
Universidad Politécnica de Valencia

Departamento de Sistemas

Informáticos y Computación

TESIS DE MÁSTER

The Timed Concurrent Constraint
language in practice

Candidate:

Alexei Lescaylle Daudinot

Supervisor:

Alicia Villanueva Garćıa

– December 2009 –

This work has been supported by the Spanish MEC/MICINN under grant TIN2007-68093-C02-

02, by the Generalitat Valenciana under grant Emergentes GV/2009/024, and by the Universidad
Politécnica de Valencia, program PAID-06-07 (TACPAS).

Author’s e-mail: alescaylle@dsic.upv.es

Author’s address:

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
Camino de Vera, s/n
46022 Valencia
España

Dedicated to the memory of my parents,
Raquel Daudinot and

Gregorio Esmerido Lescaylle, and
my aunt Barbara Daudinot

Acknowledgments

I want to express my gratitude to my supervisor Alicia Villanueva Garćıa
whose dedication and support have contributed largely, in my growth as a re-
searcher.

I sincerely thank to my wife Isabel Serna Miquel and her family for their
welcome, love and affection.

I thank from the bottom of my heart to my aunt Isabel Daudinot, her husband
José Antonio, my cousins Mara, Bel, Papucho and Dayamı́, and the rest of my
family for their unconditional love, concern and confidence they placed on me.

Special thanks to my good friends Raunel, Jorge, Pedro, Lorena, Dani, Fran-
cho, Diego, Martina, Sonia, Ana, Aristides, Mauricio, we have spent special times
together.

Thanks to the members of the ELP group, in particular to Maŕıa Alpuente
Frasnedo, for their welcome, confidence and support.

Alexei Lescaylle Daudinot
December the 10th, 2009.

iv ACKNOWLEDGMENTS

Abstract

In his PhD thesis, Vijay A. Saraswat introduced the notion of computation as a
constraint process, namely a process in which the computation is initiated through
the statement of a relation between variables ranging over certain underlying
domain of values, this process aims to obtain a characterization of such relation
by accumulating consistent pieces of finite information (constraints) each stating
some restriction to the feasible values of the variables. To study this kind of
processes, he defined the Concurrent Constraint Programming framework (ccp in
short) that replaces the notion of computation based on the von Neumann model
where the state of the system is composed by a set of valuations of variables
(store-as-valuation), by the notion of computation based on the idea that the
state of the system is composed by a conjunction of partial information regarding
the variables of the system (store-as-constraint). In other words, a store of the ccp
model, instead of representing a specific point in the state space of the system,
represents a set of states. The computational model of ccp consists of agents
(processes) interacting asynchronously by using two basic operations: tell and ask.
The tell operation adds a given constraint to the store whereas the ask operation
checks whether or not a given constraint is entailed by the store. Constraints
are never cancelled from the store. These features make ccp a simple and highly
expressive paradigm for modeling concurrent systems.

There are several programming languages that extend the ccp model by in-
troducing a notion of time in order to model systems where time aspects are
essential, for example, reactive and real-time systems, distributed and concurrent
systems. We consider the Temporal Concurrent Constraint Programming lan-
guage (tccp in short). tccp is a declarative programming language that extends
ccp by introducing a new agent to capture negative information (which is present
at typical behaviors of reactive systems) and a global clock that synchronizes
agents running concurrently.

In this thesis, we propose the tccp language for the specification and veri-
fication of communication protocols, in particular security protocols. We take
advantage of the agent-based model and the underlying constraint system to rep-
resent the participants of a protocol and to carry out the verification process.
The language Universal Temporal ccp (utcc in short) has recently been defined
under the ccp paradigm to specify and verify mobile reactive systems. We study
the relation between tccp and utcc. Specifically, we present a transformation from
utcc into tccp that formally states the relation between the two languages. We
prove the correctness of the transformation, i.e., that the transformed program

vi ABSTRACT

preserves the behavior of the original one. The transformation makes possible to
reuse the techniques and tools defined for tccp. Finally, we present an interpreter
for the tccp language, implemented in Maude, that allows us to simulate the exe-
cution of a tccp (or utcc) program and to carry out certain kind of model-checking
analysis of these programs.

Resumen

En su tesis doctoral, Vijay A. Saraswat introdujo la noción de computación
como un proceso de restricciones, es decir, un proceso en el cual el cómputo se
inicia a través de la declaración de una relación entre las variables de un deter-
minado dominio, este proceso tiene como objetivo obtener una caracterización
de la relación obtenida mediante la acumulación de información parcial sobre los
posibles valores que pueden tomar las variables (restricciones). Para estudiar este
tipo de procesos, definió el Paradigma de Programación Concurrente basado en
Restricciones (ccp) el cual sustituye la noción del computo basado en el modelo
de von Neumann, donde el estado del sistema está compuesto por un conjunto
de valuaciones de variables (store-as-valuation), por la noción del computo basa-
do en la idea en la cual el estado del sistema se compone de una conjunción de
información parcial sobre las variables del sistema (store-as-constraint). En otras
palabras, un store (memoria del sistema) del modelo ccp, en vez de representar
un punto espećıfico en el espacio de estados del sistema, representará un conjun-
to de éstos. El modelo computacional de ccp está basado en agentes (procesos)
que interactúan de forma aśıncrona mediante dos operaciones básicas: tell y ask.
La operación tell añade una restricción al store mientras que la operación ask
comprueba si una restricción se satisface o no en el store. Las restricciones que se
añaden al store nunca se eliminan. Estas caracteŕısticas convierten a ccp en un
paradigma simple y muy expresivo para el modelado de sistemas concurrentes.

Existen varios lenguajes de programación que extienden el modelo ccp me-
diante la introducción de una noción de tiempo con el fin de modelar sistemas en
los cuales aspectos relacionados con el tiempo son esenciales, por ejemplo, siste-
mas reactivos y de tiempo real, sistemas distribuidos y paralelos. En esta tesis,
consideramos el lenguaje de programación Temporal Concurrent Constraint Pro-
gramming (tccp). tccp es un lenguaje de programación declarativo, que extiende
ccp mediante la introducción de un nuevo agente para capturar información ne-
gativa (comportamiento t́ıpico en los sistemas reactivos) y un reloj global que
sincroniza los agentes que están siendo ejecutados simultáneamente.

En esta tesis, proponemos el lenguaje tccp para la especificación y verificación
de protocolos de comunicación, en particular protocolos de seguridad. Para ello,
aprovechamos el modelo basado en agentes y el sistema resolutor de restriccio-
nes subyacente para representar los participantes de un protocolo y para llevar
a cabo el proceso de verificación en tccp. El lenguaje de programación Universal
Temporal ccp (utcc) ha sido recientemente definido en el marco del paradigma
ccp para especificar y verificar sistemas móviles reactivos. Por ello, estudiamos la

viii RESUMEN

relación que existe entre tccp y utcc. En concreto, se presenta una transforma-
ción que traduce programas utcc en programas tccp que expresa formalmente la
relación entre los dos lenguajes. Por otro lado, demostramos que la transforma-
ción es correcta: el programa obtenido preserva el comportamiento original del
programa dado. La transformación hace posible la reutilización de las técnicas y
herramientas definidas para tccp. Por último, se presenta un intérprete para tccp,
implementado en Maude, que nos permite simular la ejecución de un programa
tccp (o utcc) y llevar a cabo cierto tipo de análisis, basado en la comprobación
de modelos, sobre estos programas.

Contents

1. Introduction 1

2. The (Timed) Concurrent Constraint Paradigm 7
2.1. The Concurrent Constraint Paradigm 7
2.2. The Constraint System . 8
2.3. The tcc language . 8
2.4. The Universal Temporal Concurrent Constraint language 10
2.5. The Temporal Concurrent Constraint language 12

3. An overview about security protocols 17
3.1. The Needham-Schroeder protocol 17
3.2. The Otway-Rees protocol . 18
3.3. A classification of attacks . 19
3.4. The Dolev-Yao Intruder Model 20
3.5. An attack to the Needham-Schroeder protocol 20
3.6. An attack to the Otway-Rees protocol 21

4. Modeling security protocols in tccp 23
4.1. Auxiliary concepts . 23
4.2. Encoding the Needham-Schroeder protocol into tccp 25
4.3. Encoding the Otway-Rees protocol into tccp 26
4.4. Encoding the Environment into tccp 29
4.5. Concluding remarks . 31

5. Embedding utcc into tccp 33
5.1. Illustrative example . 33
5.2. Formalization of the transformation 35

5.2.1. Correctness of the transformation 39
5.3. Concluding remarks . 46

6. A tccp interpreter 49
6.1. Syntactic objects . 49
6.2. The Operational Semantics . 51
6.3. The underlying constraint solver 54
6.4. Running the interpreter . 56

6.4.1. Illustrative example . 57
6.5. Experimental results . 59

x CONTENTS

6.5.1. Analyzing the Needham-Schroeder protocol 59
6.5.2. Analyzing the Otway-Rees protocol 62

6.6. Concluding remarks . 65

7. Conclusions and Future Work 67

Bibliography 69

A. Papers developed from this thesis 75

B. The tccpTranslator framework 77

List of Figures

2.1. ccp syntax. 8
2.2. tcc syntax. 9
2.3. utcc syntax. 11
2.4. Internal and observable reductions of utcc. 11
2.5. tccp syntax. 13
2.6. tccp operational semantics . 14
2.7. A tccp model for a module of a vending products machine 16

5.1. Trace of the resulting tccp program 36

6.1. The microwave error declaration in tccp. 57

B.1. The tccpTranslator framework . 77

xii LIST OF FIGURES

1
Introduction

The Concurrent Constraint Programming paradigm (ccp in short) was pre-
sented by Saraswat in [47, 48] to model concurrent systems. He introduced the
notion of computation as a constraint process by replacing the notion of compu-
tation based on the von Neumann memory model where the state of the system
is composed by a set of valuations of variables (store-as-valuation), by the notion
of computation based on a model where the state of the system is composed of
a conjunction of constraints (store-as-constraint). The main difference between
the two models is that in the Saraswat’s model the store can be seen as a set
of valuations that provides partial information regarding the system variables.
Therefore, a natural compression of the state space is achieved.

