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ABSTRACT

Pile caps used in foundations are commonly designed for simple cases of loading and
geometry using the strut-and-tie method. This approach is known to provide safe designs and
rather conservative predictions of the ultimate failure load of tests. This level of conservatism
is due mainly to the large simplifications made in the geometry assumed which in many cases

ignore relevant parameters such as the size of the column. A three-dimensional strut-and-tie



model is presented for four-pile caps in which the geometry adopted is optimized. The
inclination of the direct strut from the column to the pile is obtained analytically through the
maximization process of the resisting load carried by the truss assuming different modes of
failure (flexural and shear). This approach is shown to provide more accurate predictions of
strength of existing deep pile cap tests with lower scatter compared to design approaches in
the literature and ACI 318 Code.

Keywords: pile cap, reinforced concrete, strut-and-tie method, truss model, design,

discontinuity region, shear, three-dimensional, finite element analysis
INTRODUCTION

A pile cap is a foundation element commonly found in construction that is used to transfer
loads from the superstructure to a group of piles. It often consists of a lightly reinforced
concrete block with no shear reinforcement which is cast on top of the piles. The structural
behavior of pile caps can be complex and several simplifications are generally made in
design. Design procedures based on test results, rules of thumb and past experience were
frequently followed in the past. A significant progress was made in the last decades with the

123456 However, comparison of the predictions

proposal of more consistent design methods
obtained by these methods shows a significant scatter in the results as shown in this paper. Of
special concern is the fact that some of these methods can overestimate the shear strength,
leading in some cases to brittle failures in elements designed to fail in a ductile flexural
manner. This generally explains why simplifications and conservative assumptions are still
common in design codes. Refinement of current analytical approaches could derive in more
efficient designs which in turn will reduce material needs, construction times and costs.

Pile caps can be classified based on the shear span-to-depth ratio w/d as slender (w/d>1) or

deep (thick) (w/d<1)’: the former behave governed by flexure and in the latter arching action



is the predominant resisting mechanism. This paper and previous experimental programs and
design methods focus mainly on the latter case.

Deep pile caps are discontinuity regions (D-Regions), characterized by the development of
complex stress fields. Two-way shear failures, with or without reinforcement yielding, of
deep pile caps designed to fail in flexure are very common in the reported experimental
campaigns!>*$%1011 "This type of failure is characterized by the formation of a conical plug
under the column or punching around one or more piles (Fig. 1).

Two different approaches are accepted for pile cap design in the ACI 318-14!% and other
major codes of practice. The traditional design procedure considered in the ACI Building
Code is based on a sectional force approach. This approach seems adequate for slender pile
caps, however it is contentious®* whether it is also valid for deep pile caps as some of the
main assumptions of sectional analysis do not apply (i.e. flexural compression is non-uniform
along the cap width, plane sections do not remain plane and shear stresses are not uniform
along the cap depth). Alternatively to sectional-based approaches, the strut-and-tie method'?
(STM) is also accepted by the ACI Building Code since the ACI 318-02. The STM is a
lower-bound method which is especially appropriate for the design of D-Regions. The
application of the method is conceptually simple: after adopting an idealized truss formed by
concrete struts, steel ties and nodal zones, forces at the truss elements are obtained from
equilibrium and compared with their corresponding estimated strengths to determine the
maximum admissible load. The typical strut-and-tie model of a pile cap is formed by inclined
struts expanding from the column to the piles and horizontal ties between the piles. Two- and
three-dimensional models are generally considered (Fig. 2); 2D models are usually preferred
in practice due to the lack of general guidelines for the application of the STM in 3D'*,

In the scientific literature for pile cap analysis and design, most analytical models proposed



are based on spatial 3D truss models®>*>615:16:17.18: some of these models are reviewed in this

paper. Most of these references focus on the proposal of different formulae to estimate a
concrete strength effectiveness factor in order to reproduce accurately the failure load, but
little attention is paid on the truss geometry and a predefined truss geometry is generally
assumed for simplicity. The use of more refined models derived by iteration of the truss
geometry could lead to better initial predictions which would not need further adjusting®®.

This paper presents a new, alternative STM-based approach for the analysis and design of
deep pile caps. A refined truss geometry is considered, with the strut inclination being
determined by maximizing the pile cap strength considering different failure conditions. The
method is developed for rectangular four-pile caps without shear reinforcement and
concentrically loaded with a square column, a configuration which is commonly found in
construction. The proposed model satisfies equilibrium, strain compatibility and considers
softening of the compressive strength for cracked concrete. It also accounts for the effect of
reinforcement area and configuration (distribution and anchorage conditions) to estimate the
shear strength, factors which are not considered in previous models; this leads to a more
precise prediction of the shear strength, hence reducing the potential of occurrence of brittle
failures. For the validation of the proposed method, strength predictions obtained by the
proposed and other five methods of 162 pile cap specimens are compared and discussed. The

adequacy of the adopted model is further verified by means of 3D FE analysis.
RESEARCH SIGNIFICANCE

Four-pile caps are commonly used in practice and optimizing their design can result in
substantial cost savings. Current design approaches can give significantly different results,
which often leads to the adoption of excessively conservative solutions. This paper describes

an alternative approach for the design of four-pile caps based on a refined three-dimensional



strut-and-tie model where the strut inclination is determined by maximizing the pile cap
strength. The method considers strength softening of cracked concrete, compatibility
constraints and reinforcement details. Consideration of this model could lead to a more

rational design procedure of deep pile caps.

DESIGN METHODS FOR PILE CAPS

Existing truss-based models for pile cap design

Several strut-and-tie-based models have been proposed in the literature for pile cap design.

Although the geometric shape of the truss models adopted by different authors is

fundamentally similar, the location of the nodes, and hence the resulting strut inclination Gfd ,

do not always coincide. Truss forces can be expressed as a function of 8> as (Fig. 2):

P
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It should be noted that, despite the 3D geometry of the truss, resulting tie forces from Eq. (2)
and (3) are equal to those obtained from a 2D model (Fig. 2(b)). Therefore 2D and 3D trusses
will result in the same area of reinforcement if the design is merely based on tie forces.

The design method proposed by Blévot and Frémy' is one of the first references on pile cap
analysis using truss models. For four-pile caps they adopted a truss model with four lower
nodes located at the centre of the piles at the reinforcement level and four upper nodes at the

column quarter points on the cap surface. Based on test results it was suggested to limit the

steel stress to 0.6 f, and the bearing stress at the piles and the column to 0.9f, sin® 0.

Adebar et al.® studied the suitability of three-dimensional strut-and-tie models in pile cap

design and adopted a truss model formed by four upper nodes considering the depth of the



compressive stress block under the column. To evaluate the flexural capacity the steel stress

was limited to the yield stress f, and to prevent shear failures the maximum bearing stress

on concrete was limited to f, . The latter limitation was later refined by Adebar and Zhou* as:

£, <0.6f +op6yf
a=0.33(A, /A -1)<1.0 (4)
B=0.33(h, /w,—1)<1.0

where f, has units of MPa (if psi units are used, factor 6 in Eq. (4) must be replaced by 72).
Factors o and P account for confinement according to the strut geometry (i.e. A; and A; are
the loaded and supporting area respectively, and s /w, is the strut height-to-width ratio).

Otherwise, the adopted truss model was identical to that proposed by Blévot and Frémy.

