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Featured Application: Small and medium enterprises with complex production systems,
involving multi-level product structures and co-production configurations, would use the
proposed algorithm for improving their production planning and lot-sizing decisions.

Abstract: The definition of lot sizes represents one of the most important decisions in production
planning. Lot-sizing turns into an increasingly complex set of decisions that requires efficient solution
approaches, in response to the time-consuming exact methods (LP, MIP). This paper aims to propose a
Tabu list-based algorithm (TLBA) as an alternative to the Generic Materials and Operations Planning
(GMOP) model. The algorithm considers a multi-level, multi-item planning structure. It is initialized
using a lot-for-lot (LxL) method and candidate solutions are evaluated through an iterative Material
Requirements Planning (MRP) procedure. Three different sizes of test instances are defined and
better results are obtained in the large and medium-size problems, with minimum average gaps close
to 10.5%.

Keywords: materials requirements planning; lot sizing; flexible manufacturing systems; heuristic
algorithms; operations research; tabu list; GMOP; alternate bill of materials; coproduction

1. Introduction

The definition of lot sizes represents one of the most important decisions in production planning.
Lot-sizing models aim to guarantee the fulfillment of the demand requirements, establishing a balance
between holding and setup costs. Complex assembly systems usually require wide and robust product
structures, which may involve the use of alternate bills of materials and co-production settings. In these
cases, the complexity of lot sizing decisions increases along with flexibility. Depending on the problem
size and the number of considered constraints, the use of exact solution models can be inefficient in
terms of computational times, especially for operational planning purposes [1,2].

Exact solution approaches have been widely used for the NP-hard Capacitated Lot Sizing Problem
(CLSP), including cut-generation [3] and redefinition techniques [4], supported by mathematical
approaches as Branch and Bound, Lagrangian Relaxation, and Wagner-Within. In the case of multi-level
CLSP, the use of linear programming (LP) methods showed good results [5].

On the other hand, the use of heuristic and meta-heuristic methods for solving lot-sizing
problems has become increasingly frequent and implementations have flooded the scientific
literature [2,6-9]. The advantages of these kinds of approximate procedures include reduced
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computational times, the ability to solve larger problems, higher flexibility, high-quality solutions,
and reduced implementation costs (e.g., compared with commercial software licenses [10]).

Among the different heuristic approaches, local and guided-search algorithms, such as the
Tabu Search (TS), have demonstrated efficiency in a variety of lot-sizing problems, especially with
multi-product and multi-level planning structures [11-13]. Most implementations take initial solutions
from constructive algorithms, which are later improved with iterative small modifications (called
moves). The search is guided by long-term and short-term memory structures within intensification
and diversification phases [9,14-16].

The Generic Materials and Operations Planning model (GMOP) is one of the most recent
exact models for solving lot-sizing problems that considers alternative bills of materials, multi-level
structures, multi-site production/packaging, and co-production settings. This model was proposed in
2011 [17,18] as a robust mixed integer programming (MIP) problem. Since 2013 [19,20], the functioning
of GMOP has been improved with the implementation of mathematical relaxation methods and its
efficiency in practical applications has been demonstrated (e.g., in the automotive sector) [21-23].

Developing heuristic approaches for solving this problem has been suggested as a research
opportunity since 2012 [24,25], but these kinds of procedures have not been extensively explored [26].
Proposing alternative solution methods and data structures represents a contribution not only to
further GMOP studies, but also to the wider research field of multi-level lot-sizing problems, employing
alternative product structures instead of the generalized Gozinto structure.

The aim of this article is to propose an alternative heuristic algorithm for the GMOP, using
the short-term memory principles of TS. The main considerations include: Capacity constraints,
a multi-product/multi-level structure, a co-production environment, and the existence of alternate
bills of materials for final products [27,28].

