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Abstract

Worldwide emission regulations are driven the efforts of the automotive industry to meet challenging targets

concerning pollution reduction. Nowadays, advances in exhaust aftertreatment systems are primarily required to

achieve regulation requirements within the whole engine operating range. Nevertheless, flow parameters, such as

the exhaust gas temperature, must be also addressed. This makes engine calibration a fundamental step, but also

leads to reconsider the passive design of the exhaust line as a way to improve the engine efficiency. Under this

context, a study has been conducted to explore the benefits of heat losses limitation looking for aftertreatment inlet

temperature increase at the same time fuel economy is improved. To do so, a baseline diesel engine has been modeled

using a gas dynamic software taking special care of the heat transfer processes in the exhaust. The investigation

covers the definition of different strategies for exhaust ports and turbine thermal insulation, which are evaluated in

a representative range of steady-state operating conditions. As a first step, the theoretical limits and representative

technology solutions are considered for each exhaust region. Then, a combination of the most promising strategies

has been computed to provide a comprehensive database and analysis of the potential of passive exhaust heat losses

control.

Keywords: Emissions regulation, Diesel engine, Exhaust aftertreatment system, Turbine outlet temperature, Exhaust

thermal insulation, Fuel consumption

1. Introduction

Energy policies in the major automotive regions establish air quality standards that impose CO 2 emission targets to

reduce the environmental impact of transport activities [1]. To guarantee the compliance with the limits in real driving

conditions, the Worldwide Harmonized Light Vehicles Test Procedure (WLTP) was set out in Europe for determining

the levels of pollutants, coming progressively into force from September 2017 [2]. In this way, Ko et al. [3] presented

a study about differences in NOx emissions between the old and the new test approval cycle that emphasized the need

to seize more severe methods to determine real emissions from internal combustion engines.
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New emission regulations are effectively forcing the development of new combustion strategies and improvements

in the exhaust aftertreatment systems (EATS) to reduce pollution, looking at the same time for minor or no prejudice

on fuel consumption. For instance, Li et al. [4] performed investigations on soot emission reduction by including a

cooling stage of the recirculated exhaust gas in boosted spark-ignited direct-injection engines, obtaining up to 48%

less soot. This decrease is mainly attributed to the dilution effect of the cooled exhaust gas recirculation (EGR) in the

mixture, leading to less local rich regions formation. The cooled EGR also causes a lower reaction temperature of

pool fires, main responsible for soot formation [5], near the walls.

To assure a good functioning of the aftertreatment devices, their working temperature emerges as the most im-

portant variable governing the conversion efficiency [6]. To be specific, the diesel oxidation catalyst (DOC), which is

commonly used to oxidize CO and HC emissions as well as NO into NO2, can work with high conversion efficiency

over 200oC [7]. However, to reduce NOx, either a lean NOx trap (LNT) or a selective catalytic reduction (SCR)

catalyst, that reduce NOx by using ammonia, need to be integrated into the exhaust line, according to manufacturer

specifications [8]. Depending on the particular SCR coating components, these devices can be fitted to provide high

NOx conversion efficiency at low (150− 450oC, Cu-zeolite) or high (350− 600oC, Fe-zeolite) temperature ranges [9].

By contrast, LNT devices show their maximum NOx trapping efficiency within a temperature window ranging from

250oC to 450oC [10], being more insensitive to NO and O2 as the temperature increases [11].

Regarding the use of the diesel particulate filter (DPF), a powerful device for trapping particulate matter, the

desired inlet temperature to reach passive regeneration condition is over 300 oC [12]. On the other hand, regeneration

processes in the presence of O2 should have initial temperature above 550oC [13]. This could be achieved by making

use of control strategies of exhaust thermal management that effectively increase the exhaust temperature [14] such

as retarding the main injection timing, reducing the rail pressure set point, decreasing the boost pressure set point or

adding post-injections [15].

Another issue is the trade-off relationship between NOx and soot. The use of exhaust gas recirculation, especially

low pressure EGR, leads to the reduction of combustion temperature and therefore reduces NO x emissions [16]. Due

to the low oxygen concetration at high EGR rate, soot oxidation is incomplete and thereby emission of soot increases

with increasing EGR rate [17]. This action will also reduce in-cylinder peak temperature and consequently the exhaust

manifold temperature, what will be adverse for aftertreatment operation.