Processes (agents) in the ccp model run concurrently and interact among
them asynchronously via the store. They use the basic operations tell and ask
to update and consult the store, respectively. The operation tell allows us to
add a given constraint to the store. More specifically, it conjoins such constraint
to the constraints already in the store. The store grows monotonically, i.e., the
added information is never canceled. The operation ask checks whether or not
a given constraint is entailed by the store. Synchronization is achieved by using
a blocking ask (suspension), which means that an agent is blocked if the store
does not entails the checked constraint. A blocked agent proceeds when the
store is strong enough to entail the constraint. In this way, ccp is a simple and
highly expressive paradigm for modeling concurrent systems. Apart from the
two mentioned operations, other operators are defined in ccp to model several
situations such as hiding information, parallel composition or non-determinism.
The hiding operator declares variables private to a process. The parallel one
stands for the parallel execution of two given processes. The non-determinism
allows an agent to consult multiple constraints simultaneously and, in case that
any of them is entailed by the store, it executes the associated actions. The ccp
model is parametric w.r.t. a constraint system that states the set and type of
constraints that agents can use, as well as the relations among them.

The ccp model has been extended in different ways with a notion of time in
order to specify and verify systems where time is involved, for example in, reac-

2 CHAPTER 1. INTRODUCTION

tive systems [24] and, in general, applications with timing constraints. Therefore,
some new languages have been defined. Some of these languages are the Timed
Default Concurrent Constraint (dtcc) [22], the Temporal Concurrent Constraint
language (tccp) [7], the Non-deterministic Timed Concurrent Constraint language
(ntcc) [42], or the more recent Universal Temporal Concurrent Constraint lan-
guage (utcc) [45]. Although these languages are defined under the same paradigm,
the computational model of each one differs due to the different operators and
assumptions to model the time.

We are interested in the tccp language that inherits from ccp all its agents
as well as its main features (the non-deterministic nature, parametric w.r.t. an
underlying constraint system, the monotonic growth of the store, etc.). tccp
introduces a conditional agent to capture negative information, which is present
at some typical behaviors of reactive systems. The notion of time is modeled as
a global clock that synchronises the agents of the system under the assumption
that basic operations tell and ask consume one time instant. The parallel agent
(to model concurrency) is interpreted in terms of maximal parallelism. In a recent
work [1], a new computational model for the tccp formalism has been proposed.
It replaces the notion of the global store by the notion of the store as a timed
sequence of stores (structured store); each store of the sequence contains the
information added at a certain time instant. In this thesis, we consider this new
tccp framework.

Reactive systems are systems that maintain an ongoing interaction with their
environment [35]. Roughly speaking, they are processes that run in parallel and
that are subject to timing constraints. Typical examples of reactive systems are
operating systems, communication protocols, process controllers, among others.
Communication protocols, and more precisely security protocols, are systems
composed of a set of rules (messages) that enable the connection, communication
and data exchange between two or more entities (called principals) in a secure
way. Usually, they apply cryptographic methods to ensure the security in the
session, but in many cases cryptography is not a guarantee for security. The
increasing use of computer networks which make use of security protocols for
web connections has made that the analysis of security protocols has gained
considerable attention. Many protocols have been proven unsafe years after their
definitions. Protocols are vulnerable mainly due to the fact that they are executed
in a hostile environment, manipulated by an intruder, that controls the network.
The intruder can intercept, compose, decompose, replace and replay messages in
any session, being thus able to carry out malevolent actions. These capabilities
correspond to the well-known Dolev-Yao attacker model [16].

Formalisms which take into account a notion time make the analysis of dis-
tributed systems in general, and security protocols in particular, more efficient
and effective. The use of timestamps, timeouts and actions (i.e., retransmissions)
which must to be executed when a timeout occurs have recently received some

3

attentions [14]. By using tccp, thanks to its implicit notion of time, we can model
in a elegant and precise way security protocols which are sensitive to the passage
of time. Then, we can perform a precise verification process, improving not-timed
approaches, for example these based on some process algebras [40, 26].

Contributions. We propose the tccp language for the specification and veri-
fication of communication protocols, in particular security protocols. We take
advantage of the agent-based and constraint-based models to specify the interac-
tion between the honest participants of a protocol and the hostile environment
(an intruder) that controls the protocol execution. We define how to specify the
role of each participant of a protocol and the environment as tccp declarations,
and the properties representing the security requirements of the protocol. Then,
by using the tccpInterpreter system [31] (a tccp interpreter implemented in the
high-performance reflective language Maude [12, 13]) we simulate the execution
of a given protocol and also verify some correctness properties.

In previous works [29, 30], we have proposed a similar methodology for specify-
ing protocols, but it was not integrated with an interpreter. The main differences
of this work is that we have improved clarity and compactness w.r.t. the previous
proposals. We have used the power of the underlying constraint system to include
some of the capabilities that were previously placed at the language abstraction
level. These capabilities have been incorporated in the tccpInterpreter in such a
way that we have provided the framework with a constraint system that includes
the necessary operations. We have used the Needham-Schroeder and the Otway-
Rees protocols as study cases to show our contribution on this field, but other
protocols can also be modeled.

Recently, the utcc language [45] has been introduced to specify and verify
mobile reactive systems. The authors showed one of the applications of the
language by modeling the Needham-Schroeder protocol. We study the relation
between tccp and utcc since they present different features in their definitions,
thus the proposals for modeling protocols in both cases are quite different. We
define a transformation from utcc programs into tccp programs that preserves the
semantics of the original program. The two main challenges we had to overcome
for the definition of the transformation were the definition of the abstraction
operator of utcc that is not defined in tccp, and to mimic the notion of utcc
time with the implicit time of tccp. The defined transformation provides us with
an effective method to transform utcc programs into tccp programs, thus being
able to apply other transformations such as the abstraction method of [2] or the
interpreter presented in [32].

Finally, we describe the implementation of the mentioned interpreter for the
tccp language. The tccpInterpreter system is a tool implemented in Maude [12, 13]
that allows us to simulate the execution of a program and carry out certain kind of

4 CHAPTER 1. INTRODUCTION

model-checking analysis of tccp programs. Maude has been proposed for the task
of building and analyzing a wide range of applications. In particular, rewriting
logic [37] can deal with state and concurrent computations and has been used as
a semantic framework for giving executable semantics to (concurrent) languages
and models. Maude supports structured theory specifications, algebraic data
types and function specification in rich equational logics. These features allows
us to implement in a elegant way the tccp formalism (the agent-based model,
operational semantics and the underlying constraint system). Furthermore, by
using the Maude’s search command we can explore all the possible computations
of a given tccp program, looking for safety violations when desiderated. We
present the results obtained from carrying out the verification process of the
considered protocols by using the interpreter.

Related Work. The verification of security protocols has been widely treated,
in the literature through the use of different formalisms [11, 38]. Recently, in
[45] was presented the utcc language which allows the specification of mobile
behaviors and, due to its strong connection with Pnueli’s Temporal logic, to prove
reachability properties of utcc processes. In [45], each participant is modeled as
an independent process and the underlying constraint system carries out some
specific operations related to security protocols. One of the main differences
between this approach and ours is that, following the Dolev-Yao model, in our case
the attack is not explicitly modeled, but a generic specification for the intruder
is used. This means that we are not detecting a known attack, but potentially
any attack that the Dolev-Yao intruder is able to run. Moreover, although both
languages belong to the same cc paradigm, they are quite different in nature: tccp
is non-deterministic whereas utcc is deterministic, and utcc iteration is based on
replication whereas tccp uses recursion. These differences make the specification
of systems different in the two languages.

In [14], a method to model security protocols in a real-time scenario using
reachability properties is proposed. We follow the same idea of [14] by specify-
ing a general Dolev-Yao intruder model and by using model checking to verify
the given protocol. In [4] a specific constraint system and some related tech-
niques to analyze security protocols is developed. In tccp the specification and
verification process does not depend directly on the constraint system. We just
extend the underlying constraint system to represent the information resulting
from the execution of a protocol such as the private knowledge of each principal,
the representation of a message, etc.

In [51], Syverson and Meadows use a language based on temporal logic. The
language allows one to specify security requirements. By using the NRL Proto-
col Analyzer [39], which is based on an extension of the Dolev-Yao model [16],
they determine whether or not a specific protocol has met some of the require-

5

ments they specified. They discovered that an attack takes place in the analyzed
protocol since a given specified requirement was not reached.

Maude and Haskell have been used to model security protocols [15, 3]. The
formalization process in both approaches is similar. Each step of the analyzed pro-
tocol is encoded in two rules representing the sending and receiving of a message,
respectively. The rewriting logic presented in Maude achieves an understandable
formulation. This support is lacking in Haskell due to the use of set comprehen-
sion and auxiliary functions to specify the global model. In both formalisms, a
model-checking technique is used to explore the state space for possible attacks.

Regarding the study of relations or transformations between languages, the
expressive power of different temporal concurrent constraint languages have been
previously studied [52, 7, 43, 42, 44]. In [52], it is proven that the temporal
language defined in [19] embeds the synchronous data flow language Lustre [10]
(restricted to finite value types) and the asynchronous state oriented language Ar-
gos [36]. Moreover, the strong abortion mechanism of Esterel can also be encoded
in this language. In [7], it is shown that the notion of maximal parallelism of tccp
is more expressive than the notion of interleaving parallelism of other concurrent
constraint languages. Regarding the utcc language, the authors have shown in
[44] that it is turing complete.

Finally, to our knowledge, there is just one implementation of tccp. In [50],
it was presented a prototype developed in the Mozart-Oz language. Mozart-Oz
[25] is a multi-paradigm language allowing multi-threaded higher order programs
to be directly executed in a distributed open system. However, the proposal is
not publicly available and does not support the new features of tccp presented
during the last years.

As an example of the use of Maude as a semantic framework to provide exe-
cutable semantics, JavaFAN (Java Formal ANalyzer) [18] is a tool that formally
specifies the Java semantics in Maude. In [53], it is presented an interpreter of
LOTOS based on the symbolic semantics for Full LOTOS [33]. The operational
semantics of CCS [40] is implemented in Maude in [54]. CCS is in some sense
similar to tccp. For example, operators like Nil or Choice are present in both
languages. However, there are also important differences, for instance, in tccp
the model for concurrency is based on maximal parallelism whereas in CCS it is
used the interleaving model.

