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ABSTRACT 

Pile caps used in foundations are commonly designed for simple cases of loading and 

geometry using the strut-and-tie method. This approach is known to provide safe designs and 

rather conservative predictions of the ultimate failure load of tests. This level of conservatism 

is due mainly to the large simplifications made in the geometry assumed which in many cases 

ignore relevant parameters such as the size of the column. A three-dimensional strut-and-tie 
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model is presented for four-pile caps in which the geometry adopted is optimized. The 

inclination of the direct strut from the column to the pile is obtained analytically through the 

maximization process of the resisting load carried by the truss assuming different modes of 

failure (flexural and shear). This approach is shown to provide more accurate predictions of 

strength of existing deep pile cap tests with lower scatter compared to design approaches in 

the literature and ACI 318 Code. 

Keywords: pile cap, reinforced concrete, strut-and-tie method, truss model, design, 

discontinuity region, shear, three-dimensional, finite element analysis 

INTRODUCTION 

A pile cap is a foundation element commonly found in construction that is used to transfer 

loads from the superstructure to a group of piles. It often consists of a lightly reinforced 

concrete block with no shear reinforcement which is cast on top of the piles. The structural 

behavior of pile caps can be complex and several simplifications are generally made in 

design. Design procedures based on test results, rules of thumb and past experience were 

frequently followed in the past. A significant progress was made in the last decades with the 

proposal of more consistent design methods1,2,3,4,5,6. However, comparison of the predictions 

obtained by these methods shows a significant scatter in the results as shown in this paper. Of 

special concern is the fact that some of these methods can overestimate the shear strength, 

leading in some cases to brittle failures in elements designed to fail in a ductile flexural 

manner. This generally explains why simplifications and conservative assumptions are still 

common in design codes. Refinement of current analytical approaches could derive in more 

efficient designs which in turn will reduce material needs, construction times and costs. 

Pile caps can be classified based on the shear span-to-depth ratio w/d as slender (w/d>1) or 

deep (thick) (w/d<1)7: the former behave governed by flexure and in the latter arching action 
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is the predominant resisting mechanism. This paper and previous experimental programs and 

design methods focus mainly on the latter case.  

Deep pile caps are discontinuity regions (D-Regions), characterized by the development of 

complex stress fields. Two-way shear failures, with or without reinforcement yielding, of 

deep pile caps designed to fail in flexure are very common in the reported experimental 

campaigns1,2,3,8,9,10,11. This type of failure is characterized by the formation of a conical plug 

under the column or punching around one or more piles (Fig. 1). 

Two different approaches are accepted for pile cap design in the ACI 318-1412 and other 

major codes of practice. The traditional design procedure considered in the ACI Building 

Code is based on a sectional force approach. This approach seems adequate for slender pile 

caps, however it is contentious3,4 whether it is also valid for deep pile caps as some of the 

main assumptions of sectional analysis do not apply (i.e. flexural compression is non-uniform 

along the cap width, plane sections do not remain plane and shear stresses are not uniform 

along the cap depth). Alternatively to sectional-based approaches, the strut-and-tie method13 

(STM) is also accepted by the ACI Building Code since the ACI 318-02. The STM is a 

lower-bound method which is especially appropriate for the design of D-Regions. The 

application of the method is conceptually simple: after adopting an idealized truss formed by 

concrete struts, steel ties and nodal zones, forces at the truss elements are obtained from 

equilibrium and compared with their corresponding estimated strengths to determine the 

maximum admissible load. The typical strut-and-tie model of a pile cap is formed by inclined 

struts expanding from the column to the piles and horizontal ties between the piles. Two- and 

three-dimensional models are generally considered (Fig. 2); 2D models are usually preferred 

in practice due to the lack of general guidelines for the application of the STM in 3D14. 

In the scientific literature for pile cap analysis and design, most analytical models proposed 
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are based on spatial 3D truss models3,4,5,6,15,16,17,18; some of these models are reviewed in this 

paper. Most of these references focus on the proposal of different formulae to estimate a 

concrete strength effectiveness factor in order to reproduce accurately the failure load, but 

little attention is paid on the truss geometry and a predefined truss geometry is generally 

assumed for simplicity. The use of more refined models derived by iteration of the truss 

geometry could lead to better initial predictions which would not need further adjusting19. 

This paper presents a new, alternative STM-based approach for the analysis and design of 

deep pile caps. A refined truss geometry is considered, with the strut inclination being 

determined by maximizing the pile cap strength considering different failure conditions. The 

method is developed for rectangular four-pile caps without shear reinforcement and 

concentrically loaded with a square column, a configuration which is commonly found in 

construction. The proposed model satisfies equilibrium, strain compatibility and considers 

softening of the compressive strength for cracked concrete. It also accounts for the effect of 

reinforcement area and configuration (distribution and anchorage conditions) to estimate the 

shear strength, factors which are not considered in previous models; this leads to a more 

precise prediction of the shear strength, hence reducing the potential of occurrence of brittle 

failures. For the validation of the proposed method, strength predictions obtained by the 

proposed and other five methods of 162 pile cap specimens are compared and discussed. The 

adequacy of the adopted model is further verified by means of 3D FE analysis. 

RESEARCH SIGNIFICANCE 

Four-pile caps are commonly used in practice and optimizing their design can result in 

substantial cost savings. Current design approaches can give significantly different results, 

which often leads to the adoption of excessively conservative solutions. This paper describes 

an alternative approach for the design of four-pile caps based on a refined three-dimensional 
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strut-and-tie model where the strut inclination is determined by maximizing the pile cap 

strength. The method considers strength softening of cracked concrete, compatibility 

constraints and reinforcement details. Consideration of this model could lead to a more 

rational design procedure of deep pile caps. 

DESIGN METHODS FOR PILE CAPS 

Existing truss-based models for pile cap design 

Several strut-and-tie-based models have been proposed in the literature for pile cap design. 

Although the geometric shape of the truss models adopted by different authors is 

fundamentally similar, the location of the nodes, and hence the resulting strut inclination 3d
sθ , 

do not always coincide. Truss forces can be expressed as a function of 3d
sθ  as (Fig. 2): 
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It should be noted that, despite the 3D geometry of the truss, resulting tie forces from Eq. (2) 

and (3) are equal to those obtained from a 2D model (Fig. 2(b)). Therefore 2D and 3D trusses 

will result in the same area of reinforcement if the design is merely based on tie forces. 

The design method proposed by Blévot and Frémy1 is one of the first references on pile cap 

analysis using truss models. For four-pile caps they adopted a truss model with four lower 

nodes located at the centre of the piles at the reinforcement level and four upper nodes at the 

column quarter points on the cap surface. Based on test results it was suggested to limit the 

steel stress to 0.6 yf  and the bearing stress at the piles and the column to d
scf 32' sin9.0 θ . 

Adebar et al.3 studied the suitability of three-dimensional strut-and-tie models in pile cap 

design and adopted a truss model formed by four upper nodes considering the depth of the 
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compressive stress block under the column. To evaluate the flexural capacity the steel stress 

was limited to the yield stress yf  and to prevent shear failures the maximum bearing stress 

on concrete was limited to '
cf . The latter limitation was later refined by Adebar and Zhou4 as: 

( )
( ) 0.11/33.0

1.0 1/0.33

66.0

12

''

≤−=β

≤−=α

αβ+≤

ss

ccb

wh

AA

fff

 ( 4 ) 

where '
cf  has units of MPa (if psi units are used, factor 6 in Eq. (4) must be replaced by 72). 

Factors α  and β account for confinement according to the strut geometry (i.e. A1 and A2 are 

the loaded and supporting area respectively, and ss wh /  is the strut height-to-width ratio). 

Otherwise, the adopted truss model was identical to that proposed by Blévot and Frémy. 