This paper is organized as follows. Section 2 shows the GMOP generalities. Section 3 shows a
brief introduction to TS algorithms. Section 4 exposes the methodological framework and a functioning
overview of the proposed algorithm. The obtained results and their discussion are shown, respectively,
in Sections 5 and 6. Finally, conclusions and further research opportunities are highlighted in Section 7.

2. The Generic Materials and Operational Planning Model (GMOP)

The Generic Materials and Operational Planning model was proposed by Garcia Sabater et al. [19]
and Maheut et al. [18], as an alternative for modeling the existing relations between the processes and
the materials needed for the elaboration of a product.

Unlike the Gozinto representation (where the priority falls on the final product and its
components), this lot-sizing model focuses on the planning of operations (strokes) to be made for the
manufacture, purchase, or transportation of a certain product or a group of products.

A stroke is defined as any activity or operation that allows for the transformation of a set of
products or Stock Keeping Units (SKUs) into another set of SKUs, using or immobilizing a certain
amount of resources. As shown in Figure 1, a Stroke can contain the following attributes [19]:

e  Outputs (Stroke Outputs): The product or set of products obtained from the stroke execution,
as shown in Table 1.

e Inputs (Stroke Inputs): The product or set of products consumed at the execution of the stroke,
as shown in Table 2.

o Lead times

e  Operation times and costs

e  Set-up times and costs

e  Resource usage: Resources can be, for example, machinery, workforce, and so on.
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Figure 1. Bill of materials example representation in the Generic Materials and Operational Planning

(GMOP) model [28].

Table 1. Stroke outputs matrix, according to Figure 1.

SO;x kI k2 k3 ki k5
SKUA 1 1 0 0 0
SKUB 0 0 1 0 0
SKUC 0 0 0 1 1
SKUD 0 0 0 0 0
SKUE 0 0 0 0 0
SKUF 0 0 0 0 0
SKUG 0 0 0 0 0
SKUH 0 0 0 0 0

Table 2. Stroke inputs matrix, according to Figure 1.
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The GMOP model can easily include capacity constraints, as well as direct, inverse, and alternate
bill of materials, multi-site production, resource requirements, by-products, transportation modes,
and packaging processes [19].

The problem is presented as a mixed integer programming model, whose parameters and
variables are shown in Table 3. The objective function (1) aims to minimize the total planning cost Z,
which includes storage, operation, and set up costs generated by the execution of strokes.
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Equation (2) represents the inventory constraint. It considers the stock levels from the previous
period, demand requirements, purchased items, and the quantities generated and consumed by the
strokes in every time period.

Equation (3) ensures the inclusion of a setup cost when a stroke is used: If z; ; is larger than zero,
then J; ; must be 1 in order to satisfy the constraint.

Equation (4) is a capacity constraint that limits the use of resources by considering both setup and
operations times.

Finally, Equations (5)—(8) define the range and domain of the decision variables.

Table 3. Parameters and decision variables for the GMOP model [19].

Symbol Description

i Index set of products (includes product, packaging, and site)
t Index set of planning periods
r Index set of resources
k Index set of strokes
D;y Demand of product i for period ¢
hi, t Cost of storing a unit of product i in period ¢
COy Cost of stroke k in period ¢
CSg s Cost of the setup of stroke k in period ¢
CB;; Cost of purchasing product i in period ¢
SOk Number of units i that generates a stroke k
Sl Number of units i that stroke k consumes
LTy Lead time of stroke k
KAP:; Capacity availability of resource r in period f (in time units)
M A sufficiently large number
TOy, Capacity of the resource r required for performing one unit of stroke k (in time units)
TSy, Capacity required of resource r for setup of stroke k (in time units)
Zg g Amount of strokes k to be performed in period ¢
O t =1 if stroke k is performed in period ¢ (and 0 otherwise)
W ¢ Purchase quantity for product i in period ¢
Xit Stock level of product i on hand at the end of period ¢
V4 Total Planning Cost
Z = Min ZZ(hi,t * Xip) + ZZ(CSM # O+ COpp % 2p4) + ZZ(CBi,t * Wi y) 1)
t i tk toi
Xip = Xip-1—Dig+wip — Y (SLig*zks) + Y_(SOix * zg 11, )V (i t) 2)
k k
Zit — M* Oy < OV(K, t) 3)
Y (TSky#8ke) + Y (TOk, + 2i) < KAP V(1) 4
k k
Xip 20 ©)
wit >0 (6)
Zk,t € Z+ (7)
O € {0,1}. 8)

