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Obtaining multi-objective optimization solutions with a small number of points smartly
distributed along the Pareto front is a challenge. Optimization methods, such as the nor-
malized normal constraint (NNC), propose the use of a filter to achieve a smart Pareto
front distribution. The NCC optimization method presents several disadvantages related
with the procedure itself, initial condition dependency, and computational burden. In
this article, the epsilon-variable multi-objective genetic algorithm (ev-MOGA) is pre-
sented. This algorithm characterizes the Pareto front in a smart way and removes the
disadvantages of the NNC method. Finally, examples of a three-bar truss design and
controller tuning optimizations are presented for comparison purposes.

Keywords: multi-objective optimization; Pareto front; engineering design; evolutionary
algorithms; multi-objective evolutionary algorithms.

1. Introduction

Many engineering design problems can be translated into multi-objective optimiza-
tion (MO) problems. MO techniques offer advantages over single-objective optimiza-
tion approaches because they enable a set of solutions to be found with different
trade-offs among the objectives. Therefore, the decision maker (DM) can analyze the
set and select the best solution. These three steps (measure, search, and selection)
are fundamental for the successful application of the MO technique.’

In some engineering fields, problem design is based on single-objective optimiza-
tion techniques that weigh different objective functions to obtain the best solution
from the design variables. 2 Choosing weighting factors for the cost index is usually
a tedious trial-and-error process, and due to the configuration of the index (for ex-
ample, linear or quadratic), it is often impossible to find good trade-off solutions. 3
This is because most the cost function to be optimized is usually stated from the
point of view of the optimizer, despite a possible loss of flexibility when defining the
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desired balance among objectives.

The MO methodology enables the designer to carry out a better selection of the
final solution, since no part of the searching space is ignored. Solutions provided by
MO algorithms should be representative of the whole design variable space. Since
computational algorithms perform a discrete search in the space of design variables,
the group of solutions found should be evenly distributed to avoid over- or under-
explored areas. This group of solutions should not contain non-optimal solutions,
since this situation could lead the DM to select a potentially inappropriate value
for some design variables.

Solving an MO problem could be associated with the approximation of the
Pareto front. Each point of this Pareto front represents a solution to the MO prob-
lem in the objective function space, which is a Pareto optimal solution.* That is, for
any given pair of Pareto optimal solutions, an improvement in one of the compo-
nents entails a deterioration in the others. Therefore, we will have a set of optimal
solutions, with differing trade-offs among the objectives. This is because there is
usually no overall optimal solution, which is the best solution for each individual
objective.

MO algorithms based on numerical optimization and random search are analyzed
in ® and a new numerical optimization method was proposed: the normalized normal
constraint (NNC).* This approach offers acceptable properties since it generates
well-distributed Pareto front approximations. However, because it uses a search-
based Gauss-Newton method, the solution obtained is highly dependent on the
objective selected for optimization and on the initial optimization conditions.

To avoid this major problem a modified variant of the NNC (MNNC) can be
used which overcomes the above mentioned disadvantages.®” MNNC enables the
construction of the Pareto front regardless of the objective selected for optimization.
It also presents an alternative to the construction of the Pareto front based on the
redistribution of front points, and uses a genetic algorithm (GA) to achieve global
optimum solutions - but without dependence on the initial conditions. The principal
drawback of this approach is its high computational burden since an independent
optimization process (using a GA) is needed to achieve each point of the Pareto
front.

However, MNNC (and therefore also NNC) cannot characterize certain areas of
the Pareto front (as will be shown in Section 2.1) when:

e The optimal solution of two objectives (or more) is the same (for problems
with three or more objectives).
e The optimal solution of one objective (or more) is multimodal.

Both the NNC and MNNC algorithms approximate evenly distributed Pareto

fronts but they are not necessarily the most appropriate approximation. In some

2An implementation of the NNC algorithm is available in MATLAB Central.
http://www.mathworks.com/matlabcentral/fileexchange/38976
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cases, it could be more interesting for the less desired parts of the Pareto front to
have a lower degree of characterization than the more desired parts.® For example,
the regions where the slope of the front is lower could be characterized with a lower
density of solutions. This kind of distribution is known as a smart distribution.’
To achieve a smart distribution, both NNC and MNNC first need to accomplish a
uniform, dense distribution of solutions on the front; they then use a smart filter to
reduce the number of points in the regions with less slope. Solutions with practically
insignificant trade-off (PIT) are omitted from the Pareto set approximation. The
resulting set will be smaller, alleviating the DM’s need to compare solutions with
uninteresting trade-offs. This is important, since the selection procedure is usually
more time consuming than the optimization process'. This also means that some
points will be eliminated, despite the computational burden invested in obtaining
them.