Park et al.5 developed a 3D strut-and-tie approach that considered strain compatibility, 

concrete compressive softening and a nonlinear constitutive relationship for concrete. Failure 

could be caused by crushing or splitting of the diagonal strut, crushing of the horizontal 

compression zone under the column or reinforcement yielding. The upper nodes of the truss 

model were located at the column quarter points at half depth of the compressive stress block. 

The truss model proposed by Souza et al.6 was formed by only one upper node located at the 

center of the column on the cap surface (Fig. 2(a)). This simplification implied a significant 

change in the strut inclination and, hence, the forces resulting in the truss system. To 

determine the pile cap flexural strength the following equation was proposed: 

e

fdA
P

ysTyφ
=

4
 ( 5 ) 

where yφ  was a calibration factor (equal to 2.05) giving the lowest coefficient of variation of 

the predicted test data. To predict the shear strength the model by Siao20 was adopted: 

3/208.2 ccdfP =  ( 6 ) 

Guo16 developed a strut-and-tie-based method for evaluating punching strength of pile caps 
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with uniform grid reinforcement. The adopted truss model was formed by one upper central 

node at 0.1 times the effective depth from the cap surface and four lower nodes at the 

reinforcement level slightly displaced from the center of the piles. Alternatively to lower-

bound truss models Jensen and Hoang21 proposed an upper bound plasticity approach for pile 

cap analysis to complement strut-and-tie models. Three independent collapse mechanisms 

were considered: (i) punching, (ii) shear and (iii) flexural. 

Sectional methods vs. STM in the ACI 318-14 Code 

According to the current ACI 318-1412, both the sectional approach and the STM are 

permitted for pile cap design. The sectional method is applied similarly to two-way slabs and 

footings. The flexural and shear strength are evaluated separately. The flexural strength is 

governed by the amount of longitudinal reinforcement and is obtained assuming that (a) plane 

sections remain plane and (b) the concrete compressive block extends to the entire pile cap 

width. The flexural critical section is located at the face of the column. The shear strength is 

governed by the cap depth and the concrete strength and is determined by the most restrictive 

condition considering one-way and two-way shear. For one- and two-way shear the critical 

sections are located at d and d/2 from the column face, respectively. 

dbfV wcc
'17.0 :shearway -One λ=  ( 7 ) 

dbfV cc 0
'0.33  :shearway -Two λ=  ( 8 ) 

where '
cf  has units of MPa (if psi is used, Eq. (7) and (8) must be multiplied by 12). 

According to ACI 318-14 the shear due to the pile reaction at the critical section around the 

column shall be accounted for as follows: (i) when the pile center is located dp/2 or more 

inside the section, the reaction produces no shear, (ii) when the pile center is located dp/2 or 

more outside the section, the entire pile reaction shall be considered; and (iii) for intermediate 

positions, the portion of the pile reaction is obtained from a linear interpolation. An upper 
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limit on the shear strength shall be considered22, where the following limits are proposed: 
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where bo is the column perimeter and '
cf  is in MPa (for psi, the relationships above should be 

multiplied by 12). Application of the STM must be in accordance with the general guidelines 

of the ACI Code 318-1412. The area of reinforcement is calculated from the tie forces and the 

factored yield strength. Concrete stresses are limited to enable yielding of the reinforcement 

prior to failure: the compressive stresses in the struts shall not exceed '51.0 cf  assuming that 

no confinement reinforcement is present; considering general guidelines for 2D elements (no 

provisions are given for 3D nodal zones), the concrete compressive stress in the nodal zone 

underneath the column and over the piles shall be limited to '85.0 cf  and '51.0 cf , respectively. 

ACI 318-02, ACI 318-08 and ACI 318-11 restricted the application of the STM only to pile 

caps in which the distance between pile and column axes was equal or less than two times the 

height of the cap. No reference to limits of application is made in the current ACI 318-14. 

PROPOSED STRUT-AND-TIE MODEL 

Equilibrium in the three-dimensional model 

A statically determinate 3D truss model was adopted to represent the load transmission from 

the column to the piles (Fig. 3). The position of the four lower nodes was fixed at the center 

of the piles at the reinforcement level and the upper nodes were located inside the column and 

above the cap surface. Unlike other truss-based models, the horizontal position of the top 

nodes was not assumed beforehand as the strut inclination d
s
3θ  is a geometrical variable 

which will be obtained by maximizing the strength given by a lower-bound strength function 

derived as described later. Forces at diagonal struts and horizontal ties can be calculated from 
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equilibrium (Eq. (1-3)). The formulae presented hereafter were derived for a square-shape 

cap (ex=ey=e) loaded by a square column (cx=cy=c), which applies to most four-pile caps in 

practice. Hence, considering symmetry Eq. (2) and (3) can be merged into one as: 

d
s

d
s

ytxtt

PP
FFF

32,,
tan24tan4 θ

=
θ

===  ( 11 ) 

Considered local failure modes and corresponding limit functions 

Three potential local failure modes were considered: mode (i) accounts for exceeding the 

reinforcement strength; mode (ii) accounts for crushing of the diagonal strut at the base of the 

column with narrowing of the strut; and mode (iii) accounts for splitting of the diagonal strut 

due to transverse cracking. The maximum admissible load was obtained for each local failure 

mode in terms of the variable strut angle d
s
3θ , pile cap geometry and material properties. This 

relationship is denoted as limit function for a local failure mode. 

Mode (i) 

In design, the limit function corresponding to yielding of the reinforcement was obtained by 

fixing the value of the tie force to its yield strength. Considering that reinforcement is 

distributed symmetrically in each horizontal direction, the latter can be calculated as: 

,
2
sT

nt y ts y y

A
F A f f= =  ( 12 ) 

where AsT is the total amount of reinforcement in the considered direction (Fig. 3(d)). The 

maximum column load limited by reinforcement yielding (limit function associated to mode 

(i)) can be derived by equating Eq. (11) and Eq. (12) and is given by: 

3 3
, ,4 2 tan 2 2 tand d

nt y s nt y s sT yP F A f= θ = θ  ( 13 ) 

The analysis of 162 pile cap specimens from the literature, which are further described in 

subsequent sections, showed that specimens where Pnt,y governed the failure load had a 

significant strength enhancement due to strain-hardening effects. For such cases of 
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assessment, a better prediction of the failure load was obtained by adopting the steel ultimate 

stress fu rather than the yield stress fy; i.e. Pnt,y is replaced by Pnt,u given by: 

3
, 2 2 tan d

nt u s sT uP A f= θ  ( 14 ) 

Eq.(14) considers strain-hardening of steel indirectly, leading to a further realignment of the 

strut after steel yielding providing more accurate predictions of the experimental data. This 

simplified approach was preferred over more complex solutions considering the plastic 

strains in the steel explicitly. Further implications and verification of this simplification for 

tests where Pnt,u governed the failure load are discussed in subsequent sections. 

Mode (ii) 

Crushing of the diagonal strut was considered by limiting the force in the strut to its capacity 

at the top section where it narrows at the intersection between the pile cap and the column. 

This top region was not considered as a node, but rather as a critical region to assess the strut 

capacity. The maximum admissible load of the pile cap reduces as the strut inclination 

increases since the strut becomes narrower. The strut strength can be obtained as (Fig. 3): 
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where ,1sw  is the strut width at the top section. The compressive strength of concrete was 

taken as the plastic strength fcp
23, assuming an uncracked uniaxial compressive state. This 
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assumption was justified based on experimental observations showing that this region 

remains uncracked until failure and was further verified using 3D FE analysis as shown later. 