3. Tabu Search Algorithms

The Tabu Search (TS) method is a metaheuristic method proposed by Glover in 1989 [29] and
1993 [30]. It is an iterative procedure which explores a set of problem solutions, making moves from
one solution x to another solution x’ inside a neighborhood V(x). Moves aim to find optimal or
near-optimal solutions, evaluating some objective function that is to be minimized.
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TS involves adaptive memory principles, the creation of constrained search spaces, and the
utilization of short-term and long-term learning mechanisms [31].

The Tabu list is the main short-term memory mechanism and keeps a record of the most recently
adopted moves, keeping the algorithm from re-evaluating previously-considered solutions and getting
stuck in local optima. The algorithm starts with an initial solution Zy as the current solution S.
Moves allow the algorithm to make changes to the solution array, generating candidate solutions S..
These changes can be done using an insertion, mutation, combination, or by crossing strategies.

A set V is generated with N, candidate solutions. After evaluation, only the best solution per
iteration is adopted (S < S;) and the moves (Si to S¢) and (S to S) are registered in the Tabu list,
being forbidden for a specific number of iterations (the so-called Tabu tenure).

The algorithm stops when a completion criterion is fulfilled. The most frequent finalization
conditions include a maximum number of iterations, a minimum value for the objective function, or a
specific number of iterations without substantial improvements.

TS also allows for the implementation of aspiration, diversification, and intensification
mechanisms. Aspiration criteria allow the algorithm to improve the solution by considering moves
included in the Tabu list. Intensification mechanisms are short-term or long-term memory structures
that allow a deep exploration of promising search spaces. Finally, diversification strategies guide the
search towards poorly-explored search spaces [32].

TS algorithms have been implemented in a variety of lot-sizing and scheduling problems.
This approach frequently offers high-quality solutions and has been able to outperform other heuristics
and relaxation methods [12,33-35]. One of the main motivations for adopting a TS approach lies in
the advantages of local search, especially its efficiency for managing hard constraints in large scale
problems [36]. TS principles are especially useful when reducing search neighborhoods and guiding
the search into feasible solutions.

The reference [9] shows one of the first TS implementations for a multi-level lot-sizing problem.
The authors compared the performance between a pure Linear Programming (LP) method and two
LP-based heuristics (LP combined with Simulated Annealing (SA) and TS) when solving a multi-level
capacitated lot-sizing problem (MCLSP) in an assembly production system with bottleneck constraints.
An initial solution was obtained with a modified greedy algorithm and the search was guided according
to non-restricted moves with higher improvements in the objective function. No diversification,
intensification, or aspiration mechanisms were specified. The results showed better performance in
the LP-based approaches.

In [15], two different heuristic methods were proposed to solve a capacitated multi-level lot-sizing
and scheduling problem for a multiple-item, single machine system. The first method was based on a
“randomized regrets” heuristic, and the second was a TS-based heuristic. A Gozinto product structure
was represented using a disjunctive arcs method, and moves were performed according to the existence
of adjacent nodes with larger improvements in the objective function. The computational results were
similar for both heuristics and the inclusion of multiple resources, setup times, and back-orders were
proposed as future work opportunities.

Other well-known heuristic approaches, such as SA and Genetic Algorithms (GA), were tested
and compared with TS in [12]. The obtained results showed that TS outperformed the SA and GA
methods, especially when the problem involved confirmed order demand.