The need of an early aftertreatment light-off during warm-up periods drives thermal management research into

different perspectives. Control techniques to estimate exhaust temperature have been proposed, as remarked in the

work of Guardiola et al. [18], who presented an in-cylinder pressure model to do so. Similarly, Gelso et al. [19] used

the model predictive control technique to control a diesel engine and estimate several EATS parameters, including

exhaust temperature. In [20], Fulton et al. investigated a turbine inlet exhaust temperature observer based on isentropic

expansion and heat transfer across a turbocharger turbine.

Although a proper knowledge of the engine conditions is required to improve the aftertreatment performance

during engine operation, turbine outlet temperature (T 4) increase is still the primary issue. However, acting on this
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parameter affects other variables, being difficult to overcome the trade-off trend with brake specific fuel consumption

(BSFC). Exploring the topic of exhaust temperature increase, many studies have undertaken concerns on aftertreat-

ment performance improvement via T 4 and its penalty on engine fuel economy. D’Ambrosio et al. [21] designed

an intake and exhaust manifold integrated in the cylinder head in order to improve the low-frequency thermal fatigue

resistance on the cylinder head. This investigation resulted on a faster aftertreatment warm-up, been able to maintain

the same BSFC. Galindo et al. [22] also proposed an optimal exhaust manifold design looking for an improved ther-

mal behavior by reducing the pressure pulses interference during load transient operation. The results showed that a

potential not only to improve the engine transient performance at low engine speeds but also the gas temperature at

the catalyst inlet and the steady effective torque existed.

The turbine technology can have also a relevant impact. The topic was addressed by Verschaeren et al. in [23],

where a 1D heavy-duty medium speed marine engine was modeled, focused on temperature increase for SCR ef-

ficiency improvement. In this work, a good compromise between exhaust temperature and fuel consumption was

obtained by means of a turbine waste-gate employment, whose opening makes T 4 increase. Serrano et al. explored

the pre-turbine DOC&DPF placement as a way to favor the pollutants oxidation and DPF passive regeneration [24]

while reducing engine back-pressure and reducing the fuel penalty of the aftertreatment system [25]. In addition,

this technique was shown to provide high potential for monolithic reactors downsizing [26] keeping benefits in fuel

economy.

Other studies have focused on the valve timing. Basaran et al. [27] modulated the intake valve closing timing

on a diesel engine for exhaust gas temperature increase. This method also helped improving the engine efficiency by

reducing the pumping losses. Maniatis et al. [28] also investigated variable valve trains in combination with second

exhaust valve opening as a way to increase the turbine outlet temperature, despite the trade-off with fuel specific

consumption.

The studies aimed to increase the exhaust temperature show that there is room for improvement by, for example,

combining different proposals with passive design solutions, such as thermal insulation. The aim of this paper is to

work out further and with better tools the investigations on methods to increase the exhaust temperature, as studied

by Serrano et al. [29], who analyzed valve timing and exhaust ports design to achieve this target. In this work,

different exhaust line thermal insulation strategies are computationally investigated in a passenger car diesel engine

to improve T4 for optimum aftertreatment operation and looking at the same time for BSFC reduction. Therefore, it

is fundamental to work with an accurate turbocharger heat transfer model, able to display good results for a precise

study of the insulation effects on T 4. In addition, an exergy analysis is also conducted to consider the impact of

the mechanical work generated by the turbine and identify the regions where thermal insulation efforts make sense.

The study comprises the analysis of low and partial-high steady state operations, dealing with theoretical limits and

representative technology solutions for the exhaust ports and the turbine. As a first step, different configurations are

evaluated separately. Then, the most promising approaches for exhaust ports and turbine are combined and assessed

in terms of T4 and BSFC trade-off.
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2. Methodology

In this work, a four-cylinder automotive diesel engine is designated to be simulated. The basic characteristics of

the engine are listed in Table 1.

The engine model is built by using the commercial software GT-Power [30], a 1D engine performance simulation

software. Standard GT-Power elements have been used to build up the model, except for the turbocharger, which has

been replaced by an advanced sub-model developed internally in OpenWAM software [31], a free open-source 1D gas-

dynamics code, created by CMT-Motores Térmicos [32, 33]. This sub-model simulates heat transfer and mechanical

losses in the turbocharger, improving the prediction of the turbine outlet temperature and therefore providing more

accurate results and analysis capability for the undertaken studies. More details of such model can be found in Serrano

et al. [34]. An analysis of the turbocharger heat transfer and mechanical losses influence in the prediction of the engine

performance is conducted in [35].