The strut area 1,csA  was obtained from the projection of a horizontal triangle expanding from 

the column corner onto a plane perpendicular to the strut (Fig. 3(c)) where the stresses are 

constant. Considering Eq. (15-19) the nominal strength of the top section of the strut is 

cp
d

sd
s

ns fw
d

F 3

2
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Hence, the maximum admissible vertical load limited by crushing of the diagonal strut at its 

top section is obtained from Eq. (1) and Eq. (20) giving: 

2
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Mode (iii) 

Splitting of the diagonal strut was considered by limiting the force in the strut to its capacity 

at the bottom where the strut meets the flexural reinforcement. The nominal splitting strength 

of the strut can be estimated as (Fig. 3): 

cpcscecsns fAfAF ξ== 2,2,2,  ( 22 ) 

pspcs lwA 2,2, β=  ( 23 ) 

d
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d
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where ,2sw  is the strut width at the bottom. The concrete softening coefficient ξ is a strength 

reduction factor due to transverse strains. The model by Vecchio and Collins24 was adopted: 
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f

ff ≤
1708.0 ε+

=ξ=  ( 26 ) 

where stε  is the tensile strain transverse to the principal compressive direction. To extend this 
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relationship to 3D, it was assumed that the two principal strains perpendicular to the strut 

,1stε , 2,stε  contribute equally to softening and stε  in Eq. (26) was replaced by 2,1, stst ε+ε . This 

sum can be obtained from the first invariant of the strain tensor and considering perfect bond 

between concrete and steel as: 

sststztytxzyx ε+ε+ε=ε+ε+ε=ε+ε+ε 2,1,  ( 27 ) 

Eq. (27) introduces a strain compatibility condition. The average compressive strain in the z-

direction zε  and the average compressive strain of the strut sε  are estimated as: 
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The average tensile strain in the x- direction can be estimated from the steel strain as: 
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and tyε  can be obtained similarly replacing xspA ,  by yspA , . Eq. (30) is valid for cases where 

the reinforcement does not yield at failure; if this is not the case, this expression is an 

approximation where the strains are generally underestimated and hence the effective 

strength in the strut could potentially be overestimated. This could occur when adopting fu as 

the steel stress limit in assessment (Eq. 14). However, the results presented in the next section 

show that this simplification gives reasonable strength predictions of the experimental data 

available. Adopting a more realistic relationship taking into account strain-hardening of the 

tie would introduce complexity with little improvement in accuracy in this case. In addition, 

the use of a more refined post-yielding relationship would be cumbersome as it would require 

introducing post-yielding properties for steel which are often not available in test reports. 
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In Eq. (30), the area of reinforcement over the pile jspA ,  for each direction j, can be written as 

a fraction of the total reinforcement area jsTA , : for bunched reinforcement in symmetrical 

cases, jspA ,  is taken as half jsTA , , assuming that all rebars are placed over the piles; for grid 

layouts with hook and nil anchorages (straight bars without hooks), jspA ,  can be calculated as: 

     pilesr rectangula and squarefor 

   pilescircular for 
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cl
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cd
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+
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 ( 31 )  

assuming that rebars are distributed uniformly between the outside edges of the piles and 

considering the spread of the diagonal strut at the reinforcement level; and for grid layouts 

with full anchorage, jspA ,  is taken equal to 2/, jsTA  to consider confinement effects. 

2,csA  is obtained by projecting the pile section onto a plane perpendicular to the inclined strut 

passing through the lower node of the strut as shown in Fig. 3(c). If the pile section is 

circular, the projection is an ellipse with minor and major axis equal to pl  and 2,sw  

respectively (i.e. 4/π=β p  and pl  is the diameter of the pile pd ). If the pile section is 

rectangular, the projection is a rhombus with pl  and 2,sw  diagonals (i.e. 5.0=β p  and pl  is 

the diagonal of the pile section). For pile caps with 2/ >de , where the behavior is closer to a 

beam factor pβ  is taken equal to 1 (rectangular projection) for both circular and square piles. 

The maximum admissible vertical load limited by splitting of the diagonal strut (limit 

function associated to local failure mode (iii)) is obtained from Eq. (1) and Eq. (22-31): 
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Evaluation of the strength and the global mode of failure 

The lower-bound strength function of the element nP  can be defined by the three limit 

functions ( ,nt uP , 1,nsP , 2,nsP ) given by Eq. (14), Eq. (21) and Eq. (32) as: 

( ), ,1 ,2min , ,n nt u ns nsP P P P=  ( 33 ) 

This function, which varies with 3d
sθ , defines an area below of admissible loads and strut 

angles (Fig. 4) in which equilibrium is achieved without failure (lower-bound theorem of 

plasticity). Therefore, the best estimation of the pile cap strength predP  will be the maximum 

(peak) value of the lower-bound strength function nP  in Eq. (33). The peak point predP  and its 

corresponding strut inclination d
pred
3θ  can be obtained from the intersection between ,1nsP  and 

,2nsP  or between ,1nsP  and ,nt uP , whichever gives the lowest load. The intersection between 

,1nsP and ,2nsP  represents the shear strength sP  whereas the intersection between ,1nsP and ,nt uP  

represents the flexural strength fP as shown in Fig. 4. Therefore, the predicted global mode of 

failure can be assessed based on which intersection point governs (Fig. 4). Shear failure can 

take place prior reinforcement yielding (Fig. 4(b)) when ,s nt yP P<  for 3 3d d
s predθ = θ  or after 

yielding (Fig. 4(c)) when ,s nt yP P>  for 3 3d d
s predθ = θ . 

Finding the predicted strength and mode of failure using the proposed model can be done by 

hand or numerically using a simple spreadsheet. Eq. (32) for ,2nsP  is implicit; strains txε , tyε , 

zε  and sε  are a function of the column load P , which is unknown a priori. To simplify the 

solution procedure it is suggested to assign an initial value estP  to estimate strains in Eq. (28-

30). A good initial value is fP , which is obtained independently of ,2nsP . estP  can be updated 

in later steps of the iterative process by sP  until convergence is achieved.  
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Relevance of the proposed method 

Existing strut-and-tie models for pile caps evaluate separately the flexural and the shear 

strength with two independent equations and the strut inclination is fixed by the geometry. 

The model presented here considers that the strut inclination is unknown a priori. As one 

additional variable was included, one extra equation was needed. Limit function 1,nsP  (Eq. 21) 

was added to the usual equations to determine both the flexural and the shear strength. This 

function considers the realignment of the strut to steeper angles while cracking which allows 

stress redistribution and the application of further load increments. This realignment is 

possible due to stress redistribution within the stub column. The proposed model accounts for 

the reinforcement area and its layout to determine the shear strength of pile caps. These two 

factors, which are not considered in existing models except in reference21, have been shown 

to have an effect on the shear strength: an increase of the reinforcement quantity6 or its 

concentration over the piles leads to higher shear strengths1,2,3,8. In the proposed model the 

reinforcement area and its layout influence the strut strength through the effective concrete 

compressive strength cef ; this in turn influences the pile cap strength. Only the reinforcement 

over the piles spA , which is assumed to contribute to resist the tensile stresses, is considered. 

Hence, the estimated steel tensile strains are lower for bunched configurations than for grid 

layouts with the same total amount of reinforcement; this assumption is consistent with 

experimental observations reporting higher failure loads for configurations with concentrated 

reinforcement1,2,3,8. 

VALIDATION WITH TEST RESULTS 

The proposed model was validated against 162 pile cap tests reported in the 

literature1,2,8,9,10,11,25 (Table 1). All specimens had a square shape in plan, had no shear 

reinforcement and were loaded at a centered square column. The proposed approach was 
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applied assuming that the reinforcement is placed along the sides of the cap. Tie areas of 

specimens with diagonal reinforcement were calculated by projecting the tie forces onto the 

x- and y-axis. For all specimens, the elastic moduli adopted for steel and concrete were 

200000 MPa (29000 ksi) and (MPa)4750 '
cf  ( (psi)57000 '

cf )12. 