TS is usually combined with other methods in order to improve results. A hybrid algorithm TS-SA
was proposed in [14] for solving a multi-level lot-sizing problem with general product structures. TS
mechanisms were used to guide the search with the help of SA components. The results demonstrated
that the inclusion of the TS method led to an improvement in cost performance, when compared with
CPLEX-LP solutions.

In the case of single-level lot-sizing problems, TS has been tested within a wide variety of
configurations and constraints: [37] showed a capacitated, single-item problem with dynamic demand.
The multi-item variation for this problem was shown in [38].
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In [39], the problem defined was multi-item with setup carry-over. The TS approach included
dynamic Tabu lists and penalty constraints.

A dynamic lot-sizing problem with product returns and re-manufacturing constraints was
presented in [35]. The initial solutions were generated using a blockchain-based algorithm and
the TS algorithm was able to obtain satisfactory results in at least 96% of test instances.

4. Methods

4.1. Algorithm Overview

The proposed algorithm is an approximation to a TS method [29,40]. An outline of the Tabu
list-based algorithm (TLBA) is shown in Algorithm 1.

Algorithm 1: Tabu List-based algorithm outline

Procedure: Tabu List-Based Algorithm
Inputs: I1;t = 0; Sq ;Zo; TabuTenure; N
Begin;

It + Define the number of iterations
So < Generate and initial solution

Zy < Evaluate initial solution

BestSol < Zy; Update Best Solution
TabuTenure <+ Define Tabu Tenure
TabuList < Initialize as Empty

while termination condition not meet do
Generate the solution neighborhood V with N; candidate solutions S,

if move from Sy to S € TabuList then
| Find another candidate solution S,

else
| AddS .toV
Evaluate the Ng candidate solutions S; in V

if S; violates a capacity constraint then
Penalize the solution for S,

7 « 7+ BigM

else
L Continue
Select the minimum Z in V

if Z < BestSol then
Z < BestSol

Update the current solution S <— S

Add the move from S to S, to the Tabulist
Add the move from S, to S to the Tabulist
tt+1

Update TabuList Tenures

else
t+—t+1

| Update TabuList Tenures
Show BestSol

Show S,
Finish
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4.2. Solution Array

The solution array S; contains the selected strokes for producing every SKU. Given the presence of
alternate bills of materials, and that each stroke has different settings for inputs, outputs, and resource
usage, it is necessary to decide which stroke is more efficient in producing each product, minimizing
the total planning cost.

4.3. Search Neighborhood

The search neighborhood was composed by the set of solutions resulting from all possible stroke
selections for each SKU. These possible selections were listed in the alternative stroke matrix Alt; ;.
The Alt; , matrix is built from the output matrix SO; ; and contains a list of the strokes that can produce
each SKU. If a SKU can be produced by more than one stroke, it can be said that this SKU has more
than one bill of materials. At the same time, if a stroke has more than one output, we are facing a case
of co-production.

4.4. Moves

For each iteration, a set V is built using Ns neighbor solutions. A short-term diversification phase
is used, and candidate solutions are obtained from the change of one random position (SKU) in S;.
When a random position is selected, an alternative stroke from Alt;\ is assigned. This move is only
made for those SKUs that have at least one alternative stroke and a single change is made for each new
generated N;.

4.5. Evaluation Procedure

As shown in (1), the total planning cost included setups, operation, and holding costs, resulting
from stroke utilization in each period. The total stroke requirements per period were calculated
through a Material Requirement Planning (MRP) strategy, with a lot-for-lot policy [41] in every level
of the product structures. When obtaining an initial solution, one important consideration for the
evaluation procedure was the assumption that a product 7 is only produced using the first alternative
stroke listed in Alt; .