Another interesting alternative for solving MO problems is based on the use of
evolutionary algorithms (EAs), which allow several elements of the Pareto front to
be generated simultaneously (in parallel and in a single run) owing to the popula-
tional nature of EAs. (10:11,12:13)

Many different operators or strategies have been developed that convert the
original EAs into multiobjective evolutionary algorithms (MOEAs). MOEAs con-
verge towards the Pareto optimal set and their solution is diverse enough to be able
to characterize it. The good results obtained with MOEAs and their capacity to
handle a wide variety of problems with different degrees of complexity explain why
they are being increasingly used; !4 indeed they are currently one of the areas where
most progress is being made within the field of EAs. 15:16:17,18,19,20

In this work, a new MOEA algorithm called the epsilon-variable multi-objective
genetic algorithm (ev-MOGA)P has been designed to achieve a reduced but well-
distributed representation of the Pareto front. Front solutions are smartly dis-
tributed without using a filter, so avoiding the need to eliminate solutions a pos-
teriori, and ensuring that no computational burdens are wasted. In addition, the
algorithm adjusts the limits of the Pareto front dynamically, and prevents solutions
belonging to the ends of the front from being lost. This algorithm, as it will be
shown, incorporates the PIT criterion. This feature makes it an algorithm closer to
the decision making step that is fundamental in the MO technique. This is impor-
tant, since MOEAs usually only focus on providing a dense set of Pareto optimal
solutions - regardless of the subsequent selection process.?!

To evaluate the performance of the ev-MOGA algorithm we used two opti-
mization problems and compared the results with those obtained using the NNC
algorithm with a smart filter. This paper is organized as follows. Section 2 presents
the mathematical foundations of the NNC method and the smart filter. Section 3
presents the ev-MOGA algorithm based on the e—dominance concept. Sections 4

bev-MOGA algorithm is now available in MATLAB Central.
http://www.mathworks.com/matlabcentral/fileexchange/31080
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and 5 compare the performance of the ev-MOGA and NNC algorithms with two
optimization problems: a three-bar truss example; and a proportional-integral (PI)

controller tuning problem. Finally, some concluding remarks are provided in Section
6.

2. NNC Method with Smart Pareto Filter

The MO problem can be formulated as follows:

min J(0) = min[J1(8), J2(0), ..., J,(6) (1)
subject to:
94(0) <0, (1<qg<r)
hi(0) =0, (1<k<n) (2)
O < 0; < Oui, (1<ZSL)
where J;(0), ¢ € B := [1...s] are the objectives to be optimized, 6 is a solu-

tion inside the L-dimensional solution space D, g4(0) and hy(0) are each of the r
inequality and n equality problem constraints respectively, and 6;; and 6,; are the
lower and upper constraints that defined the solution space D.
To solve the MO problem the Pareto optimal set @p (solutions where none
dominate any of the others) must be found. Pareto dominance is defined as follows:
A solution @' dominates another solution 2, denoted by 8% < 62, if

Vi€ B, J;(0") < J;(0%) and 3k € B : Jp(0) < J(6?) .
Therefore, the Pareto optimal set ®p is given by
©p={0eD|? 6D :0=<6}. (3)

®p is unique and normally includes infinite solutions. Hence a set ®7},, with a
finite number of elements from ® p, should be obtained.©

Below, an extract of the NNC method to solve an n-objectives optimization
problem is presented. A detailed description of the method can be found in °.

Step 1: Anchor points computation. Firstly, the minimum of each objective
function, J;* (i € B), is calculated by solving the following optimization
problems:

0" =min J;() (i€ B) (4)

subject to (2).

“Notice that ®7 is not unique.
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The anchor points thus obtained determine the ends of the Pareto front
J¥ = J(0™). Additionally, the utopia point,? denoted by J*, comprises the
good elements of each anchor point.

JU = [J1(0%) J2(67) - Jo(6°%)]" (5)

Step 2: Objective space normalization. By defining the matrix L, as the max-
imum distances in each component of the anchor points relative to the
utopia plane, a normalization of the searching space can be performed.