Table 1 shows the ratio between the maximum load in the test and the predicted strength 

( predtest PP / ) and the predicted global mode of failure. The average value of predtest PP /  for the 

162 tests is 1.08 with coefficient of variation equal to 12%. Comparison of the predicted and 

observed modes of failure shows a correct estimation in 55% of the cases. This seems 

reasonable considering firstly, the uncertainty in identifying the mode of failure from test data 

as the failure of many of the specimens may be more accurately described as a combination 

of bending and shear; and secondly, the fact that the predicted shear and flexural strengths 

were very close to each other in many tests as shown in the last column in Table 1. If shear 

failure with and without yielding of the reinforcement are considered as one mode of failure, 

then the predicted and observed failure modes coincide in 75% of the cases. It can be 

concluded that the model predicts the strength and mode of failure with reasonable accuracy. 

VERIFICATION WITH FE RESULTS 

The assumptions made in the proposed method were further verified by means of FE analysis 

obtained with the 3D nonlinear FE-based tool FESCA 3D26, developed at Universitat 

Politècnica de València. The FE tool had been validated beforehand for the analysis of 

reinforced concrete pile caps as shown in26. This tool was used to visualize the internal stress 

flow and to obtain the concrete strength reduction field within the pile cap ),,( zyxξ  in order 

to compare it with the values adopted and estimated in the proposed model.  

The main characteristics of the constitutive material model used in the numerical tool are 

described in26. The following assumptions were adopted to verify the adequacy of the 
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proposed model. The concrete in tension was modelled using Hordijk’s softening curve after 

cracking with the tensile strength given by 3/2'21.0 cct ff = (MPa units) and the fracture 

energy 
18.0'73 cf fG = (N/m and MPa units, respectively) as defined in MC 201027. The 

concrete in compression was modelled using a parabolic relationship; compressive softening 

due to transverse tensile strains was considered adopting the relationship proposed in24 (Eq. 

(26)); enhancement of the compressive strength of concrete due to confinement was taken 

into account using a Drucker-Prager yield surface. Reinforcement steel was modelled as an 

elastic-hardening plastic material assuming perfect bond between the concrete and the steel. 

Fig. 5 shows the FE results obtained for specimen BP-30-30-2 from reference8 which failed 

in shear after reinforcement yielding. The load-deflection response was predicted accurately 

as shown in Fig. 5(a). Fig. 5(b) and (c) show the principal compressive stress field and 

trajectories in the cap diagonal plane at maximum load and after failure respectively. The 

proposed strut-and-tie model resulted in a strut inclination of º64.483 =θ d
pred . This angle and 

the associated strut widths are consistent with the FE compressive stress field (Fig. 5(b-c)). 

Fig. 5(d-e) show the FE contour plot of the concrete softening coefficient ξ  obtained in the 

diagonal plane of the cap at the maximum load and immediately afterwards. The proposed 

method adopts ξ  equal to 1 at the top region of the strut whereas at the bottom Eq. (26) gave 

a value of 0.5 in this case; these results are consistent with FE predictions shown in Fig. 5(e).  

Regarding failure, the numerical model predicts that strut softening initiates at the bottom due 

to steel yielding and propagates to the top (Fig. 5(d-e)); this weakening of the strut results in a 

stress redistribution with a realignment of the strut which becomes steeper and narrower in 

the region near the column. This behavior is consistent with the predicted mode of failure 

using the limit functions proposed in this work and observed in the deep pile cap test. 



 

18 

 

COMPARISON WITH EXISTING METHODS 

Five of the existing lower-bound methods described in this paper (ACI sectional force and 

STM approach12, Adebar and Zhou4, Souza et al.6 and Park et al.5) were applied to predict the 

failure load of the 162 specimens investigated (Fig. 6). The accuracy of the predictions was 

expected to vary from one method to another as the design philosophy and complexity behind 

each approach is considerably different. For example, the ACI STM approach, whilst simple, 

is expected to provide a lower-bound solution with no focus on the scatter of the results. 

Provisions for shear design with the ACI sectional approach12, considering the stress limits 

from the CRSI Handbook22, lead to unconservative shear strength predictions of many of the 

pile caps investigated (Fig. 6(a)). The majority of the specimens are predicted to fail in 

flexure whereas in reality many tests failed in shear. On the other hand, the ACI STM 

approach12 provide conservative predictions of all the tests (Fig. 6(b)). The high level of 

conservatism in some cases can be questioned due to its economic implications in design.  

Predictions by the approach by Adebar and Zhou4 (Fig. 6(c)) have a relatively low scatter 

( %21=COV ) although most failures are predicted incorrectly as flexural. The proposed 

bearing stress limit governs in 17 out of 162 specimens. For these 17 specimens the average 

strength ratio predtest PP /  is 1.03, with a coefficient of variation of 20%; these results are 

remarkable considering the simplicity of the method. Predictions by the model by Souza et 

al.6 (Fig. 6(d)) also have a low scatter ( %23=COV ) with an average value of the predtest PP /  

ratio of 1.01. It should be noted that the formula proposed for estimating the flexural strength 

was calibrated with experimental results, most of which were included in the current study. 

The shear design formula by Souza et al. does not capture correctly the influence of the pile 

cap depth on the shear strength similarly to the ACI sectional approach; both approaches 

overestimate the shear strength because they assume that the whole depth contributes to resist 
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the transverse tensile stresses. However, the internal flow of forces in the pile cap exhibits 

stress concentration at certain areas of the section as shown in FE analysis (Fig. 5); this is 

correctly identified in the proposed strut-and-tie model (only limited areas of the concrete 

section contribute to resist the shear stresses). The model proposed by Park et al.5 provides 

predictions on the conservative side (Fig. 6(e)). The shear strength is clearly underestimated, 

resulting in large Ptest/Ppred ratios in some of the specimens. 

The proposed approach has the lowest coefficient of variation (12%) with an average value 

slightly above one (1.08) (Fig. 6(f)). The refinement of the strut-and-tie geometry and the 

consideration of reinforcement area and layout in the determination of the effective strut 

strength are behind the accuracy in the strength predictions. Related to the former, in Fig. 7(a) 

the strut inclinations obtained analytically for each specimen with the proposed model d
pred
3θ  

are compared with those obtained assuming a fixed strut inclination d
o
3θ  with the upper nodes 

located at quarter points at the column. It is worth noting that a 5º difference can result in a 

variation of the tie forces of around 20% and in the strut forces between 5-20%, depending on 

the strut inclination. These angle differences can be even larger if the strut inclination is fixed 

using an upper central node6,16 or if upper nodes are located below the top of the cap5,28. 

Regarding the effect of the reinforcement area, Fig. 7(b) shows the strength predicted by the 

proposed model for different reinforcement quantities AsT and shear span-to-depth ratios w/d 

of a symmetric four-pile cap with circular piles of diameter 150mm, c=250mm, d=300mm, 

fc’=30MPa and grid reinforcement with fy=356MPa and fu=501MPa (larger strengths are 

obtained with bunched reinforcement). Predictions from the STM approach of the ACI Code 

and experimental data from twelve specimens TDL1-1/2, TDL2-1/2, TDL3-1/2, TDS1-1/2, 

TDS2-1/2 and TDS3-1/2 reported in reference9 and with similar characteristics are added for 

comparison in Fig. 7(b). The curves in Fig. 7(b) show two distinctive regions: flexural failure 
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governs in the first section and shear failure governs in the second one. The amount of 

reinforcement increases the predicted strength in both ranges, but this effect is significantly 

lower when shear failure governs. Fig. 7(b) also shows that the reduction of the predicted 

strength with w/d is nonlinear.  