4.6. The Tabu List

The Tabu list is represented by a 3-dimensional data structure TabuListy y;;, which records
the moves made from the current solution S; to the best solution BestSol obtained in each iteration.
For each SKU (i), there is a square matrix of order k (total number of strokes), where k1 is the initial
stroke and k2 is the final stroke in every move. The Tabu list contains, by default, a BigM number in
the positions of the main diagonal. This prevents the algorithm from making moves using the same
stroke. As soon as a move enters the Tabu list, it is assigned with the Tabu tenure (this is the number of
iterations that it will be included in the Tabu list). The opposite move is included as well. The number
of forbidden moves in the Tabu list is equivalent to twice the selected Tabu tenure. The oldest moves
will come out first and the most recent moves will come out later.

4.7. Completion Criteria

The algorithm stops with the fulfillment of a maximum number of iterations It.
5. Results

5.1. Test Instances

Table 4 shows the parameters used for the definition of the randomly-generated test instances
(Based on the methodology in [12,14] and the values defined in [23]).
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Table 4. Parameter settings for randomly-generated test cases [28].

Parameter Value
i 50, 100, or 200 SKU
% 15, 30, or 60 final products
t 25, 50, or 75 planning periods
r 5, 10, or 20 resources
k 50, 100, or 200 strokes
D;; Uniform [1000, 2000]
i Uniform [10, 20]
COx Uniform [5, 8]
CSp Uniform [5, 10]
SO; k Uniform [35, 50]
Sl Uniform [4, 8]
LTy Uniform [1, 2]
KAP, Uniform [2000, 6000]

Uniform [4000, 8000]
Uniform [12,000, 14,000]
TOk Uniform [2, 5]
TS, Uniform [5, 10]

Nine groups of test instances were generated, according to three different sizes: Small (TI1-TI3),
medium (TI4-TI6), and large (TI7-T19).

Every instance group received an identification code, according to its parameters. For example,
the test instance showed in Figure 2 represents a problem with 50 SKU, 15 final products, a planning
horizon of 25 periods, 10 resources, and 50 strokes.

Test Number Number of Planning Number of Number of
Instance of SKU Products Horizon Resources Strokes
Number

\ ' \ \ \

v
T11-SKU50-P15-T25-R10-K50

Figure 2. The identification system for test instances [28]. SKU, Stock Keeping Unit.

The generated test instances groups are listed below:

e  TI1-SKU50-P15-T25-R10-K50

e  TI2-SKU50-P15-T25-R10-K100
e  TI3-SKU50-P15-T25-R10-K200
e  TI4-SKU100-P30-T50-R20-K50
e  TI5-SKU100-P30-T50-R20-K100
e  TI6-SKU100-P30-T50-R20-K200
e  TI7-SKU200-P60-T75-R30-K50
e  TI8-SKU200-P60-T75-R30-K100
e  TI9-SKU200-P60-T75-R30-K200

5.2. Initial Parameters

A general full factorial design [42] was implemented in order to select the initial parameters
for the Tabu list-based algorithm. The selected response variable was the total planning cost and
the experimental factors included three basic parameters: The number of iterations, the Tabu tenure,
and the number of candidate solutions per iteration.

Each experimental factor had three experimental levels (as shown in Table 5). The selected levels
were defined according to prior tests with every group of instances and by considering the number of
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iterations where the solution improvement rate become smaller and stable. The response variables
were the total planning cost and the total computational time.

Table 5. Experimental factors and levels.

Response Variables Experimental Factor

Experimental Levels

Number of Iterations

25
50
75

Total Planning Cost

Total Computational Time = Tabu Tenure

1/4 of Number of Iterations
1/2 of Number of Iterations
3/4 of Number of Iterations

Number of Candidate Solutions

per Iteration

5
10
15

Two problem sizes were defined: TI1-SKU50-P15-T25-R10-K50 for small problems and
TI7-SKU200-P60-T75-R30-K50 for large problems. The total computational time was measured and
the total planning cost was calculated. Normality, homoscedasticity, and an independence test were
performed, and the results of the analysis of variance (ANOVA) for both problem sizes are shown in

Tables 6-9.

Table 6. ANOVA for total planning cost in small problems.

