∈ Θ
∗
Pǫ, θ

1 6= θ
2, box(θ1) 6= box(θ2)andbox(θ1) ⊀ǫ box(θ

2) (23)Therefore, ev-MOGA is responsible for updating the 
ontent of A(t) by savingonly ǫ-dominant solutions that do not share the same box. When two mutually
ǫ-dominant solutions 
ompete, the solution that prevails in A(t) will be the onethat is 
losest to the 
enter of the box. It is thereby possible to prevent solutionsbelonging to adja
ent boxes (neither of them dominating the other) from being too
lose to ea
h other, thus en
ouraging a smart distribution.The aim of ev-MOGA is to a
hieve a Θ

∗
Pǫ with the greatest possible number ofsolutions in order to 
hara
terize the Pareto front adequately. Although the numberof possible solutions will depend on the shape of the front and for n_boxi, it willnot ex
eed the following level

|Θ∗
Pǫ
| ≤

∏n
i=1 n_boxi + 1

n_boxmax + 1
, n_boxmax = max

i
n_boxi (24)whi
h is advantageous, as it is possible to 
ontrol the maximum number of solutionsthat will 
hara
terize the Pareto front.Furthermore, thanks to the de�nition of the box, the an
hor points Ji(θi∗) areassigned a value of boxi(θ

i∗) = 0, whereby Ji(θ
i∗) = Jmin

i . Therefore, no solution
θ 
an ǫ-dominate be
ause, by applying the de�nition of box, their boxi(θ) ≥ 1.Figure 6 shows what Θ

∗
Pǫ would be obtained by applying 
on
epts of ǫ-dominan
e for a bi-obje
tive example, when n_box1 = n_box2 = 10 is used. Thevalues ǫ1 and ǫ2 depend on the limits of the front Jmin

1 , Jmin
2 , Jmax

1 and Jmax
2 ,whi
h adjust dynami
ally in a

ordan
e with the utopia solution 
al
ulated in ea
h

hThe algorithm only 
he
ks o

upied boxes (not all boxes). This 
ontent management of A(t) avoidsthe need to use other 
lustering te
hniques to obtain adequate distributions, and so 
onsiderablyredu
es 
omputational 
ost (see referen
e 23).
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12 J.M. Herrero et al.generation. It 
an be seen that the distribution of solutions 
omprised by J(Θ∗

Pǫ)along the front depends on obje
tive ex
hange. The greatest number of points area

umulating in the 
entral area (indi
ated by a dotted line) where the trade-o�among obje
tives 
hanges qui
kly. This property is equivalent to the smart �lterused in the PIT 
riterion and therefore, helpful in the de
ision making pro
ess. The
ǫ-dominan
e 
on
ept is helpful for avoiding a high density of solutions in the ap-proximated Pareto front and brings useful solutions for the DM. Approa
hes using
rowding measures (for example) seek to avoid high density areas, with no regardfor PIT 
riterion.
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*

J( )q
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Grey area is
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are the

points

q
i

box

Figure 6. The 
on
ept of ǫ-dominan
e. ǫ-Pareto front J(Θ∗

Pǫ
) in a bi-obje
tive problem. Jmin

1 ,
Jmin
2 , Jmax

1 , Jmax
2 , Pareto front limits; ǫ1, ǫ2 box widths; and n_box1, n_box2, number of boxesfor ea
h dimension.A des
ription of the ev-MOGA algorithm for obtaining an ǫ-Pareto front J(Θ∗

Pǫ),is presented below. The algorithm, whi
h adjusts the width ǫi dynami
ally, is 
om-posed of three populations:(1) Main population P (t) explores the sear
hing spa
e D during the algorithmiterations (t). Population size is NindP .(2) Ar
hive A(t) stores the solution Θ
∗
Pǫ. Its size NindA is variable but bounded(see equation (24)).(3) Auxiliary population G(t). Its size is NindG, whi
h must be an even number.The pseudo
ode of the ev-MOGA algorithm is given by1. t:=02. A(t):=∅
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 133. P(t):=ini_random(D)4. eval(P(t))5. A(t):=storeini(P(t),A(t))6. while t<t_max do7. G(t):=
reate(P(t),A(t))8. eval(G(t))9. A(t+1):=store(G(t),A(t))10. P(t+1):=update(G(t),P(t))11. t:=t+112. end while
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Figure 7. Fun
tion spa
e areas (Z) and limits (J). (a) two-dimensional 
ase; (b) tri-dimensional
ase.Ea
h line of the pseudo
ode is detailed as follows:Line 1. Initialize termination 
ondition (generation 
ounter).Line 2. Initialize ar
hive A(t)Line 3. P (0) is initialized with NindP individuals (solutions) that have been ran-domly sele
ted from the sear
hing spa
e D.Line 4. Fun
tion eval 
al
ulates the fun
tion value (Equation (1)) for ea
h indi-vidual in P (t).Line 5. Fun
tion storeini 
he
ks individuals in P (t) that might be in
luded in thear
hive A(t) as follows:(1) Non-dominated P (t) individuals are dete
ted, ΘND.(2) Pareto front limits Jmax
i and Jmin