DESIGN APPROACH PROPOSED 

A design approach is presented based on the refined 3D strut-and-tie model developed herein 

(Fig. 8); this approach can be used easily to obtain the area of flexural reinforcement needed 

and check the adequacy of the cap geometry for a given design load uP . For design, the steel 

yield stress yf  shall be used. The strut angle d
u
3θ  is determined by taking ,1ns uP P=  (Eq. (21)) 

and the reinforcement area AsT can be obtained introducing d
u
3θ  in Eq. (13) and 

considering ,nt y uP P= . To ensure reinforcement yielding prior shear failure uP  must be lower 

than the maximum admissible value 2,nsP  (Eq. (32)) at the angle obtained previously d
u
3θ . If 

this condition is not fulfilled, the geometry of the pile cap should be modified (e.g. increase 

the cap depth). Simplified expressions are given in Fig. 8 to apply this procedure. 

Overall, the proposed design approach seems more rational than existing methods as it takes 

into account three local failure modes, giving accurate strength predictions with significantly 

reduced scatter. Moreover, the proposed method gives a geometry of the strut-and-tie model 

following a rational approach rather than adopting a simplified geometry. Hence, this 

approach could provide more economic and consistent designs than existing methods. 

SUMMARY AND CONCLUSIONS 

Design of deep pile caps can be problematic in some cases where overly simplified models 

are extrapolated to complex situations. Traditionally, empirical approaches, rules of thumb 

and sectional-based methods were used. The STM emerged as a more consistent and rational 
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alternative and today most major codes of practice, including ACI 318-1412, accept its 

application. However, a look at design codes and current practice shows that sectional 

methods still prevail in the design of deep pile caps, probably due to the limited guidelines on 

3D STM and also on the misperception that lower-bound methods are too conservative. 

This paper describes a 3D strut-and-tie-based model for the analysis and design of deep four-

pile caps without shear reinforcement. One of the main innovations of this model is the use of 

a variable strut angle; existing models assume a fixed inclination of the strut. The proposed 

approach also gives information on the predominant mode of failure which is consistent with 

observation from tests and 3D FE simulations. Three potential local failure modes were 

considered: (i) exceeding the reinforcement strength, (ii) crushing of the strut at the base of 

the column and (iii) splitting of the strut near the pile; then three limit functions were defined, 

from which the predicted failure load and strut angle at failure can be determined.  

The model takes into account the refined inclination of the strut, the effect of the 

reinforcement area and the type of reinforcement layout. These refined considerations 

resulted into very good strength predictions of the 162 tests investigated. The proposed model 

had the lowest coefficient of variation from all the methods investigated (COV=12%) with an 

average predtest PP /  ratio of 1.08. It can be concluded that equilibrium models using struts with 

refined values of their inclination and concrete effective strength (based on strains) can 

provide economic designs and accurate predictions of pile cap strength. 
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NOTATION 

wb  = pile cap width 

ob  = perimeter of critical section for two-way shear 

b1, lt = dimensions of the stressed triangle at the column base 

xc , yc  = column dimensions in x and y direction, respectively (if symmetry, c=cx=cy) 

cb = distance from centroid of reinforcement to nearest concrete surface 

d  = effective depth 

pd  = pile diameter 

xe , ye  = pitch between center of piles in x and y direction (if symmetry, e=ex=ey) 

'cf = cylinder compressive strength of concrete 

cef  = effective compressive strength of concrete in a strut 

cpf  = equivalent plastic strength of concrete 

uf , yf  = steel ultimate and yield stress, respectively 

h = height of pile cap 

hs = length of strut as defined in reference4 

lp = diameter or diagonal of the pile 

xl , yl  = side lengths of rectangular pile 

w  = shear span defined as horizontal distance from face of column to center of pile reaction 

ws = strut width 

A1, A2 = loaded and supporting surface area for consideration of bearing strength, respectively 

pA  = pile sectional area 

sTA  = total amount of horizontal reinforcement in one direction 

csA  = cross-sectional area of a strut, taken perpendicular to the axis of the strut 
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spA  = area of reinforcement over pile in one direction 

tsA  = area of non-prestressed reinforcement of a tie 

nsF , ntF  = nominal strength of a strut and a tie, respectively 

sF , 'sF  = force in a strut in 3D and projected in 2D, respectively 

txF , tyF  = force in a tie in x and y direction, respectively (if symmetry, Ftx=Fty=Ft) 

uM  = factored moment at section 

P, uP = axial load applied in the column and column design load respectively 

nP  = lower-bound strength function of the element 

fP , sP  = predicted flexural and shear strength of pile cap, respectively 

estP  = estimated column load used in the iterative process to determine shear strength 

predP , testP = predicted and experimental pile cap strength respectively 

,nt uP , ,1nsP , ,2nsP , ,nt yP  = limit functions for local failure modes (i), (ii), (iii), and steel yielding. 

cV  = nominal shear strength provided by concrete 

uV  = factored shear force at section 

,α β  = parameters used by Adebar et al.4 (Eq. 4) 

pβ  = area factor of the projection of the pile perpendicular to the strut direction 

stε , ,1stε , ,2stε  = average principal tensile strain in concrete 

sε  = average compressive strain of the concrete strut 

xε , yε , zε  = average concrete strain in x, y and z direction 

txε , tyε  = reinforcement strain in x and y direction 

, uλ ν  = slenderness and load parameters used in the design approach proposed 
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d
pred
3θ , 3d

uθ  = predicted strut inclination at failure and resulting strut inclination in design 

d
xs

2
,θ , d

ys
2
,θ  = strut angle projection in 2D at y=const and x=const, respectively 

d
s
3θ  = 3D strut angle 

ϕ = angle between the tie in the x-direction and the horizontal projection of the diagonal strut 

ξ  = softening coefficient for cracked concrete strength 

yφ  = calibration factor used by Souza et al.6  
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and (f) the proposed method. 
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quantity AsT for different values of w/d on predicted strength by proposed model (PM). 

Fig. 8 – Flowchart of proposed design method. 
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Table 1–Experimental data and predictions 

Specimen 
f'c|fy|fu 

(MPa) 
h|d|e|c|dp 

(mm) 
AsT(mm2) | 

Arrangmt., Anch. cond. 
Ptest (kN) | 
Fail. mode 

Ptest/Ppred | 
Fail. mode 

Ps,pred/Pf,pred 

Blévot and Frémy1 
      

4N1 37.3|277|401 750|675|1200|500|350(□)    7843|B,hook   7000|y+s   1.07|y+s 0.82 

4N1bis 40.8|455|774 750|682|1200|500|350(□)    4824|B,hook   6700|s   1.11|y+s 0.64 

4N2 37.1|285|416 750|660|1200|500|350(□)    7602|B+D,hook   6580|s   1.00|y+s 0.84 

4N2bis 34.2|491|803 750|670|1200|500|350(□)    4816|B+D,hook   7390|s   1.32|s 0.60 

4N3 34.2|257|387 1000|926|1200|500|350(□)    6085|B,hook   6500|f   0.85|y+s 0.90 

4N3bis 49.3|452|781 1000|931|1200|500|350(□)    3941|B,hook   9000|y+s   1.12|y+s 0.72 

4N4 35.4|291|413 1000|919|1200|500|350(□)    6702|B+D,hook   7530|y+s   0.94|y+s 0.83 

4N4bis 42.3|486|811 1000|926|1200|500|350(□)    4384|B+D,hook   8750|s   1.13|s 0.63 

2,2 32.8|355|428 300|277|420|150|140(□)      639|D,hook     810|f   1.02|f 1.06 

2,3 31.6|312|409 300|259|420|150|140(□)      636|B+D,hook     740|y+s   1.04|f 1.18 