Source DF  Adj.MS F p
Tabu_Tenure 2 568x1012 513 0.037
Tterations 2 1.65x 10" 1494 0.000
Candidate_Sol. 2 399 x 1018 36.04 0.000
Tabu_Tenure *Iterations 4 3.21 x 1012 29 0.094
Tabu_Tenure *Candidate Sol. 4 833 x 101 0.75 0.583
Iterations *Candidate Sol. 4 6.64 x 1012 6 0.016
Error 8 1.11 x 10%?

Total 26

S =1,051,813 R-Sq = 98.13% R-Sq(adj) = 93.92%
* DF, Degrees of Freedom; Adj MS, Adjusted Mean of Squares; F, F statistic; p, p value.

Table 7. ANOVA for total planning cost in large problems.

Source DF  Adj. MS F p
Tabu_Tenure 2 128 x 10 424 0.055
Iterations 2 491 x 10  16.24 0.002
Candidate_Sol. 2 313 x10% 1034 0.006
Tabu_Tenure *Iterations 4 364x108 12 0.380
Tabu_Tenure *Candidate Sol. 4 3.06 x 1013 1.01 0.456
Iterations *Candidate Sol. 4 263x1018 087 0.523
Error 8  3.02x 108
Total 26

S = 5,499,026 R-Sq = 90.24% R-Sq(adj) = 68.29%
* DF, Degrees of Freedom; Adj MS, Adjusted Mean of Squares; F, F statistic; p, p value.
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Table 8. ANOVA for total computational time in small problems.

Source DF Adj. MS F p
Tabu_Tenure 2 4894 1.09 0.382
Iterations 2 1,400,810 311.45 0.000
Candidate_Sol. 2 1,772,038 393.99 0.000
Tabu_Tenure *Iterations 4 5545 1.23 0.370
Tabu_Tenure *Candidate Sol. 4 11,985 2.66 0.111
Iterations *Candidate Sol. 4 119,395 26.55 0.000
Error 8 4498
Total 26

S =67.0647 R-Sq = 99.48% R-Sq(adj) = 98.31%
* DF, Degrees of Freedom; Adj MS, Adjusted Mean of Squares; F, F statistic; p, p value.

Table 9. ANOVA for total computational time in large problems.

Source DF  Adj. MS F 4
Tabu_Tenure 2 21,268 0.11 0.900
Iterations 2 27,135,914 135.58 0.000
Candidate_Sol. 2 27,235,975 136.08 0.000
Tabu_Tenure *Iterations 4 126,682 0.63 0.653
Tabu_Tenure *Candidate Sol. 4 237,283 1.19 0.387
Iterations *Candidate Sol. 4 1,891,696 9.45 0.004
Error 8 200,144
Total 26

S =447.374 R-Sq = 98.66% R-Sq(adj) = 95.64%
* DF, Degrees of Freedom; Adj MS, Adjusted Mean of Squares; F, F statistic; p, p value.

5.2.1. Total Planning Cost

According to the ANOVA results in Tables 6 and 7, all main experimental factors were statistically
significant with «c= 0.10, and their R-squared values were adequate. Most of the interactions showed
no statistical significance, especially in the large test instances.

Main effects plots allowed selection of the levels for the experimental factors that minimized
the total planning cost. As shown in Figure 3, a larger number of iterations, candidate solutions per
iteration, and Tabu tenure, led to better quality results. In this case, experimentation was cost-driven
and the high level for each experimental factor was selected for TLBA experiments.

Tabu_Tenure Iterations

144000000

140000000 \

1360000004

132000000 \ \l

128000000

ar 2 et 25 50 75
Candidate_Sal

144000000
140000000} \

1360000001

1320000001 \

128000000+

Figure 3. Main effects plot for total planning cost in large instances. Source: Minitab ®.
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5.2.2. Total Computational Time

According to the ANOVA results, the number of iterations, the number of candidate solutions,
and their interaction Iterations x CandidateSol had a statistical effect, in terms of computational time.
This result is expected, since these two factors determine the necessary number of cycles for obtaining
a solution.