T

Ly=[lily- 1] =J%-J" (6)
where J¥ is the nadir point
I35 =[1% 5% g0 (7)
Ji% = maz [ J;(0) J;(6%) - J;(6°%)] (8)
which leads to the normalized design metric as
7, = i i07) Ji(ai*),z’ €B (9)

li

Step 3: Utopia line vector generation. Let vectors N be defined as the dif-
ference between the normalized anchor vectors (Figure 1), from 7 to J°"
forkel,2,...,s — 1.

S% —kx

Ne=T" -7 (10)

Step 4: Normalized increment definition. The normalized increment ¢y is de-
fined, in direction N for a prescribed number of solutions, as my.

O =

1<k<s-—1 11
. <k<s—) (1)

where the resulting segment size can be expressed as
Ay = 6| Ny (12)

Step 5: Generate utopia line points. The points distributed over the utopia
hyperplane are described as

— 5 —kx
Xpj = ansd (13)
k=1

where

Yook =1 0<ag <1 (14)

dSince it is the best point, but cannot be achieved.
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Step 6: Pareto front approximation. The NNC method states that the solu-
tion to the MO problem (1) can be transformed into the minimization of X,;
single-objective problems, but in the normalized domain. The optimization
problem can be formulated as:

min .J(6) (15)

subject to:

hi(0) =0, (1<k<n) (16)

(17)

Note that for each problem j, s — 1 additional constraints (17) are added. Each
constraint represents the scalar product of vector N and the vector formed by
the difference between the points of the feasible area J and point ij- By making
this scalar product smaller than zero, the optimization is forced to search for the
minimum value when the hyperplanes are in opposition.® This ensures that this
minimum (6”7) in the Pareto front will be found for each point X,; (see Figure 1).

Feasible Region

Unfeasible Region

Figure 1. NNC in the bi-objective case and m; = 6. For the sake of simplicity, only the bi-
objective case is presented graphically.

°In the bi-objective case, hyperplanes are singled-out vectors (Figure 1).
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The construction of the Pareto front from equation 15 can include non-Pareto
or local Pareto points in its solution.! @* is defined as the discrete set of all the
solutions found in the optimization problems (15) and (4) that are carried out. A
filter is used to eliminate the solutions that do not belong to the Pareto front and
to obtain the final @%.

OhL={0"cO®|} 6O : =<0 (18)

Notice that ®% will contain Pareto points that are evenly distributed across the
Pareto front.

The density of the points should be high enough to allow characterization of
this front. To obtain a reduced sample of points of ©% in ? the application of a
smart filter to ®% to obtain %, is proposed. Therefore, from ©7 several points
are eliminated using the PIT criterion to obtain ©% (see ? for more details about
PIT and the smart filter).

First quadrant

J? J!
o v
O J1
Regions of PIT of J

Third quadrant

Figure 2. Regions of the PIT for the bi-objective case. The gray area is the J¢ PIT. J2 and J!
represent deviations of the respective objectives from the point J*. J2 belongs to the J* PIT, and
therefore it will be removed when the smart filter is applied, whereas J' and J2 do not belong to
J* PIT and so they will continue in @*.

Given a Pareto front point J?, its PIT is defined by means of A,, and Ay,
designer parameters as shown in Figure 28. For two Pareto points in ©®% whose
difference between their objectives values is less than A,,, the PIT criterion prevents

fLocal Pareto points are those that are not locally dominated by any other point. Non-Pareto
points are locally dominated.

&Since the smart filter is applied to @7 Pareto points, the first and third quadrants are not
populated and consequently are not considered.
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them being in ®%, - unless the difference between any other objectives is greater
than Ajy.
Let v be the absolute vector between the two points being compared:

v =abs(J' — J*).
Therefore J* is removed when it is compared to J?, if
Um < Ay and vy < App

where v, and vj; are minimum and maximum vector components of v.

In Figure 2, for instance, as J? belongs to the J* PIT it will be removed when
the smart filter is applied to ®*, whereas J' and J? do not belong to J¢ PIT and
so they will continue in ®* for the moment.

A smart filter starts with a J* in ©% which is declared smart and compared
with successive points J* in @%. Points in J PIT are eliminated from ©%. This
procedure is repeated with other J¢ points in ©% until every point in ©% has been
declared a smart point. The points finally remaining in @7} constitute @%p.

Figure 3 shows the process of smart filtering. o points are eliminated because
they belong to PIT regions of e points which are declared smart. Given a ©7 set,
the resulting ©%p is not unique since it depends on the analysis order followed, as
shown in cases (a) and (b) in Figure 3.

