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Abstract: With increasingly stringent environmental regulations on emission standards, enterprises
and investigators are looking for effective ways to decrease GHG emission from products. As an
important method for reducing GHG emission of products, low-carbon product family design
has attracted more and more attention. Existing research, related to low-carbon product family
design, did not take into account remanufactured products. Nowadays, it is popular to launch
remanufactured products for environmental benefit and meeting customer needs. On the one hand,
the design of remanufactured products is influenced by product family design. On the other hand,
the launch of remanufactured products may cannibalize the sale of new products. Thus, the design
of remanufactured products should be considered together with the product family design for
obtaining the maximum profit and reducing the GHG emission as soon as possible. The purpose
of this paper is to present an optimization model to concurrently determine product family design,
remanufactured products planning and remanufacturing parameters selection with consideration of
the customer preference, the total profit of a company and the total GHG emission from production.
A genetic algorithm is applied to solve the optimization problem. The proposed method can help
decision-makers to simultaneously determine the design of a product family and remanufactured
products with a better trade-off between profit and environmental impact. Finally, a case study is
performed to demonstrate the effectiveness of the presented approach.

Keywords: low carbon; remanufacturing; product family design; joint decision-making

1. Introduction

Global warming has become one of the most seriously challenge to mankind. The fourth
assessment report of Intergovernmental Panel on Climate Change (IPCC) stated that greenhouse
gas (GHG) emission from human activities is mainly responsible for global warming [1].
The manufacturing industry generates significant financial fortunes, but also produces massive
amounts of GHG emission. The problem of large amounts of GHG emission caused by the
manufacturing industry is a widely concerned across the world, and how to reduce the GHG
emission of products has become one of the primary questions in the modern manufacturing industry.
The product design stage affects more than 80% of the product cost, as well as 80% of the social and
environmental influences of products [2,3]. Therefore, to cut down product’s GHG emission, it is
important to investigate low-carbon design methods. Compared with the low-carbon design method
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for a single product, there is growing concern about the low-carbon product family design. This is
because product family design is more widely adopted by firms for satisfying diverse requirements
and achieving economies of scale. Although some methods have been presented for low-carbon
product family design in recent years, remanufactured products are not considered simultaneously.

Remanufacturing is a process where used products are disassembled, and their parts are repaired
and used to assemble products [4]. Resulting from fewer raw materials and fewer manufacturing
procedures, remanufacturing could significantly decrease energy consumption and relevant GHG
emission [5]. At present, in order to deal with increasingly serious environmental problems,
remanufacturing is becoming popular. Since some components of remanufactured products are
from the used product, the design of remanufactured products is limited by the product family
launched to the market in the first period. On the other side, the launch of remanufactured products
cannibalize the sales of new products. Therefore, for minimizing GHG emission and maximizing
profit, the product family design and the remanufactured products planning should be considered
concurrently. It has not been fully addressed in previous studies. The purpose of this paper is to
present an optimization model to concurrently determine product family design, remanufactured
products planning and remanufacturing parameters selection with consideration of the customer
preference, the total profit of a company and the total GHG emission from production. The method
can help firms to decide the optimal design of product family and remanufactured products under the
objectives of maximizing profit and minimizing GHG emission with multiple restrictions.

The rest of the article is structured as follows: Section 2 briefly reviews the related literature.
The studied problem is defined in Section 3. Section 4 develops an optimization model for the proposed
problem. Section 5 introduces the genetic algorithm for solving the optimization problem. Section 6
gives a case study to demonstrate the effectiveness of the presented method. Section 7 summarizes the
conclusions and some future research directions.

2. Literature Review

2.1. Low-Carbon Product Design

For handling the problem of global warming, low-carbon product design has become a research
hotspot in recent years. Lots of scholars are paying attention to low-carbon product design.
Song et al. [6] investigated a low-carbon design system in view of the bill of materials to plan a
low-carbon product by substituting components with high GHG emission. By integrating low carbon
technology, Qi et al. [7] built a tool for low-carbon modular product design. Su et al. [8] presented
a quantitative assessment method to evaluate the carbon emission and the cost of a product at the
conceptual design stage. Kuo [9] set up an optimization planning model for low-carbon product design
with consideration of product cost, supplier capacity, and transport mode of a part. To address the
conflict of requirements among enterprise, user, and government, Xu et al. [10] studied a low-carbon
product multi-objective optimization approach to achieve triple win requirements of enterprise,
government, and user. He et al. [11] gave a low-carbon product design approach in consideration
of a product life cycle. Chiang et al. [12] proposed a decision-making method in order to design
low-carbon electronic product. He et al. [13] introduced a carbon footprint model and a conceptual
design framework to assess the environmental impact of products life cycle. The above studies mainly
focus on low-carbon design for a single product.

With the increase of customers’ diversified demands, product family design has been commonly
adopted for achieving economies of scale and meeting diverse requirements [14]. Over the last
decade, much research has been reported on product family design. These studies focus on product
family design from various aspect such as business strategy, marketing and customer engineering.
Beyond that, the use of product family requires manufacturing systems that can produce a variety
of products cost-effectively within a single generation and evolve with the change to product family.
For this purpose, some researchers investigated the flexible and reconfigurable manufacturing
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systems. For example, Francalanza et al. [15] proposed a framework to support the ‘Product Family’
manufacturing system designer. Bryan et al. [16] introduced a method for the concurrent design of
a product family and a reconfigurable manufacturing systems. In the aspect of low-carbon design,
since several interrelated product variants need to be considered together in product family design,
the low-carbon design method for a single product cannot be used in low-carbon product family
design [17]. To address the problem, some authors investigated the low-carbon design approach for
product family. For example, Wang et al. [17] proposed a product platform planning approach for
low-carbon product family design in consideration of cost. Tang et al. [18] investigated a method
for low-carbon product configuration in mass customization. Kim et al. [19] introduced a method
for deciding a sustainable platform with consideration of sustainability values, risk values and
commonality. Xiao et al. [20] developed a game-theoretic model for optimization of low-carbon
product family and its manufacturing process. Although some methods have been presented for
low-carbon product family design in recent years, the remanufactured products planning are not
considered simultaneously.