Organization. The thesis is organized as follows. In Chapter 2 we briefly
describe the ccp framework and the tccp language, taking into account the new
model defined in [1]. An example to show the functionality of the language
is presented. Chapter 3 introduces some background material about security
protocols. As an example, we describe the informal specification of a variant of
the well-known Needham-Schroeder public key authentication protocol and the

6 CHAPTER 1. INTRODUCTION

Otway-Rees symmetric key authentication protocol.
In Chapter 4 we present our methodology for the formal specification in tccp

of a protocol and the hostile environment, which models the actions an intruder
may perform following the Dolev-Yao model [16]. We use the Needham-Schroeder
and the Otway-Rees protocols as study cases to show the resulting encoding.

In Chapter 5 we introduce the transformation process from utcc into tccp. we
describe the utcc language, the resulting encoding, an illustrative example and
prove the correctness of our proposal.

In Chapter 6 we describe how the tccp language has been implemented in
Maude. We show the codification of the syntax, operational semantics and model
for a specific constraint system. Finally, to show one of the functionalities of the
tccpInterpreter system, we describe the verification process carried out over the
resulting specifications presented in Chapter 4. Finally, in Chapter 7 we conclude
and give some directions for future work.

2
The (Timed) Concurrent Constraint

Paradigm

In this chapter, we describe the Concurrent Constraint framework and the
time extension we consider in the rest of the thesis.

2.1. The Concurrent Constraint Paradigm

Concurrent systems consist of multiple computing processes (agents) interact-
ing among them. Examples of concurrent systems are communication systems
based on message-passing, communication systems based on shared-variables, syn-
chronous systems, mobile systems, secure systems, etc. There are many for-
malisms to deal with concurrent systems. They allow us to understand the be-
havior, evolution and the interaction of the components of such systems. For
example, some of the main algebraic approaches to model concurrency are the
process algebras of Milner’s CCS [40], Hoare’s CSP [26] and Bergstra’s ACP [5].

The Concurrent Constraint Paradigm (ccp) [47, 48] has emerged as a simple
and powerful paradigm to model concurrent systems. It extends and subsumes
the concurrent logic programming [49] and constraint logic programming [27]. A
key feature of ccp is that it replaces the notion of store-as-valuation from von
Neumann by the notion of store-as-constraint. Therefore, in ccp the store can be
seen as a set of valuations that provides partial information regarding the possible
values that system variables can take. Agents of the model can modify the state
of the system by telling and consulting constraints to the store, and they are
synchronized by means of a suspension mechanism. This mechanism blocks an
agent when the store does not entails the constraint the agent wishes to check,
and it remains blocked until the store is strong enough to entail such constraint.
Basically, the system evolves monotonically by accumulating information in the
store. The ccp paradigm is parametric w.r.t. a constraint system. A constraint
system specifies the basic constraints that agents can tell or ask during their
executions.

8 CHAPTER 2. THE (TIMED) CONCURRENT CONSTRAINT PARADIGM

Agents A,B ::= tell(c) Tell
| A+B Choice actions
| A ‖ B Parallel composition
| Xˆ A Hiding
| p Procedure call

Procedure p ::= g(x1, . . . , xn)
Declaration D ::= p :: A Definition

| D.D Conjunction
Program P ::= {D.A}

Figure 2.1: ccp syntax.

Figure 2.1 shows the syntax for ccp programs. The tell adds a constraint to
the store, the choice operator succeeds if either A or B succeeds. The parallel
operator combines processes concurrently. The hiding operator introduces local
variables to a process. Finally, the procedure call agent models recursion.

2.2. The Constraint System

The ccp framework is parametric w.r.t. a constraint system which states the
constraints that can be used and the entailment relation among them. Let us
recall the definition of constraint system described in [45]. A constraint system
C can be represented as the pair (Σ,∆) where Σ is a signature of function and
predicate symbols and ∆ is a first-order theory over Σ. Let L be the first-order
language underlying C with a denumerable set of variables Var = {x, y, . . .},
and logic symbols ¬,∧,∨,⇒,⇔, ∃, ∀, true and false. The set of constraints C =
{c, d, . . . } are terms over L. We say that c entails d in ∆, written c `∆ d, iff
c⇒ d ∈ ∆, in other words, iff c⇒ d is true in all models of ∆. In the following
we use ` instead of `∆ when confusion is not possible. For operational reasons,
` is often required to be decidable.

We use ~t for a sequence of terms t1, . . . , tn with length |~t| = n. If |~t| = 0 then
~t is written as ε. We use c[~t\~x], where |~t| = |~x| and xi’s are pairwise distinct, to
denote c with the free occurrences of xi replaced with ti. The substitution [~t\~x]
is similarly applied to other syntactic entities.

2.3. The tcc language

Saraswat, Jagadeesan and Gupta defined an extension over time of the ccp
paradigm called Temporal Concurrent Constraint (tcc) [19]. The tcc language was
inspired by synchronous languages such as Esterel [6], Lustre [23] or Signal

2.3. THE TCC LANGUAGE 9

Agents A,B ::= tell(c) Tell
| now c thenA Positive Ask
| now c elseA Negative Ask
| nextA Unit Delay
| abort Abort
| skip Skip
| A ‖ B Parallel Composition
| Xˆ A Hiding
| p Procedure Call

Procedure p ::= g(x1, . . . , xn)
Declaration D ::= p :: A Definition

| D.D Conjunction
Program P ::= {D.A}

Figure 2.2: tcc syntax.

[28]. The key idea in the definition of tcc was to introduce a notion of discrete time
and some constructs allowing us to model typical behaviors of reactive systems
such as timeout or weak preemption.

Reactive systems are programs that interact with their environment along
the time, thus the concept of termination loses significance. They are essentially
different from the functional systems whose behavior is simply described as a
transformation of the input into the output. Moreover, in reactive systems it is
important to capture when events are presented whereas in functional systems it
does not matter when the input is given. Reactive systems usually are specified
as concurrent systems where the environment is modeled as a concurrent process.
Therefore, concurrency is a very important notion for such systems. Moreover,
due to the increasingly use of computer networks such as Internet or mobile
systems, concurrency has become more and more important.

The tcc language is well suited to specify reactive systems. In particular, due
to its deterministic nature, tcc is suitable to model embedded systems (a subclass
of reactive systems). In Figure 2.2, we show the syntax of the tcc language.
Note that the choice agent is not defined in tcc. The Timing constructs: Timed
Negative Ask, Unit Delay, and Abortion causes extension over time. Unit Delay
states a process to be started in the next time instant. Timed Negative Ask is a
conditional version of the Unit Delay, based on detection of negative information.
It causes a process to be started in the next time instant if on quiescence of the
current time instant, the store was not strong enough to entail a given information
c. The Skip agent does nothing.

Other extensions over time were presented to improve the expressiveness of the
ccp model. For example, the Timed Default Concurrent Constraint Programming

10 CHAPTER 2. THE (TIMED) CONCURRENT CONSTRAINT PARADIGM

was defined in [22]. This language allows one to model also strong preemptions.
Moreover, in 1998 Gupta, Jagadeesan and Saraswat presented a language which
incorporates a notion of continuous (or dense) time to the ccp model: the hybrid
ccp language (hcc) [20]. The hcc language is able to model hybrid systems which
can be defined as those systems that have a continuous behavior controlled by a
discrete component. For example, a thermostat can be seen as an hybrid system.
It has a continuous variable modelling the temperature, and a discrete control
that turns-on or turns-off the system depending on the limits established for the
temperature value. We can find in [21] some applicative examples for both the
timed default concurrent constraint programming language and the hcc language.

Other recent models defined within the ccp family are the ntcc [42] and the
utcc [45] languages. Both languages are essentially defined as an extension of the
tcc. ntcc introduces the notion of non-determinism whereas utcc is deterministic.

2.4. The Universal Temporal Concurrent Con-

straint language

The Universal Timed Concurrent Constraint Language (utcc in short) [45]
extends the deterministic timed language tcc to model mobile behavior. It intro-
duces the parametric ask constructor (abs ~x; c)A, replacing the native ask opera-
tion of tcc. The novelty is that the parametric ask not only consults whether or
not a condition holds, but also binds the variables ~x in A to the terms that make
c true. As in the tcc language, the notion of time is modeled as a sequence of
time intervals. During each time interval, some internal steps are executed until
the process reaches a resting point.

Figure 2.3 shows the syntax for ccp programs, borrowed from [45], where the
variables in ~x are pairwise distinct.

Intuitively, skip does nothing; tell(c) adds c to the shared store. A ‖ B de-
notes A and B running in parallel (interleaving) during the current time interval
whereas (local ~x; c) A binds the set of fresh variables ~x in A. Thus, ~x are local
to A under a constraint c. The unit-delay nextA executes A in the next time
interval. The time-out unless c nextA executes A in the next time interval iff c is
not entailed at the resting point of the current time interval. These two processes
explicitly control the time passing. The replication operator !A is equivalent to
execute A ‖ nextA ‖ next2A ‖ . . . , i.e., unboundly many copies of A, one at a
time. Finally, (abs ~x; c)A executes A[~t\~x] in the current time interval for each
term ~t such that the condition c[~t\~x] holds in the store.

The structural operational semantics (SOS) of utcc is shown in Figure 2.4
[45]. It is given in terms of two transition relations between configurations. A
configuration is of the form 〈A, c〉, where A is a process and c a store. The

2.4. THE UNIVERSAL TEMPORAL CONCURRENT CONSTRAINT LANGUAGE 11

Agents A,B ::= skip Skip
| tell(c) Tell
| A ‖ B Parallel composition
| (local ~x; c)A Local
| nextA Unit delay
| unless c nextA Time out
| !A Replication
| (abs ~x; c)A Parametric ask

Declaration D ::= p :: A Definition
| D.D Conjunction

Program P ::= {D.A}

Figure 2.3: utcc syntax.

RT 〈tell(c), d〉 −→ 〈skip, d ∧ c〉

RP
〈A, c〉 −→ 〈A′, d〉

〈A ‖ B, c〉 −→ 〈A′ ‖ B, d〉

RL
〈A, c ∧ (∃~x d)〉 −→ 〈A′, c′ ∧ (∃~x d)〉

〈(local ~x; c)A, d〉 −→ 〈(local ~x; c′)A′, d ∧ ∃~x c′〉

RU
d ` c

〈unless c nextA, d〉 −→ 〈skip, d〉

RR 〈!A, d〉 −→ 〈A ‖ next !A, d〉

RA
d ` c[~y/~x] |~y| = |~x|

〈(abs ~x; c)A, d〉 −→ 〈A[~y/~x] ‖ (abs ~x; c ∧ ~x 6= ~y)A, d〉

RS
γ1 −→ γ2

γ′1 −→ γ′2
if γ1 ≡ γ′1 and γ2 ≡ γ′2

RO
〈A, c〉 −→∗ 〈B, d〉 6−→

A
(c,d)
=⇒ F (B)

Figure 2.4: Internal and observable reductions of utcc.