As shown in Figure 4, the computational times were directly proportional to the number of
iterations and the number of candidate solutions per iteration.

Tabu tenure and its first-level interactions showed a non-significant effect on computational times:
The number of iterations that moves stayed in the Tabu list did not affect the average computational
time. This result differs from that presented in Section 5.2.1, as Tabu tenure has an important effect on
the total planning cost.

ab Terune arations

5000 |

4000 - /
3000 1 /

2000 -

14 B 12T 34 B 75 50 75

Cangicete So

500D

4000 /
3000 /

2000 A

5 10 15

Figure 4. Main effects plot for total computational time in large instances. Source: Minitab ®.

5.3. Computational Results

Matlab (R2017a) was the main development environment for the TLBA. Test instances were
generated using pseudo-random number generation, according to the parameters in Table 4.

An initial solution was calculated for every generated test instance, using a lot-for-lot method.

Test instances were exported to spreadsheet files and imported to GAMS using .gdx files. The exact
solutions were obtained through a branch-and-bound method using the CPLEX solver in GAMS
(version 24.8.2) with default settings. No tolerance settings or time limits were defined.

An overview of the information flow is shown in Figure 5.

The system specifications were as follows:

e RAM: 12 Gb DDR3
e CPU: AMD A6-5200 APU 2.00 GHz
e  Operating System: Windows 10 Professional (64 bits)

The results obtained for each of the test instances are shown in Table 10.
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MATLAB EXCEL GAMS
Test Instances Test Instances GDX File
Generation in — Exportation to P creation
Matlab Excel l
Y l
Initial Solution B&B Solution
Solution
Exportation to
\ ‘
Excel
TLBA Solution @
Figure 5. Solution generation process.
Table 10. Results for total planning cost and total computational times.
Test B&B GMOP Initial Solution TLBA
Instance Optimal Cost Time . Min. Comp. Avg. Comp.
(Cop) (secs) GAP Min. GAP  Avg. GAP Time (secs)  Time (secs)

TI1 10,326,117 969.4 14.54 0.2666 0.2952 14249 1482.2
TI2 2,683,534 972.5 23.7 0.2757 0.2895 1258.3 1279
TI3 4,890,778 972.8 72.96 0.1659 0.1722 1321.5 1350.2
TI4 106,247,444 994.56 30.23 0.1058 0.1148 7227.1 7260.2
TI5 74,585,367 999.25 10.84 0.1705 0.1773 7741.5 7792.7
TI6 43,278,154 993.24 21.84 0.2871 0.3041 8030.7 8042.5
TI7 1,585,713,234 1001 2.62 0.2186 0.2328 24,959.6 25,002.3
TI8 765,235,068 1020.1 4.66 0.2309 0.3322 27,000.4 27,145.6
TI9 252,626,622 1017.2 16.08 0.1301 0.1486 23,741.6 23,741.6

B&B GMOP: Branch-and-Bound solution for the GMOP model.
TLBA: Tabu List-Based Algorithm solution.
Min. Comp. Time: Minimum Computational Time.

Avg. Comp. Time: Average Computational Time.
Gaps were computed using (9), comparing the optimal solutions Cp,; with the obtained results in
every test instance C ;. Due to the random procedure for moves (see Section 4.4), the average and
minimum gaps for TLBA were calculated using five replicas for every test instance.

6. Discussion

6.1. Solutions Quality

GAP

CAlg - COpt

Opt

)

On average, the TLBA was able to obtain solutions with gaps between 11.48% and 33.22%
(Table 10). Even when the minimum gaps were obtained in a mid-sized instance (1T14:10.58%) and
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a large instance (T19:13.01%), there is no statistical evidence of better performance in a specific
problem size.
As shown in Figure 6, the average gaps also showed no significant difference when comparing
test instance groups.
0,35
03
0,25

0.2

Average GAP

0,05

1st Group 2nd Group 3rd Group
(TI1-TI3) (TI4-TI6) (TI7-TI8)

Problem Size

Figure 6. Box chart for the Tabu List-Based Algorthm (TLBA) average gaps.