2.2. Remanufacturing

Remanufacturing is the production process where used products are disassembled and some of
its components are remanufactured to be used in the assembly of remanufactured products. In recent
years, remanufacturing has been receiving growing attention. Mangun et al. [21] incorporated reuse,
remanufacturing, and recycling into a product portfolio design for maximizing the total portfolio utility,
and the product cost, the environmental impact of a product, etc., are considered simultaneously. Debo
et al. [22] studied the joint pricing and production technology options problem faced by a manufacturer
who prepares to sell a remanufacturing product in a market. Vorasayan et al. [23] presented a queueing
network model for deciding the optimized quantity and price of a remanufactured product under
the object of maximizing profit. Kwak et al. [24] constructed an optimization model to estimate the
profitability of a product family design from an end-of-life perspective. Taking into account product
take-back, upgrading product features, and pricing, Kwak et al. [25] proposed a method to obtain
the optimized market positioning of a remanufactured product. The above studies mainly focus on
consideration of remanufacturing in the product design phase. Because the launch of remanufactured
products impacts the market share of new products, the competition between new products and
remanufactured products is also under consideration by the research community (e.g., Deboet et
al. [26]; Ferguson et al. [27] and Jin et al. [28]). In addition to economic consideration, some authors
investigated remanufacturing with consideration of environmental benefit. For example, Liu et al. [29]
proposed a decision-making method for remanufacturing under different carbon emission regulation
policies. Wang et al. [30] addressed the decision-making problem of manufacturing/remanufacturing
production taking into account carbon trading. Yenipazarli [31] studied how the remanufacturing
production decision is influenced by the emission tax and how to impose emission tax for achieving
social, economic and environmental benefits of remanufacturing.

Common components exist between product variants in a product family. Some research (e.g.
Simpson [32], Perera et al. [33],) indicated that improving component commonality between products
can benefit remanufacturing in two aspects. On the one hand, the economies of scale is raised in the
remanufacturing operation. On the other hand, since the interchangeability of components across a
family of products is increased, it facilitates the profitable reuse/remanufacturing of more components.
The above studies are mainly qualitative analysis. Kwak [34] proposed a quantitative model for
assessing the profitability of product family designs in end-of-life management. Although some
scholars have investigated the relationship between remanufacturing and product family, no research
papers have developed an optimization model to simultaneously determine product family design,
remanufactured products planning and remanufacturing parameters selection with consideration of
the customer preference, the total profit of a company and the total GHG emission from production.
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3. Problem Description

The optimization problem is described as follows: it is assumed that a product has been developed
into a modular structure. That is, a product is considered to consist of a set of functional modules.
Each functional module has several candidate module instances (components), and different module
instances of a module have similar functionality, but different levels of performance. To meet diversified
market demands, the firm wants to develop a product family. The product family contains multiple
product variants, and the firm needs to choose the module instance (component) for each functional
module of all product variants. Considering market demand and environmental benefits, the firm
is also ready to sell remanufactured product in the later period, and remanufactured products are
planned in product family design stage, simultaneously.

As shown in Figure 1, two periods are considered in this research. In period 1, a firm only offers
new products to the market. In period 2, the firm introduces remanufactured products into the market.
In other words, in period 2, the firm began offering both new products and remanufactured products.
Some components of remanufactured products are from used products sold to the market in period 1.
The configuration of remanufactured products and product variants included in the product family
are not necessarily the same. Moreover, the product variants launched in period 1 are not necessary to
be launched in period 2.

The goal of the proposed optimization problem is to concurrently determine product family design
and remanufactured products planning with the objectives of maximizing profit and minimizing GHG
emission. Especially, the decision variables in the optimization model are as follows:

• Number of product variants and remanufactured products;
• Module instance (component) configuration of each product variant and each

remanufactured product;
• Selling prices of each product variant and each remanufactured product in periods 1 and 2; and
• Selection of remanufacturing technology (remanufacturing parameters) for remanufacturing of

used components.

In order to facilitate subsequent modeling, the binary decision variables are pre-defined as follows:

xr =

{
1 if the rth product variant is produced
0 otherwise

(1)

xre
h =

{
1 if the hth remanufactured product is produced
0 otherwise

(2)

yr
ij =

{
1 if the jth instance of ith module (Mi,j) is selected for rth product variant
0 otherwise

(3)

yh
ij =

{
1 if the jth instance of ith module (Mi,j) is selected for hth remanufactured product
0 otherwise

(4)

zh
ij =

{
1 if the jth instance of ith module (M i,j) is remanufactured for hth remanufactured product

0 otherwise
(5)
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4. Development of an Optimization Model

4.1. Customer Preference Modeling with Utility Function

In this article, it is assume that a product market has been divided into several market segments.
The Fuzzy C-Means (FCM) clustering algorithm can be used to identify the market segment [35].
The purchasing preferences of consumers in the same segment are considered to be similar.

In the product design evaluation, utility functions are widely used to measure customer
preferences, and it is adopted in this research. According to the part-worth model [36], the utility of
the rth product variant in the qth segment (ur(q)

pro ) can be expressed as below:

ur(q)
pro =

I

∑
i=1

J

∑
j=1

y(r)
ij

µ
(q)
ij + ηr (q = 1, . . . , Q) (6)

where µ
(q)
ij is the utility of Mi,j in the qth segment, and it is measured by money.

Considering the sales price of products, the surplus utility of rth product variant in the qth
segment (λr(q)) is expressed as below:

λr(q) = ur(q)
pro − pr (7)

where pr is the sale price of rth product variant.
Similar to a new product, the surplus utility of the hth remanufactured product in the qth segment

(λh(q)
re ) can be calculated as follows:

λ
h(q)
re = uh(q)

re − ph
re (8)
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where uh(q)
re is the utility of the hth remanufactured product in the qth segment, ph

re represents the sale
price of hth remanufactured product.

4.2. Product Demand Model

Generally, the purchase decision of a customer on a product is mainly affected by the surplus
utility of the product and other competing products. In many studies, the probabilistic choice rule is
applied to express the customer’s purchase behavior. In the probabilistic choice rule, it is assumed
that the utility is a random variable and the customers choosing products follow random utility
maximization criterion. Among all the probabilistic choice rules, the multinomial logic choice (MNL)
rule is widely applied, and it is also adopted by this research.