Figure 1 shows a schematic diagram of the energy fluxes in the turbocharger [36]. Baines et al. [37] state that

only a fraction of the exhaust gases energy is converted across the turbine to mechanical work and transferred to the

compressor. In fact, the internal heat transfer from the turbine to the bearing housing as well as the external heat

transfer from the turbine to the environment are the most important losses that affect the turbocharger performance.

In addition, heat flows from the gas to the turbine housing and later arrives to the compressor, worsening its efficiency

[38]. Part of the heat is removed by the lubricating oil and coolant circuits while other part of the energy is exchanged

between the turbocharger and the surroundings through radiation and convection. Another consideration is that, from

a heat transfer modeling approach, the radial variation of temperature can be omitted, since it is negligible compared

to the axial one [39].

The lumped turbocharger heat transfer model is sketched in Figure 2. It comprehends 5 internal nodes, repre-

senting the turbine housing (T), the compressor housing (C) and 3 different metal nodes for the central components.

The model is completed with two external nodes representing the exhaust gas and the air. The 3 metal nodes are set

between the turbine and the compressor to obtain a more precise temperature field, which presents a high gradient due

to the active cooling of the components placed in there (oil and sometimes water cooling). One of the nodes is located

in the hot turbine back-plate (H1 in Figure 2); another in the cold compressor back-plate (H 3 in Figure 2); and a third

one is placed in the central bearing housing (H2 in Figure 2), where oil and water ports are located and therefore heat

is usually dissipated.

The turbine extracts energy from the exhaust gas flow (ẆT,a/ṁT ) between inlet turbine (IT) and outlet turbine

(OT) stations. It is used to drive the compressor causing the later air enthalpy to rise. ẆC,a/ṁC represents the specific

compression work in adiabatic conditions between inlet compressor (IC) and air (A) stations. Finally, the turbocharger

power balance is represented by the equation in the lower part of Figure 2, where Ẇmech is the mechanical power losses.

Figure 2 shows that, in addition to work, heat is also transferred between turbine and compressor. The heat losses

from the turbine (Q̇GAS/T ) are transferred from the turbine case (T) to H 1 and so on until it reaches the compressor
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(C). In node H2 the heat flux is partly rejected to the lubricating and cooling systems. Regarding the compressor, it is

observed that the air exchanges heat with the compressor casing ( Q̇C,Air/ṁC).

In order to determine the metal conductances and to obtain an initial estimation of thermal capacitances, a thermo-

hydraulic test rig is set in which, firstly, an incompressible fluid is flowed through the turbocharger [40]. Measurements

in a hot flow gas stand allows obtaining the correlations for both internal heat transfer and external heat transfer.

The final consideration is that the temperatures are not time but mass averaged, which results in a more accurate

temperature prediction [41]. In addition, in order to adapt a mathematical model for turbocharger mechanical losses,

adiabatic measurements from gas stand are performed, as discussed by Serrano et al. [42]. With these models, to

calculate the heat transfer and mechanical losses for any operating condition of the turbocharger in the engine is

possible.

The tests went through six chosen operating engine points, as shown in Table 2. These points have been selected to

cover a wide range of conditions in the engine operation map. The operating points #A, #B and #C are related to low

load conditions whereas #D, #E and #F represent high load, in a way that different trends and quite a few variations

can be addressed.

Figure 3 shows the engine model in GT-Power, indicating the intake manifold, cylinders, exhaust manifold and

turbocharger model, which are circled with a blue line. The exhaust system is highlighted and divided into 3 sections.

The 1st and 2nd sections represent the exhaust ports. The two individual channels in the 1 st section merge roughly

halfway through the ports, forming one larger cylindrical channel in the 2 nd section. The mixture is finally discharged

in the exhaust manifold, represented by the 3 rd section.

Before carrying out the studies, a comparison between measured data and modeled results was performed to verify

the model reliability. In Figure 4 this comparison is shown with focus on BSFC, fuel injected mass, T 4, air mass flow,

T3 and turbocharger speed. For all experimental conditions the same fitting coefficients have been set, reason why

some operating points show greater error than others. The model provides a good balance with the experimental data

as well as consistency. Despite some high relative error in air mass flow, like in point #B, in which reaches 15.5%, the

model behaves coherently moving this mismatch to a corresponding impact on exhaust gas temperature prediction.