2,4 31.0|330|425 300|261|420|150|140(□)      628|C,hook     705|f   0.97|f 1.14 

3,1 32.1|469|643 200|180|420|150|140(□)      402|B,hook     475|y+s   0.98|f 1.37 

3,2 37.2|447|589 200|177|420|150|140(□)      444|D,hook     540|f   1.11|f 1.48 

3,3 30.9|442|590 200|173|420|150|140(□)      424|B+D,hook     510|y+s   1.13|f 1.46 

3,4 32.6|474|638 200|154|420|150|140(□)      402|C,hook     435|y+s   1.07|f 1.57 

1A,1 26.6|493|580 300|270|420|180|140(□)      766|B,hook   1150|s   1.33|s 0.71 

1A,2 36.8|505|566 300|270|420|180|140(□)      755|D,hook     900|s   0.89|s 0.82 

1A,2 bis 33.3|505|566 300|270|420|180|140(□)      755|D,hook   1178|s   1.22|s 0.79 

1A,3 36.6|508|584 300|270|420|180|140(□)      656|B+D,hook   1185|s   1.22|s 0.86 

1A,4 32.9|497|567 300|270|420|180|140(□)      766|C,hook   1158|s   1.21|s 0.78 

3A,1 29.2|506|580 200|170|420|180|140(□)      766|B,hook     815|s   1.07|f 1.08 

3A,2 39.2|505|582 200|170|420|180|140(□)      755|D,hook     900|s   1.14|f 1.20 

3A,3 32.0|499|572 200|172|420|180|140(□)      656|B+D,hook     665|s   0.97|f 1.21 

3A,3bis 46.1|499|572 200|172|420|180|140(□)      656|B+D,hook     843|f   1.18|f 1.37 

3A,4 32.4|493|572 200|170|420|180|140(□)      766|C,hook     845|s   1.11|f 1.14 

Q,1 33.9|460|608 200|170|420|150|140(□)      403|G,hook     408|f   0.93|f 1.29 

Q,2 30.8|342|442 300|272|420|150|140(□)      628|G,hook     650|y+s   0.93|y+s 0.89 

Q,2bis 21.0|325|464 300|273|420|150|140(□)      806|G,hook     510|y+s   0.81|s 0.65 

6,1 13.2|498|592 140|107|420|150|140(□)      628|B,hook     250|s   1.05|s 0.80 

6,2 13.2|461|535 140|106|420|150|140(□)    1232|B,hook     290|s   1.07|s 0.63 

6,3 22.1|512|593 200|180|420|150|140(□)      628|B,hook     650|f   1.04|f 1.01 

6,4 30.6|476|558 200|171|420|150|140(□)    1232|B,hook     850|s   0.97|s 0.88 

6,5 18.4|518|618 300|264|420|150|140(□)      905|B,hook     842|s   1.22|s 0.55 

6,6 18.4|468|555 300|280|420|150|140(□)    1608|B,hook     810|s   1.09|s 0.39 

9A,1 22.6|459|636 500|474|420|150|140(□)      904|B,hook   1200|s   1.05|s 0.48 

9A,2 33.9|467|595 500|471|420|150|140(□)    1608|B,hook   1900|s   1.18|s 0.43 

9A,3 28.6|465|616 500|474|420|150|140(□)    1809|B+G,hook   1700|s   1.26|s 0.32 

10,1a 28.7|446|605 250|226|420|150|140(□)      904|B,hook     850|s   1.20|s 0.63 

10,1b 35.8|468|593 250|221|420|150|140(□)      888|B+D,hook     800|s   1.01|s 0.72 

10,2a 28.2|453|615 250|218|420|150|140(□)      904|B,hook     750|s   1.06|s 0.64 

10,2b 26.1|471|592 250|220|420|150|140(□)      886|B+D,hook     800|s   1.19|s 0.65 

10,3a 23.6|462|630 250|223|420|150|140(□)      904|B,hook     760|s   1.19|s 0.57 

10,3b 27.7|472|601 250|215|420|150|140(□)      886|B+D,hook     740|s   1.06|s 0.67 

11,1a 22.3|311|431 300|272|420|150|140(□)      904|B,hook     563|y+s   0.74|s 0.76 

11,1b 16.2|311|431 300|272|420|150|140(□)      904|B,nil     493|y+s   0.80|s 0.65 

11,2a 25.6|445|545 300|288|420|150|140(□)      628|B,hook     558|s   0.77|s 0.75 

11,2b 24.9|441|546 300|275|420|150|140(□)      628|B,nil     585|y+s   0.80|s 0.79 

12,1a 17.3|319|436 200|171|420|150|140(□)      904|B,hook     840|f   1.43|y+s 0.99 

12,1b 18.2|319|436 200|171|420|150|140(□)      904|B,nil     693|f   1.16|f 1.02 

12,2a 27.0|436|541 200|173|420|150|140(□)      628|B,hook     750|y+s   1.31|f 1.21 

12,2b 21.7|432|543 200|170|420|150|140(□)      628|B,nil     640|y+s   1.17|f 1.13 

Clarke2 
      

A1 21.3|410|590 450|400|600|200|200(●)      785 | G,hook   1110 | s   1.11 | y+s 0.77 

A2 27.6|410|590 450|400|600|200|200(●)      785 | B,hook   1420 | s   1.08 | y+s 0.98 

A3 30.8|410|590 450|400|600|200|200(●)      778 | D,hook   1340 | s   1.00 | f 1.03 
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A4 21.4|410|590 450|400|600|200|200(●)      785 | G,nil   1230 | s   1.23 | y+s 0.77 

A5 27.7|410|590 450|400|600|200|200(●)      785 | B,nil   1400 | s   1.06 | y+s 0.98 

A6 26.9|410|590 450|400|600|200|200(●)      778 | D,nil   1230 | s   0.95 | y+s 0.98 

A7 25.2|410|590 450|400|600|200|200(●)      785 | G,full   1640 | s   1.30 | y+s 0.95 

A8 27.6|410|590 450|400|600|200|200(●)      785 | B,hook   1510 | s   1.15 | y+s 0.98 

A9 27.7|410|590 450|400|600|200|200(●)      785 | G,hook   1450 | s   1.29 | y+s 0.84 

A10 18.8|410|590 450|400|600|200|200(●)      785 | G,full+bob   1520 | f   1.40 | y+s 0.85 

A11 18.0|410|590 450|400|600|200|200(●)      785 | G,full   1640 | f   1.55 | y+s 0.83 

A12 26.3|410|590 450|400|600|200|200(●)      785 | G,full+bob   1640 | f   1.28 | y+s 0.96 

B1 27.8|410|590 450|400|400|200|200(●)      628 | G,full   2080 | s   1.25 | y+s 0.97 

B3 34.0|410|590 450|400|400|200|200(●)      471 | G,full   1770 | f   1.27 | f 1.20 

Suzuki et al.8 
      

BP-20-1 21.3|413|606 200|150|540|300|150(●)      570 | G,hook     519 | y+s   1.19 | y+s 0.84 

BP-20-2 20.4|413|606 200|150|540|300|150(●)      570 | G,hook     480 | y+s   1.12 | y+s 0.83 

BPC-20-1 21.9|413|606 200|150|540|300|150(●)      570 | B,hook     519 | y+s   1.01 | y+s 0.98 

BPC-20-2 19.9|413|606 200|150|540|300|150(●)      570 | B,hook     529 | y+s   1.07 | y+s 0.96 

BP-25-1 22.6|413|606 250|200|540|300|150(●)      713 | G,hook     735 | s   1.14 | y+s 0.76 

BP-25-2 21.5|413|606 250|200|540|300|150(●)      713 | G,hook     755 | s   1.19 | y+s 0.74 

BPC-25-1 18.9|413|606 250|200|540|300|150(●)      713 | B,hook     818 | y+s   1.19 | y+s 0.83 