Park et al.’> developed a 3D strut-and-tie approach that considered strain compatibility,
concrete compressive softening and a nonlinear constitutive relationship for concrete. Failure
could be caused by crushing or splitting of the diagonal strut, crushing of the horizontal
compression zone under the column or reinforcement yielding. The upper nodes of the truss
model were located at the column quarter points at half depth of the compressive stress block.
The truss model proposed by Souza et al. was formed by only one upper node located at the
center of the column on the cap surface (Fig. 2(a)). This simplification implied a significant
change in the strut inclination and, hence, the forces resulting in the truss system. To

determine the pile cap flexural strength the following equation was proposed:

P 40 dA. f, (5)

e
where ¢, was a calibration factor (equal to 2.05) giving the lowest coefficient of variation of

the predicted test data. To predict the shear strength the model by Siao*® was adopted:

P =2.08cdf’” (6)

Guo!® developed a strut-and-tie-based method for evaluating punching strength of pile caps



with uniform grid reinforcement. The adopted truss model was formed by one upper central
node at 0.1 times the effective depth from the cap surface and four lower nodes at the
reinforcement level slightly displaced from the center of the piles. Alternatively to lower-
bound truss models Jensen and Hoang?! proposed an upper bound plasticity approach for pile
cap analysis to complement strut-and-tie models. Three independent collapse mechanisms

were considered: (i) punching, (ii) shear and (iii) flexural.

Sectional methods vs. STM in the ACI 318-14 Code
According to the current ACI 318-14!2) both the sectional approach and the STM are

permitted for pile cap design. The sectional method is applied similarly to two-way slabs and
footings. The flexural and shear strength are evaluated separately. The flexural strength is
governed by the amount of longitudinal reinforcement and is obtained assuming that (a) plane
sections remain plane and (b) the concrete compressive block extends to the entire pile cap
width. The flexural critical section is located at the face of the column. The shear strength is
governed by the cap depth and the concrete strength and is determined by the most restrictive
condition considering one-way and two-way shear. For one- and two-way shear the critical
sections are located at d and d/2 from the column face, respectively.

One - way shear :V, = 0.177u\/f7;bwd (7)
Two - way shear :V, =0.33)/f.b,d (8)

where fc,' has units of MPa (if psi is used, Eq. (7) and (8) must be multiplied by 12).

According to ACI 318-14 the shear due to the pile reaction at the critical section around the
column shall be accounted for as follows: (i) when the pile center is located d,/2 or more
inside the section, the reaction produces no shear, (ii) when the pile center is located d,/2 or
more outside the section, the entire pile reaction shall be considered; and (iii) for intermediate

positions, the portion of the pile reaction is obtained from a linear interpolation. An upper



limit on the shear strength shall be considered??, where the following limits are proposed:

M , Vv
One - way shear :V, = d (3.5 -2.5— j(O.l6M/fT+l7p

d ,
— “— 1b,d <0.83,/f.b,d (9
w V.d Muj " Jebyd (9)

Two-way shear: V, = i(1+g)é\/7;bod < 2.67\/76'1700,' (10)
w C

where b, is the column perimeter and f, is in MPa (for psi, the relationships above should be
multiplied by 12). Application of the STM must be in accordance with the general guidelines
of the ACI Code 318-14'2. The area of reinforcement is calculated from the tie forces and the

factored yield strength. Concrete stresses are limited to enable yielding of the reinforcement

prior to failure: the compressive stresses in the struts shall not exceed 0.51f, assuming that

(&
no confinement reinforcement is present; considering general guidelines for 2D elements (no

provisions are given for 3D nodal zones), the concrete compressive stress in the nodal zone

underneath the column and over the piles shall be limited to 0.85f, and 0.51f., respectively.

ACI 318-02, ACI 318-08 and ACI 318-11 restricted the application of the STM only to pile
caps in which the distance between pile and column axes was equal or less than two times the

height of the cap. No reference to limits of application is made in the current ACI 318-14.

PROPOSED STRUT-AND-TIE MODEL

Equilibrium in the three-dimensional model

A statically determinate 3D truss model was adopted to represent the load transmission from
the column to the piles (Fig. 3). The position of the four lower nodes was fixed at the center
of the piles at the reinforcement level and the upper nodes were located inside the column and

above the cap surface. Unlike other truss-based models, the horizontal position of the top
nodes was not assumed beforehand as the strut inclination 0> is a geometrical variable
which will be obtained by maximizing the strength given by a lower-bound strength function
derived as described later. Forces at diagonal struts and horizontal ties can be calculated from

8



equilibrium (Eq. (1-3)). The formulae presented hereafter were derived for a square-shape
cap (ex=ey=e) loaded by a square column (cx=cy=c), which applies to most four-pile caps in
practice. Hence, considering symmetry Eq. (2) and (3) can be merged into one as:

F=F,=F,= Pzd: £ (11)
’ " 4tan0; 4\/§tan9§fd

Considered local failure modes and corresponding limit functions

Three potential local failure modes were considered: mode (i) accounts for exceeding the
reinforcement strength; mode (ii) accounts for crushing of the diagonal strut at the base of the
column with narrowing of the strut; and mode (iii) accounts for splitting of the diagonal strut

due to transverse cracking. The maximum admissible load was obtained for each local failure
mode in terms of the variable strut angle 8¢, pile cap geometry and material properties. This

relationship is denoted as limit function for a local failure mode.

Mode (i)

In design, the limit function corresponding to yielding of the reinforcement was obtained by
fixing the value of the tie force to its yield strength. Considering that reinforcement is

distributed symmetrically in each horizontal direction, the latter can be calculated as:
A
Fnt,y = A]yfy :TYTfy ( 12 )

where A,r is the total amount of reinforcement in the considered direction (Fig. 3(d)). The
maximum column load limited by reinforcement yielding (limit function associated to mode
(1)) can be derived by equating Eq. (11) and Eq. (12) and is given by:

P, =4/2tn0"F, =242tan6¥A,f, (13)

The analysis of 162 pile cap specimens from the literature, which are further described in
subsequent sections, showed that specimens where P, governed the failure load had a

significant strength enhancement due to strain-hardening effects. For such cases of



assessment, a better prediction of the failure load was obtained by adopting the steel ultimate

stress f, rather than the yield stress fy; 1.e. P,y 1s replaced by Pu:,. given by:
P, =22tan6 A, f, (14)

Eq.(14) considers strain-hardening of steel indirectly, leading to a further realignment of the
strut after steel yielding providing more accurate predictions of the experimental data. This
simplified approach was preferred over more complex solutions considering the plastic
strains in the steel explicitly. Further implications and verification of this simplification for
tests where Py, governed the failure load are discussed in subsequent sections.

Mode (ii)

Crushing of the diagonal strut was considered by limiting the force in the strut to its capacity
at the top section where it narrows at the intersection between the pile cap and the column.
This top region was not considered as a node, but rather as a critical region to assess the strut
capacity. The maximum admissible load of the pile cap reduces as the strut inclination

increases since the strut becomes narrower. The strut strength can be obtained as (Fig. 3):

F..=A,f, (15)

ns,1 cs,1

Acs,l :%W‘v,lbl ( 16)

w,, = l,ﬁsin 0 =
’ 2

3(ﬁ—W]%SiH Gfd ( 17)
an v

=12 = 3{ —wj\/E(IS)

\/_ 2tan0

f.,= £, if . <20MPa(2900psi)
, . (19)
£, =277 if £, >20MPa (2900psi.

where w,, is the strut width at the top section. The compressive strength of concrete was

taken as the plastic strength f.,>°, assuming an uncracked uniaxial compressive state. This

10



assumption was justified based on experimental observations showing that this region
remains uncracked until failure and was further verified using 3D FE analysis as shown later.