Nevertheless, the absolute differences in air mass flow are kept within a narrow range, so that the impact in absolute

error of T3 and T4 is reduced and acceptable for comparison proposals between the parametric computational studies.

Complementary, Figure 5 shows the comparison between experimental and modeled in-cylinder pressure for all the

operating points. As for cycle-averaged variables, in-cylinder pressure prediction is well balanced among all points

providing good accuracy both during the open and closed loops, as detailed by the different zooms represented in

Figure 5.

In all parametric studies, torque and intake manifold pressure are kept constant using PID controllers. Torque has

been controlled by means of injected fuel quantity and the intake manifold pressure has been governed by the variable

geometry turbine (VGT) opening. For low loads, the oxygen concentration resulting from the mixture between fresh

air and high pressure EGR has been regulated by the EGR valve opening. For the case where oxygen concentration is
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still too high even with the EGR valve fully open, an intake valve upstream the EGR and air mass flow mixing point

throttles the air charge.

The temperature and the exergy evolution through the exhaust line for the six chosen operation points are displayed

in Figure 6. The exhaust line positions #1, #2 and #3 in the X-axis of each chart in Figure 6 are corresponding to

the positions labels with 1, 2 and 3 of the exhaust system showed in Figure 3. The points #4 and #5 represent the

turbine inlet and outlet respectively. Looking at both variables evolution, it is observed an accentuated drop in the 1 st

section of the exhaust manifold, then a smoother loss of temperature and exergy from point #2 to point #4 and finally

an abrupt drop again in the turbine, between points #4 and #5. Exergy has been calculated according to Eq. 1:

Exergyi = ṁ

(
hi +

vi
2

2
− TambΔsi

)
(1)

A huge difference in exergy between the dotted and the full line can be seen in the last section of the series. This

difference corresponds to the exergy from mechanical power, which is only considered at the turbine outlet. The

negative slope in the exergy full line series in sector #4 to #5 means that not only the expansion of the gas in the

turbine reduces the temperature but a relevant exergy destruction is also taking place.

This behavior triggers an interest in reducing the temperature loss in two locations: between #1 and #2, where the

exhaust ports are located, and from #4 to #5, where the active turbine cooling (oil and water) is placed. Conventional

exhaust ports lose significant heat because they transport hot gas at the highest temperature from the cylinder to the

exhaust manifold being water-cooled; the high temperature drop in the turbine is caused by the expansion of the

exhaust gas to produce mechanical power and by wall heat transfer to the ambient and to the cooling and lubrication

systems of the turbocharger bearing housing. For this reason, the parametric studies have been focused on two

separate strategies, which are exhaust ports and turbine thermal insulation, to obtain less temperature drop and, as

a consequence, higher T 4. At the same time it is sought to cause as little prejudice in BSFC as possible, or even to

achieve some improvements on it and others engine parameters.

3. Results and discussion

3.1. Thermal insulation of the exhaust ports

The temperature sensitivity in the first section of the exhaust manifold underlines an interest for an optimum

design of the exhaust ports integrating both fluid mechanics and heat transfer criteria. Therefore, this first studied

strategy consists of insulating the exhaust ports, reducing their heat exchange with the surroundings. The proposed

insulation corresponds to the 1 st and 2nd sections in Figure 3, what comprehends exhaust port positions #1 to #3 in

Figure 6. There were performed 4 different cases to accomplish this objective, which are sketched in Figure 7. Case #1

represents the baseline design. Case #2 evaluates the effect of an air chamber in the inner part of the exhaust, whilst

Case #3 includes a ceramic coating between the air chamber and the exhaust pipe. Finally, for comparison effects,

Case #4 corresponds to an adiabatic configuration that represents the theoretical limit.
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Table 3 shows the material properties applied in the four different configurations, which includes density, thermal

conductivity, specific heat and surface emissivity. Aluminum is the original material of the exhaust ports. Stainless

steel is set in the inner part of the port, when an air chamber and YSZ (Yttria-stabilized zirconia), a ceramic in which

zirconia (ZrO2) is reinforced with yttria (Y2O3) to obtain a stable structure at room temperature [45], are added to the

configuration. The thickness of each layer for every case is listed in Table 4.

Exhaust ports thermal insulation results in higher T 3 because of the heat loss reduction. This increase on T 3 makes

the VGT to open, as it can be observed in Figure 8(a) and (d), for low and high load operating points respectively.