In period 1, a company only offers new products to market, and the choice probability of a
customer towards rth product variant in the qth segment is formulated as below:

P(q)
r−per1 =

eµλr(q)

R
∑

r=1
eµλr(q)

+
Ne

∑
r=1

eµλ
r(q)
e +

Nc

∑
r=1

eµλ
r(q)
c

(9)

where P(q)
r−per1 represents the choice probability of the rth product variant chosen in the qth market

segment in period 1. R indicates the number of product variant launched to market in period 1. Ne and
Nc are the number of competing products and the number of similar products that have been launched
to markets by this company, respectively. Finally, λ

r(q)
e and λ

r(q)
c are the surplus utility of competing

products and similar products, respectively.
In period 1, the demand of rth product variant in the qth market segment (Q(q)

r−per1) is estimated
as below:

Q(q)
r−per1 = nq−1P(q)

r−per1 (10)

where nq-1 is the total product demand of the qth market segment in period 1.
In period 2, the company sells not only new products but also remanufactured products.

The choice probability of the rth product variant chosen in the qth market segment is formulated
as below:

P(q)
r−per2 =

eµλr(q)

v
∑

r=1
eµλr(q)

+
Ne

∑
r=1

eµλ
r(q)
e +

Nc

∑
r=1

eµλ
r(q)
c +

H
∑

r=1
eµλ

h(q)
re

(11)

where v represents the number of product variants launched to markets in period 2, H is the number
of remanufactured products launched to markets in period 2.

In period 2, the demand of the rth product variant in the qth market segment (Q(q)
r−per2) is estimated

as below:
Q(q)

r−per2 = nq−2P(q)
r−per2 (12)

where nq-2 is the total product demand of the qth market segment in period 2.
The choice probability towards the hth remanufactured product in the qth market segment is

formulated as below:

P(q)
h−per2 =

eµλ
h(q)
re

v
∑

r=1
eµλr(q)

+
Ne

∑
r=1

eµλ
r(q)
e +

Nc

∑
r=1

eµλ
r(q)
c +

H
∑

h=1
eµλ

h(q)
re

(13)

In period 2, the demand of the hth remanufactured product in the qth market segment (Q(q)
h−per2)

is calculated as follows:
Q(q)

h−per2 = nq−2P(q)
h−per2 (14)
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The total expected revenue of the company (Trev) is from the sale of new products and
remanufactured products, it is formulated as below:

Trev =
Q

∑
q=1

R

∑
r=1

Q(q)
r−per1 pr−per1 +

Q

∑
q=1

R

∑
r=1

Q(q)
r−per2 pr−per2 +

Q

∑
q=1

H

∑
h=1

Q(q)
h−per2 ph−per2 (15)

where pr−per1 is the sale price for the rth product variant in period 1, pr−per2 represents the sale price
for the rth product variant in period 2, ph−per2 is the sale price of the hth remanufactured product.

4.3. Cost Models

The total cost (C) includes two parts: the production cost of new products (Cnew) and the
production cost of remanufactured products (Cre). C is expressed as below:

C = Cnew + Cre (16)

(1) Production cost of new products (Cnew)

Cnew consists of two parts: intra-firm production cost and purchasing cost, and it is expressed
as below:

Cnew = Cintra + Cpur (17)

Cintra is the cost in the production processes of products inside the firm. It can be further divided
into two parts, fixed cost part (Cintra(fix)) and the variable cost part (Cintra(var)). Cintra(fix) mainly
includes the product development cost, managed cost, etc. Cintra(var) mainly refers to the assembly
cost, packaging cost, and so on.

Cintra(fix) has a direct relationship with the number of developed product variant (Npr), and it is
expressed as below:

Cintra(fix) =


Y1 if Npr = 1
Y2 if Npr = 2
...
Yv if Npr = V

(18)

where Yv is the fixed cost part of the intra-firm production cost for a product family which has V
product variants.

Cintra(var) is further divided into two parts, and it is as follows:

Cintra(var) = Cintra(var)
per1 + Cintra(var)

per2 (19)

where Cintra(var)
per1 and Cintra(var)

per2 are the variable cost of manufacturing new product in period 1 and in
period 2, respectively.

Cintra(var)
per1 is expressed as below:

Cintra(var)
per1 =

Q

∑
q=1

R

∑
r=1

I

∑
i=1

J

∑
j=1

Q(q)
r−per1cintra(var)

ij y(r)ij (20)

where cintra(var)
ij is the unit variable production cost for Mi,j.

Similarly, Cintra(var)
per2 is expressed as:

Cintra(var)
per2 =

Q

∑
q=1

R

∑
r=1

I

∑
i=1

J

∑
j=1

Q(q)
r−per2cintra(var)

ij y(r)ij (21)
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By combining Equations (18), (19), (20), and (21), Cintra is reformulated as below:

Cintra = Yv +
Q

∑
q=1

R

∑
r=1

I

∑
i=1

J

∑
j=1

Q(q)
r−per1cintra(var)

ij y(r)ij +
Q

∑
q=1

R

∑
r=1

I

∑
i=1

J

∑
j=1

Q(q)
r−per2cintra(var)

ij y(r)ij (22)

The purchasing cost for selected module instances (Cpur(var)) is expressed as follows:

Cpur(var) =
I

∑
i=1

J

∑
j=1

Q

∑
q=1

R

∑
r=1

(Q(q)
r−per1 + Q(q)

r−per2)y
(r)
ij xr pij (23)

where pij indicates the purchase price for Mi,j.

(2) Production cost of remanufactured products (Cre)

The production cost for remanufactured products mainly includes remanufacturing cost of used
components (Cre−c

re ), the purchase cost of new components (Cn−c
re ) and variable production cost (Cvar

re ),
and it is expressed as follows:

Cre = Cre−c
re + Cn−c

re + Cvar
re (24)

Remanufacturing cost indicates the cost associated with collecting used products (Creco) and the
remanufacturing cost of used components (Cremanu), and it is expressed as follows:

Cre−c
re = Creco + Cremanu (25)

The cost of collecting used products is related to the number of collecting. Different from a
single product, there are multiple different product variants in a product family. Due to the fact that
different product variants include different numbers of components that can be used to configure
remanufactured products, the cost of collecting used products is different with the recovery different
product variants. This research constructs an optimization model to determine the recycling amount
of each product variant for the minimum recycling cost of used products. The optimization model is
expressed as follows:

Min Creco =
R

∑
r=1

Qre−rcr
re−un (26)

s.t :
H

∑
h=1

Q

∑
q=1

Q(q)
h−per2zh

ijx
re
h ≥

R

∑
r=1

Qre−ryr
ij (i = 1, 2, . . . , I; j = 1, 2, . . . , J) (27)

0 ≤ Qre−r ≤
Q

∑
q=1

Q(q)
r−per1 (r = 1, 2, . . . , R) (28)

where Qre−r represents the recycling number of rth product variant, cr
re−un is the unit cost of recycling

rth product variant. Constraint (27) ensures that the number of each required remanufactured
components can be satisfied. Constraint (28) ensures that recycling number of the rth product variant
less than the number of sales in period 1.