The strut area A, was obtained from the projection of a horizontal triangle expanding from

the column corner onto a plane perpendicular to the strut (Fig. 3(c)) where the stresses are

constant. Considering Eq. (15-19) the nominal strength of the top section of the strut is

d

2
_ s Nn3d
Fm"l = 45[W—W] S OS fcp ( 20 )

Hence, the maximum admissible vertical load limited by crushing of the diagonal strut at its

top section is obtained from Eq. (1) and Eq. (20) giving:

2
d
P, =4sin@®*F,  =18f | -=————w| sin’6* (21)
ns,1 s ns,1 -fcp(\/itaneid J §

Mode (iii)

Splitting of the diagonal strut was considered by limiting the force in the strut to its capacity
at the bottom where the strut meets the flexural reinforcement. The nominal splitting strength
of the strut can be estimated as (Fig. 3):

Frn = Agafee = Auay (22)

Ay, =B,w,l, (23)

w,, =1,sin0 +2¢, cos0’’ (24)

c,=h—d (25)

where w, is the strut width at the bottom. The concrete softening coefficient & is a strength

reduction factor due to transverse strains. The model by Vecchio and Collins** was adopted:

fcp
= =—F < 26
Jee= T 0.8+170e,, Jor (26)

where €, is the tensile strain transverse to the principal compressive direction. To extend this

11



relationship to 3D, it was assumed that the two principal strains perpendicular to the strut

€,1> €,, contribute equally to softening and €, in Eq. (26) was replaced by €, +€,,. This

st,1
sum can be obtained from the first invariant of the strain tensor and considering perfect bond

between concrete and steel as:

€ +€ +€ =€, +€ +€ =g, +€ ,+E (27)

st,1 st,2

Eq. (27) introduces a strain compatibility condition. The average compressive strain in the z-

direction €, and the average compressive strain of the strut €  are estimated as:

—-P/4
e.=—— " (28)
E A
ctp
~F -P
€ = PPy
EcAcs,Z 481ne;' EcAcs,Z

(29)

The average tensile strain in the x- direction can be estimated from the steel strain as:

F P P

t

teh = = =
" EA,. 4anb’EA, 426 EA

(30)

and € can be obtained similarly replacing A, by A, . Eq. (30) is valid for cases where

the reinforcement does not yield at failure; if this is not the case, this expression is an
approximation where the strains are generally underestimated and hence the effective
strength in the strut could potentially be overestimated. This could occur when adopting f, as
the steel stress limit in assessment (Eq. 14). However, the results presented in the next section
show that this simplification gives reasonable strength predictions of the experimental data
available. Adopting a more realistic relationship taking into account strain-hardening of the
tie would introduce complexity with little improvement in accuracy in this case. In addition,
the use of a more refined post-yielding relationship would be cumbersome as it would require

introducing post-yielding properties for steel which are often not available in test reports.

12



In Eq. (30), the area of reinforcement over the pile A, ; for each direction j, can be written as
a fraction of the total reinforcement area A ;: for bunched reinforcement in symmetrical
cases, A, ; is taken as half A, ;, assuming that all rebars are placed over the piles; for grid

layouts with hook and nil anchorages (straight bars without hooks), A,, ; can be calculated as:

d +c

— p b . .
A, =Ar; erd, for circularpiles
(31)
3 [, +c, .
Asp,j - AST, T for squareand rectangula piles
J

assuming that rebars are distributed uniformly between the outside edges of the piles and
considering the spread of the diagonal strut at the reinforcement level; and for grid layouts

with full anchorage, A, ; is taken equal to A, ; /2 to consider confinement effects.

A, 1s obtained by projecting the pile section onto a plane perpendicular to the inclined strut

C.

passing through the lower node of the strut as shown in Fig. 3(c). If the pile section is

circular, the projection is an ellipse with minor and major axis equal to /, and w,,
respectively (i.e. B, =n/4 and [, is the diameter of the pile d,). If the pile section is
rectangular, the projection is a rhombus with [, and w,, diagonals (i.e. B, =0.5 and [, is
the diagonal of the pile section). For pile caps with e/d >?2, where the behavior is closer to a
beam factor 3, is taken equal to 1 (rectangular projection) for both circular and square piles.

The maximum admissible vertical load limited by splitting of the diagonal strut (limit

function associated to local failure mode (iii)) is obtained from Eq. (1) and Eq. (22-31):

4B sin® (I sin® +2c, cos0) f., (1)

_ . 3d
Pns,Z - 4Sln es Fns,2 -

0.8+170(e, +¢, +¢&. —¢, )
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Evaluation of the strength and the global mode of failure

The lower-bound strength function of the element P, can be defined by the three limit

functions (P, ,, P

tu ns,1

P, ,) given by Eq. (14), Eq. (21) and Eq. (32) as:
P, =min(P,.P,.F,,) (33)

This function, which varies with sz, defines an area below of admissible loads and strut

angles (Fig. 4) in which equilibrium is achieved without failure (lower-bound theorem of

plasticity). Therefore, the best estimation of the pile cap strength P, ,, will be the maximum
(peak) value of the lower-bound strength function F, in Eq. (33). The peak point P, , and its
corresponding strut inclination foﬁed can be obtained from the intersection between P, | and

P, or between P, | and P,

ntu

whichever gives the lowest load. The intersection between

P, and P, , represents the shear strength P, whereas the intersection between P, and F,

ns,1 nt,u

represents the flexural strength P, as shown in Fig. 4. Therefore, the predicted global mode of

failure can be assessed based on which intersection point governs (Fig. 4). Shear failure can

take place prior reinforcement yielding (Fig. 4(b)) when P, <P, for 6’ =6  or after

yielding (Fig. 4(c)) when P.> P,  for 6 =6

nt,y pred *
Finding the predicted strength and mode of failure using the proposed model can be done by

hand or numerically using a simple spreadsheet. Eq. (32) for F, , is implicit; strains €, €,

x?
€, and € are a function of the column load P, which is unknown a priori. To simplify the

solution procedure it is suggested to assign an initial value P,

est

to estimate strains in Eq. (28-

30). A good initial value is P, which is obtained independently of F, ,. P,

oSt

can be updated

in later steps of the iterative process by P. until convergence is achieved.

14



Relevance of the proposed method

Existing strut-and-tie models for pile caps evaluate separately the flexural and the shear
strength with two independent equations and the strut inclination is fixed by the geometry.
The model presented here considers that the strut inclination is unknown a priori. As one

additional variable was included, one extra equation was needed. Limit function P, ; (Eq. 21)

was added to the usual equations to determine both the flexural and the shear strength. This
function considers the realignment of the strut to steeper angles while cracking which allows
stress redistribution and the application of further load increments. This realignment is
possible due to stress redistribution within the stub column. The proposed model accounts for
the reinforcement area and its layout to determine the shear strength of pile caps. These two
factors, which are not considered in existing models except in reference®', have been shown
to have an effect on the shear strength: an increase of the reinforcement quantity® or its
concentration over the piles leads to higher shear strengths!>*8. In the proposed model the
reinforcement area and its layout influence the strut strength through the effective concrete

compressive strength f, ; this in turn influences the pile cap strength. Only the reinforcement

over the piles A_, which is assumed to contribute to resist the tensile stresses, is considered.

5>
Hence, the estimated steel tensile strains are lower for bunched configurations than for grid
layouts with the same total amount of reinforcement; this assumption is consistent with
experimental observations reporting higher failure loads for configurations with concentrated

reinforcement’->>8.
VALIDATION WITH TEST RESULTS

The proposed model was validated against 162 pile cap tests reported in the
literature!>8>1011.25 (Table 1). All specimens had a square shape in plan, had no shear

reinforcement and were loaded at a centered square column. The proposed approach was

15



applied assuming that the reinforcement is placed along the sides of the cap. Tie areas of
specimens with diagonal reinforcement were calculated by projecting the tie forces onto the

x- and y-axis. For all specimens, the elastic moduli adopted for steel and concrete were

200000 MPa (29000 ksi) and 4750,/ £, (MPa) (57000 £ (psi))'2.

Table 1 shows the ratio between the maximum load in the test and the predicted strength

/P

pred

(P,,/P,,) and the predicted global mode of failure. The average value of P, for the

est T Lp rest
162 tests is 1.08 with coefficient of variation equal to 12%. Comparison of the predicted and
observed modes of failure shows a correct estimation in 55% of the cases. This seems
reasonable considering firstly, the uncertainty in identifying the mode of failure from test data
as the failure of many of the specimens may be more accurately described as a combination
of bending and shear; and secondly, the fact that the predicted shear and flexural strengths
were very close to each other in many tests as shown in the last column in Table 1. If shear
failure with and without yielding of the reinforcement are considered as one mode of failure,
then the predicted and observed failure modes coincide in 75% of the cases. It can be
concluded that the model predicts the strength and mode of failure with reasonable accuracy.
VERIFICATION WITH FE RESULTS

The assumptions made in the proposed method were further verified by means of FE analysis
obtained with the 3D nonlinear FE-based tool FESCA 3D?, developed at Universitat
Politecnica de Valencia. The FE tool had been validated beforehand for the analysis of
reinforced concrete pile caps as shown in?°. This tool was used to visualize the internal stress
flow and to obtain the concrete strength reduction field within the pile cap &(x, y,z) in order
to compare it with the values adopted and estimated in the proposed model.