J, (a)
[
J,
J2 (b)
[
J)

Figure 3. e and o constitute ®7,. e represents the @%,, obtained after eliminating points in PIT
regions. (a) Analysis order 1. (b) Analysis order 2.
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2.1. NNC algorithm drawbacks

The procedure used by the NNC algorithm is extremely dependent on the anchor
point calculation. Therefore, if these are not correct the algorithm may not ade-
quately characterize parts of the Pareto front. Two examples of this situation are
shown in this section. An example is shown in Figure 4 when objective functions
are multimodal and therefore the anchor points obtained could not correspond with
the real ends of the Pareto front. This is because the anchors are static and are not
updated in the NNC algorithm once calculated.

(1,0,1)

6 Pareto Front

J2

Figure 4. NNC in a three objective case when the objective functions are multimodal.

For instance, if J; is minimized any solution in the highlighted line (minimum
of Ji) could be obtained. Assume that the J(6*) solution is obtained and that
J(6%*) and J(6%*) are also obtained when .J; and J3 are minimized, respectively.
These solutions define the utopia point (0,0,0) and the nadir point (J,J5, J5)
used to normalize the objective space and to define the utopia plane (limited by
the points represented by squares in the figure). For each point ij in the utopia
plane, a single-objective optimization is made and a Pareto front point J(67*) will
be obtained that characterises the Pareto front under the utopia plane. However, as
the utopia plane does not completely cover the Pareto front, it would not be totally
characterized and parts of it would not be obtained.

Another example is shown in Figure 5. In this three objective case, the minimum
solution for objectives J; and J5 is the same, and the utopia plane is reduced to a
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line. This fact, means that only Pareto points under this line would be obtained,
and therefore, the Pareto front would be incompletely characterized.

Figure 5. NNC in a three objective case when two anchor points are the same 71* = 32*.

3. ev-MOGA

The ev-MOGA 22 is an elitist multi-objective evolutionary algorithm based on the
concept of e-dominance, 23 which is used to control the content of the archive A(t)
where the result of the optimization problem is stored. ev-MOGA tries to ensure
that A(f) converges toward an e-Pareto set, @5, in a smart distributed manner
along the Pareto front J(®p) with limited memory resources. This is due to the
e-dominance concept which helps maintain solutions with significant trade-off and
the dynamic adjustment of the limits of the Pareto front by preserving its extremes
(anchors). This creates the possibility of overcoming the aforementioned problems
in the NNC algorithm.

For this reason, the objective space is split into a fixed number of boxes. For
each dimension ¢ € B, n_box; cells of ¢; width are created where

€ = (szax _ J;’””)/n_boxi, (19)
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maz _ , min _ a0 7.(9). 9
J] erélgzli Ji(0), J, erenérié Ji(0) (20)
This grid preserves the diversity of J(®%,) since each box can be occupied by
only one solution in A(t), and at the same time produces a smart distribution as
will be shown later."

The concept of e-dominance is defined as follows. For a solution 8 € D, box;(6)

is defined by
J; (@) — Jmin
bor;(0) = | ——-—
0:(6) = | e

Let box(0) = {boxi(0),...,boxs(0)}. A solution @' with value J(0'!) e-
dominates the solution 62 with value J(6?), denoted by 8! <. 62, if and only
if

-n_boxi-‘ Vi e B. (21)

box(8') < box(6?) V (box(8') = box(6)andd"' < 6°) . (22)
Hence, a set @}, C Op is e-Pareto if and only if
Vo', 0% e O%., 0! + 62, box(01) #* box(02)andbox(01) Ae box(02) (23)

Therefore, ev-MOGA is responsible for updating the content of A(t) by saving
only e-dominant solutions that do not share the same box. When two mutually
e-dominant solutions compete, the solution that prevails in A(t) will be the one
that is closest to the center of the box. It is thereby possible to prevent solutions
belonging to adjacent boxes (neither of them dominating the other) from being too
close to each other, thus encouraging a smart distribution.

The aim of ev-MOGA is to achieve a ®},, with the greatest possible number of
solutions in order to characterize the Pareto front adequately. Although the number
of possible solutions will depend on the shape of the front and for n_boz;, it will
not exceed the following level

[1", n_box; +1
n_boTpmas + 1

|®% | < , N bOTmar = mlaxn_boxi (24)
which is advantageous, as it is possible to control the maximum number of solutions
that will characterize the Pareto front.