12 CHAPTER 2. THE (TIMED) CONCURRENT CONSTRAINT PARADIGM

internal transition 〈A, c〉 −→ 〈A′, c′〉 states that the process A with current store
c reduces, in one internal step, to the process A′ with store c′. The observable

transition A
(c,d)
=⇒ B says that the process A on input c reduces, in one time

interval, to the process B and output d. The function F (B) is used to define
the observable transition. It determines the utcc process to be executed in the
following time instant looking to the next and unless processes occurring in A.
In particular, F (skip) = skip, F ((abs ~x; c)Q) = skip, F (P1||P2) = F (P1)||F (P2),
F ((local x; c)Q) = (local x)F (Q), F (nextQ) = Q and F (unless c nextQ) = Q.
The equivalence relation ≡ states when two configurations are equivalent (for
instance A||B ≡ B||A)1.

2.5. The Temporal Concurrent Constraint lan-

guage

The Temporal Concurrent Constraint Language (tccp) is a declarative lan-
guage introduced in [7] to model more complex concurrent and reactive systems.
The language inherits all the features of the ccp paradigm, including the mono-
tonicity of the store, the non-determinism behavior, and that it is parametric
w.r.t. an arbitrary constraint system. tccp introduces an operator for dealing
with negative information and a newly implicit notion of time. The notion of
time states that, instead of having time intervals as in tcc, each update or consult
to the store takes one time instant. Let us briefly recall the syntax of tccp follow-
ing [7] (Figure 2.5), where c, ci are finite constraints (i.e., atomic propositions) of
the underlying constraint system C, and P is a tccp program of the form D.A,
being D a set of procedure declarations of the form p(~x) :−A and, A being an
agent that initiates the execution of the program.

Intuitively, the skip agent does nothing; tell(c) adds the constraint c to the
store; the choice agent

∑n
i=1ask(ci)→ Ai executes (in the following time instant)

one of the agents Ai provided its guard ci is satisfied. In case no condition ci is
entailed, the choice agent suspends (and it is again executed in the following time
instant, until the store is able to entail the query). The choice agent models the
non-determinism of the language. The new conditional agent now c then A else
B executes agent A if the store satisfies c in the current time instant, otherwise
executes B (in the same time instant). It models typical behaviors of reactive
system such as timeout (the ability to wait for a specific signal for a limit of time,
thus if such signal is not present yet then an exception is executed) or preemption
(the ability to abort a process when a specific signal is detected); A ‖ B executes
the two agents A and B in parallel (following the maximal parallelism model
which, instead of the interleaving model, executes the agents A and B at the same

1See [45] for a complete definitions.

2.5. THE TEMPORAL CONCURRENT CONSTRAINT LANGUAGE 13

Agents A,B ::= skip - Inaction
| tell(c) - Tell
|
∑n

i=1 ask(ci)→ Ai - Choice
| now c thenA elseB - Conditional
| A ‖ B - Parallel
| ∃ xA - Hiding
| p(~x) - Procedure Call

Declaration D ::= D.D
| p(~x) :-A

Program P ::= D.A

Figure 2.5: tccp syntax.

time); The ∃x A agent, also called hiding, restriction or locality, is used to define
the variable x local to the process A. We use ∃ ~x A to represent ∃x1 . . . ∃xn A;
Finally, p(~x) is the procedure call agent where ~x denotes the set of parameters of
the process p. Regarding time passing, only the tell, choice and procedure call
agents consume time.

As in ccp, the store behaves monotonically, thus it is not possible to change
the value of a given variable along the time. Similarly to the logic approach, to
model the evolution of variable values along the time we can use the notion of
stream. For instance, given an imperative-style variable, we write X = [Y | Z] to
denote a stream X recording the current value Y , and the future values Z. In
this thesis, we follow the modified computation model for tccp presented in [1]
where the store was replaced by a structured store in order to ease the task of
updating and retrieving information from the store. A structured store consists
of a timed sequence of stores st i where each store contains the information added
at the i-th time instant.

Figure 2.6 shows the operational semantics of tccp, borrowed from [1], in
terms of a transition system over configurations. Each transition step takes one
time unit. The configuration 〈A, st〉t represents the agent A to be executed with
the store st at the time instant t.

Let us describe the semantic rules. In the figure, symbol 6−→ is used to
indicate that it is not possible to execute the corresponding agent which means
that the given agent suspends. The first rule R1 describes how the tell agent
at time instant t augments the store st by adding the constraint c and then
skipping. Therefore, the constraint c will be available to other agents from the
time instant t + 1. Rule R2 states that Aj is executed in the following time
instant whenever st entails the condition cj. Regarding the conditional agent,
R3 models the case when the constraint c holds in the store st. Thus, if the
agent A with the current store st is able to evolve into the agent A′ and a new

14 CHAPTER 2. THE (TIMED) CONCURRENT CONSTRAINT PARADIGM

R1 〈tell(c), st〉t −→ 〈skip, st tt+1 c〉t+1

R2 〈
∑n

i=0 ask(ci)→ Ai, st〉t −→ 〈Aj , st〉t+1 if 0 ≤ j ≤ n,st `t cj

R3
〈A, st〉t −→ 〈A′, st ′〉t+1

〈now c thenA elseB, st〉t −→ 〈A′, st ′〉t+1
if st `t c

R4
〈B, st〉t −→ 〈B′, st ′〉t+1

〈now c thenA elseB, st〉t −→ 〈B′, st ′〉t+1
if st 6`t c

R5
〈A, st〉t 6−→

〈now c thenA elseB, st〉t −→ 〈A, st〉t+1
if st `t c

R6
〈B, st〉t 6−→

〈now c thenA elseB, st〉t −→ 〈B, st〉t+1
if st 6`t c

R7
〈A, st〉t −→ 〈A′, st ′〉t+1, 〈B, st〉t −→ 〈B′, st ′′〉t+1

〈A ‖ B, st〉t −→ 〈A′ ‖ B′, st ′ t st ′′〉t+1

R8
〈A, st〉t −→ 〈A′, st ′〉t+1, 〈B, st〉t 6−→
〈A ‖ B, st〉t −→ 〈A′ ‖ B, st ′〉t+1

R9
〈A, st1 t ∃x st2〉t −→ 〈A′, st ′〉t+1

〈∃st1xA, st2〉t −→ 〈∃st ′
xA′, st2 t ∃x st ′〉t+1

R10 〈p(~x), st〉t −→ 〈A, st〉t+1 if p(~x) : −A ∈ D

Figure 2.6: tccp operational semantics

store st′ then, A′ is executed in the following time instant with the computed
store st ′. R4 models the case when the condition c does not hold. In this case,
B′ is executed in the following time instant with the store st ′ computed by B.
R5 models the case when the condition c holds, but the agent A cannot evolve.
When this occurs, A is executed again in the following time instant. Similarly,
R6 models the case when the condition c does not hold, and B cannot evolve. R7
models the evolution of the parallel agent: if A with store st is able to evolve into
A′ with a new computed store st′, and also B with store st is able to evolve into an
agent B′ with st′′, then A′||B′ is run in the following time instant with the store
resulting from the conjunction of st′ and st′′. R8 models the case of the parallel
agent when one of the branches evolves and the other does not. In this case, the
configuration resulting of the execution of the branch that can evolve is executed
in the following time instant in parallel with the branch that cannot evolve. R9
specifies the evolution of the hiding agent. Intuitively, if there exists a transition
〈A, st1t∃x st2〉t −→ 〈A′, st ′〉t+1, then st′ is the local information produced by A;
moreover, st′ must be hidden (st2 t ∃x st ′) from the main process. Finally, rule
R10 models the evolution of the procedure call agent. It executes in the following
time instant the agent A, which is recovered from the procedure declaration.

2.5. THE TEMPORAL CONCURRENT CONSTRAINT LANGUAGE 15

Now we recall the definition of the observable behavior of the tccp language,
which is described from the transition system in Figure 2.6. Let d = d0 · d1 · . . . ·
di · . . . be a structured store where dn is the information computed at time instant
n.

Definición 2.5.1 (Observable Behavior of tccp programs [1]) Given a tccp
program P , an agent A0, and an initial structured store st = st00 · trueω where st00
represents the first component of st0, the timed operational semantics of P w.r.t.
the initial configuration 〈A0, st

0〉 is defined as:

O(P)[〈A0, st
0〉] = {st = st00 · st11 · . . . | 〈Ai, sti〉i −→ 〈Ai+1, st

i+1〉i+1 for i ≥ 0}

Thus, for each sti incrementally built during the execution, the semantics only
records its ith component stii, which corresponds to the constraints added at the
time instant i.

An example. We can find in the literature a number of examples of systems
that can be modeled using the tccp language. In the following, we describe a
simple case to illustrate the use of tccp. In Figure 2.7 we present a tccp procedure
declaration modeling a simplified module of a vending machine.

The declaration has two parameters P and S. P represents the product
selected by the client whereas S represents the current credit available in the
machine. The system is specified by means of a hiding agent introducing the
local variables R, D and S ′ to the choice agent, that consists of five branches.
In the first branch, the choice agent checks whether the product selected by the
client is coded with the number 1. In this case, by means of the conditional
agent, it checks that if the credit is greater or equal than the price of the selected
product. Then, it emits in parallel two signals via tell agents. The first tell agent
adds to the store the constraint R := 1, which means that the system must return
the selected product; the second tell agent adds to the store the constraint D :=
S−1.5, which means that the system must return the rest. If there was no enough
credit, then by using the tell agent in the else block (tell(S ′ := 1.5)), it emits a
signal notifying the price of the selected product (the constraint S ′ := 1.5). The
second, third and fourth branches model similar cases. Finally, the fifth branch
specifies the case when the client cancels the operation. The system must return
the current credit. This action is modeled when the tell agent adds the constraint
D := S to the store.