The main characteristics of the constitutive material model used in the numerical tool are

described in®. The following assumptions were adopted to verify the adequacy of the

16



proposed model. The concrete in tension was modelled using Hordijk’s softening curve after

cracking with the tensile strength given by f. =0.21f.*"> (MPa units) and the fracture

energy G, =73f.""" (N/m and MPa units, respectively) as defined in MC 2010%". The

concrete in compression was modelled using a parabolic relationship; compressive softening
due to transverse tensile strains was considered adopting the relationship proposed in** (Eq.
(26)); enhancement of the compressive strength of concrete due to confinement was taken
into account using a Drucker-Prager yield surface. Reinforcement steel was modelled as an
elastic-hardening plastic material assuming perfect bond between the concrete and the steel.

Fig. 5 shows the FE results obtained for specimen BP-30-30-2 from reference® which failed
in shear after reinforcement yielding. The load-deflection response was predicted accurately
as shown in Fig. 5(a). Fig. 5(b) and (c) show the principal compressive stress field and

trajectories in the cap diagonal plane at maximum load and after failure respectively. The

proposed strut-and-tie model resulted in a strut inclination of Bf)‘ied =48.64°. This angle and

the associated strut widths are consistent with the FE compressive stress field (Fig. 5(b-c)).
Fig. 5(d-e) show the FE contour plot of the concrete softening coefficient & obtained in the
diagonal plane of the cap at the maximum load and immediately afterwards. The proposed
method adopts & equal to 1 at the top region of the strut whereas at the bottom Eq. (26) gave
a value of 0.5 in this case; these results are consistent with FE predictions shown in Fig. 5(e).
Regarding failure, the numerical model predicts that strut softening initiates at the bottom due
to steel yielding and propagates to the top (Fig. 5(d-e)); this weakening of the strut results in a
stress redistribution with a realignment of the strut which becomes steeper and narrower in
the region near the column. This behavior is consistent with the predicted mode of failure

using the limit functions proposed in this work and observed in the deep pile cap test.

17



COMPARISON WITH EXISTING METHODS

Five of the existing lower-bound methods described in this paper (ACI sectional force and
STM approach'?, Adebar and Zhou*, Souza et al.® and Park et al.’) were applied to predict the
failure load of the 162 specimens investigated (Fig. 6). The accuracy of the predictions was
expected to vary from one method to another as the design philosophy and complexity behind
each approach is considerably different. For example, the ACI STM approach, whilst simple,
is expected to provide a lower-bound solution with no focus on the scatter of the results.
Provisions for shear design with the ACI sectional approach!?, considering the stress limits
from the CRSI Handbook??, lead to unconservative shear strength predictions of many of the
pile caps investigated (Fig. 6(a)). The majority of the specimens are predicted to fail in
flexure whereas in reality many tests failed in shear. On the other hand, the ACI STM
approach!? provide conservative predictions of all the tests (Fig. 6(b)). The high level of
conservatism in some cases can be questioned due to its economic implications in design.
Predictions by the approach by Adebar and Zhou* (Fig. 6(c)) have a relatively low scatter
(COV =21%) although most failures are predicted incorrectly as flexural. The proposed
bearing stress limit governs in 17 out of 162 specimens. For these 17 specimens the average

strength ratio P,

st | Poreq 18 1.03, with a coefficient of variation of 20%; these results are
remarkable considering the simplicity of the method. Predictions by the model by Souza et

al.% (Fig. 6(d)) also have a low scatter (COV =23%) with an average value of the P, /P

test ! L pred
ratio of 1.01. It should be noted that the formula proposed for estimating the flexural strength
was calibrated with experimental results, most of which were included in the current study.
The shear design formula by Souza et al. does not capture correctly the influence of the pile
cap depth on the shear strength similarly to the ACI sectional approach; both approaches

overestimate the shear strength because they assume that the whole depth contributes to resist
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the transverse tensile stresses. However, the internal flow of forces in the pile cap exhibits
stress concentration at certain areas of the section as shown in FE analysis (Fig. 5); this is
correctly identified in the proposed strut-and-tie model (only limited areas of the concrete
section contribute to resist the shear stresses). The model proposed by Park et al.’ provides
predictions on the conservative side (Fig. 6(e)). The shear strength is clearly underestimated,
resulting in large Press/Ppred Tatios in some of the specimens.

The proposed approach has the lowest coefficient of variation (12%) with an average value
slightly above one (1.08) (Fig. 6(f)). The refinement of the strut-and-tie geometry and the
consideration of reinforcement area and layout in the determination of the effective strut

strength are behind the accuracy in the strength predictions. Related to the former, in Fig. 7(a)

the strut inclinations obtained analytically for each specimen with the proposed model Gi‘ied

are compared with those obtained assuming a fixed strut inclination 8 with the upper nodes

located at quarter points at the column. It is worth noting that a 5° difference can result in a
variation of the tie forces of around 20% and in the strut forces between 5-20%, depending on
the strut inclination. These angle differences can be even larger if the strut inclination is fixed

616 or if upper nodes are located below the top of the cap>?®.

using an upper central node
Regarding the effect of the reinforcement area, Fig. 7(b) shows the strength predicted by the
proposed model for different reinforcement quantities Asrand shear span-to-depth ratios w/d
of a symmetric four-pile cap with circular piles of diameter 150mm, ¢=250mm, d=300mm,
fo’=30MPa and grid reinforcement with f,=356MPa and f,=501MPa (larger strengths are
obtained with bunched reinforcement). Predictions from the STM approach of the ACI Code
and experimental data from twelve specimens TDL1-1/2, TDL2-1/2, TDL3-1/2, TDS1-1/2,

TDS2-1/2 and TDS3-1/2 reported in reference’ and with similar characteristics are added for

comparison in Fig. 7(b). The curves in Fig. 7(b) show two distinctive regions: flexural failure
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governs in the first section and shear failure governs in the second one. The amount of
reinforcement increases the predicted strength in both ranges, but this effect is significantly
lower when shear failure governs. Fig. 7(b) also shows that the reduction of the predicted
strength with w/d is nonlinear.

DESIGN APPROACH PROPOSED
A design approach is presented based on the refined 3D strut-and-tie model developed herein
(Fig. 8); this approach can be used easily to obtain the area of flexural reinforcement needed

and check the adequacy of the cap geometry for a given design load P,. For design, the steel
yield stress f, shall be used. The strut angle 0 is determined by taking P, =P (Eq. (21))

and the reinforcement area A,; can be obtained introducing 6 in Eq. (13) and

considering £, =F,. To ensure reinforcement yielding prior shear failure P, must be lower

than the maximum admissible value P, , (Eq. (32)) at the angle obtained previously 8 ¢ . If

this condition is not fulfilled, the geometry of the pile cap should be modified (e.g. increase
the cap depth). Simplified expressions are given in Fig. 8 to apply this procedure.