i are 
al
ulated from J(θ), ∀θ ∈ ΘND.(3) Individuals in ΘND are analyzed, one by one, and those that are not ǫ-dominated by individuals in A(t), will be in
luded in A(t).Line 6. The algorithm will exe
ute while t<t_max.
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h iteration, the fun
tion 
reate 
reates G(t) as follows:(1) Two individuals are randomly sele
ted, θP from P (t) and θ

A from A(t).(2) A random number u ∈ [0 . . . 1] is generated.(3) If u > Pc/m (probability of 
rossing/mutation), θP and θ
A are 
rossedover by means of the extended linear re
ombination te
hnique. 24(4) If u ≤ Pc/m, θP and θ

A are mutated using randommutation with Gaussiandistribution 24 and then in
luded in G(t).This pro
edure is repeated NindG/2 times until G(t) is �lled.Line 8. Fun
tion eval 
al
ulates the fun
tion value (Equation (1)) for ea
h indi-vidual in G(t).Line 9. Fun
tion store 
he
ks, one by one, whi
h individuals in G(t) must bein
luded in A(t) on the basis of their lo
ation in the obje
tive spa
e (see Figure7). Thus ∀θG ∈ G(t)(1) If J(θG) belongs to the area Z1 and is not ǫ-dominated by any individualfrom A(t), it will be in
luded in A(t) (if its box is o

upied by an individualthat is also not ǫ-dominated, then the individual lying furthest away fromthe 
enter box will be eliminated). Individuals from A(t) whi
h are ǫ-dominated by θ
G will be eliminated.(2) If J(θG) belongs to the area Z2 then it is not in
luded in the ar
hive, sin
eit is dominated by all individuals in A(t).(3) If J(θG) belongs to the area Z3, the same pro
edure is applied as wasused with the fun
tion storeini but now applied over a population P ′(t) =

A(t)
⋃

θ
G, that is, storeini(P ′(t), ∅). In this pro
edure, new Pareto frontlimits and ǫi widths 
ould be re
al
ulated.(4) If J(θG) belongs to the area Z4, all individuals from A(t) are deletedsin
e they are all ǫ-dominated by θ

G. θG is in
luded and the obje
tivespa
e limits are J(θG).Line 10. Fun
tion update updates P (t) with individuals from G(t). Every in-dividual θG from G(t) is 
ompared with an individual θP that is randomlysele
ted from the individuals in P (t) whi
h are dominated by θ
G. θG will notbe in
luded in P (t) if there is no individual in P (t) dominated by θ

G.Line 11. Iteration 
ounter t is in
remented by one.Line 12. Algorithm terminates. Individuals from A(t) 
omprise Θ
∗
Pǫ, the smart
hara
terization of the Pareto front.4. Three-bar truss exampleThe �rst optimization problem is related to the three-bar truss des
ribed in Figure8. This truss is broadly used as a ben
hmark to de�ne the best solutions based on
ertain spe
i�
ations. The truss is stati
ally indeterminate; thus the solution of thebalan
e of for
es has to be supplemented with the deformation equations. For this
ase, the parameters L = 1m, β = 45o, α = 30o and F = 20kN proposed in 5,6
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ted.The design variables 
orrespond to the se
tions of the bars θ = [θ1, θ2, θ3].The obje
tives 
orrespond to the total volume of the truss (J2(θ)) and to a linear
ombination of the displa
ement of node P (J1(θ)).