Furthermore, thanks to the definition of the box, the anchor points J;(6%*) are
assigned a value of boz;(0™) = 0, whereby J;(0") = J™". Therefore, no solution
0 can e-dominate because, by applying the definition of box, their box;(8) > 1.

Figure 6 shows what ©®}. would be obtained by applying concepts of e-
dominance for a bi-objective example, when n_box; = n__boxs = 10 is used. The
values €; and e> depend on the limits of the front Jj™™, Jiin Jmaez and Jyoer,

which adjust dynamically in accordance with the utopia solution calculated in each

hThe algorithm only checks occupied boxes (not all boxes). This content management of A(t) avoids
the need to use other clustering techniques to obtain adequate distributions, and so considerably
reduces computational cost (see reference 23).
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generation. It can be seen that the distribution of solutions comprised by J(@®%,)
along the front depends on objective exchange. The greatest number of points are
accumulating in the central area (indicated by a dotted line) where the trade-off
among objectives changes quickly. This property is equivalent to the smart filter
used in the PIT criterion and therefore, helpful in the decision making process. The
e-dominance concept is helpful for avoiding a high density of solutions in the ap-
proximated Pareto front and brings useful solutions for the DM. Approaches using
crowding measures (for example) seek to avoid high density areas, with no regard
for PIT criterion.

szax .4/ box
J(®p)/ \ Grey area is

\ g-dominated by ei
J(0)
/

el

\ E
J(®PD e \ — n_box;=10
are the \</
points == % n_box;=10
3™ o
min > max
31 €1 J

Figure 6. The concept of e-dominance. e-Pareto front J(@7%,) in a bi-objective problem. J{"m,
Jin Jmaz - Jmaz Pareto front limits; €1, €2 box widths; and n_boz1, n_boxa, number of boxes
for each dimension.

A description of the ev-MOGA algorithm for obtaining an e-Pareto front J(©%, ),
is presented below. The algorithm, which adjusts the width ¢; dynamically, is com-
posed of three populations:

(1) Main population P(t) explores the searching space D during the algorithm
iterations (t). Population size is Nindp.

(2) Archive A(t) stores the solution ®%.. Its size Nind4 is variable but bounded
(see equation (24)).

(3) Auxiliary population G(t). Its size is Nind¢g, which must be an even number.

The pseudocode of the ev-MOGA algorithm is given by

1. t:=0
2. A(t):=0
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3. P(t):=ini_random(D)

4. eval(P(t))

5. A(t):=store;,;(P(t),A(t))

6. while t<t_max do

7 G(t):=create(P(t),A(t))
8
9

eval (G(t))
. A(t+1) :=store(G(t) ,A(t))
10. P(t+1) :=update(G(t),P(t))
11. t:=t+1

12. end while

(a) (b)

Z3 72 73 | z2
J2max _____________
Z1
j3™ Z1
szi” Jmin
------ . 73
:Jlmm N R J3",“T’: Jlmln 31
Z4 | Z3 74"

Figure 7. Function space areas (Z) and limits (J). (a) two-dimensional case; (b) tri-dimensional
case.

Each line of the pseudocode is detailed as follows:

Line 1. Initialize termination condition (generation counter).

Line 2. Initialize archive A(t)

Line 3. P(0) is initialized with Nindp individuals (solutions) that have been ran-
domly selected from the searching space D.

Line 4. Function eval calculates the function value (Equation (1)) for each indi-
vidual in P(¢).

Line 5. Function store;,; checks individuals in P(t) that might be included in the
archive A(t) as follows:

(1) Non-dominated P(t) individuals are detected, ® yp.

(2) Pareto front limits J™* and J™™ are calculated from J(8),V0 € @ xp.

(3) Individuals in ® yp are analyzed, one by one, and those that are not e-
dominated by individuals in A(t), will be included in A(%).

Line 6. The algorithm will execute while t<t max.
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Line 7. With each iteration, the function create creates G(t) as follows:

(1) Two individuals are randomly selected, 87 from P(t) and 4 from A(t).

(2) A random number u € [0...1] is generated.

(3) If u > P./,, (probability of crossing/mutation), 67 and 84 are crossed
over by means of the extended linear recombination technique. 24

(4) fu< P/, 07 and 64 are mutated using random mutation with Gaussian

distribution 2* and then included in G(t).

This procedure is repeated Nindg/2 times until G(¢) is filled.

Line 8. Function eval calculates the function value (Equation (1)) for each indi-
vidual in G(¢).