Overall, the proposed design approach seems more rational than existing methods as it takes
into account three local failure modes, giving accurate strength predictions with significantly
reduced scatter. Moreover, the proposed method gives a geometry of the strut-and-tie model
following a rational approach rather than adopting a simplified geometry. Hence, this

approach could provide more economic and consistent designs than existing methods.
SUMMARY AND CONCLUSIONS

Design of deep pile caps can be problematic in some cases where overly simplified models
are extrapolated to complex situations. Traditionally, empirical approaches, rules of thumb

and sectional-based methods were used. The STM emerged as a more consistent and rational
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alternative and today most major codes of practice, including ACI 318-14'2, accept its
application. However, a look at design codes and current practice shows that sectional
methods still prevail in the design of deep pile caps, probably due to the limited guidelines on
3D STM and also on the misperception that lower-bound methods are too conservative.

This paper describes a 3D strut-and-tie-based model for the analysis and design of deep four-
pile caps without shear reinforcement. One of the main innovations of this model is the use of
a variable strut angle; existing models assume a fixed inclination of the strut. The proposed
approach also gives information on the predominant mode of failure which is consistent with
observation from tests and 3D FE simulations. Three potential local failure modes were
considered: (i) exceeding the reinforcement strength, (ii) crushing of the strut at the base of
the column and (ii1) splitting of the strut near the pile; then three limit functions were defined,
from which the predicted failure load and strut angle at failure can be determined.

The model takes into account the refined inclination of the strut, the effect of the
reinforcement area and the type of reinforcement layout. These refined considerations
resulted into very good strength predictions of the 162 tests investigated. The proposed model
had the lowest coefficient of variation from all the methods investigated (COV=12%) with an

average F, /P, , ratio of 1.08. It can be concluded that equilibrium models using struts with

refined values of their inclination and concrete effective strength (based on strains) can

provide economic designs and accurate predictions of pile cap strength.
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NOTATION
b, = pile cap width

b, = perimeter of critical section for two-way shear

b1, l; = dimensions of the stressed triangle at the column base

c

+» ¢, = column dimensions in x and y direction, respectively (if symmetry, c=cx=cy)
cp = distance from centroid of reinforcement to nearest concrete surface

d = effective depth

d, = pile diameter

e., e, = pitch between center of piles in x and y direction (if symmetry, e=e,=ey)
f.'= cylinder compressive strength of concrete

f.., = effective compressive strength of concrete in a strut

/., = equivalent plastic strength of concrete

£ fy = steel ultimate and yield stress, respectively

h = height of pile cap
hs = length of strut as defined in reference*
[, = diameter or diagonal of the pile

l,, I, = side lengths of rectangular pile

X
w = shear span defined as horizontal distance from face of column to center of pile reaction
wy = strut width

A1, Az =loaded and supporting surface area for consideration of bearing strength, respectively

A, = pile sectional area

A, = total amount of horizontal reinforcement in one direction

A, = cross-sectional area of a strut, taken perpendicular to the axis of the strut
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A,, = area of reinforcement over pile in one direction

A, = area of non-prestressed reinforcement of a tie

F, ., F,, = nominal strength of a strut and a tie, respectively
F,, F,' =force in a strut in 3D and projected in 2D, respectively
F,, F, =force in a tie in x and y direction, respectively (if symmetry, Frn=Fi,=F))

M, = factored moment at section

P, P = axial load applied in the column and column design load respectively
P =lower-bound strength function of the element

P, P, = predicted flexural and shear strength of pile cap, respectively

P _ = estimated column load used in the iterative process to determine shear strength

est

P, . FB.,=predicted and experimental pile cap strength respectively
B,,. B, B,,, b, , =limit functions for local failure modes (i), (ii), (iii), and steel yielding.

V_ = nominal shear strength provided by concrete
V= factored shear force at section
o, = parameters used by Adebar et al.* (Eq. 4)

B, = area factor of the projection of the pile perpendicular to the strut direction

€., €,,, &, , =average principal tensile strain in concrete

st st,12 st

€ = average compressive strain of the concrete strut

€., €,, € = average concrete strain in x, y and z direction

€., € =reinforcement strain in x and y direction

x> Tty

A, v, = slenderness and load parameters used in the design approach proposed
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63(1

red? 0 = predicted strut inclination at failure and resulting strut inclination in design

9211

5,X°

Gii, = strut angle projection in 2D at y=const and x=const, respectively

0>’ = 3D strut angle

¢ = angle between the tie in the x-direction and the horizontal projection of the diagonal strut
& = softening coefficient for cracked concrete strength

¢, = calibration factor used by Souza et al.®
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load-deflection curve. At the diagonal cap plane, superimposed to the strut-and-tie geometry

obtained from the proposed method (0 =48.64°): (b) FE contour plot of compressive stress

field and principal compressive directions at maximum load; (c) FE contour plot of
compressive stress field and principal compressive directions after failure; (d) FE contour
plot of concrete softening coefficient & at maximum load; (e) contour plot of concrete
softening coefficient & after failure.

Fig. 6 - Ratio P,

test

/P, for 162 specimens">3%19125 pased on results obtained by: (a) ACI
sectional approach'?, (b)ACI STM'? (c) Adebar and Zhou®, (d) Souza et al.’ (e) Park et al.’
and (f) the proposed method.

Fig. 7 —(a) Fixed strut angle sz adopted by other truss models vs. predicted strut angle at

1,2,8,9,10,11,25’. (b)

failure Gi‘ied by the proposed model for 162 specimens Effect of reinforcement

quantity Asr for different values of w/d on predicted strength by proposed model (PM).

Fig. 8 — Flowchart of proposed design method.
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Table 1-Experimental data and predictions

Specimen

Blévot and Frémy'
4N1
4N1bis
4N2
4N2bis
4N3
4N3bis
4N4
4N4bis
2,2
2,3
24
3,1
3,2
3,3
34
1A,1
1A,2
1A,2 bis
1A.3
1A4
3A,1
3A,2
3A.3
3A,3bis
3A4
Q,1
Q2
Q.2bis
6,1
6,2
6,3
6,4
6,5
6,6
9A,1
9A2
9A3
10,1a
10,1b
10,2a
10,2b
10,3a
10,3b
11,1a
11,1b
11,2a
11,2b
12,1a
12,1b
12,2a
12,2b

Clarke?
Al
A2
A3

(MPa)

37.3[277401
40.8}455[774
37.1]285[416
34.20491[303
342257387
49.3452[781
35.4[2911413
42.3}486)811
32.8355}428
31.6[312]409
31.0[3301425
32.1}469|643
37.20447|589
30.9]442590
32.6/474/638
26.6[493580
36.8|505566
33.3/505/566
36.6/508]584
32.9497|567
29.2|506)580
39.2/505/582
32.0[499]572
46.1}499|572
32.4}493|572
33.91460/608
30.8342[442
21.0325/464
13.2[498592
13.2461]535
22.1/512593
30.6}476558
18.4/518618
18.4}468|555
22.6}459)636
33.9}467|595
28.6[465616
28.7}446605
35.8]468]593
28.2453(615
26.1}471|592
23.6/462/630
27.7472601
223311431
16.2311}431
25.6}445545
24.9}441546
17.3[319}436
18.2319}436
27.0436/541
21.7432[543

21.3}410[590
27.6/410590
30.8}410590

h|d|e|c|d,
(mm)