The remanufacturing cost of the used components is related to the remanufacturing technology.
By adopting different remanufacturing technologies, the used component can achieve different
reliability values of component. For the sake of clarity, here, the selected remanufacturing technology
for a used component is indicated by the achieved reliability of the component after remanufacturing.
With adopting different remanufacturing technologies, the remanufacturing cost of a used component
is different. The remanufacturing cost can be expressed as below:

Cremanu =
Q

∑
q=1

H

∑
h=1

I

∑
i=1

J

∑
j=1

Q(q)
h−per2xre

h Zh
ijVij (29)
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Vij =


V1 if Rre

ij = R1

V2 if Rre
ij = R2

...
Vv if Rre

ij = Rν

(30)

where Vij represents the remanufacturing cost per unit component Mi,j (the jth instance of the ith
module), Rre

ij is the value of reliability for component Mi,j after remanufacturing, RV indicates that the
value of reliability can be achieved by Mi,j if the vth remanufacturing technology is adopted.

In a remanufactured product, not all the components are used components. Some new
components need to be purchased. The purchase cost of new components for remanufactured products
is expressed as follows:

Cn−c
re =

Q

∑
Q=1

H

∑
h=1

I

∑
i=1

J

∑
j=1

Q(q)
h−per2xre

h yh
ij pij (31)

The variable production cost (e.g., assembly cost) for remanufactured products is as follows:

Cvar
re =

Q

∑
q=1

H

∑
h=1

I

∑
i=1

J

∑
j=1

Q(q)
h−pre2xre

h yh
ijz

h
ijc

intra(var)
ij (32)

4.4. GHG Emission Models

The total GHG emission, from new and remanufactured products, is expressed as follows:

E = Enew + Erema (33)

where Enew is the GHG emission from new products, Erema represents the GHG emission from
remanufactured products.

Enew contains the GHG emission from component (Ecom
new) and product assemble (Eass

new).

Enew = Ecom
new + Eass

new (34)

Ecom
new =

I

∑
i=1

J

∑
j=1

Q

∑
q=1

R

∑
r=1

(Q(q)
r−per1 + Q(q)

r−per2)y
r
ijeij (35)

Evar
new =

I

∑
i=1

J

∑
j=1

Q

∑
q=1

R

∑
r=1

(Q(q)
r−per1 + Q(q)

r−per2)y
r
ije

var
ij (36)

where eij is the GHG emission of Mi,j, evar
ij indicates the GHG emission of module instance Mi,j in the

assembly stage.
Erema contains the GHG emission from collecting used products (Ecol

rema), disposing used products
(Edis

rema), remanufacturing of used components (Ere−com
rema ), new components (Enew

rema) and the assembly of
remanufactured products (Eass

rema), and it is expressed as follows:

Erema = Ecol
rema + Edis

rema + Ere−com
rema + Enew

rema + Eass
rema (37)

Ecol
rema is related to the number of used products collecting and the GHG emission per unit of used

product collecting, and it is expressed as follows:

Ecol
rema =

R

∑
r=1

Qre−recol (38)

where ecol is the GHG emission from per unit of used product collecting.
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Edis
rema is associated with the number of used product disposing and the GHG emission from per

unit of used product disposing, and it is expressed as follows:

Edis
rema =

R

∑
r=1

Qre−redis (39)

edis =
W

∑
w=1

F

∑
f=1

E f
we f (40)

where edis is the GHG emission from per unit of used product disposing. E f
w is the amount of f th energy

consumption in wth treatment processes, W is the number of treatment processes, F is the number of
energy consumption in treatment processes, e f indicates carbon emission factor of f th energy.

Similar to remanufacturing cost, the GHG emission of a used component produced in
remanufacturing process is also different with adopting different remanufacturing technologies.
The Ere−com

rema can be expressed as below:

Ere−com
rema =

Q

∑
q=1

H

∑
h=1

I

∑
i=1

J

∑
j=1

Q(q)
h−per2xre

h zh
ije

re
ij (41)

ere
ij =


ere−1

ij if Rre
ij = R1

ere−2
ij if Rre

ij = R2
...
ere−v

ij if Rre
ij = Rν

(42)

ere−v
ij =

K

∑
k=1

P

∑
p=1

Ep(v)
k ep (v = 1, 2, . . . , V) (43)

where ere
ij is the remanufacturing GHG emission per unit component Mi,j (jth instance of ith

module), ere−v
ij represents the remanufacturing GHG emission per unit component Mi,j when the

vth remanufacturing technology is adopted, Ep(v)
k is the amount of kth energy consumption using the

vth remanufacturing technology in the pth remanufacturing production process, ep represents carbon
emission factor of pth energy.

Enew
rema represents the GHG emission from new components for remanufactured products, and it

can be expressed as below:

Enew
rema =

Q

∑
q=1

H

∑
h=1

I

∑
i=1

J

∑
j=1

Q(q)
h−per2yh

ijeij (44)

Eass
rema is the GHG emission of remanufactured product from the assembly stage, and it calculated

as follows:

Eass
re =

Q

∑
q=1

H

∑
h=1

I

∑
i=1

J

∑
j=1

Q(q)
h−per2yh

ijz
h
ije

ass
ij (45)

4.5. Constraints

4.5.1. Selection Constraint of Module Instances.

Each functional module of each product variant can only choose one module instance, and the
constraint is expressed as follows:

J

∑
j=1

yr
ij = 1, (r = 1, 2, . . . , R; i = 1, 2, . . . , I) (46)
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4.5.2. Selection Constraint of Remanufactured Components for Remanufactured Products

If a product does not contain a remanufactured component, the product is not a remanufactured
product. That is, a remanufactured product needs to choose at least one remanufactured component.
This selection constraint can be expressed as follows:

I

∑
i=1

J

∑
j=1

Zh
ij ≥ 1, (h = 1, 2, . . . , H) (47)

4.5.3. Product Reliability Constraint

Reliability is related to product’s safety and operating performance of product under specified
conditions. No matter new products or remanufactured products, the reliability of products needs to
satisfy a specific level. The product reliability constraint for a new product can be expressed as follows:

I

∏
i=1

J

∏
j=1

Rijyr
ij ≥ Rn, (r = 1, 2, . . . , R) (48)

where Rn indicates the reliability that a new product needs to be satisfied, Rij is the reliability of
module instance Mi,j, and it is expressed as follows:

Rij =

{
1 i f yr

ij = 0
Rij otherwise

(r = 1, 2, . . . , R; i = 1, 2, . . . , I; j = 1, 2, . . . , J) (49)

The product reliability constraint for a remanufactured product is formulated as follows:

I

∏
i=1

J

∏
j=1

Rijyh
ijR

re
ij zh

ij ≥ Rr (h = 1, 2, . . . , H) (50)

Rij =

{
1 i f yh

ij = 0
Rij otherwise

(h = 1, 2, . . . , H; i = 1, 2, . . . , I; j = 1, 2, . . . , J) (51)

Rre
ij =

{
1 i f zr

ij = 0
Rre

ij otherwise
(h = 1, 2, . . . , H; i = 1, 2, . . . , I; j = 1, 2, . . . , J) (52)

where Rre
ij is the reliability of module instance Mi,j after remanufacturing, Rr represents the reliability

that a remanufactured product need to be satisfied.

4.6. Formulation of the Optimization Model

The proposed optimization problem is able to formulate as a constrained programming problem.
Based on the above analysis, the optimization model can be established as below:

Objective 1 : Max ∆ = Trev − C
Objective 2 : Min E

s.t. Eqs.(46− 52)
xn

r , xre
h , yr

ij, yh
ij, zh

ij ∈ {0, 1} , pr−per1 > 0, pr−per2 > 0 and ph−per2 > 0

(53)

Notations:
∆ Total profit of a company
Trev Total expected revenue of a company
C Total cost of production
E Total GHG emission of production

xn
r

Binary decision variable such that xn
r = 1 if the rth product variant is produced, and xn

r = 0
otherwise
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xre
h

Binary decision variable such that xre
h = 1 if the hth remanufactured product is produced, and

xre
h = 0 otherwise

yr
ij

Binary decision variable such that yr
ij = 1 if the jth instance of ith module is selected for rth product

variant, and yr
ij = 0 otherwise

yh
ij

Binary decision variable such that yh
ij = 1 if the jth instance of ith module is selected for hth

remanufactured product, and yh
ij = 0 otherwise

zh
ij

Binary decision variable such that zh
ij = 1 if the jth instance of ith module is remanufactured for hth

remanufactured product, and zh
ij = 0 otherwise

pr−per1 Sale price of rth product variant in period 1
pr−per2 Sale price of rth product variant in period 2
ph−per2 Sale price of hth remanufactured product

5. Solution Methodology

The proposed optimization model is hard to be solved by classical mathematical programming
methods due to non-linearity of the optimization problem. In dealing with such problems, the heuristic
algorithm is more effective than the traditional algorithms. Many heuristic algorithms, such as
genetic algorithm, simulated annealing and particle swarm algorithm, have been proposed to solve
multi-objective optimization problems. Owing to its simple computation and robust search ability
(Mukhopadhyay et al. [37]; Wang et al. [38]), genetic algorithm has been successfully used to solve
various multi-objective problems, and it is adopted in this paper. The description of the proposed GA
is presented in the following sub-section.

5.1. Chromosome Representation

The integer-coding approach is used in this article. A chromosome consists of two sections:
a period 1 section and a period 2 section. Each section is further divided into several sub-sections.
An example of a chromosome is shown in Figure 2. In the period 1 section, there are P genes in
sub-section of variant selection, and the value ‘1’ in the pth gene indicates that the pth product variant
is chosen for the product family, and ‘0’ otherwise. The sub-section of product variant configuration
indicates the instance configuration of each product variant. For example, the value ‘1’ in the first
gene of product variant configuration section represents that M1,1 is chosen for configuring the M1 of
variant 1. In the price decision sub-section, the value in the gene points out the choice of price for the
corresponding product variant. In the period 2 section, there are also several sub-sections. For example,
in variant selection sub-section, the gene value indicates which product variants are launched to the
market in period 2. The sub-section of remanufactured product configuration indicates the module
instance configuration of each remanufactured product. In the reliability decision sub-section of
remanufactured component, the gene value indicates which remanufacturing technology/process
(parameters) is applied for the corresponding remanufactured component. The selection sub-section
of remanufactured product represents which remanufactured products are launched to the market.
The sub-section of price decision indicates which price is selected for the corresponding product in
period 2 (including product variants and remanufactured products).
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5.2. Fitness Function

In previous studies, many methods have been proposed for solving multi-objective optimization
problems. A widely applied, simple, and useful way is the weighted additive utility function, and it is
adopted in this research. Two positive weights u1 and u2 (u1 + u2 = 1) is assigned to the goals. Here,
the weight u1 is used to measure profit (f 1), and the weight u2 measures GHG emission (f 2). The size
of each weight indicates the importance of the associate objective. Owing to the fact that the scale of
the two objectives (profit and GHG emission) is different, the two objectives need to be normalized
separately. The weighted additive utility function with normalized objectives is formulated as follows:

F′(k) = u1 f1′(k) + u2 f2′(k) (54)

where fi′ indicates the normalized value which can be expressed as:

fi′(k) =
fi(k)− fi,min

fi,max − fi,min
(55)

where fi,min and fi,max are the minimum and maximum values for fi(k), respectively.

5.3. Genetic Operators

(i) Crossover. Here, the uniform crossover method is applied. There are two steps in the crossover
process. Firstly, a crossover mask with the value of 0 or 1 is randomly produced. Secondly, the gen
values of two parents are swapped if the corresponding crossover mask value is 1. Figure 3 provides
an example for the crossover operation, the offspring is generated according to the crossover mask.
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(ii) Mutation. In this research, the mutation operation of GA is performed according to the
neighborhood idea. Here, the neighborhood of a gene is considered as the incremental or decremental
change to the gene value. An individual mutates with a probability. The mutation randomly selects
some genes and then changes the values of gene to their neighborhood.

(iii) Selection mechanism. The roulette selection operator is applied. In the roulette selection
method, the individual with greater fitness has a higher probability of being selected as a parent to
generate the offspring in the next generation.