16 CHAPTER 2. THE (TIMED) CONCURRENT CONSTRAINT PARADIGM

vendedor products (P,S) :-
∃R,D, S′ ((ask(P == 1)→ now(S >= 1.5)

then (tell(R := 1) || tell(D := S − 1.5))
else tell(S′ := 1.5) +

(ask(P == 2)→ now(S >= 1.8)
then (tell(R := 2) || tell(D := S − 1.8))
else tell(S′ := 1.8) +

(ask(P == 3)→ now(S >= 0.8)
then (tell(R := 3) || tell(D := S − 0.8))
else tell(S′ := 0.8) +

(ask(P == 4)→ now(S >= 2.0)
then (tell(R := 4) || tell(D := S − 2))
else tell(S′ := 2.0) +

ask(P == ”Canceled”)→ tell(D := S)))))).

Figure 2.7: A tccp model for a module of a vending products machine

3
An overview about security

protocols

In this chapter, we briefly discuss some basic notions about security protocols,
also called cryptographic protocols.

From a general view, a protocol can be seen as a set of rules that make possible
the connection, communication and data transfer between two or more entities
(principals) across a network via messages exchange. These rules establish the
syntax, semantics, and synchronization of the messages, which are usually com-
posed of principals’ names, nonces and/or keys. A nonce is a fresh value generated
by a principal that is usually used to ensure the freshness of messages. A key is
a piece of information used to encrypt and decrypt messages.

A security protocol is a concrete protocol that performs a security-related
function (confidentiality, authenticity, etc.) and applies cryptographic methods
to ensure the security of a message. There are different classifications of protocols
depending on their goal [9] (i.e., key establishment, real-time authentication, etc.).
They can also be classified depending on the kind of keys that is used to encrypt
and decrypt messages (public key, shared key, etc.).

We use the Needham-Schroeder public key authentication protocol and the
Otway-Rees symmetric key authentication protocol as study cases to show how
tccp can be used to generically specify protocols. The first protocol uses the
mechanism of public key encryption to ensure confidentiality of messages whereas
the second uses shared keys and a trusted server for the generation of the session
key.

We have chosen these two protocols since they use different encryption strate-
gies and are vulnerable to different kinds of attacks.

3.1. The Needham-Schroeder protocol

We consider the simplified version of the Needham-Schroeder public key au-
thentication protocol [41]. This authentication protocol allows principals A (Al-
ice) and B (Bob) to communicate via the interchange of secret nonces which,

18 CHAPTER 3. AN OVERVIEW ABOUT SECURITY PROTOCOLS

besides to serve as nonces, serve as authenticators. It is based on the use of
public keys cryptography and nonces, and aims to guarantee confidentiality and
authentication, i.e., the nonce received by A from B and the nonce received by B
from A must be knew only by them. The informal (standard) protocol definition
is shown bellow:

1. A→ B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A→ B : {NB}KB

The protocol begins when A (initiator) sends to B (responder) a message,
encrypted with B’s public key KB, containing her identifier A and a nonce NA

generated by her. When B receives the first message, he decrypts it by using
his private key and sends to A the second message of the protocol that contains
the received nonce NA and a new nonce NB generated by him. This message is
encrypted with the public key of A. When A receives and decrypts the message
by using her secret key, she deduces that, since the message contains the nonce
NA, it has recently been sent by B. Finally, A sends the confirmation message
(the last message of the protocol) to B. In this way, B can infer that he is
communicating to A since he had previously sent her the nonce NB.

3.2. The Otway-Rees protocol

The Otway-Rees protocol symmetric key authentication protocol [46] is an
authentication protocol based on symmetric key cryptography. It allows princi-
pals to communicate via a trusted third party (Server) which establishes a shared
secret key (SKAB) for secure communication between A and B. We show the
informal specification of the protocol as follows, where A wants to communicate
with B by using the server S. S shares the keys SKAS and SKBS with A and B,
respectively. N is a nonce generated by A to identify the session:

1. A→ B : N,A,B, {NA, N,A,B}SKAS

2. B → S : N,A,B, {NA, N,A,B}SKAS, {NB, N,A,B}SKBS

3. S → B : N, {NA, SKAB}SKAS, {NB, SKAB}SKBS

4. B → A : N, {NA, SKAB}SKAS

The protocol starts when A (initiator) sends to B (responder) a message which
contains the non-encrypted text N,A,B and the text NA, N,A,B encrypted with
the secret key SKAB shared by her and S (server), where N and NA are the nonces
generated by A. N is used to identify the session and NA is used to ensure the
freshness of the message. When B receives the first message, he forwards it
to S with the text NB, N,A,B encrypted with the key SKBS shared by him

3.3. A CLASSIFICATION OF ATTACKS 19

and the server. When S receives and decrypts the message, it checks whether
elements N,A,B from the three components of the message coincide. In that
case, it generates the secret key SKAB and sends to B a message containing 1)
the session identifier N not encrypted, 2) the elements NA and SKAB encrypted
with SKAS, and 3) the elements NB and SKAB encrypted with SKBS. When
B receives the message, he extracts from the third component of the message
the key SKAB. Since the message contains the session identifier N and the
third component contains the nonce generated by him, he deduces that such key
has been generated by the server in the current session. Then, he forwards to
A the message containing the first and the second components of the received
message. When A receives and decrypts such message, she extracts from the
second component of the message the key SKAB. she also deduces that the key
SKAB has been generated by the server in the current session.

3.3. A classification of attacks

Security protocols are vulnerable to different forms of attacks. An attack take
places when a intruder or attacker (a dishonest principal) exploits a specific fea-
ture or implementation bug of a protocol in order to carry out malevolent actions.
Below, we mention some kind of attacks (see [11] for a detailed description).

Parallel session: In this kind of attack an intruder forms messages for a
given protocol run by using messages coming from another legitimate pro-
tocol session that is being concurrently executed. There are several forms
of parallel session attacks such as oracle attacks, man-in-the-middle attacks
or multiplicity attacks. A man-in-the-middle attack occurs when two prin-
cipals believe they are mutually authenticated when, actually, the intruder
is impersonating one of the principals in one session and the other principal
in the second session.

Type flaw: This attack takes place when a principal is induced by the
intruder to erroneously interpret the structure of a message. For example,
the principal might accept a nonce as a key when their length coincide.

Denial-of-service: It is characterized by an explicit attempt to prevent le-
gitimate users of a service from using it.

Freshness: It is one of the most common attacks on authentication and
key-establishment protocols. An intruder can get himself authenticated by
replaying messages copied from a legitimate authentication session.

Implementation-dependent: This kind of attack depends on how a given
protocol is implemented.

20 CHAPTER 3. AN OVERVIEW ABOUT SECURITY PROTOCOLS

3.4. The Dolev-Yao Intruder Model

Most proposals related to the specification and verification of protocols, in-
cluding ours, are based on a set of assumptions. These assumptions are known
as the Dolev-Yao intruder model which was developed on the basis of some as-
sumptions described by Needham-Schroeder in [41] and Dolev-Yao in [16].

According to [16], messages are considered as indivisible abstract values, in-
stead of sequences of bits, and the model of encryption is perfect (black-box
model). These two assumptions simplifies the analysis of protocols, but they have
the drawback of preventing the discovery of implementation dependent attacks.
In general, the Dolev-Yao model consists of a set of assumptions representing a
worst-case scenario where an intruder has complete control of the network (a hos-
tile environment). The intruder has the capabilities of intercept, block, replay,
compose (with the information in his/her possession) and decompose (provide
he/she knows the appropriate decryption key) messages in the network. The in-
truder, as any participant in the protocol, knows the identity and the public key
(in case of public key encryption) of the other principals, and contains a private
memory to store the information acquired in a session. He/she is supposed not to
know the private keys of the other participants, unless these have been disclosed
in some way.

In order to better understand the problem of defining and analyzing protocols,
in the following we present two attacks to the two considered protocols.

3.5. An attack to the Needham-Schroeder pro-

tocol

The Needham-Schroeder protocol was defined relying upon the assumption
of perfect cryptography and that principals do not divulge secrets. However, it
allowed the following man-in-the-middle attack discovered by Lowe in [34] where
IX denotes I impersonating X:

1. A→ I : {A,NA}KI

2. IA → B : {A,NA}KB

3. B → A : {NA, NB}KA

4. A→ I : {NB}KI

5. IA → B : {NB}KB

The man-in-the-middle attack describes how an intruder can discover a secret
nonce. In the attack, A initiates a protocol run with I, who (impersonating A)
starts a second run of the protocol with B. In other words, the intruder asks B to
initiate a communication session saying that he is A. More precisely, the attack

3.6. AN ATTACK TO THE OTWAY-REES PROTOCOL 21

follows the following steps. First, A sends his name and a nonce to I. Later,
I, impersonating A, sends to B the received message. Then, B, thinking that
the received message comes from A, sends to her the received nonce and a new
one generated by him (corresponding to the second step of the protocol). When
A receives the message sent by B, she thinks that it comes from I (the second
step of the first protocol run), and sends back to I the confirmation message
that contains the nonce generated by B to A. Finally, I sends to B the same
confirmation message. At the end of the attack, B thinks he is communicating
with A, which is false.

3.6. An attack to the Otway-Rees protocol

Boyd, in [8], found one of the typing attacks that the Otway-Rees protocol
suffers. In this attack, the intruder I intercepts the first message. Then, he/she
creates the last message of the protocol, by eliminating from the non-encrypted
text the identifiers A and B, and replies it to A impersonating B:

1. A→ IB : N,A,B, {NA, N,A,B}KAS

4. IB → A : N, {NA, N,A,B}KAS

In particular, although the intruder cannot read the content of the encrypted
part {NA, N,A,B}SKAS

of the message, he/she can use it to send it (together with
the session identifier N) to the honest participant A. This message replaces the
legitimate last message of the protocol. The important point is that the principal
A expects a message of the form {NA, SKAB}SKAS

, being SKAB the new key to
be used to communicate with another participant, for example B. Therefore, she
interprets that the sequence N,A,B is the expected key. From that moment,
A encrypts its messages using as key the sequence N,A,B which the intruder
knows since it corresponds with the non-encrypted text (the first component)
of the message that the intruder can disclose. Therefore, the communication
becomes insecure.