7501675[1200[500350(0)
7501682]1200[500[350(cx)
750}660{1200|500[350(cx)
7501670[1200|500350()
1000[926]1200{500[350(x1)
1000[931{1200[500[350(cz)
1000[919]1200J500[350(cz)
1000/926]1200{500[350(x1)
300[277]420]150[140(c)
300[259]420]150]140(c)
300]261]420]150]140(c)
200/180}420]150[140(c)
200177}420[150[140(c)
200]173}420150[140(cx)
200]154}420150[140(cz)
300[270[420]180[140(c)
300[270[420]180[140(c)
300[270}420]180]140(c)
300]270}420]180]140(c)
300[270}420]180[140(c)
200/170}420]180[140(c)
200]170}420]180[140(c)
200]172}420180[140(c)
200]172}420[180[140(c)
200/170}420]180[140(c)
200]170}420]150[140(cz)
300]272}420]150]140(c)
300[273}420]150[140(c)
140[107}420|150|140(c)
140[106}420|150|140(c)
200]180}420]150[140(cx)
200171}420[150[140(c)
300[264/420]150[140(c)
300]280}420]150]140(c)
500}474}420(150[140(c)
500/471]420]150[140(c)
500}474/420]150[140(c)
250[226}420]150[140(c)
250[221}420]150[140(c)
250[218]420]150[140(c)
250[220[420]150[140(c)
250[223}420]150[140(c)
250[215[420]150[140(c)
300[272/420]150[140(c)
300[272/420]150[140(c)
300[288}420]150]140(c)
300[275[420]150]140(c)
200171}420[150[140(c)
200171}420[150[140(c)
200]173}420150[140(c)
200]170}420]150[140(cx)

450}400[600]2001200(e)
450}400/600]200[200(e)
450}400/600]200[200(e)

A;(mm?) |
Arrangmt., Anch. cond.

7843|B,hook
4824|B,hook
7602|B+D,hook
4816|B+D,hook
6085|B,hook
3941|B,hook
6702|B+D,hook
4384|B+D,hook
639|D,hook
636|B+D,hook
628|C.hook
402|B,hook
444|D,hook
424|B+D,hook
402|C,hook
766|B.hook
755|D,hook
755|D,hook
656|B+D,hook
766|C.hook
766|B.hook
755|D,hook
656|B+D,hook
656|B+D,hook
766|C.hook
403|G,hook
628|G,hook
806|G,hook
628|B,hook
1232|B,hook
628|B.hook
1232|B.hook
905|B,hook
1608|B,hook
904|B.hook
1608|B.hook
1809|B+G,hook
904[B.hook
888|B+D,hook
904|B.hook
886|B+D,hook
904[B.hook
886|B+D,hook
904|B.hook
904|B.nil
628|B.hook
628[B.nil
904|B.hook
904|B.nil
628|B.hook
628[B.nil

785 | G,hook
785 | B.hook
778 | Dhook

27

Pieg (KN) |
Fail. mode

7000]y+s
6700]s
6580]s
7390]s
6500lf
9000]y+s
7530]y+s
8750[s
810|f
740y+s
705|f
475|y+s
540|f
510y+s
435|y+s
1150fs
900[s
1178]s
1185]s
1158]s
815|s
900]s
665]s
843|f
845|s
408|f
650]y+s
510]y+s
250[s
290s
650|f
850[s
842[s
810Js
1200fs
1900[s
1700fs
850s
800s
750[s
800|s
760]s
740]s
563|y+s
493|y+s
558]s
585|y+s
840|f
693|f
750[y+s
640|y+s

1110 s
1420 s
1340 s

Pres/Pprfd |
Fail. mode

1.07|y+s
L.11]y+s
1.00]y+s
1.32)s
0.85]y+s
1.12]y+s
0.94[y+s
1.13]s
1.02Jf
1.04[f
0.97f
0.98|f
L11ff
1.13[f
1.07|f
1.33]s
0.89[s
1.22fs
1.22]s
1.21]s
1.07|f
1.14|f
0.97f
118|f
L11ff
0.93f
0.93]y+s
0.81]s
1.05]s
1.07]s
1.04[f
0.97s
1.22]s
1.09]s
1.05s
1.18s
1.26fs
1.20fs
1.01fs
1.06|s
1.19]s
1.19]s
1.06]s
0.74]s
0.80]s
0.77)s
0.80s
1.43]y+s
1.16[f
1.31|f
1.17|f

1.11 | y+s
1.08 | y+s
1.00 | f

P pred/Prprea

0.82
0.64
0.84
0.60
0.90
0.72
0.83
0.63
1.06
1.18
1.14
1.37
1.48
1.46
1.57
0.71
0.82
0.79
0.86
0.78
1.08
1.20
1.21
1.37
1.14
1.29
0.89
0.65
0.80
0.63
1.01
0.88
0.55
0.39
0.48
0.43
0.32
0.63
0.72
0.64
0.65
0.57
0.67
0.76
0.65
0.75
0.79
0.99
1.02
1.21
1.13

0.77
0.98
1.03



A4
A5
A6
A7
A8
A9
Al10
All
Al2
Bl
B3
Suzuki et al.®
BP-20-1
BP-20-2
BPC-20-1
BPC-20-2
BP-25-1
BP-25-2
BPC-25-1
BPC-25-2
BP-20-30-1
BP-20-30-2
BPC-20-30-1
BPC-20-30-2
BP-30-30-1
BP-30-30-2
BPC-30-30-1
BPC-30-30-2
BP-30-25-1
BP-30-25-2
BPC-30-25-1
BPC-30-25-2
BDA-70x90-1
BDA-70x90-2
BDA-80x90-1
BDA-80x90-2
BDA-90x90-1
BDA-90x90-2
BDA-100x90-1
BDA-100x90-2
Suzuki et al.?
TDL1-1
TDL1-2
TDL2-1
TDL2-2
TDL3-1
TDL3-2
TDS1-1
TDS1-2
TDS2-1
TDS2-2
TDS3-1
TDS3-2
TDMI1-1
TDM1-2
TDM2-1
TDM2-2
TDM3-1
TDM3-2
Suzuki et al.'
BDA-20-25-70-1

21.4}410/590
27.7}410590
26.9}410590
25.21410590
27.6/410[590
27.7}410590
18.8}410/590
18.0410[590
26.3}410}590
27.8[410[590
34.01410590

21.3}413)606
20.4}413)606
21.9}4131606
19.9413|606
22.6/413)606
21.5[413)606
18.9}413|606
22.04131606
29.1}405[592
29.8[405592
29.8[405592
29.8[405592
27.3}405(592
28.5[405592
28.9}405592
30.9]405/592
30.9}405592
26.3[405592
29.1J405592
29.2J405592
29.1]356501
30.2356/501
29.1]356/501
29.3]356/501
29.5356/501
31.5]356/501
29.7]356/501
31.3[356/501

30.9[356501
28.2]356/501
28.6[356/501
28.8]356501
29.6]356|501
29.3]356/501
25.6]356/501
27.0]356/501
27.2]356501
27.3]356/501
28.0]356/501
28.1]356501
27.5[383|522
26.3]383|522
29.6/383|522
27.6]383|522
27.0370[528
28.0370[528

26.1|358]496

450}400[600]2001200(e)
450}400[600]2001200(e)
450}400/600]200[200(e)
4501400/600]200[200(e)
450}400[600]200[200(e)
4501400/600]200[200(e)
450}400/600200[200(e)
450}400/600]200[200(e)
450}400/600]200[200(e)
450}400}40012001200(e)
450}400}400200[200(e)

200[150[540[300[150(e)
200/150[540[300[150(e)
200]150[540[300[150(e)
200]150[540[300[150(e)
250[200[540[300[150(e)
250[200[540[300[150(e)
250[200[540[300[150(e)
250[200[540[300[150(e)
200]150J500[300[150(e)
200]150[500[300[150(e)
200]150[500[300[150(e)
200]150[500[300[150(e)
300[250[500[300[150(e)
300[250[500[300[150(e)
300[250]500[300]150(e)
300[250|500[300]150(e)
300[250|500[250[150(e)
300[250/500[250[150(e)
300[250]500250]150(e)
300[250]500[250]150(e)
300[250/500[250[150(e)
300[250|500[250[150(e)
300[250]500250]150(e)
300[250]500[250]150(e)
300[250/500[250[150(e)
300[250/500[250[150(e)
300[250]500[250]150(e)
300[250]500[250]150(e)