5.4. Constraints Handling

There are various constraints in the optimization problem. The feasible solution of the
optimization problem needs to satisfy all constraints. To eliminate infeasible solutions, the punishment
function approach is used in this article, and it can be expressed as below:

H(x) = eval(x) + p(x) (56)
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p(x) =

{
0 if x is a feasible chromosome
L otherwise

(57)

6. Case Study

An air conditioner manufacturer is ready to develop a family of air conditioners. The product
is planned into a modular structure comprised of six modules. The six modules are as follows:
frequency conversion module (M1), control module (M2), power module (M3), temp-control module
(M4), radio transmitting/receiving module (M5), and casting module (M6). Each module includes
several module instances (components), and different module instances of a module have similar
functionality but different level of performance. Considering the customer needs and environmental
benefits, the company prepares to sell remanufactured products in the later period.

After a market survey and analysis, the product market is divided into three market
segments. The product demands in two periods for three market segments are provides in Table 1.
Two competitive products exist in the market, and surplus utilities of competitive products are also
shown in Table 1. Related information for new components is provided in Table 2. The related
remanufacturing information of some components is given in Table 3. By analysis of the utility and
cost of a product, the possible price for a new product can be confined at [$509.4, $598.4], and the
product price is discretized as a set of integer prices ranging from $510 to $600. Similarly, the price
of remanufactured products is discretized from $300 to $430. As illustrated in the previous section,
the GA is employed to solve the coordinated optimization design of low-carbon product family and
remanufactured products for the case study. The maximum number of generations is set to 100. When
the maximum number of generations is reached, the computation is terminated. The calculation is
convergent in about 42 generations in the case study.

Table 1. The surpluses utility ($) of the competitive products and market size.

- Segment 1 Segment 2 Segment 3

Demand quantity (PCS) period 1/2 250,000/40,0000 400,000/360,000 650,000/380,000
Utility of competitor product 1 85.48 98.27 156.87
Utility of competitor product 2 120.47 110.62 107.58

Table 2. Related information of components.

Module
Module Instance

(Component)
(Price, $)

Utility in
Segment 1

Utility in
Segment 2

Utility in
Segment 3

Variable
Unit Cost

($)

Variable Unit
Emission

(g)

GHG
Emission

(g)
Reliability

M1

M1,1 (82.45) 160.65 164.40 155.20 8 3 40.9 0.988
M1,2 (75.48) 152.31 153.29 147.45 8 5 37.2 0.983
M1,3 (70.47) 145.52 148.85 140.10 10 3 35.4 0.985
M1,4 (65.08) 140.56 138.30 134.90 10 3 30.3 0.985

M2

M2,1(76.58) 110.23 108.21 115.87 7 1 217 0.999
M2,2 (70.25) 105.87 103.49 107.46 8 3 210 0.997
M2,3 (65.08) 100.68 97.84 98.45 8 1 220 0.999
M2,4 (57.49) 97.89 89.27 84.87 9 2 198 0.998

M3

M3,1 (39.08) 50.57 52.87 47.59 7 5 282 0.987
M3,2 (32.14) 45.98 47.85 44.12 7 5 254 0.988
M3,3 (28.79) 41.45 38.98 35.87 8 3 264 0.986

M4

M4,1 (240.89) 300.54 298.47 307.56 6 3 362 0.995
M4,2 (218.87) 285.25 281.28 291.58 6 1 358 0.996
M4,3 (200.08) 274.87 270.79 284.26 8 1 341 0.998

M5

M5,1 (15.76) 27.9 28.45 27.5 7 2 157 0.986
M5,2 (13.14) 24.86 24.47 20.89 8 3 134 0.985
M5,3 (11.42) 22.14 18.49 16.45 8 4 130 0.982

M6

M6,1(56.11) 97.56 89.45 97.25 6 1 450 0.998
M6,2 (50.98) 88.47 84.87 89.82 6 2 431 0.998
M6,3 (44.38) 80.78 77.69 74.39 6 3 425 0.997
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Table 3. Remanufacturing information of components.

Module instance Reliability Utilities in Segment 1/2/3 Remanufacturing Unit Cost/GHG
Emission

M2,1
1st: 0.978 77.16/75.74/81.10 22.97/65.1
2st: 0.959 66.13/64.92/69.52 15.31/43.4

M2,2
1st: 0.985 74.10/72.44/75.22 21.07/63
2st: 0.968 63.52/62.09/64.47 14.05/42

M2,3
1st: 0.985 70.04/68.48/68.91 19.52/66
2st: 0.968 60.40/58.70/59.07 13.01/44

M2,4
1st: 0.987 68.52/62.48/59.40 17.24/59.4
2st: 0.959 58.73/53.56/50.92 11.49/39.6

M3,1
1st: 0.978 35.39/37/33.31 11.72/84.6
2st: 0.959 30.34/31.72/28.55 7.81/56.4

M3,2
1st: 0.968 32.18/33.49/30.88 9.64/76.2
2st: 0.949 27.58/28.71/26.47 6.42/50.8

M3,3
1st: 0.968 29.01/27.28/25.10 8.63/79.2
2st: 0.948 24.87/23.98/21.52 5.75/52.8

M5,1
1st: 0.969 19.53/19.91/19.25 4.72/47.1
2st: 0.947 16.74/17.07/16.5 3.15/31.4

M5,2
1st: 0.988 17.40/17.12/14.62 3.94/40.2
2st: 0.969 14.91/14.68/12.53 2.62/26.8

M5,3
1st: 0.988 15.49/12.94/11.51 3.42/39
2st: 0.965 13.28/11.09/9.87 2.28/26

M6,1
1st: 0.990 68.29/62.61/68.07 16.83/135
2st: 0.975 58.53/53.67/58.35 11.22/90

M6,2
1st: 0.990 61.92/59.40/62.87 15.29/129.3
2st: 0.982 53.08/50.92/53.89 10.19/86.2

M6,3
1st: 0.98 56.54/54.38/52.07 13.31/127.5
2st: 0.97 48.46/46.61/44.63 8.87/85

6.1. Sensitivity Analysis of GHG Emission Weight

Generally, a firm hopes to maximize profit while minimizing GHG emission in product production.
Nevertheless, the two goals may be contradictory. The decision makers need to determine the size
of each objective weight. When a greater weight is assigned for the objective of profit, the optimized
solution can bring a higher profit. Nevertheless, it could lead to a greater GHG emission. On the
contrary, when a higher weight is allocated to the objective of GHG emission, the optimized solution
can bring a lower GHG emission, but the profit could be lower. For analyzing the influence of GHG
emission weight on optimization results, the four cases with different weight values are discussed.
The reliability threshold value of the product and objective weights for the four cases are set as follows:

Rn = Rr > 0.85. (i) Case 1: u1 = 1, u2 = 0; (ii) Case 2: u1 = 0.8, u2 = 0.2; (iii) Case 3: u1 = 0.7, u2 = 0.3;
(iv) Case 4: u1 = 0.5, u2 = 0.5.