Consequently, the pressure before the turbine (p 3) decreases, as shown in plots (b) and (e) in Figure 8. A decrease

in p3 also represents a benefit for pumping losses, as demonstrated in Figure 8(c) and (f). The effective efficiency is

increased not only by the reduction of the pumping losses, but also because of an increment of the indicated efficiency,

which is shown in Figure 9. The reason for this increment is due to the maximum in cylinder temperature decrease

and, hence, the heat losses inside the cylinders.

Figure 10 displays the variation in temperature along the exhaust line for the simulated engine operation points

and the described parametric study. As indicated, all the curves show higher temperature along all the exhaust system

until T4, represented by the exhaust position #5. As expected, the adiabatic curve shows the highest temperature for all

operation points. The extra ceramic coating added over the air chamber, i.e. Case #3, provides almost no improvement

in comparison with Case #2, which has only an air chamber in the inner part.

Finally, Figure 11 summarizes the variation in T 4 and BSFC compared to the baseline for the studied parametric

cases. Eq. 2 and 3 express how these values are obtained:

ΔT4 = T4case#i − T4baseline (2)

ΔBS FC[%] =
BS FCcase#i − BS FCbaseline

BS FCbaseline
× 100 (3)

As shown in Figure 11(a) and (c), the exhaust ports thermal insulation produces an increment of T 4 for all cases.

Case #4, which represents the adiabatic condition, is the one where the highest T 4 is obtained due to the absence

of heat exchange with the wall. However, Cases #2 and #3, which are realistic feasible configurations, also present

a relevant increment in T4 that ranges between 10-30 K at low load and 50-60 K at high load. This effect is due

to a much lower thermal conductivity of the materials present on the two cases containing insulation than purely

aluminum, which is the only material used in the exhaust port for the baseline configuration. It is possible to see that

adding 1 mm of YSZ ceramic coating does not produce a significant improvement on insulation to the system, since

its material properties are not as excellent as air for insulation being its effect canceled out.

Besides benefits in aftertreatment inlet temperature, fuel economy improvements are also reached, as shown in

Figure 11(b) and (d). This is especially evident at high load, due to pumping losses reduction and indicated efficiency

improvement, as seen in Figures 8 and 9. Figure 11 depicts that for very low load there is almost no improvement
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on BSFC, in agreement with the gain on T 4, which is scarcely representative. This in agreement with p3 and PMEP,

which present a small variation in comparison to the baseline case. As load and engine speed increase, BSFC is

reduced up to approximately -1.25% since PMEP and p 3 improvements are more significant for these cases.

3.2. Turbine thermal insulation

The temperature sensitivity between #4 and #5 exhaust port positions in Figure 6 also emphasizes the interest

for a turbine heat exchange optimization by means of minimizing the heat loss insulating the turbine. Regarding

this strategy, five cases have been defined to explore the T 4 increase, as described in Table 5. Case #1 represents

the baseline design; Case #5 performs a reduction of 50% in the contact area between the turbine and the housing

place; in Case #6 water cooling is suppressed and the turbine is equipped with a thermal shield; in Case #7 the turbine

contains an internal ceramic coating (1 mm of YSZ material); and Case #8 represents an adiabatic turbine as a limit

configuration.

Figure 12 compares the turbocharger heat transfer balance in the baseline turbocharger (turbine) configuration for

the studied operating points. This is an indicator of heat power exchanged between two or more environments. For

each operating point, two columns are depicted. The one on the left side represents the heat transferred from the gas

flow to the walls of the turbocharger whilst the one on the right side stands for the heat transferred from the walls to

the fluid flow.

Only the gas flowing across the turbine heats up the walls in low load operating points. In these cases, the walls

transfer heat to fresh air in the compressor, to the water cooling flow, to the oil flow and finally to the ambient. At high

load, high pressure and temperature are originated, making not only the turbine but also the compressor to transfer

heat to the walls, what also makes the wall temperature to increase. Finally, the oil flow also heats up the turbocharger

walls at high load since it reaches higher temperature due to higher friction losses power.

The heat transfer balance for the additional four configurations listed in Table 5 are illustrated in Figure 13. In

the adiabatic case (Case #8), shown in plot (a), there is no heat transfer involving the turbine and the surroundings,

so that heat only exchanges between the other mentioned fluids. For the half area case (Case #5), plot (b) evidences

that although the area is decreased by half and the heat transfer is directly proportional to the surface area, the heat

exchange is still very similar to the baseline case. If one compares Figure 12 with Figure 13(b) is possible to clearly

see, especially in the operating point #F, how the heat flux to the ambient is proportionally increased, in spite of the

heat flux to the water cooling in the bearing housing has been reduced.