BPC-25-2 22.0|413|606 250|200|540|300|150(●)      713 | B,hook     813 | y+s   1.09 | y+s 0.88 

BP-20-30-1 29.1|405|592 200|150|500|300|150(●)      428 | G,hook     485 | y+s   1.01 | f 1.10 

BP-20-30-2 29.8|405|592 200|150|500|300|150(●)      428 | G,hook     480 | y+s   1.00 | f 1.10 

BPC-20-30-1 29.8|405|592 200|150|500|300|150(●)      428 | B,hook     500 | f   1.04 | f 1.29 

BPC-20-30-2 29.8|405|592 200|150|500|300|150(●)      428 | B,hook     495 | f   1.03 | f 1.29 

BP-30-30-1 27.3|405|592 300|250|500|300|150(●)      570 | G,hook     916 | s   1.18 | y+s 0.76 

BP-30-30-2 28.5|405|592 300|250|500|300|150(●)      570 | G,hook     907 | y+s   1.15 | y+s 0.77 

BPC-30-30-1 28.9|405|592 300|250|500|300|150(●)      570 | B,hook   1039 | y+s   1.12 | y+s 0.90 

BPC-30-30-2 30.9|405|592 300|250|500|300|150(●)      570 | B,hook   1029 | y+s   1.08 | y+s 0.92 

BP-30-25-1 30.9|405|592 300|250|500|250|150(●)      570 | G,hook     794 | y+s   1.09 | y+s 0.82 

BP-30-25-2 26.3|405|592 300|250|500|250|150(●)      570 | G,hook     725 | s   1.07 | y+s 0.77 

BPC-30-25-1 29.1|405|592 300|250|500|250|150(●)      570 | B,hook     853 | y+s   1.02 | y+s 0.94 

BPC-30-25-2 29.2|405|592 300|250|500|250|150(●)      570 | B,hook     872 | y+s   1.04 | y+s 0.94 

BDA-70x90-1 29.1|356|501 300|250|500|250|150(●)      570 | G,hook     784 | y+s   1.02 | y+s 0.99 

BDA-70x90-2 30.2|356|501 300|250|500|250|150(●)      570 | G,hook     755 | y+s   0.97 | f 1.01 

BDA-80x90-1 29.1|356|501 300|250|500|250|150(●)      570 | G,hook     858 | y+s   1.11 | f 1.02 

BDA-80x90-2 29.3|356|501 300|250|500|250|150(●)      570 | G,hook     853 | y+s   1.10 | f 1.02 

BDA-90x90-1 29.5|356|501 300|250|500|250|150(●)      570 | G,hook     853 | y+s   1.10 | f 1.05 

BDA-90x90-2 31.5|356|501 300|250|500|250|150(●)      570 | G,hook     921 | y+s   1.18 | f 1.07 

BDA-100x90-1 29.7|356|501 300|250|500|250|150(●)      570 | G,hook     911 | y+s   1.17 | f 1.08 

BDA-100x90-2 31.3|356|501 300|250|500|250|150(●)      570 | G,hook     931 | y+s   1.19 | f 1.10 

Suzuki et al.9 
      

TDL1-1 30.9|356|501 350|300|600|250|150(●)      285 | G,hook     392 | f   0.99 | f 1.30 

TDL1-2 28.2|356|501 350|300|600|250|150(●)      285 | G,hook     392 | f   0.99 | f 1.25 

TDL2-1 28.6|356|501 350|300|600|250|150(●)      428 | G,hook     519 | f   0.91 | f 1.02 

TDL2-2 28.8|356|501 350|300|600|250|150(●)      428 | G,hook     472 | f   0.83 | f 1.02 

TDL3-1 29.6|356|501 350|300|600|250|150(●)      570 | G,hook     608 | f   0.93 | y+s 0.89 

TDL3-2 29.3|356|501 350|300|600|250|150(●)      570 | G,hook     627 | f   0.96 | y+s 0.89 

TDS1-1 25.6|356|501 350|300|450|250|150(●)      428 | G,hook     921 | f   1.15 | y+s 0.97 

TDS1-2 27.0|356|501 350|300|450|250|150(●)      428 | G,hook     833 | f   1.02 | y+s 0.97 

TDS2-1 27.2|356|501 350|300|450|250|150(●)      570 | G,hook   1005 | f   1.12 | y+s 0.85 

TDS2-2 27.3|356|501 350|300|450|250|150(●)      570 | G,hook   1054 | f   1.17 | y+s 0.85 

TDS3-1 28.0|356|501 350|300|450|250|150(●)      784 | G,hook   1299 | y+s   1.29 | s 0.73 

TDS3-2 28.1|356|501 350|300|450|250|150(●)      784 | G,hook   1303 | y+s   1.29 | s 0.73 

TDM1-1 27.5|383|522 300|250|500|250|150(●)      285 | G,hook     490 | f   1.11 | f 1.25 

TDM1-2 26.3|383|522 300|250|500|250|150(●)      285 | G,hook     461 | f   1.05 | f 1.23 

TDM2-1 29.6|383|522 300|250|500|250|150(●)      428 | G,hook     657 | f   1.04 | f 1.04 

TDM2-2 27.6|383|522 300|250|500|250|150(●)      428 | G,hook     657 | f   1.05 | f 1.01 

TDM3-1 27.0|370|528 300|250|500|250|150(●)    1270 | G,hook   1245 | s   1.42 | s 0.57 

TDM3-2 28.0|370|528 300|250|500|250|150(●)    1270 | G,hook   1210 | s   1.36 | s 0.58 

Suzuki et al.10 
      

BDA-20-25-70-1 26.1|358|496 200|150|450|250|150(●)      285 | G,hook     294 | f   1.00 | f 1.54 
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BDA-20-25-70-2 26.1|358|496 200|150|450|250|150(●)      285 | G,hook     304 | f   1.03 | f 1.54 

BDA-20-25-80-1 25.4|358|496 200|150|450|250|150(●)      285 | G,hook     304 | f   1.04 | f 1.51 

BDA-20-25-80-2 25.4|358|496 200|150|450|250|150(●)      285 | G,hook     304 | f   1.04 | f 1.51 

BDA-20-25-90-1 25.8|358|496 200|150|450|250|150(●)      285 | G,hook     333 | f   1.13 | f 1.53 

BDA-20-25-90-2 25.8|358|496 200|150|450|250|150(●)      285 | G,hook     333 | f   1.13 | f 1.53 

BDA-30-20-70-1 25.2|358|496 300|250|450|200|150(●)      428 | G,hook     534 | f   0.90 | f 1.05 

BDA-30-20-70-2 24.6|358|496 300|250|450|200|150(●)      428 | G,hook     549 | y+s   0.93 | f 1.05 

BDA-30-20-80-1 25.2|358|496 300|250|450|200|150(●)      428 | G,hook     568 | f   0.96 | f 1.05 

BDA-30-20-80-2 26.6|358|496 300|250|450|200|150(●)      428 | G,hook     564 | f   0.94 | f 1.08 

BDA-30-20-90-1 26.0|358|496 300|250|450|200|150(●)      428 | G,hook     583 | f   0.98 | f 1.06 

BDA-30-20-90-2 26.1|358|496 300|250|450|200|150(●)      428 | G,hook     588 | f   0.99 | f 1.06 

BDA-30-25-70-1 28.8|383|522 300|250|450|250|150(●)      428 | G,hook     662 | y+s   0.91 | f 1.02 

BDA-30-25-70-2 26.5|383|522 300|250|450|250|150(●)      428 | G,hook     676 | y+s   0.95 | y+s 0.99 

BDA-30-25-80-1 29.4|383|522 300|250|450|250|150(●)      428 | G,hook     696 | y+s   0.95 | f 1.02 