22 CHAPTER 3. AN OVERVIEW ABOUT SECURITY PROTOCOLS

4
Modeling security protocols in tccp

In this chapter, we describe how we can specify in a general way in tccp the
principals’ roles of a given protocol and the intruder model of Dolev-Yao [16].
Specifically, we define some specific constraints (which are handled by the un-
derlying constraint system) to model some of the concepts involved in a protocol
definition. We specify a tccp declaration to model the role of each principal and a
tccp declaration to model a hostile environment (modeling the intruder) that con-
trols the protocols run. As practical examples, we show how to formally specify
the Needham-Schroeder and the Otway-Rees protocols.

We can divide the specification process into three parts:

1. The representation of the concepts involved in a protocol by means of certain
terms;

2. The encoding of the behavior of each participant of a protocol in a tccp
declaration;

3. The codification as a tccp declaration of the (hostile) environment, a process
that controls the protocol execution following the Dolev-Yao attacker model
[16].

The specifications obtained from the first and third phases can be reused for
the specification of other protocols. For the second phase, the example that we
describe should serve as a guideline to transform the informal definition of a
protocol to the corresponding tccp program.

4.1. Auxiliary concepts

Let us describe the concepts appearing in the informal protocol definition by
means of terms which in our approach are handled as constraints.

We represent the private knowledge acquired by the members of a protocol
with the term know(A,K) where A is the identifier of a principal, and K is a
stream that stores the information. For instance, know(alice,[a(b), n(nNA),

24 CHAPTER 4. MODELING SECURITY PROTOCOLS IN TCCP

n(nNB)|T]) states that the agent alice knows that b is the identifier of a protocol
participant, and also knows the nonces nNA and nNB.

Messages involved in the protocol are represented by a term of the form
msg(ItemList). When a message is posted to the network, a term chn(Msg,State)
is defined. The content of a message ItemList is a list of elements (or compo-
nents). Each element is represented by a term of the form enc(Key,Content)
stating that the information in Content has been encrypted with the key Key .
A key is represented by terms plain, k/1, pk/1, or sk/2. plain means that
the given content is non-encrypted, k/1 is used to represent the public key of a
principal whose identifier is the argument of the term, pk/1 represents a private
key which may be known by certain principals and finally, sk/2 models a secret
key shared by two principals whose identifiers are the arguments of the term.
The information is represented as a list of atoms following the classical notation
for the cons constructor of lists. The list of atoms may contain participant’s
identifiers, nonces, keys, etc. . . In chn(Msg,State), the variables Msg and State
represent the sent message and its status. There are two possible status: that
the message has traveled the network but it has not been processed yet (State
remains non-instantiated) or that the message has been already processed by the
environment (State is instantiated to the value ok). We adopt an asynchronous
model for message passing. This means that, when a principal sends a message,
it is stored in the channel to be processed later. The term rcv(Msg,State) is
used by the environment to deliver a message to the corresponding recipient. The
variable State is instantiated to ok when the expected principal has processed the
delivered message.

Finally, the term blk(Msg) is used to state that a message has been blocked,
whereas cnt(Content) stores the information being the content of a message.

The constraint system. In addition to the representation of the information
to be handled during the protocol run, some operations may be implemented
in the underlying constraint system. Therefore, we assume that the constraint
system provides the following functionality. When invoked, new(NA) generates
a fresh (random) value for the given variable NA. In our specifications, when we
use this function, the variable passed as argument is never instantiated.

The function free(Var) returns a boolean value. It is used to check whether,
given the current store, the given variable Var is instantiated or not. To recover
certain information from a given stream, recover(Stream,Info) is defined. This
function unifies the value matching Info in the stream. We can also use the
auxiliary function find(Stream,Info) that checks whether Info can be recovered
(returning the value true) or not (false). To determine this, the function checks
if Info unifies with, at least, one of the values stored in the given stream. Note
that, in contrast, recover returns the resulting substitution. For example, a call

4.2. ENCODING THE NEEDHAM-SCHROEDER PROTOCOL INTO TCCP 25

to recover([a(b), n(nNA), n(nNB)|T] , a(Ag)) would return Ag = b.

4.2. Encoding the Needham-Schroeder protocol

into tccp

Let us now show how the participants of the protocol can be specified. The
specification of principals must be redefined for each different protocol, and it is
modeled as a tccp declaration.

The tccp declaration modeling the initiator A is shown below.

init (A,B) :-
∃ NA,SA,S1,SA1,NB,S2,S3,SA2

(tell(NA = new(NA)) ||
(tell(know(A,SA)) ||

ask(true)->
1 (tell(chn(msg(enc(k(B),cons(A,cons(NA,nil)))),S1)) ||

(tell(SA = [(a(B),n(NA)) | SA1]) ||
2 ask(rcv(msg(enc(k(A),cons(NA,cons(NB,nil)))),S2) ∧ free(S2))->

(tell(rcv(msg(enc(k(A),cons(NA,cons(NB,nil)))),S2)∧ free(S2)) ||
(tell(S2 = ok) ||

3 ask(true)-> (tell(chn(msg(enc(k(B),cons(NB,nil))),S3)) ||
tell(SA = [n(NB) | SA2])))))))).

Following the steps in the informal protocol description, the initiator A gen-
erates a new nonce, stored in NA, and states SA as the stream that contains her
private knowledge. Then, by means of the tell agent labeled with 1, she sends to
the channel the message of the first protocol step. This means that she sends to B
her identifier and the generated nonce, both things encrypted with the public key
of B. This is modeled by chn(msg(enc(k(B),cons(A,cons(NA,nil)))),S1).
In parallel, she updates her private knowledge SA with the identifier of the respon-
der and the generated nonce. Again in parallel, the choice agent (labeled with 2)
will be executed for detecting when A receives the second message of the protocol
(characterized by the constraint rcv(msg(enc(k(A),cons(NA,cons(NB,nil)))
),S2) ∧ free(S2), and free(S2) ensures that the message has not been pro-
cessed). When the condition holds, by means of the tell agents, she recovers
in NB the nonce generated by B and sets S2 to ok (to ensure that the message
is processed just one time). Then, she sends to B (the action labeled with 3) the
confirmation message that contains the recovered nonce, and updates her private
knowledge with such nonce.

26 CHAPTER 4. MODELING SECURITY PROTOCOLS IN TCCP

The tccp declaration modeling the responder B is shown below.

resp (B) :-
∃ A,NA,S1,NB,SB,S2,SB1,S3,SB2

ask(rcv(msg(enc(k(B),cons(A,cons(NA,nil)))),S1) ∧ free(S1))->
(tell(rcv(msg(enc(k(B),cons(A,cons(NA,nil)))),S1) ∧ free(S1)) ||
(tell(S1 = ok) ||
(tell(NB = new(NB)) ||
(tell(know(B,SB)) ||

ask(true)->
(tell(chn(msg(enc(k(A),cons(NA,cons(NB,nil)))),S2)) ||
(tell(SB = [(a(A),n(NA),n(NB)) | SB1]) ||

ask(rcv(msg(enc(k(B),cons(NB,nil))),S3) ∧ free(S3))->
(tell(rcv(msg(enc(k(B),cons(NB,nil))),S3) ∧ free(S3)) ||
(tell(S3 = ok) ||

ask(true)-> tell(SB = [secret(NB) | SB2]))))))))).

The execution of the responder B is suspended until the constraint in the first
choice agent rcv(msg(enc(k(B),cons(A,cons(NA,nil)))),S1) ∧ free(S1) is
satisfied. This situation models the moment in which he has received the first
message of the protocol. Then, by means of the tell agents, he recovers in A and
NA the identifier of the initiator A and the nonce generated by her, respectively;
sets S1 to the value ok, generates the new nonce NB and states that SB is being
to contain his private knowledge. After this, the specification sends to the chan-
nel the second message of the protocol. In particular, B sends to the principal
whose identifier has been recovered from the received message the received nonce
and a new one generated by him, all this encrypted with the public key of the
target principal. Finally, he updates his private knowledge with the recovered
information and the generated nonce. After having sent the second message, B
waits until the constraint rcv(msg(enc(k(B),cons(NB,nil))),S3) ∧ free(S3)

of the choice agent holds, which means that he has received the last message of
the protocol. Then, he sets S3 to the value ok and updates his private knowledge
by storing the fact that the nonce previously generated by him NB is secret.

4.3. Encoding the Otway-Rees protocol into tccp

Let us now show how the participants of the Otway-Rees protocol can be
specified. They are modeled, each one, as a tccp declaration.

The tccp declaration modeling the initiator A is shown below.

4.3. ENCODING THE OTWAY-REES PROTOCOL INTO TCCP 27

init (A,B,S) :-
∃ N,NA,SA,S1,SA1,KAB,S2,SA2

(tell(N = new(N)) ||
(tell(NA = new(NA)) ||
(tell(know(A,SA)) ||

ask(true)->
(tell(chn(msg((enc(plain,cons(N,cons(A,cons(B,nil)))),

enc(sk(A,S),cons(NA,cons(N,cons(A,cons(B,nil))))))),S1)) ||
(tell(SA = [(a(B),a(S),n(N),n(NA)) | SA1]) ||

ask(rcv(msg((enc(plain,cons(N,nil)),
enc(sk(A,S),cons(NA,cons(KAB,nil))))),S2) ∧ free(S2))->
(tell(rcv(msg((enc(plain,cons(N,nil)),

enc(sk(A,S),cons(NA,cons(KAB,nil))))),S2) ∧ free(S2)) ||
(tell(S2 = ok) ||

ask(true)-> tell(SA = [pk(KAB) | SA2])))))))).

Following the steps in the informal protocol description, the initiator A gener-
ates, in parallel, the new nonces N and NA, and states SA as the stream that con-
tains her private knowledge. Then, by means of a tell agent, she sends to the chan-
nel the message of the first protocol step. This means that she sends to B a mes-
sage containing a non-encrypted part (enc(plain,cons(N,cons(A,cons(B,nil))
))) and an encrypted part (enc(sk(A, S),cons(NA,cons(N,cons(A,cons(B,
nil)))))). In parallel, she updates her private knowledge SA with the identifier
of the responder, the server and the generated nonces. Again in parallel, a choice
agent will be executed for detecting when A receives the last message of the
protocol (characterized by the constraint rcv(msg((enc(plain,cons(N,nil)),
enc(sk(A, S),cons(NA,cons(KAB,nil))))),S2) ∧ free(S2), and free(S2) en-
sures that the message has not been processed). When the condition holds, by
means of the tell agents, she recovers in KAB the key generated by the server S
and sets S2 to ok (to ensure that the message is processed just one time). Then,
she updates her private knowledge with the recovered key.