Plot (c) in Figure 13 shows the configuration removing water cooling but insulating the turbine with a thermal

shield (Case #8). The heat transfer to the coolant fluid is now zero since it is absent. Besides, the lubricant oil

share has substantially increased compared to all previous cases, once the heat transferred to the water cooling fluid

in the other cases is this time mainly moved to the oil flow. In addition, due to the thermal shield included in this

configuration, the heat losses from the turbine are lower than in the baseline case. Finally, the ceramic coating case

(Case #7) provides a significant reduction in the heat losses coming from the turbine. In fact, they are lower than in
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the case containing thermal shield insulation, as can be seen in Figure 13(d), specially evident at high load operation

points. It happens because, as defined in Table 5, the ceramic coating reduces the heat flow already through the turbine

volute wall.

As shown in Figure 14(a) and (e), the heat loss reduction makes the VGT open, mainly in Case #8, since, according

to Figure 13(a), the adiabatic case presents less heat losses from the turbine and there are passive changes downstream

of the turbine inlet. Thus, p3, which is represented in plots (b) and (f) for low and high loads, and the pumping losses

(Figures 14(c) and (g)) are reduced.

For a final comparison, Figure 15 displays the turbine outlet temperature and BSFC variations with respect to the

baseline case. X-axis represents each of the 5 parametric studies described in Table 5. It is noticed, according to the

comments in the previous paragraph, that the adiabatic case reaches the highest temperature for T 4, which increases

20 to 40 K with respect to the baseline configuration. In terms of benefit, Case #7 (ceramic coating) shows the highest

improvement, with 10 K increase from the baseline case. Also BSFC shows a slight improvement, mainly for the

adiabatic case, with the only exception of the very low load case (point #A).

3.3. Combination of exhaust ports and turbine thermal insulation

After exposing two different strategies to achieve T 4 improvement, a possible further step to be adopted is to

employ both of them at the same time, expecting to obtain a synergistic result. That said, a third study was undertaken

divided into two parts. Firstly, a combination of both adiabatic cases is considered to determine the maximum value

of T4 that could be achieved using these strategies. Next, two cases that present feasible technological solutions are

merged.

Table 6 shows the four compared cases for the first part of this third study. Thus, Figure 16 represents T 4 and

BSFC variations for all adiabatic cases. As expected, Figure 16(a) and (c) show further improvement on temperature

when both strategies are applied simultaneously. For all running points, a pronounced almost linear increase is ob-

served, making it possible to reach up to 130 K temperature variation. Specific fuel consumption has also presented

a noticeable improvement when both strategies are employed. Figures 16(b) and (d) represent BSFC values for all

parametric studies and evidence that for this last study, BSFC is reduced up to 2%.

A part of the theoretical optimal case, a realistic strategy has been considered in the second part of the study,

where turbine with ceramic coating in the volute is employed at the same time the exhaust ports are insulated with an

air chamber. This way, the results are compared between the studies listed in Table 7. Figure 17 shows that positive

results are found for the four parametric studies. With respect to T 4, plots (a) and (c) evidence that T 4 reaches up to

50 K for low load and 80 K for high load. The combination is also favorable for BSFC, with the only exception of

point #A, which has already presented fuel penalty in comparison to the baseline for the turbine insulation case. For

the rest, the specific fuel consumption is significantly improved around 1%.

Analyzing the results in more detail, it can be confirmed a synergistic effect, since combining both solutions pro-

duces a greater outcome than the simple sum of their individual impact. For example, analyzing operating point #D,
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the sum of results for T4 variation in turbine with ceramic coating (10 K) and exhaust ports with air chamber (50 K)

is 60 K, but the actual temperature variation for the combination of both solutions is 75 K. The same phenomenon

happens for almost all cases considering the BSFC variation. Therefore, it is noticed that only turbine thermal insula-

tion produces a not so noticeable benefit. However, in the combined case with prior exhaust ports thermal insulation,

T3 is higher and p3 is lower, maintaining the same turbine work. For operating point #B, the value for p 3 is 1.21 bar

in the baseline case, 1.20 bar for Case #7, 1.18 bar for Case #2 and 1.17 bar for Case #10. This response evidences

how additional benefits in T3 increase allows the VGT to open even more. For the same operating point #B, the VGT

position is 16% in the baseline case, increasing to 16.9% for the thermal insulated turbine, to 21.2% when the exhaust

ports are insulated and up to 23.8% when combining both solutions in Case #10. Being the VGT more opened, the

pumping losses result even more reduced and the expansion ratio in the turbine is also lower, causing a smaller drop

in temperature from T3 to T4. Therefore, T4 reaches a higher value compared to the baseline than adding separately

the individual variations for Cases #2 and #7.