The optimal configuration schemes of product family and remanufactured products for the four
cases are provided in Table 4. It can be seen that they are not the same. The difference is reflected not
only in product family design, but also reflected in remanufactured product planning. For example,
two remanufactured products are planned in Case 1, and it is different from Cases 2–4 that three
remanufactured products are planned. Figure 4 shows the optimization results. It is observed that
there is a contradictory relationship between the two goals. All four cases present positive objective
values in profit, and it means that all cases are profitable. Especially, Case 1 shows the largest profit
among the four cases. Once Case 1 is adopted, the expected profit can reach $7.9161 × 107. However,
since Case 1 did not consider the GHG emission, the GHG emission of Case 1 had the highest value.
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In Case 2, the profit is mainly concerned, but the GHG emission is considered properly. The total
profit of Case 2 is about 12% lower than that of Case 1 while the total GHG emission of Case 2 is about
5% lower than that of Case 1. Compared with Case 1, the number of remanufactured products is
increasing, while more remanufactured components are adopted to configuration remanufactured
products for reducing GHG emission. The weight set in Case 3 requires more attention to be paid
to GHG emission than in Case 2. Therefore, comparing Case 3 with Case 2, the profit in Case 3 is
lower than that in Case 2, but the GHG emission in Case 3 is also lower than that in Case 2. In Case 4,
the reducing GHG emission and the making profit are considered equally important. Case 4 resulted in
the lowest GHG emission among the four cases. Compared with Case 1, in Case 4, there is a decrease
of 21% in the GHG emission, and the firm profit decreases by 49%.

These results mean that the company’s strategy and the environmental regulation are required
for decision making. The Figure 5 is provided to identify the optimized design scheme. As shown in
Figure 5, if the environmental regulation restricts the GHG emission to below 1.8 million kilograms,
the design schemes (including product family design and remanufactured products planning) in Cases
2, 3 and 4 could be selected as shown in Table 4. In addition, when the expected profit of a company
is more than 60 million dollars, the design scheme in Case 2 could satisfy both the environmental
regulation and the expected profit threshold.

Table 4. The configuration of product family and remanufactured product for Cases 1–4.

Module Instance Configuration Launched in Period

Product M1 M2 M3 M4 M5 M6 1 2

Case 1

variant 1 1 1 1 3 1 2 Yes Yes
variant 2 2 1 2 3 2 3 Yes Yes
variant 3 2 4 3 1 3 2 Yes Yes

Remanufactured 1 3 1r−1 1r−1 2 1r−1 2 - Yes
Remanufactured 2 4 1r−1 3 2 1r−1 3 - Yes

Case 2

variant 1 4 1 2 2 2 2 Yes Yes
variant 2 4 4 1 3 2 1 Yes Yes
variant 3 3 1 1 2 1 1 Yes Yes

Remanufactured 1 2 4 1r−1 3 1r−1 1r−1 - Yes
Remanufactured 2 3 1r−1 1r−1 3 1r−1 2 - Yes
Remanufactured 3 3 1r−1 1r−1 3 1r−1 1r−1 - Yes

Case 3

variant 1 1 3 3 2 3 2 Yes Yes
variant 2 4 1 3 3 3 2 Yes Yes
variant 3 4 1 1 2 1 1 Yes Yes

Remanufactured 1 2 4 1r−1 3 1r−2 2 - Yes
Remanufactured 2 3 3 1r−1 3 1r−2 3 - Yes
Remanufactured 3 1 1r−2 1 3 1r−2 2 - Yes

Case 4

variant 1 1 4 3 3 1 3 Yes Yes
variant 2 1 2 3 3 3 1 Yes Yes
variant 3 2 1 2 3 1 2 Yes Yes

Remanufactured 1 1 4 3 3 1r−2 2 - Yes
Remanufactured 2 3 3 3 3 1r−2 3 - Yes
Remanufactured 3 1 1r−1 3 2 1 3 - Yes

r-x denotes that a remanufactured component with the xst reliability is configured.
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6.2. Analysis to the Effect on Low-Carbon Product Family Design with or without Considering
Remanufactured Products

Case 5: u1 = 0.5, u2 = 0.5, without considering remanufacturing, Rn = Rr > 0.85
The integration and separation optimization of product family design and remanufactured

products planning are compared to demonstrate the effectiveness of the presented approach.
For comparison, Case 5 is designed. The difference between Case 4 and Case 5 is whether
remanufactured products are considered in low-carbon product family design simultaneously. In Case
5, the product family design and remanufactured products planning are not simultaneously optimized,
and it is decomposed into two sub-optimization problems. First, the product family is designed based
on the market demand in period 1. Second, according to the design of product family and the market
demand in period 2, the remanufactured products are planned, and which product variants launched
to the market in period 2 are determined.

The optimized design schemes of product family and remanufactured products in Case 5 are
provided in Table 5. As can be seen, the optimized design scheme is different between Case 4 and
Case 5. For instance, there are three remanufactured products planned in Case 4, however, only two
remanufactured products are considered in Case 5. The optimized results for Case 4 and Case 5 are
given in Figure 6. It can be seen from the graph that the profit of period 1 in Case 5 is greater than that in
Case 4, but the total profit in Case 5 is lower than that in Case 4. It is mainly caused by the fact that profit
in period 2 for Case 5 is less than that in Case 4. The essential reason for this situation is that the product
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family design and remanufactured product are not optimized simultaneously in Case 5. Comparing
with the joint optimization, the design space of remanufactured product is greatly reduced when the
design of product family and remanufactured product are optimized separately. It is because that some
components of remanufactured product are from used product sold to market in period 1. Similarly,
as shown in Figure 6, due to the separation design of remanufactured product and product family,
the total GHG emission of product in Case 5 is greater than that in Case 4. The result of the experiment
indicates that the concurrent optimization of product family design and remanufactured products
planning can bring more profit and less GHG emission compared with separation optimization.
Therefore, to increase profit and reduce GHG emission, the remanufactured products planning should
be considered simultaneously in low-carbon product family design. The results also validate the
effectiveness of the proposed method.