L

F

F

b a

1
d1

d2

q1

P

q2 q3

Figure 8. Three-bar truss problem with β = 45o and α = 30o.The problem 
an be formulated as follows:
minJ(θ) = [J1(θ), J2(θ)] (25)subje
t to

0.1 · 10−4m2 ≤ θi ≤ 2 · 10−4m2, i = 1 . . . 3,where:
J1(θ) = 0.25δ1 + 0.75δ2, (26)
J2(θ) = L

(

θ1
sinβ

+ θ2 +
θ3

sinα

)

. (27)Deformations δ1 and δ2 are 
al
ulated as 25:
[

δ1
δ2

]

=
L

E

[

γ1 γ2
γ2 γ3

]−1 [
F

F

]

, (28)where E = 200GPa. is the Young 's modulus and
γ1 = θ2 + θ1 sin

3 β + θ3 sin
3 α,

γ2 = −θ1 sin
2 β cosβ + θ3 sin

2 α cosα,

γ3 = θ1 sinβ cos2 β + θ3 sinα cos2 α.Moreover, the problem is subje
t to three 
onstraints related to the rea
tionfor
es in ea
h bar Ni:
|Ni|

θi
≤ σ, i = 1 . . . 3, (29)
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tion for
es are 
al
ulated a

ording to the follow-ing expressions: 25

N1 =
θ1E

L
(δ1 sinβ − δ2 cosβ) sin β, (30)

N2 =
θ2E

L
δ1, (31)

N3 =
θ3E

L
(δ1 sinα+ δ2 cosα) sinα. (32)The 
onstraints (29) will be taken into a

ount through stati
 penalty fun
tions.

26,27 i Therefore, the obje
tive fun
tions (26) and (27) result in:
J1(θ) = 0.25δ1 + 0.75δ2 + C(θ), (33)
J2(θ) = L

(

θ1
sinβ

+ θ2 +
θ3

sinα

)

+ C(θ). (34)where:
C(θ) =

3
∑

i=1

max

[

0,
|Ni|

θi
− σ

]

. (35)To solve this optimization problem, the NNC with a smart �lter and ev-MOGAalgorithms are used and their results are 
ompared to 
he
k their strengths andweaknesses.The parameters of the ev-MOGA algorithm were set to:
• NindG = 4 and NindP = 100.
• tmax = 4975, resulting in 20000 evaluations of J1(θ) and J2(θ).
• Pc/m = 0.1.
• n_box1 = n_box2 = 50 so the maximum number of points in the Pareto frontwill be fewer than 52.The parameters of the NNC algorithm and the smart �lter were set to:
• m1 = 200 in order to obtain a good density of points in the Pareto front.j
• ∆m = 0.02 and ∆M = ∞.
∆m was set to 0.02 with the intention of 
omparing the smart Pareto front and

ǫ-Pareto front sin
e 1/0.02 = 50, whi
h is the number of boxes the obje
tive spa
eis split into with ev-MOGA.Figure 9 shows the results of the multi-obje
tive optimization problem. Noti
ethat the Pareto front is 
on
ave and disjointed. Both algorithms have 
aptured the
iWith this te
hnique, the greater the non-ful�llment by a solution, the greater is the value of C(θ),and it will therefore be 
onsidered a worse solution; while if a solution ful�lls all the 
onstraints,then C(θ) = 0 and the equations (26) and (27) 
orrespond to (33) and (34) respe
tively.
jFor the method based on the NNC algorithm to give good results, the front must be 
hara
terizedwith a large number of uniformly distributed points.
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hor points perfe
tly and they have 
hara
terized the Pareto front with the samenumber of points (20 points) with a Smart distribution whi
h is more or less thesame. This proves that ev-MOGA and NNC Pareto front 
hara
terizations 
an beequivalent if ∆m,∆M and n_boxi are set in an appropriate manner. The box limitsare in
luded in the �gure to 
he
k the ǫ-dominan
e 
on
ept.
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Figure 9. Three-bar truss example. '·' is the Pareto front obtained with NNC (it is 
omposed of200 evenly distributed points). '◦' is the ǫ-Pareto front obtained with ev-MOGA using n_box1 =
n_box2 = 50. The horizontal and verti
al lines represent the limit boxes. '♦' represents the smartPareto front obtained with NNC results and ∆m = 0.02 and ∆M = ∞ are smart �lter parameters.The main advantage of the NNC algorithm over the ev-MOGA algorithm isits low 
omputational burden, sin
e it only needs about 5000 evaluations of the
J1(θ) and J2(θ) fun
tions to obtain the 200 points in the Pareto front; versusthe 20000 required by the ev-MOGA algorithm. Conversely, determining the initial
onditions of the optimizations addressed by the NNC is not so straightforward. Forthis parti
ular example, ea
h of the 200 optimizations was solved by strategi
ally
hoosing its initial 
onditions so as to avoid lo
al minimums.5. Proportional-integral 
ontroller tuning exampleThis example is related to the proportional-integral (PI) 
ontroller tuning problemdes
ribed in 28 by means of multi-obje
tive optimization design. 29,30 The PI transfer
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tion used is:

Gc(s) = kc

(

1 +
1

Tis

)

E(s) (36)where kc (the proportional gain) and Ti (the integral time) are the design vari-ables, θ = [kc, Ti]. PI 
ontrollers are a reliable and pra
ti
al 
ontrol solution for in-dustrial environments. They are widely used and any e�orts to develop new tuningte
hniques are worthwhile. 31,32 This optimization pro
edure fo
uses on a
hieving atrade-o� between load disturban
e reje
tion, robustness, and setpoint response. Itde�nes as a parameter for design a given value of the maximum sensitivity fun
tion
Ms = max

∣

∣

∣

∣

1

1 +Gc(ω)Gp(ω)

∣

∣

∣

∣

∈ [1.2, 2.0] (37)and the maximum 
omplementary sensitivity fun
tion
Mp = max

∣

∣

∣

∣

Gc(ω)

1 +Gc(ω)Gp(ω)

∣

∣

∣

∣

∈ [1.0, 1.5], (38)where Gc(ω), Gp(ω) represents the 
ontroller and pro
ess transfer fun
tionsin the frequen
y domain, respe
tively. A numeri
al non-
onvex optimization is em-ployed, by in
reasing as mu
h as possible the integral gain ki = kc/Ti subje
t tothe pre-de�ned Ms and Mp values.Therefore, a multiobje
tive optimization problem 
an be stated, where a trade-o� between performan
e (integral gain, J1(θ) = −kc/Ti) and robustness (J2(θ) =
Ms, J3(θ) = Mp) is formulated as:

min J(θ) = [J1(θ), J2(θ), J3(θ)] (39)subje
t to
kc + kc/Ti ≤ Ku, (40)
1.2 ≤ Ms ≤ 2.0, (41)
1.0 ≤ Mp ≤ 1.5. (42)
0.0 ≤ kc ≤ Ku. (43)
0.01 ≤ Ti ≤ 20.0. (44)Constraint (40) is used to bound the maximum allowed 
ontrol a
tion e�ort to theultimate gain Ku. Constraints (42) and (43) are used to obtain a Pareto front J∗

Pthat is useful from the 
ontrol point of view, while (43) and (44) determine thesear
hing spa
e.The pro
ess transfer fun
tion to be used is:
Gp(s) =

1

(s+ 1)
3

(45)with Ku ≈ 7.8.
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onstraints (40, 41, 42) will be taken into a

ount by using penalty fun
tionsagain. 26 In this 
ase, the problem is reformulated as follows:
min
θ∈ℜ2

J(θ) =















J(θ) if 5
∑

k=1

Ck(θ) = 0o�set+ (

5
∑

k=1

Ck(θ)

)

· [1, 1, 1] otherwise (46)o�set = [0, 2.0, 1.5] (47)
C1(θ) = max{0, kc + kc/Ti −Ku} (48)

C2(θ) = max{0, 1.2−Ms} (49)
C3(θ) = max{0, 1.0−Mp} (50)
C4(θ) = max{0,Ms − 2.0} (51)
C5(θ) = max{0,Mp − 1.5} (52)The parameters of the ev-MOGA algorithm were set to:

• NindG = 16 and NindP = 160.
• tmax = 500, resulting in 8160 evaluations of J1(θ), J2(θ) and J3(θ).
• Pc/m = 0.1.
• n_box1 = n_box2 = n_box3 = 50 so the maximum number of points in thePareto front will be fewer than 2602.The parameters of the NNC algorithm and the smart �lter were set to:
• m1 = 200 in order to obtain a good density of points in the Pareto front.
• ∆m = 1/50 = 0.02 and ∆M = ∞.Figure 10 shows the results of the multi-obje
tive optimization problem obtainedwith NNC and ev-MOGA algorithms.In this example, the solution that minimizes the obje
tive J3(θ) and J2(θ) isthe same. Therefore, there are only two an
hor points and the utopia hyperplaneis redu
ed to a line - whi
h in the 
ase of NNC leads to fewer solutions in the
entral area of the Pareto front than with ev-MOGA. This prevents the NNC from
hara
terizing the surfa
e of the Pareto front in the 
entral area.When J3(θ) is minimized in order to obtain the an
hor points, so that thereare several solutions su
h as J3(θ) = Mp = 1.0 (J3 is multimodal). There is noguarantee that the NNC algorithm will obtain the most useful J3 an
hor.To evaluate the performan
e of ea
h MOEA, the hypervolume (or Lebesguemeasure) 
omputed by means of a Monte-Carlo approximation method has been
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Figure 10. PI design example. '◦' is the Pareto front obtained with NNC. '∗' is the ǫ-Pareto frontobtained with ev-MOGA.obtained and the results are:k
• NNC=0.1563
• ev-MOGA=0.1676That is, ev-MOGA improves the hypervolume indi
ator by 7.2% in 
omparisonwith NNC with a smart �lter.Both hypervolume and qualitative inspe
tion of the Pareto front show that ev-MOGA algorithms 
an 
hara
terize the Pareto front better than NNC, mainly dueto the geometry and shape of this Pareto front and the problems previously de-s
ribed for NNC.6. Con
lusionsA multi-obje
tive evolutionary algorithm, ev-MOGA, based on the 
on
ept of ǫ-dominan
e has been presented to 
hara
terize the Pareto front in a smart way and
ompare it with the NNC with the smart �lter method. To evaluate the performan
e

kHypervolume was 
omputed taking [0, 2, 1.5] as a referen
e point and 100,000 as the numberof samples used for the Monte-Carlo approximation. The Matlab fun
tion used is available atwww.mathworks.
om/matlab
entral/�leex
hange/19651.
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on
lusions are:

• The NNC method generates evenly distributed Pareto fronts but:(1) The solution is dependent on the initial optimization 
onditions sin
e ituses a sear
h-based Gauss-Newton method whi
h 
an 
ause some lo
alPareto points to be obtained.(2) May have di�
ulties properly 
hara
terizing the Pareto front when two ormore an
hor points are the same (in three or more obje
tive problems).(3) Something similar 
ould happen when an obje
tive fun
tion is multimodalsin
e the an
hor points 
annot 
orrespond to the end of the Pareto front(in three or more obje
tive problems).(4) With an a priori knowledge of the Pareto front geometry it is possible toimprove the NNC algorithm to over
ome the latter di�
ulties. Neverthe-less, su
h information is not always available.(5) The 
omputational burden grows exponentially with respe
t to the dimen-sion of the obje
tive fun
tion spa
e sin
e the transformed optimizationproblem to be exe
uted also grows exponentially if the same density ofPareto points is required.
• The MNNC eliminates the �rst NNC disadvantage, but the se
ond disadvantageis in
reased 
onsiderably.
• A smart �lter based on PIT is a very e�e
tive and �exible pro
edure to obtainsmart Pareto fronts, but the result depends on the order in whi
h the analysisof the Pareto points is 
arried out. To redu
e this problem, it is very importantthat the NNC method 
hara
terizes the Pareto front with many points, whi
hagain in
reases the 
omputational burden.
• ev-MOGA algorithm eliminates the �rst NNC disadvantage. Its 
omputationalburden is also more 
ompetitive than that of MNNC, thanks to the fa
t thatthe Pareto points are generated in parallel and in a single run. Other featuresof ev-MOGA are:(1) It dynami
ally adjusts the pre
ision of the Pareto front without in
reasingthe ar
hive size, so that the memory requirements are always bounded(n_boxi parameters).(2) It adapts the extremes of the Pareto front, regardless of the parameters

n_boxi and ensures that an
hor points are not eliminated from the ar
hive.At the same time this eliminates the se
ond NNC disadvantage.(3) It automati
ally 
hara
terizes all kinds of Pareto fronts (i.e. non-
onvexand disjoined ones) in a smart way in a similar manner to NNC with smart�lter methods if ∆M = ∞.(4) It is an algorithm useful for the designer, sin
e it approximates the Paretofront (sear
h pro
ess) with signi�
ant solutions for the DM (sele
tion step).
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