4. Summary and conclusions

This paper has presented a study willing to improve the aftertreatment boundary conditions in internal combus-

tion engines by increasing its inlet temperature applying passive methods able to be combined to other techniques.

Increasing the turbine outlet temperature represents a positive impact on the warm-up process, reducing the time

for light-off of the different exhaust aftertreatment devices. It is essential to enable the aftertreatment to achieve the

target conversion efficiency and reduce the requirements for particular engine warm-up or DPF active regeneration

strategies.

Different approaches for exhaust line components thermal insulation have been evaluated. The results have been

obtained computing a gas dynamics engine model coupled to an advanced turbocharger heat transfer and mechanical

losses sub-model previously calibrated against experimental data. Through the performed studies, it has been seen that

there are feasible methods to enhance the aftertreatment inlet temperature providing, moreover, reduction in specific

fuel consumption. As a result, a database covering in detail the impact of exhaust ports and turbine thermal insulation

is provided.

Summarizing, plots (a) and (b) in Figure 18 make it possible to classify the best and worst strategies as a function

of the impact on T4 and BSFC for each operating point. Figure 18(a) illustrates the results performed in adiabatic

conditions for turbine and exhaust ports thermal insulation and also the final study, with both strategies combined.

On the other hand, Figure 18(b) shows the results for feasible solutions concerning exhaust ports and turbine thermal

insulation. In both plots, the top left quadrant stands for the ideal case, where T 4 increase and BSFC reduction are

obtained. This region is where most of the results are concentrated. The top right quadrant denotes the cases that

present temperature improvement though BSFC penalty.
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It is clear that all the results for adiabatic conditions have a close to double effect than the best realistic solutions.

Besides, adiabatic cases report only positive results, i.e. less specific fuel consumption and T 4 increase. Nevertheless,

plot (b) in Figure 18 shows the vast majority of results on the top left of the graphic and none of them represents a

decrease of T4, meaning that all cases have significant positive impact on both merit variables. The points for the cases

where turbine is insulated still present some results with negligible influence on T 4 and even some cases presenting

BSFC penalty, these last related to very low load conditions. Exhaust ports thermal insulation demonstrates to be

a promising strategy concerning to heat losses reduction solutions. It shows positive results for T 4 and BSFC and

clearly better than the ones just focused on turbine thermal insulation, which are damaged by heat fluxes toward

non-avoidable lubrication and cooling systems.

Nevertheless, the combination of both strategies produces remarkable T 4 increase and BSFC reduction, evidenc-

ing a synergistic effect governing the T 4 increment potential. Finally, the still considerable difference between the

adiabatic and the feasible results leaves the way open for further optimization of thermal insulation solutions or com-

bination between two or more methods specially looking for a previous increase in exhaust manifold temperature.
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Definitions/Abbreviations

A air node

BSFC brake specific fuel consumption

C compressor

GAS exhaust gas node

H1 1st internal node between turbine and compressor

H2 2nd internal node between turbine and compressor

H3 3rd internal node between turbine and compressor

h specific enthalpy

IC compressor inlet

IT turbine inlet

ṁ mass flow

OC compressor outlet

OCs isentropic compressor outlet

OT turbine outlet

OTs isentropic turbine outlet

p3 turbine intake pressure

Q̇ heat flow

PMEP pumping mean effective pressure

Q̇ heat flux

s specific entropy

T turbine

T temperature

T3 turbine inlet temperature

T4 turbine outlet temperature

vi fluid velocity

Ẇ power

W water
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Acronyms

1D one-dimensional

DOC diesel oxidation catalyst

DPF diesel particulate filter

EATS exhaust aftertreatment system

EGR exhaust gas recirculation

HSDI high speed direct injection

LNT lean NOx Trap

SCR selective catalytic reduction

VGT variable geometry turbine

YSZ Yttria-stabilized Zirconia

WLTP Worldwide Harmonized Light Vehicles Test Procedure

Subscripts

a adiabatic conditions

Amb ambient

B bearing

B/Amb refers to heat flux transferred between the bearing and the ambient

B/C refers to heat flux transferred between the bearing and the compressor housing