350[300}600[250[150(e)
350[300]600[250]150(e)
350[300]600[250]150(e)
350[300}600[250[150(e)
350[300}600[250[150(e)
350/300]600[250]150(e)
350300[450250]150(e)
350[300}450[250[150(e)
350[300}450[250[150(e)
350[300}450250]150(e)
350300[450]250]150(e)
350[300450[250[150(e)
300[250/500[250[150(e)
300[250]500250]150(e)
300[250]500250]150(e)
300[250/500[250[150(e)
300[250/500[250[150(e)
300[250]500[250]150(e)

200]150[450[250[150(e)

785 | G.nil

785 | B.nil

778 | D.nil

785 | G,full

785 | B,hook
785 | G,hook
785 | G,full+bob
785 | G,full

785 | G,full+bob
628 | G, full

471 | G,full

570 | G,hook
570 | G,hook
570 | Bhook
570 | Bhook
713 | G,hook
713 | G,hook
713 | Bhook
713 | Bhook
428 | G,hook
428 | G,hook
428 | B.hook
428 | B.hook
570 | G,hook
570 | G,hook
570 | B.hook
570 | Bhook
570 | G,hook
570 | G,hook
570 | B,hook
570 | B.hook
570 | G,hook
570 | G,hook
570 | G.hook
570 | G.hook
570 | G,hook
570 | G,hook
570 | G.hook
570 | G.hook

285 | G,hook
285 | G.hook
428 | G,hook
428 | G.hook
570 | G,hook
570 | G.hook
428 | G,hook
428 | G,hook
570 | G,hook
570 | G.hook
784 | G,hook
784 | G,hook
285 | G,hook
285 | G.hook
428 | G,hook
428 | G.hook
1270 | G.hook
1270 | G,hook

285 | G,hook
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1230 s
1400 | s
1230 s
1640 | s
1510 s
1450 | s
1520 |
1640 | £
1640 | £
2080 | s
1770 | £

519 | y+s
480 | y+s
519 | y+s
529 | y+s
735
755 s
818 | y+s
813 | y+s
485 | y+s
480 | y+s
500 | £
495 | f
916 |s
907 | y+s
1039 | y+s
1029 | y+s
794 | y+s
7258
853 | y+s
872 | y+s
784 | y+s
755 | y+s
858 | y+s
853 | y+s
853 | y+s
921 | y+s
911 | y+s
931 | y+s

392 |f
392 |
519 |f
472 |
608 | f
627 |
921 |f
833 |f
1005 | £
1054 | f
1299 | y+s
1303 | y+s
490 | f
461 |f
657 |
657 |
1245 s
1210 s

294 |

1.23 | y+s
1.06 | y+s
0.95 | y+s
1.30 | y+s
1.15 | y+s
1.29 | y+s
1.40 | y+s
1.55 | y+s
1.28 | y+s
1.25 | y+s
127|f

1.19 | y+s
1.12 | y+s
1.01 | y+s
1.07 | y+s
1.14 | y+s
1.19 | y+s
1.19 | y+s
1.09 | y+s
1.01 |
1.00 | £
1.04 | f
1.03 | f
1.18 | y+s
1.15 | y+s
1.12 | y+s
1.08 | y+s
1.09 | y+s
1.07 | y+s
1.02 | y+s
1.04 | y+s
1.02 | y+s
0.97|f
L11|f
1.10 | f
110 |f
118 |f
117 |f
1.19|f

0.99 | f
0.99 |
091 |f
0.83|f
0.93 | y+s
0.96 | y+s
1.15 | y+s
1.02 | y+s
1.12 | y+s
1.17 | y+s
1.29]s
129]s
L11|f
1.05 | f
1.04 | f
1.05 | f
142 s
136 |'s

1.00 | £

0.77
0.98
0.98
0.95
0.98
0.84
0.85
0.83
0.96
0.97
1.20

0.84
0.83
0.98
0.96
0.76
0.74
0.83
0.88
1.10
1.10
1.29
1.29
0.76
0.77
0.90
0.92
0.82
0.77
0.94
0.94
0.99
1.01
1.02
1.02
1.05
1.07
1.08
1.10

1.30
1.25
1.02
1.02
0.89
0.89
0.97
0.97
0.85
0.85
0.73
0.73
1.25
1.23
1.04
1.01
0.57
0.58