The tccp declaration modeling the responder B is shown below.

resp (B,S) :-
∃ N,A,Enc1,S1,NB,SB,S2,SB1,Enc2,KAB,S3,S4,SB2

ask(rcv(msg((enc(plain,cons(N,cons(A,cons(B,nil)))),Enc1)),S1) ∧
free(S1))->
(tell(rcv(msg((enc(plain,cons(N,cons(A,cons(B,nil)))),Enc1)),S1)∧

free(S1)) ||
(tell(S1 = ok) ||
(tell(NB = new(NB)) ||
(tell(know(B,SB)) ||

ask(true)->
(tell(chn(msg((enc(plain,cons(N,cons(A,cons(B,nil)))),Enc1,

28 CHAPTER 4. MODELING SECURITY PROTOCOLS IN TCCP

enc(sk(B,S),cons(NB,cons(N,cons(A,cons(B,nil))))))),S2)) ||
(tell(SB = [(a(A),a(S),n(N),n(NB)) | SB1]) ||

ask(rcv(msg((enc(plain,cons(N,nil)),Enc2,
enc(sk(B,S),cons(NB,cons(KAB,nil))))),S3) ∧ free(S3))->
(tell(rcv(msg((enc(plain,cons(N,nil)),Enc2,

enc(sk(B,S),cons(NB,cons(KAB,nil))))),S3) ∧ free(S3)) ||
(tell(S3 = ok) ||

ask(true)-> (tell(chn(msg((enc(plain,cons(N,nil)),Enc2)),S4)) ||
tell(SB = [pk(KAB) | SB2])))))))))).

The execution of the responder B is suspended until the constraint in the first
choice agent rcv(msg((enc(plain,cons(N,cons(A,cons(B,nil)))),Enc1)),

S1) ∧ free(S1) is satisfied. This means that he has received the first message
of the protocol. Then, by means of the tell agents, he recovers in N , A and
Enc1 the session identtifier, the identifier of the initiator A and the encrypted
component of the message, respectively; sets S1 to the value ok, generates the
new nonce NB and states that SB is being to contain his private knowledge.
After this, the specification sends to the channel the second message of the pro-
tocol. In particular, B sends to the server the received message with an encrypted
component (enc(sk(B, S),cons(NB,cons(N,cons(A,cons(B,nil)))))) gen-
erated by him. In parallel, he updates his private knowledge with the recov-
ered information and the generated nonce (SB = [(a(A),a(S),n(N),n(NB))
| SB1]). After having sent the second message, B waits until the constraint
rcv(msg((enc(plain,cons(N,nil)),Enc2,enc(sk(B, S),cons(NB,cons(KAB,

nil))))),S3) ∧ free(S3) of the choice agent holds, which means that he has re-
ceived the third message of the protocol. When the condition holds, by means
of the tell agents, she recovers in Enc2 and KAB the component encrypted by
the server S for A and the secret key generated by the server S, and sets S3 to
ok (to ensure that the message is processed just one time). After this, the spec-
ification sends to the channel the last message of the protocol. In particular, B
forwards to the initiator A the message received from the server, but without the
last component (chn(msg((enc(plain,cons(N,nil)),Enc2)),S4)). In parallel,
he updates her private knowledge with the recovered key.

The tccp declaration modeling the server S is shown below.

server (S) :-
∃ N,A,B,NA,NB,S1,KAB,SS,S2,SS1

ask(rcv(msg((enc(plain,cons(N,cons(A,cons(B,nil)))),
enc(sk(A,S),cons(NA,cons(N,cons(A,cons(B,nil))))),
enc(sk(B,S),cons(NB,cons(N,cons(A,cons(B,nil))))))),S1) ∧

free(S1))->
(tell(rcv(msg((enc(plain,cons(N,cons(A,cons(B,nil)))),

4.4. ENCODING THE ENVIRONMENT INTO TCCP 29

enc(sk(A,S),cons(NA,cons(N,cons(A,cons(B,nil))))),
enc(sk(B,S),cons(NB,cons(N,cons(A,cons(B,nil))))))),S1)∧

free(S1)) ||
(tell(S1 = ok) ||
(tell(KAB = new(KAB)) ||
(tell(know(S,SS)) ||

ask(true)->
(tell(chn(msg((enc(plain,cons(N,nil)),

enc(sk(A,S),cons(NA,cons(KAB,nil))),
enc(sk(B,S),cons(NB,cons(KAB,nil))))),S2)) ||

tell(SS = [(a(A),a(B),n(N),n(NA),n(NB),pk(KAB)) |SS1])))))).

The execution of the server S is suspended until the constraint in the first
choice agent is entailed by the store. This situation models the case in which
he/she has received the second message of the protocol. Note that the sequence
cons(N,cons(A,cons(B,nil))) must be in the three components of the mes-
sage. Then, by means of tell agents, he recovers in N , A, B, NA and NB the
session identifier, the identifier of the initiator A, the identifier of the responder
B, the nonce generated by A and the nonce generated by B, respectively; sets
S1 to the value ok, generates the secret shared key KAB and states that SS is
being to contain his private knowledge. After this, the specification sends to the
channel the third message of the protocol. In particular, S sends to the responder
B (whose identifier has been recovered from the received message) the message
chn(msg((enc(plain,cons(N,nil)), enc(sk(A, S),cons(NA,cons(KAB,nil)
)),enc(sk(B, S),cons(NB,cons(KAB, nil))))),S2) composed of the session
identifier in plain text, the component created for A encrypted with the key
shared by her and the server containing the nonce generated by A and the secret
key generated by the server, and the component created for B encrypted with
the key shared by him and the server containing the nonce generated by B and
the secret key generated by the server. Finally, the server updates his private
knowledge with the recovered information and the generated key.

4.4. Encoding the Environment into tccp

The design of protocols turns out problematic even assuming perfect cryptog-
raphy. The problem is mainly due to the fact that principals communicate over a
network controlled by a malicious agent (an intruder) who can intercept, analyze,
and modify messages, being thus able to carry out malevolent actions.

In this section, we describe the specification of the network where the protocols
are executed. We do not specify the intruder as a specific principal, but we encode
it within the environment. The resulting specification allows the actions from the
Dolev-Yao intruder model [16].

30 CHAPTER 4. MODELING SECURITY PROTOCOLS IN TCCP

The environment is defined as a cycle where, during each iteration, a message
is processed depending on whether the constraint (chn(M,S) ∧ free(S)) of the
first choice agent holds, which means that there is a message to process, or not.
The tell agents after the condition recover in M the sent message, sets S to the
value ok (to avoid processing a message twice) and states that SI is going to store
the intruder private knowledge. Then, one of the labeled actions (1a to 1d) is
non-deterministically chosen to be executed. Finally, the environment is executed
recursively in parallel.

environment(I) :- ∃M,S,SI,Si (
ask(chn(M,S) ∧ free(S)) ->

(tell(chn(M,S) ∧ free(S)) ||
(tell(S = ok) ||
(tell(know(I,SI)) ||

1a ((ask(true) -> tell(SI = [blk(M) | Si]) +
1b (ask(true)-> ∃S1 tell(rcv(M,S1)) +
1c (ask(true) ->

now(M = msg(enc(k(I),))) then
∃C,X, S1 (tell(M = msg(enc(k(I),C))) ||

ask(true) -> (tell(SI = [cnt(C) | Si]) ||
(tell(recover(SI,a(X))) ||

ask(true)->
tell(rcv(msg(enc(k(X),C)),S1)))))

else skip +
1d ask(true) ->

now(find(SI,blk())) then
∃M ′, S1 (tell(recover(SI,blk(M ′))) ||

ask(true) -> tell(rcv(M ′,S1)))
else skip))) ||

ask(true) -> environment(I)))))).

Let us describe the labeled actions 1a to 1d. We have labeled the code to
improve readability of this description. The code in 1a models the situation
in which the environment blocks the communication and as a consequence the
intruder updates his private knowledge with the given term blk. 1b models the
correct transmission of the message. The message is labeled with the term rcv

being S1 a fresh variable. Actions in 1c specify the case when the given message
is encrypted with the public key of the intruder. Then, by using some tell agents,
he recovers in C the content of such message and the identifier of the principal
who is trying to communicate with him. Then, he composes a message with the
recovered information and sends it to the honest principal whose identifier was
previously recovered. Finally, 1d models the replication of message. In case that
the intruder can recover from his private knowledge a message which has been
blocked before, then he may deliver it.

4.5. CONCLUDING REMARKS 31

To summarize, the blocking of communication capability of the Dolev-Yao
intruder [16] is modeled by the code excerpt labeled with 1a; The message inter-
cepting capability is modeled by the fact that the environment is able to select
the message to be processed. 1c implements the message composing/decomposing
capability, and finally, the ability of message replaying is modeled by actions 1b
and 1d.

4.5. Concluding remarks

In this section, we have presented how the tccp language can be used for the
specification of security protocols. We have established a direct correspondence
between the principals’ roles in the informal specification of a protocol and the
resulting tccp formal specifications.

We have modeled a generic environment that includes the actions that an
intruder can carry out in a protocol execution.

We do not specify explicitly the traces describing possible attacks, but thanks
to the concurrency and the non-determinism, we include all the possible traces
which can be analyzed later. In chapter 6, we describe the analysis process.

32 CHAPTER 4. MODELING SECURITY PROTOCOLS IN TCCP

5
Embedding utcc into tccp

In this chapter, we describe the relation between utcc and tccp. We show how
utcc can be embedded into tccp. It is not possible to have a direct transformation
since the two languages have important differences in nature. In particular, both
languages handle time differently, and the abstraction operator of utcc is not
present in tccp. We define a transformation which, given the specification of a
utcc program, constructs in an automatic way a tccp program that preserves the
expected behavior of the original utcc program.

Let us first show the intuition of the transformation by means of an example.

5.1. Illustrative example

The following example is extracted from [45], where it was used to illustrate
how mobility can be modeled in utcc:

Example 5.1.1 (Mobility [45]) Let Σ be a signature with the unary predicates
out1, out2, . . . and a constant 0. Let ∆ be the set of axioms over Σ valid in
first-order logic. Consider the following process specifications.