Table 5. The configuration of product family and remanufactured product for Case 5.

Product
Module Instance Configuration Launched in Period

M1 M2 M3 M4 M5 M6 1 2

variant 1 1 4 1 3 1 2 Yes Yes
variant 2 3 1 3 3 3 2 Yes Yes
variant 3 4 1 1 3 1 1 Yes Yes

Remanufactured 1 2 4 4 3 1r−2 2 - Yes
Remanufactured 2 2 1r−2 2 2 1 3 - Yes

r−x denotes that a remanufactured component with the xst reliability is configured.
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6.3. The Influence of Reliability Threshold Value of a Product on Optimization Results

Case 6: u1 = 0.5, u2 = 0.5, Rn = Rr > 0.90; Case 7: u1 = 0.5, u2 = 0.5, Rn = Rr > 0.93
The purpose of the experiment is to observe the influence of the setting of reliability threshold

value for a product on optimization results. In order to perform the analysis Case 4, Case 6, and Case
7 are designed. The difference among them is the setting of reliability threshold value of a product.
The reliability threshold value of a product is increased from Case 4 to Case 7. The design schemes of
product family and remanufactured products for Case 6 and Case 7 are shown in Table 6. It can be seen
that the design schemes of Case 4, Case 6, and Case 7 are different. For example, both Case 6 and Case
7 select M2,1 as remanufactured component for configuring remanufactured products, but the selected
remanufactured technologies for M2,1 are different in Cases 6 and 7. This is due to the reliability
threshold value of a product in Case 7 is greater than that in Case 6. Moreover, the achieved reliabilities
for M2,1 are different by adopting different remanufactured technology. Therefore, for improving
the reliability value of a remanufactured product, different remanufacturing technologies can also be
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considered to improve the reliability of remanufactured component except selecting new component
with high reliability. This proved to be a good choice that the selection of remanufacturing parameters
(e.g., selection of remanufacturing technology) is considered in the concurrent planning of product
family and remanufactured products for obtaining the effective design schemes. The optimization
results are provided in Figure 7. It can be seen that the profit is decreased while GHG emission is
increased from Case 4 to Case 7. In Case 4, Case 6, and Case 7, all optimization conditions (including
the optimization objectives and the weight of each objective) are the same except for the setting of
reliability threshold of products. If the threshold level of product reliability as set is increased under
the same other optimization conditions, the results indicate that the profit will be reduced while GHG
emission is increasing. This is because more cost and GHG emissions are inevitable to improve the
reliability of components. Figure 7 can provide a rough reference for the setting of reliability threshold
of products when the weight of GHG emission and the weight of profit are set equal (u1 = 0.5, u2 = 0.5).
For example, if the environmental regulation restricts the GHG emission to below 1.6 million kilograms,
or the expected profit of a company is not less than 25 million dollars, the setting of reliability threshold
should not be higher than 0.93 (referenced by Case 7).

Table 6. The configuration of product family and remanufactured product in Cases 6 and 7.

- Product
Module Instance Configuration Launched in Period

M1 M2 M3 M4 M5 M6 1 2

Case 6

variant 1 4 4 2 3 2 3 Yes Yes
variant 2 4 1 3 2 3 3 Yes Yes
variant 3 4 1 1 2 1 1 Yes Yes

Remanufactured 1 2 4 1r−1 3 1r−1 2 - Yes
Remanufactured 2 1 3 1r−1 3 1r−1 2 - Yes
Remanufactured 3 1 1r−2 2 2 1 3 - Yes

Case 7

variant 1 2 3 3 2 3 3 Yes Yes
variant 2 3 3 3 2 1 3 Yes Yes
variant 3 4 1 1 2 1 1 Yes Yes

Remanufactured 1 2 4 1r−1 3 3 2 - Yes
Remanufactured 2 3 3 1r−1 3 3 3 - Yes
Remanufactured 3 1 1r−1 1 3 1 2 - Yes

r−x denotes that a remanufactured component with the xst reliability is configured.
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7. Conclusions

It is widely accepted that global warming has become one of the biggest environmental concern
for human being. Low-carbon product family design is considered as one of the effective measures
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to reduce GHG emission from product. Nevertheless, current studies on low-carbon product family
design do not consider remanufactured products. In recent years, the sales of remanufactured
products are increasing due to higher profit for the company and environmental benefits. Since
the remanufactured product design is largely influenced by product family design, the product
family design and remanufactured product design should be considered simultaneously in order to
maximize profits and minimize GHG emission. This paper presented an optimization method for
coordinated low-carbon design of product family and remanufactured products. The design of all
product variants contained in a low-carbon product family and the plan of remanufactured products
are determined concurrently. The genetic algorithm was designed to solve the optimization problem.
Finally, the proposed approach was verified by a case study. Experiment results indicate that the two
optimization objectives, profit and GHG emission, are contradictory in coordinated low-carbon design
of product family and remanufactured products. By investigating the influence of integrated and
separated remanufactured product design on low-carbon product family design, the results show that
the joint optimization of product family design and remanufactured products planning can bring more
profit and less GHG emission comparing with separation optimization. Moreover, by analyzing the
reliability threshold value of a product, the result indicates that it affects the GHG emission and profit.
Therefore, the reliability threshold value of the product needs to be reasonably set in coordination with
the low-carbon design of the product family and remanufactured product. Some insights from the case
study are as follows: as an important way to contribute to sustainability, remanufacturing can help the
enterprises gain not only economic benefits but also environmental benefits. Since remanufactured
products planning is affected by product family design and remanufactured products cannibalize
new product sales, remanufactured products need to be planned reasonably for maximum benefit.
Compared with sequential design, the concurrent planning of product family and remanufactured
products can bring more profit and less GHG emission. In addition, the selection of remanufacturing
parameters (e.g., selection of remanufacturing technology) affects the planning of remanufactured
products, so then it further affects the product family design. Therefore, it is a very good choice that the
selection of remanufacturing parameters is considered in the concurrent planning of product family
and remanufactured products for obtaining the effective design schemes.

As future work, it is worthwhile to consider uncertainty in the optimization model. In real world,
the customer’s preference may be ambiguous. Moreover, the market demand and the information of
competing product may be vague. Therefore, under these uncertain conditions, how to gain a robust
solution would be an interesting problem.
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