1.54



BDA-20-25-70-2  26.1358[496  200[15014501250|150(e) 285 | G.hook 304 | 1.03 | f 154
BDA-20-25-80-1 254358496  200[15014501250|150(e) 285 | G.hook 304 | 104t 151
BDA-20-25-80-2  25.4[358]496  200|150[450]250]150(e) 285 | G.hook 304 | f 104 f 151
BDA-20-25-90-1  25.8[358]496  200|150[450]250]150(e) 285 | G.hook 333 | f 113 | f 1.53
BDA-20-25:90-2  25.8J358[496  200[150[4501250|150(e) 285 | G.hook 333 |f L13 | 153
BDA-30-20.70-1 252358496  300]250450]200|150(e) 428 | G,hook 534|f 0.90 | £ 1.05
BDA-30-20-70-2  24.6[3581496  300]250[450]200]150(e) 428 G.hook 549 |y+s 093 |f 1.05
BDA-30-20-80-1  25.2]358]496  300]250450]200]150(e) 428 G,hook 568 | f 0.96 | f 1.05
BDA-30-20-80-2  26.6[358]496  300[2501450[200|150(e) 428 | Gyhook s64|f  0.94|f 1.08
BDA-30-20-90-1  26.03581496  300[250[450[200|150(e) 428 | Gyhook S83[f 0.98f 1.06
BDA-30-20-902  26.1[358]496  300]250[450]200]150(e) 428 G.hook 588 | f 0.99 | f 1.06
BDA-30-25-70-1  28.8[383[522  300]250[450]250]150(e) 428 G.hook 662|y+s 091 |f 1.02
BDA-30-25-70-2  26.5]383}522  300]250450[250|150(e) 428 | G,hook 676 |y+s  095|y+s 099
BDA-30-25-80-1  29.4J383|522  300]2501450250|150(e) 428 | G,hook 696 |y+s  095|f 1.02
BDA-30-25-80-2  27.8[383[522  300]250[450]250]150(e) 428 G,hook 725|y+s 100 f 1.00
BDA-30-25-90-1  29.0[383[522  300]250[450]250]150(e) 428 G.hook 764|y+s  1.05|f 1.03
BDA-30-25:90-2  26.8]383}522  300]2501450250|150(e) 428 | G,hook 764 |t 106|y+s 0.9
BDA-30-30-70-1  26.8]3581496  300]250450300[150(e) 428 | G,hook 769 |y+s 094 [y+s 0.9
BDA-30-30-702  25.9[358]496  300]250[450]300]150(e) 428 G.hook 730|y+s 091 |y+s 098
BDA-30-30-80-1  27.4[358]496  300]250[450]300]150(e) 428 G.hook 828 y+s  101|y+s  1.00
BDA-30-30-80-2  27.4[358[496  300[2501450[300[150(e) 428 | G,hook 809 [y+s  0.98|y+s 1.0
BDA-30-30-90-1  27.2358496  300]2501450300150() 428 | Gyhook 843|y+s 103 [y+s 099
BDA-30-30-902  24.5[358]496  300]250[450[300]150(e) 428 G.hook 813|y+s  1.05|y+s 096
BDA-40-25-70-1  25.9[358]496  400[350[450]250]150(e) 570 | G.hook 10195 106]y+s  0.80
BDA-40-25-70-2  24.8J358[496  400[35014501250|150(e) 570 | G.hook 1068 |y+s  L13|y+s 078
BDA-40-25-80-1  26.5J358[496  400[35014501250|150(e) 570 | G.hook 117 L15|y+s  0.80
BDA-40-25-80-1  25.5[358]496  400[350[450]250]150(e) 570 | G.hook 117 |y+#s  L17|y+s 079
BDA-40-25-90-1  25.7[358]496  400[350[450]250]150(e) 570 | G.hook 1176 | f 123|y+s 079
BDA-40-2590-2  26.0B58H96  400[350[4501250|150(e) 570 | G.hook 1181 | 123|y+s  0.80
Suzuki et al.'!
BPL-35-30-1  24.1[353[505  350]300[500[300[150(e) 642 | G.hook 960 | s L1l |y+s 075
BPL-35-30-2  25.6[353[505  350]300[500[300[150(e) 642 | G.hook 941 s 106|y+s 076
BPB-35-30-1  23.7j353)505  350[300[500[300]150(e) 642 | G.full+bob 1020|y+s  1.04|y+s  0.86
BPB-35302  23.5j353)505  350[300[500[300]150(e) 642 | G.full+bob 1103 |y4s  L12|y4s 085
BPH-35-30-1  31.5B353|505  350[300|500[300]150(e) 642 | G.hook 980 | s 100|y+s  0.82
BPH-35-30-2  32.7353|505  350[300|500300]150(e) 642 | G.hook 1088 [y+s  1.09|y+s  0.83
BPL35-25-1  27.1353[505  350[300|500[250]150(e) 642 | G.hook 902 [y+s  1.09|y+s 081
BPL35-25-2  25.6[353)505  350[300|500[250]150(e) 642 | G.hook 872 s L08[y+s 079
BPB-35-25-1  23.2[353)505  350[300|500]250]150(e) 642 | G.full+bob 911 |y+s  1.02|y+s  0.89
BPB-35-252  23.7[353[505  350[300|500]250]150(e) 642 | G.full+bob 921 |y+s  1.02|y+s 089
BPH-35-25-1  36.6[353[505  350[300}500[250]150(e) 642 | G,hook 882 s 094|y+s  0.89
BPH-35-252  37.9[353[505  350[300}500[250]150(e) 642 | G,hook 951 [ 099[y+s  0.90
BPL-3520-1  22.5[353[505  350]300[500[200[150(e) 642 | G.hook 755 s 109|y+s 078
BPL-3520-2 215353505  350]300[500[200]150(e) 642 | G.hook 735|s 108|y+s 077
BPB-3520-1  204[353)505  350[300[500|200]150(e) 642 | G.full+bob 755 y+s 099 |ybs 087
BPB-35202  202j353|505  350[300|500|200]150(e) 642 | G.full+bob 804|y+s  1.06|y+s  0.86
BPH-3520-1  31.4353|505  350[300|500]200]150(e) 642 | G.hook 813 s 1.02|y+s 087
BPH-3520-2  30.8353|505  350[300|500]200]150(e) 642 | G.hook 794 s 100|y+s  0.86
Chan and Poh?'
A 39.7481/601  400325[600[200(150(e) 628 | G.full 1230 | f 131 f 111
B 383481601 400[325]600[200]150(e) 628 | G.full 1250 | £ 134t 1.10
c 36.4481/601  300[225(600[200]150(e) 942 | G full 870 |y+s  097|f 1.05

Note: o0 = square pile; e = circular pile; B = square bunched reinforcement; D =
diagonal bunched reinforcement; G = grid reinforcement; C = continuous bunched
reinforcement; f = flexural failure; s = shear failure; y+s = reinforcement yielding
followed by shear failure; 1 mm = 0.04 in.; 1 mm? = 0.0015 in.2; 1 MPa = 145 psi; 1 kN =
0.225 kip
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Fig. 2— Strut-and-tie models for four-pile cap without shear reinforcement (a) 3D, (b) 2D.
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(b) %P/z J{ Lx
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(© (d)

pile

circular
pile

Fig. 3— Proposed strut-and-tie model: (a) 3D truss; (b) 2D truss; (c) 3D view of strut and tie

details, (d) strut projection onto cap diagonal plane and (e) plan view of strut and tie details.
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Fig. 4 — Limit functions F,, F,, and F, , and yielding function P, to predict pile cap

nt ’ ns

strength: (a) flexural failure, (b) shear failure prior reinforcement yielding and (c) shear

failure after reinforcement yielding.
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(b)
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pile center
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pile center pile center
[ : || [ : ||
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Softening factor ﬁﬂ Softening factor ﬁﬂ

Fig. 5 — FE results for four-pile cap BP-30-30-2%: (a) comparison of measured/predicted

load-deflection curve. At the diagonal cap plane, superimposed to the strut-and-tie geometry
obtained from the proposed method ( 9?‘1 =48.64°): (b) FE contour plot of compressive stress

field and principal compressive directions at maximum load; (c) FE contour plot of
compressive stress field and principal compressive directions after failure; (d) FE contour

plot of concrete softening coefficient & at maximum load; (e) contour plot of concrete

softening coefficient & after failure.
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(a) (b)

P test/ P pred P tes/ P pred
4 4 =
» One-way shear
o Two-way shear A
3 ° CRSI Handbook 3
+ Bearing A
o Flexure o p =170
A
7 2 Cov=0,38
(% max = 4,80
E a0 wo =100 4 min =108
. 3 g o g sy o COV=030 |
%é =g % @ 5 max = 2,69 » "Shear"
o min =0,55 ear
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0 T T 0 T T
0 0,5 w/d 1 1,5 0 0,5 w/d 1
(©) (d)
P tesr/ P pred P tesr/ P pred
4 4
s "Shear" W= 135 » "Shear"
o Shear ACI CoV =021 o "Flexure" po= 1,01
3 o "Flexure" max = 2’69 3 A CovV =023
min = 0,63 ° max = 2,36
g =5 o s min = 0,66
2 2 A .
A2 A
A A
A M A A
1 o 1 DEQ g g KA§§
LECH:
O T T 0 T T
0 0,5 w/d 1 1,5 0 0,5 w/d 1
(e) ()
P tesr/ P pred P tesr/ P pred
4 4
s "Shear" A  "Shear" _ 1.08
o "Flexure" n =153 o "Flexure" ho=
cov=0,12
3 1 . cov=10,39 3 1 — 155
£ max = 531 min = 0.74
5 ’ -
min = 0,92 =
2 A g; A 2 A
2B 8 4
1 T 1
0 T T 0 T T
0 0,5 w/d 1 1,5 0 0,5 w/d 1
Fig. 6 - Ratio F,, /P, for 162 specimens" >822 pased on results obtained by: (a) ACI

sectional approach'?, (b)ACI STM'? (c) Adebar and Zhou®, (d) Souza et al.% (e) Park et al.’

and (f) the proposed method.
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Fig. 7 —(a) Fixed strut angle 8 adopted by other truss models vs. predicted strut angle at
failure Oi‘ied by the proposed model for 162 specimens">3%101125. (p) Effect of reinforcement

quantity Asr for different values of w/d on predicted strength by proposed model (PM).
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Input data:
Column desing load: P,
Geometry: d, e, w, lp ;Materials: £, fy

v

1)Determine strut angle 6.° (Eq. 21)

A+ v, (1+27) -V

I-v,

cot0 =

with?»zx/zg,vu - L

of d’
!

2)Obtain reinforcement area A, (Eq.13)

P
=—-= —cot®

Ar 22 f

T

3)Determine P, , at 0 (Eq.32)
481, 1., (1, +2¢c, cot0})
P = 1+cot” 6%
"2 0.8+170(g, +¢, +€ —¢,)

NO Modify geometry
or materials

YES

Design completed

Fig. 8 —Flowchart of proposed design method.
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