BDA-30-25-80-2 27.8|383|522 300|250|450|250|150(●)      428 | G,hook     725 | y+s   1.00 | f 1.00 

BDA-30-25-90-1 29.0|383|522 300|250|450|250|150(●)      428 | G,hook     764 | y+s   1.05 | f 1.03 

BDA-30-25-90-2 26.8|383|522 300|250|450|250|150(●)      428 | G,hook     764 | f   1.06 | y+s 0.99 

BDA-30-30-70-1 26.8|358|496 300|250|450|300|150(●)      428 | G,hook     769 | y+s   0.94 | y+s 0.99 

BDA-30-30-70-2 25.9|358|496 300|250|450|300|150(●)      428 | G,hook     730 | y+s   0.91 | y+s 0.98 

BDA-30-30-80-1 27.4|358|496 300|250|450|300|150(●)      428 | G,hook     828 | y+s   1.01 | y+s 1.00 

BDA-30-30-80-2 27.4|358|496 300|250|450|300|150(●)      428 | G,hook     809 | y+s   0.98 | y+s 1.00 

BDA-30-30-90-1 27.2|358|496 300|250|450|300|150(●)      428 | G,hook     843 | y+s   1.03 | y+s 0.99 

BDA-30-30-90-2 24.5|358|496 300|250|450|300|150(●)      428 | G,hook     813 | y+s   1.05 | y+s 0.96 

BDA-40-25-70-1 25.9|358|496 400|350|450|250|150(●)      570 | G,hook   1019 | s   1.06 | y+s 0.80 

BDA-40-25-70-2 24.8|358|496 400|350|450|250|150(●)      570 | G,hook   1068 | y+s   1.13 | y+s 0.78 

BDA-40-25-80-1 26.5|358|496 400|350|450|250|150(●)      570 | G,hook   1117 | f   1.15 | y+s 0.80 

BDA-40-25-80-1 25.5|358|496 400|350|450|250|150(●)      570 | G,hook   1117 | y+s   1.17 | y+s 0.79 

BDA-40-25-90-1 25.7|358|496 400|350|450|250|150(●)      570 | G,hook   1176 | f   1.23 | y+s 0.79 

BDA-40-25-90-2 26.0|358|496 400|350|450|250|150(●)      570 | G,hook   1181 | f   1.23 | y+s 0.80 

Suzuki et al.11 
      

BPL-35-30-1 24.1|353|505 350|300|500|300|150(●)      642 | G,hook     960 | s   1.11 | y+s 0.75 

BPL-35-30-2 25.6|353|505 350|300|500|300|150(●)      642 | G,hook     941 | s   1.06 | y+s 0.76 

BPB-35-30-1 23.7|353|505 350|300|500|300|150(●)      642 | G,full+bob   1029 | y+s   1.04 | y+s 0.86 

BPB-35-30-2 23.5|353|505 350|300|500|300|150(●)      642 | G,full+bob   1103 | y+s   1.12 | y+s 0.85 

BPH-35-30-1 31.5|353|505 350|300|500|300|150(●)      642 | G,hook     980 | s   1.00 | y+s 0.82 

BPH-35-30-2 32.7|353|505 350|300|500|300|150(●)      642 | G,hook   1088 | y+s   1.09 | y+s 0.83 

BPL-35-25-1 27.1|353|505 350|300|500|250|150(●)      642 | G,hook     902 | y+s   1.09 | y+s 0.81 

BPL-35-25-2 25.6|353|505 350|300|500|250|150(●)      642 | G,hook     872 | s   1.08 | y+s 0.79 

BPB-35-25-1 23.2|353|505 350|300|500|250|150(●)      642 | G,full+bob     911 | y+s   1.02 | y+s 0.89 

BPB-35-25-2 23.7|353|505 350|300|500|250|150(●)      642 | G,full+bob     921 | y+s   1.02 | y+s 0.89 

BPH-35-25-1 36.6|353|505 350|300|500|250|150(●)      642 | G,hook     882 | s   0.94 | y+s 0.89 

BPH-35-25-2 37.9|353|505 350|300|500|250|150(●)      642 | G,hook     951 | s   0.99 | y+s 0.90 

BPL-35-20-1 22.5|353|505 350|300|500|200|150(●)      642 | G,hook     755 | s   1.09 | y+s 0.78 

BPL-35-20-2 21.5|353|505 350|300|500|200|150(●)      642 | G,hook     735 | s   1.08 | y+s 0.77 

BPB-35-20-1 20.4|353|505 350|300|500|200|150(●)      642 | G,full+bob     755 | y+s   0.99 | y+s 0.87 

BPB-35-20-2 20.2|353|505 350|300|500|200|150(●)      642 | G,full+bob     804 | y+s   1.06 | y+s 0.86 

BPH-35-20-1 31.4|353|505 350|300|500|200|150(●)      642 | G,hook     813 | s   1.02 | y+s 0.87 

BPH-35-20-2 30.8|353|505 350|300|500|200|150(●)      642 | G,hook     794 | s   1.00 | y+s 0.86 

Chan and Poh21 
      

A 39.7|481|601 400|325|600|200|150(●)      628 | G,full   1230 | f   1.31 | f 1.11 

B 38.3|481|601 400|325|600|200|150(●)      628 | G,full   1250 | f   1.34 | f 1.10 

C 36.4|481|601 300|225|600|200|150(●)      942 | G,full     870 | y+s   0.97 | f 1.05 

 

Note: □ = square pile; ● = circular pile; B = square bunched reinforcement; D = 

diagonal bunched reinforcement; G = grid reinforcement; C = continuous bunched 

reinforcement; f = flexural failure; s = shear failure; y+s = reinforcement yielding 

followed by shear failure; 1 mm = 0.04 in.; 1 mm2 = 0.0015 in.2; 1 MPa = 145 psi; 1 kN = 

0.225 kip 
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Fig. 1– Punching failure around pile (after reference8). 

 

 
Fig. 2– Strut-and-tie models for four-pile cap without shear reinforcement (a) 3D, (b) 2D. 
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Fig. 3– Proposed strut-and-tie model: (a) 3D truss; (b) 2D truss; (c) 3D view of strut and tie 

details, (d) strut projection onto cap diagonal plane and (e) plan view of strut and tie details. 
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Fig. 4 – Limit functions ntP , ,1nsP  and ,2nsP  and yielding function ytP  to predict pile cap 

strength: (a) flexural failure, (b) shear failure prior reinforcement yielding and (c) shear 

failure after reinforcement yielding. 
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(b) (c) 

  
(d) (e) 

  

Fig. 5 – FE results for four-pile cap BP-30-30-28: (a) comparison of measured/predicted 

load-deflection curve. At the diagonal cap plane, superimposed to the strut-and-tie geometry 

obtained from the proposed method ( d
s
3θ =48.64º): (b) FE contour plot of compressive stress 

field and principal compressive directions at maximum load; (c) FE contour plot of 

compressive stress field and principal compressive directions after failure; (d) FE contour 

plot of concrete softening coefficient ξ  at maximum load; (e) contour plot of concrete 

softening coefficient ξ  after failure. 
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Fig. 6 - Ratio /test predP P  for 162 specimens1,2,8,9,10,11,25 based on results obtained by: (a) ACI 

sectional approach12, (b)ACI STM12 (c) Adebar and Zhou4, (d) Souza et al.6 (e) Park et al.5 

and (f) the proposed method. 
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Fig. 7 –(a) Fixed strut angle d
o
3θ  adopted by other truss models vs. predicted strut angle at 

failure d
pred
3θ  by the proposed model for 162 specimens1,2,8,9,10,11,25; (b) Effect of reinforcement 

quantity AsT for different values of w/d on predicted strength by proposed model (PM). 
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Fig. 8 –Flowchart of proposed design method. 