Even though the lot-for-lot method allowed for obtaining feasible initial solutions in relatively
short times (15-180 s), the gaps for the initial solutions were considerably high. The effect of the initial
solution quality on TLBA was not measured, and further experimentation is necessary to improve the
algorithm’s efficiency [43-45].

Taking into account these results, the exact method remains a convenient option in terms of
quality. A cost-benefit analysis may be carried out, due to the sometimes expensive acquisition of
solver licenses [10], especially in small and medium enterprises.

6.2. Computational Effort

Optimal solutions were obtained in relatively short computational times (970-1020 s), with no
statistical difference between problem sizes.

On the other hand, TLBA computational times were higher, with a significant statistical difference
among problem sizes, as shown in Figure 7.

As expected, the times were directly proportional to problem size. Only the first instance group
showed comparable average computational times with the exact method but, in some cases, the times
were up to 52% higher.

Computational times in the medium sized instances were approximately 7 times higher than
those obtained with the exact method. In the case of the largest instances, the times increased almost
exponentially, with differences near to 2500%.

The solution representation and the evaluation method applied to candidate solutions had a
important effect on computational times [46]. The evaluation procedure when obtaining an initial
solution was simplified (see Section 4.5), explaining the low computational times in this phase.

In the case of the evaluation procedure for candidate solutions S, in V, time was basically affected
by the number of candidate solutions per iteration N;. It is necessary to analyze the random procedure’s
efficiency when obtaining non-forbidden candidate solutions and adding them to V, especially when
high values of Tabu tenure are used.

Mutation and combination mechanisms were not considered for generating candidate solutions,
this helped to avoid non-feasible candidate solutions related to stroke usage.
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Figure 7. Box chart for the average TLBA computational times.

The MRP procedure represents the most time-demanding routine. Implementing a more efficient
method to obtain SKU inventory levels must be analyzed in further research.

The Tabu list, as a short-term memory mechanism, allowed for improvement in the solution
quality. Future work may include the implementation of long-term intensification, diversification, and
aspiration mechanisms, in order to improve the algorithm’s performance.

According to the experimental results, Tabu tenure showed no statistical effect on computational
times (see Figure 3). This result may imply that, even when the Tabu list optimizes the search,
evaluation routines are computationally expensive.

The implementation of TLBA is limited by computational time. However, the use of this
kind of procedure would benefit enterprises with low software acquisition budgets (e.g., solver
acquisition) having an important efficiency impact on production planning and lot-sizing decisions.
This implementation is limited for the understanding and appropriation of the proposed algorithm.
Matlab codes, datasets, evaluation procedure, and instance generation algorithms are available in [47]
through GitHub.

7. Conclusions

A Tabu list-based algorithm (TLBA) was proposed for the solution of the GMOP model,
a capacitated multi-level lot-sizing problem, which considered alternate bills of materials and a
controlled co-production environment.

The algorithm obatined solutions with minimum gaps near to 10.5%, in medium-sized instances.
The complexity of the data structure, the iterative evaluation procedure for candidate solutions,
and the time-consuming calculation for inventory levels were the main three reasons for the large
computational times of the TLBA.

Opportunities for future research include the implementation of long-term memory mechanisms
for the TS. Additionally, the use of alternative initial solution methods and the improvement of the
candidate solution generation procedure may improve the algorithm’s efficiency.

TLBA represents one of the first attempts to find an alternative solution procedure to the
established GMOP search algorithms. The use of mathematical approaches (e.g., Lagrangian relaxation
and column generation) may result in performance improvements and provide a wide variety of
research opportunities.
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