B/Oil refers to heat flux transferred between the bearing and the oil circuit

C compressor

C/Air refers to heat flux transferred between the compressor and the air

C/Amb refers to flux transferred between the compressor and the ambient

Gas/T refers to heat flux transferred between the exhaust gas and the turbine housing

mech refers to mechanical losses

Oil oil node

s isentropic

T turbine

T/Amb refers to heat flux between the turbine and the ambient

T/B refers to heat flux between the turbine and the bearing
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Table 1: Engine specifications of simulated engine.

Type Turbocharged HSDI diesel

Displacement 1997 [cm3]

Bore 85 [mm]

Stroke 88 [mm]

Number of cylinders 4 in line

Number of intake valves 2 per cylinder

Number of exhaust valves 2 per cylinder

Turbocharger model VGT

Compression ratio 15.5:1

Maximum power @ speed 120 [kW] @ 3750 [rpm]

Maximum torque @ speed 340 [Nm] @ 2000 [rpm]

EGR type Cooled, high pressure with intake throttle

Table 2: Identification of simulated engine points.

Point ID Speed [rpm] Load [%]

#A 1500 10

#B 1500 25

#C 2000 25

#D 1250 75

#E 2000 75

#F 3500 100
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Table 3: Thermal properties of the exhaust ports materials.

Material [-] Color [-] Density [kg/m3] Thermal Specific Surface

conductivity [W/mK] heat [J/kgK] emissivity [-]

Stainless steel Black 7900 25.4 611 0.85

Air Blue 1.1614 0.0667 1141 -

YSZ Red 4950 [43] 1.2 [43] 490 [43] 0.729 [44]

Aluminum Grey 2700 204 240 0.8

Table 4: Layer thickness in exhaust ports thermal insulation configuration.

Thickness [mm]

Case Stainless steel Air YSZ Aluminium

#1 (baseline) 0 0 0 15

#2 3 2 0 10

#3 3 2 1 9

#4 Adiabatic

Table 5: Turbine thermal insulation cases.

Case #1 - Baseline

Case #5 - Contact area between turbine and housing plate 50% reduced

Case #6 - Turbine without water cooling and with thermal shield

Case #7 - Turbine with internal ceramic coating in the volute (1 mm YSZ)

Case #8 - Adiabatic turbine

Table 6: Adiabatic exhaust ports and turbine cases.

Case #1 - Baseline

Case #4 - Adiabatic exhaust ports

Case #8 - Adiabatic turbine

Case #9 - Adiabatic exhaust ports and turbine combination

Table 7: Feasible cases for exhaust ports and turbine thermal insulation.

Case #1 - Baseline

Case #2 - Exhaust ports with an air chamber

Case #7 - Turbine with internal ceramic coating in the volute (1 mm YSZ)

Case #10 - Case #2 and Case #7 combination
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Figure 7: Representation of exhaust ports thermal insulation cases.
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Figure 10: Temperature variation across the exhaust line as a function of the exhaust ports thermal insulation configuration.
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Figure 11: Aftertreatment inlet temperature and BSFC variation at low and high load operating points as a function of the exhaust ports thermal

insulation configuration.
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Figure 12: Heat power balance in the turbocharger for the baseline configuration (Case #1).
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Figure 13: Heat power balance in the turbocharger as a function of the turbine thermal insulation configuration.
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Figure 14: VGT position, inlet turbine pressure and PMEP at low and high load operating points as a function of the turbine thermal insulation

configuration.
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Figure 15: Aftertreatment inlet temperature and BSFC variation at low and high load operating points as a function of the turbine thermal insulation

configuration.
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Figure 16: Aftertreatment inlet temperature and BSFC variation as a function of different adiabatic configurations in the exhaust ports and the

turbine.
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Figure 17: Aftertreatment inlet temperature and BSFC variation at low and high load operating points as a function of different feasible exhaust

ports and turbine thermal insulation configurations.
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Figure 18: Summary of impact on T4 and BSFC of (a) adiabatic cases and (b) feasible solutions for exhaust ports and turbine thermal insulation.
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