Line 9. Function store checks, one by one, which individuals in G(t) must be
included in A(t) on the basis of their location in the objective space (see Figure
7). Thus V% € G(t)

(1) If J(0%) belongs to the area Z1 and is not e-dominated by any individual
from A(t), it will be included in A(t) (if its box is occupied by an individual
that is also not e-dominated, then the individual lying furthest away from
the center box will be eliminated). Individuals from A(t) which are e-
dominated by 8¢ will be eliminated.

(2) If J(8%) belongs to the area Z2 then it is not included in the archive, since
it is dominated by all individuals in A(¢).

(3) If J(6Y) belongs to the area Z3, the same procedure is applied as was
used with the function store;,; but now applied over a population P’(t) =
A(t)|J 0%, that is, store;,;(P’(t),0). In this procedure, new Pareto front
limits and ¢; widths could be recalculated.

(4) If J(0F) belongs to the area Z4, all individuals from A(t) are deleted
since they are all e-dominated by 8%. 8% is included and the objective
space limits are J(6%).

Line 10. Function update updates P(t) with individuals from G(t). Every in-
dividual ¢ from G(t) is compared with an individual 8% that is randomly
selected from the individuals in P(t) which are dominated by 8¢. 8% will not
be included in P(t) if there is no individual in P(¢) dominated by 6¢.

Line 11. Iteration counter ¢ is incremented by one.

Line 12. Algorithm terminates. Individuals from A(t) comprise ®%,, the smart
characterization of the Pareto front.

4. Three-bar truss example

The first optimization problem is related to the three-bar truss described in Figure
8. This truss is broadly used as a benchmark to define the best solutions based on
certain specifications. The truss is statically indeterminate; thus the solution of the
balance of forces has to be supplemented with the deformation equations. For this
case, the parameters L = 1m, 8 = 45°, a = 30° and F = 20kN proposed in °:6
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were selected.

The design variables correspond to the sections of the bars 8 = [0, 65, 03].
The objectives correspond to the total volume of the truss (J2(0)) and to a linear

combination of the displacement of node P (.J1(0)).

/L

Figure 8. Three-bar truss problem with g = 45° and a = 30°.

The problem can be formulated as follows:
min J(6) = [J1(0), J2(0)]
subject to
0.1-107*m? <6; <2-107*m?, i=1...3,
where:
J1(0) = 0.2501 4 0.7502,
J2(0) = L (siilﬂ +02+ siffa) '

Deformations 6; and ds are calculated as 2°:

HE NN
2 E [v2 73 F|’
where E = 200G Pa. is the Young’s modulus and

v =03+ 61 sin® B + 63 sin® a,

79 = —0; sin? B cos B + 63 sin® acos a,

v3 = 01 8in 8 cos® B + 03 sin a cos? a.

(25)

(28)

Moreover, the problem is subject to three constraints related to the reaction

forces in each bar N;:
| V3|
0;

<o, i=1...3,

(29)
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with 0 = 200M Pa. These reaction forces are calculated according to the follow-

ing expressions: 2°
0 E
Ny = 1T((51 sin 8 — 0z cos 8) sin 3, (30)
O F
Ny = %51, (31)
03 FE
N3 = 3T (01 sin « + 02 cos @) sin av. (32)

The constraints (29) will be taken into account through static penalty functions.
26,27 i Therefore, the objective functions (26) and (27) result in:

J1(0) = 0.250; + 0.7509 + 0(0), (33)
0 0
Jo(0) = L (Sml - 05 sin30<) +C(8). (34)
where:
3
Cc(0) = ;maz [o, |];Zi| - 0} . (35)

To solve this optimization problem, the NNC with a smart filter and ev-MOGA
algorithms are used and their results are compared to check their strengths and
weaknesses.

The parameters of the ev-MOGA algorithm were set to:

Nindg = 4 and Nindp = 100.

tmaz = 4975, resulting in 20000 evaluations of J;(0) and J5(8).

Pyjm = 0.1.

n_boxry =n_boxy = 50 so the maximum number of points in the Pareto front
will be fewer than 52.

The parameters of the NNC algorithm and the smart filter were set to:

e m; = 200 in order to obtain a good density of points in the Pareto front.J
e A, =0.02 and Ay = oo.

A, was set to 0.02 with the intention of comparing the smart Pareto front and
e-Pareto front since 1/0.02 = 50, which is the number of boxes the objective space
is split into with ev-MOGA.

Figure 9 shows the results of the multi-objective optimization problem. Notice
that the Pareto front is concave and disjointed. Both algorithms have captured the

"With this technique, the greater the non-fulfillment by a solution, the greater is the value of C(8),
and it will therefore be considered a worse solution; while if a solution fulfills all the constraints,
then C(6) = 0 and the equations (26) and (27) correspond to (33) and (34) respectively.

JFor the method based on the NNC algorithm to give good results, the front must be characterized
with a large number of uniformly distributed points.
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anchor points perfectly and they have characterized the Pareto front with the same
number of points (20 points) with a Smart distribution which is more or less the
same. This proves that ev-MOGA and NNC Pareto front characterizations can be
equivalent if A,,, Ay and n_box; are set in an appropriate manner. The box limits
are included in the figure to check the e-dominance concept.

ool &
g
&
700 [}
.“é.‘
& 600 &
- :
500}
&,
.,
D,
@B,
4001 Do,
..,
@D,
OO
SOy
RIRLE T
TR
300 : ] ‘ ‘ ‘ Dy S
0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
3,0

Figure 9. Three-bar truss example. ’-’ is the Pareto front obtained with NNC (it is composed of
200 evenly distributed points). o’ is the e-Pareto front obtained with ev-MOGA using n_box1 =
n_boxz = 50. The horizontal and vertical lines represent the limit boxes. ’(’ represents the smart
Pareto front obtained with NNC results and A,, = 0.02 and Aj; = oo are smart filter parameters.

The main advantage of the NNC algorithm over the ev-MOGA algorithm is
its low computational burden, since it only needs about 5000 evaluations of the
J1(0) and J2(@) functions to obtain the 200 points in the Pareto front; versus
the 20000 required by the ev-MOGA algorithm. Conversely, determining the initial
conditions of the optimizations addressed by the NNC is not so straightforward. For
this particular example, each of the 200 optimizations was solved by strategically
choosing its initial conditions so as to avoid local minimums.

5. Proportional-integral controller tuning example

This example is related to the proportional-integral (PI) controller tuning problem
described in 2® by means of multi-objective optimization design. 2239 The PI transfer
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function used is:

Guls) =k (1+ 7 ) B (36)

TiS

where k. (the proportional gain) and T; (the integral time) are the design vari-
ables, 8 = [k., T;]. PI controllers are a reliable and practical control solution for in-
dustrial environments. They are widely used and any efforts to develop new tuning
techniques are worthwhile. 3132 This optimization procedure focuses on achieving a
trade-off between load disturbance rejection, robustness, and setpoint response. It
defines as a parameter for design a given value of the maximum sensitivity function

1
1+ Ge(w)Gp(w)

and the maximum complementary sensitivity function

G, (]w)
1+ Ge(w)Gyp(gw)

where G.(jw), Gp(yw) represents the controller and process transfer functions
in the frequency domain, respectively. A numerical non-convex optimization is em-
ployed, by increasing as much as possible the integral gain k; = k./T; subject to
the pre-defined M, and M, values.

Therefore, a multiobjective optimization problem can be stated, where a trade-
off between performance (integral gain, J1(0) = —k./T;) and robustness (J2(0) =
M,, J3(6) = M) is formulated as:

My = max € [1.2,2.0] (37)

M,, = max

‘ € [1.0,1.5], (38)

min J(0) = [J1(0), J2(0), J3(0)] (39)
subject to
ke +ke/Ti < Ko, (40)
1.2 < M, < 2.0, (41)
1.0 < M, < 1.5. (42)
0.0 < ke < K, (43)
0.01 < T} < 20.0. (44)

Constraint (40) is used to bound the maximum allowed control action effort to the
ultimate gain K. Constraints (42) and (43) are used to obtain a Pareto front Jp
that is useful from the control point of view, while (43) and (44) determine the
searching space.

The process transfer function to be used is:

1
(s + 1)3 (45)

Gp(s) =

with K, ~ 7.8.
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The constraints (40, 41, 42) will be taken into account by using penalty functions
again. 20 In this case, the problem is reformulated as follows:

J0) if kil Cr(0) =0

min J(0) = o
offset + (Z Ck(H)) -[1,1,1] otherwise
k=1

OcR?

offset = [0,2.0,1.5] (47)

C1(0) = max{0, ke + kc/Ti — Ku} (48)
C5(0) = max{0,1.2 — M,} (49)
C3(0) = max{0,1.0 — M,} (50)
C4(0) = max{0, M, — 2.0} (51)
C5(0) = max{0, M, — 1.5} (52)

The parameters of the ev-MOGA algorithm were set to:

Nindg = 16 and Nindp = 160.

tmaz = 500, resulting in 8160 evaluations of J;(0), J2(6) and J3(0).

P.jm =0.1.

n_box; = n_bory = n_boxrs = 50 so the maximum number of points in the
Pareto front will be fewer than 2602.

The parameters of the NNC algorithm and the smart filter were set to:

e my = 200 in order to obtain a good density of points in the Pareto front.
e A, =1/50=0.02 and Ay = oc.

Figure 10 shows the results of the multi-objective optimization problem obtained
with NNC and ev-MOGA algorithms.

In this example, the solution that minimizes the objective J5(0) and J(0) is
the same. Therefore, there are only two anchor points and the utopia hyperplane
is reduced to a line - which in the case of NNC leads to fewer solutions in the
central area of the Pareto front than with ev-MOGA. This prevents the NNC from
characterizing the surface of the Pareto front in the central area.

When J5(0) is minimized in order to obtain the anchor points, so that there
are several solutions such as J5(0) = M, = 1.0 (Js3 is multimodal). There is no
guarantee that the NNC algorithm will obtain the most useful J3 anchor.

To evaluate the performance of each MOEA, the hypervolume (or Lebesgue
measure) computed by means of a Monte-Carlo approximation method has been
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3,(9) 1,(8)

Figure 10. PI design example. o’ is the Pareto front obtained with NNC. "%’ is the e-Pareto front
obtained with ev-MOGA.

obtained and the results are:¥

e NNC—0.1563
e ev-MOGA—0.1676

That is, ev-MOGA improves the hypervolume indicator by 7.2% in comparison
with NNC with a smart filter.

Both hypervolume and qualitative inspection of the Pareto front show that ev-
MOGA algorithms can characterize the Pareto front better than NNC, mainly due
to the geometry and shape of this Pareto front and the problems previously de-
scribed for NNC.

6. Conclusions

A multi-objective evolutionary algorithm, ev-MOGA, based on the concept of e-
dominance has been presented to characterize the Pareto front in a smart way and
compare it with the NNC with the smart filter method. To evaluate the performance

kKHypervolume was computed taking [0,2,1.5] as a reference point and 100,000 as the number
of samples used for the Monte-Carlo approximation. The Matlab function used is available at
www.mathworks.com/matlabcentral /fileexchange/19651.
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of these algorithms, two optimization problems were utilized.
Some of main conclusions are:

e The NNC method generates evenly distributed Pareto fronts but:

(1) The solution is dependent on the initial optimization conditions since it
uses a search-based Gauss-Newton method which can cause some local
Pareto points to be obtained.

(2) May have difficulties properly characterizing the Pareto front when two or
more anchor points are the same (in three or more objective problems).

(3) Something similar could happen when an objective function is multimodal
since the anchor points cannot correspond to the end of the Pareto front
(in three or more objective problems).

(4) With an a priori knowledge of the Pareto front geometry it is possible to
improve the NNC algorithm to overcome the latter difficulties. Neverthe-
less, such information is not always available.

(5) The computational burden grows exponentially with respect to the dimen-
sion of the objective function space since the transformed optimization
problem to be executed also grows exponentially if the same density of
Pareto points is required.

e The MNNC eliminates the first NNC disadvantage, but the second disadvantage
is increased considerably.

e A smart filter based on PIT is a very effective and flexible procedure to obtain
smart Pareto fronts, but the result depends on the order in which the analysis
of the Pareto points is carried out. To reduce this problem, it is very important
that the NNC method characterizes the Pareto front with many points, which
again increases the computational burden.

e ev-MOGA algorithm eliminates the first NNC disadvantage. Its computational
burden is also more competitive than that of MNNC, thanks to the fact that
the Pareto points are generated in parallel and in a single run. Other features
of ev-MOGA are:

(1) It dynamically adjusts the precision of the Pareto front without increasing
the archive size, so that the memory requirements are always bounded
(n__box; parameters).

(2) Tt adapts the extremes of the Pareto front, regardless of the parameters
n_box; and ensures that anchor points are not eliminated from the archive.
At the same time this eliminates the second NNC disadvantage.

(3) It automatically characterizes all kinds of Pareto fronts (i.e. non-convex
and disjoined ones) in a smart way in a similar manner to NNC with smart
filter methods if Ay = oo.

(4) It is an algorithm useful for the designer, since it approximates the Pareto
front (search process) with significant solutions for the DM (selection step).
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