P = (abs y; out1(y)) tell(out2(y))

and

Q = (local z)(tell(out1(z))‖when out2(z) do next tell(out2(0))).

The process models a method to detect when a private information can become
public in a given (non secure) channel (out2). Thus, we have two channels called
out1 and out2. Process P recovers from the first channel a value and forwards
it to the second one. Q sends a private value (locally declared) z to out1 and, in
parallel, checks whether the second channel receives such value. In case the value
appears in the out2 channel, then, in the following time interval, the value 0 is
sent to the second channel (modeling the vulnerability detection). By executing
both processes in parallel P‖Q, the value 0 is produced in the second time interval.

34 CHAPTER 5. EMBEDDING UTCC INTO TCCP

Our transformation generates as many tccp procedure declarations as utcc
processes are defined. In this case, we get the procedure declarations proc P and
proc Q. Then, the initial call P‖Q is transformed into the initial call (agent) of
the tccp program.

We start by showing the transformation for the Q process. In this case, we
have to pay special attention to model the utcc timed operator next, since it does
not exist in tccp. The utcc process states that, when z is retrieved in the second
channel, then in the following time interval (after the resting point) the value 0 is
emitted to the channel. We define a global stream Syn that models when the utcc
computation reaches a resting point. Having this in mind, we emit the 0 value
when an ok is the value of the stream. We omit the details for the computation
of the synchronization mechanism (the values for the synchronization stream),
but we present it in the next subsection.

proc Q() :- ∃ z (tell(out1(z)) ‖
ask(out2(z))→ ask(Syn

.
= ok)→ tell(out2(0))).

The transformation for the P process is a bit more elaborated due to the use
of the abs operator. Remember that (abs y; out1 (y)) tell(out2 (y)) executes (in
parallel) the instantiations (to the recovered values of y) of the tell agent. In order
to handle the different possible instantiations, we use an auxiliary declaration absi
and a term substi ∈ Σ to accumulatively store the processed instantiations.

proc P() :- ∃ y, S (abs1(y, S) || tell(subst1(S))).

abs1(y, S) :- ∃ t, S ′ ((now(out1(y)[t\y] ∧ ¬(find(S, {[t\y]})))
then (tell(out2(y)[t\y]) ‖

(tell(S = [{[t\y]} | S ′]) ‖
abs1(y, S)))

else skip)).

The arguments in the auxiliary call determine the pattern that is defined in
the conditional agent. After executing the tell agent that updates the stream
S (by adding the constraint S = [{[t\y]} | S ′]), S includes the instantiation
handled in the current recursive call. The computation stops when there is no
instantiation retrieved from the store that is not already in the stream S (the
constraint of the conditional agent does not hold). The last part of the example
is the translation of the utcc initial process P‖Q:

(proc P ‖ proc Q ‖ tell(Syn = [wait | CT]) ‖
utcc clock(out1(z) ∧ out2(z), Syn) ‖ utcc clock(out2(0), Syn))

5.2. FORMALIZATION OF THE TRANSFORMATION 35

The two processes are called in parallel, as in the utcc example, and also the
synchronization stream is initialized to the value wait, since the computation
has not reached a resting point. Actually, also two clocks (one for each utcc
resting point) are defined and executed in parallel to the above specification.
Each clock updates the value of Syn whenever a condition (which characterizes
a utcc resting point) holds. The conditions are statically computed, and we show
the formalization in the following section. Here we simply show the declaration
for these clocks. Each time a resting point is reached, the synchronization stream
is updated to ok, thus all the agents that were waiting for this value, would start
their execution. Then, the value is set again to wait.

utcc clock(Store1,Syn) :-
ask(Store1)→ ∃Sn, Sn1((tell(Syn = [ok | Sn]) ‖

ask(true)→tell(Syn = [wait | Sn1]))).

In Figure 5.1, we show the execution trace of the resulting tccp program. The
table is interpreted from left to right, up to bottom. It is shown for each (tccp)
time instant the current store and the agent to be executed. In the original utcc
example, at the second resting point the value out2(0) is emmited. In the tccp
trace, it can be seen that only after the first Syn

.
= ok holds (thus the first resting

point has been reached), the given value is emmited to the store. The value of
the store at time instant 6 means the same as Syn

.
= ok. We have simplified

notation at instant 4 to improve clarity. Actually, the constraint CT = [ok | Sn],
which implies Syn

.
= ok, is the information available in the store at time instant

4.

5.2. Formalization of the transformation

The transformation from utcc into tccp can be divided in two phases. The
first one encodes each utcc process into tccp code, whereas the second one defines
the necessary synchronization among the generated tccp agents. As we have
shown, since the notion of time of both languages differs, we need to force the
synchronization of processes in order to mimic the behavior of the original utcc
program.

In the following, we define the τP function that transforms the utcc pro-
gram into a tccp program. As mentioned above, this function includes a final
phase where the synchronization mechanism complements the first transformation
phase. Next we show the formalization. In Appendix B we show in pseudocode
the mechanization of the process. We also prove that the built tccp program
mimics the behavior of the given utcc program.

We say that an utcc program, similarly to a tccp program, is composed by a
set of utcc declarations of processes and the utcc process that starts the execution

36 CHAPTER 5. EMBEDDING UTCC INTO TCCP

time 0 1
store true Syn = [wait | CT]

agents

proc P() ‖
proc Q() ‖
tell(Syn = [wait | CT]) ‖
utcc clock(out1(z) ∧ out2(z),Syn) ‖
utcc clock(out2(0),Syn)

abs1(y, S) ‖ tell(subst1(S))
tell(out1(z)) ‖
ask(out2(z))→ . . . ‖
ask(out1(z) ∧ out2(z))→ . . . ‖
ask(out2(0))→ . . .

time 2 3
store out1(z), subst1(S) t = z, out2(z) , S = [{[t\y]} | S′]

agents

now(out1(y)[t\y]∧
¬(find(S, {[t\y]}))) then

tell(out2(y))[t\y] ‖
tell(S = [{[t\y]} | S′]) ‖
abs(y, S) ‖

ask(out2(z))→ . . . ‖
ask(out1(z) ∧ out2(z))→ . . . ‖
ask(out2(0))→ . . .

now(out1(y)[t′\y]∧
¬(find(S, {[t′\y]}))). . .

skip ‖
ask(Syn

.= ok)→ tell(out2(0)) ‖
∃Sn, Sn1(

tell(Syn = [ok | Sn])‖
ask(true)→

tell(Syn = [wait | Sn1]))‖
ask(out2(0))→ . . .

time 4 5
store Syn

.= ok out2(0), Sn = [wait | Sn1]

agents
tell(out2(0)) ‖
tell(Syn = [wait | Sn1]))‖
ask(out2(0))→ . . .

∃Sn′, Sn′1(
tell(Syn = [ok | Sn′])‖
ask(true)→

tell(Syn′ = [wait | Sn′1]))
time 6 7
store Sn1 = [ok | Sn′] Sn′ = [wait | Sn′1]
agents tell(Syn = [wait | Sn′1]) -

Figure 5.1: Trace of the resulting tccp program

of the program. Let us first introduce some notation. ud is a declaration from
the set of utcc declarations, and ur is an utcc process. Moreover, we say that
name(ud) recovers the declaration name, and body(ud) recovers the process on
the rhs of the declaration. For example, name(P = tell(out2(y))) returns P.

For each declaration ud in the set of declarations of the original utcc program,
we define a tccp declaration in the tccp program. That tccp declaration has the
form:

name(ud) :- τA(body(ud)) .

where τA is an auxiliary function that, given the utcc process ur (ur = body(ud)),
constructs a tccp agent that mimics its behavior.

5.2. FORMALIZATION OF THE TRANSFORMATION 37

Let us now describe the τA function. Depending on the form of the input
process ur, τA behaves differently. There are nine possible cases:

Case ur≡ skip. The corresponding tccp agent is skip.1

Case ur≡ tell(c). The corresponding tccp agent is tell(c)

Case ur≡ (local ~x; c) A. The corresponding tccp agent is ∃c ~x (τA(A))
The superscript c denotes the initial store in the local computation in A, in
the same sense as it is used in the utcc semantics for the local operator.

Case ur≡ A ‖ B. The corresponding tccp agent is (τA(A) ‖ τA(B))

Case ur≡ next A. The corresponding tccp agent is ask(Syn
.
= ok)→ τA(A)

The Syn variable is a synchronization stream that is updated depending on
the clock of the utcc program. The symbol

.
= checks the last (current) value

of the stream, which is updated to ok each time a resting point is reached in
the utcc program. We introduce later the synchronization mechanism that
takes care of updating Syn.

Case ur≡ unless c next A. The corresponding tccp agent is
ask(Syn

.
= ok)→ now c then skip else τA(A)

Case ur≡ !A. The corresponding tccp agent is (τA(A) ‖ auxi)
auxi is an auxiliary (fresh) declaration defined to simulate the replication of
utcc by means of the recursion capability of tccp. The definition of the new
declaration is auxi :- ask(Syn

.
= ok) → (τA(A) ‖ auxi)., meaning that, at

each resting point (Syn
.
= ok), the choice agent launches the execution of

τA(A) in parallel with the procedure call auxi modeling recursion.

Case ur≡ (abs ~x; c) A. The corresponding tccp agent is

∃ ~x, S (absi(~x, S) || tell(substi(S)))

and absi(~x) is an auxiliary (fresh) tccp declaration defined as follows:

absi(~x, S):-∃~t, S ′ (now (c[~t\~x] ∧ ¬(find(S, {~t\~x})))
then (τA(A[~t\~x]) ‖

tell(S = [{~t\~x} | S ′]) ‖
absi(~x, S))

else skip).

With substi ∈ Σ, i.e., it is a predicate handled by the constraint system C.
1Since the semantics of both, the utcc version of the agent and the tccp version of the agent

behave similarly and no confusion can arise, we don’t distinguish them syntactically.

38 CHAPTER 5. EMBEDDING UTCC INTO TCCP

Case ur≡ P . The corresponding tccp agent is the call to the process name(P),
i.e., proc P.

Once all the utcc declarations are transformed, the second phase of the trans-
formation τA can start. It consists in defining the clock that mimics the time
passing in utcc. This is necessary since the explicit notion of time of utcc differs
from the implicit one of tccp: A time unit in utcc may correspond with several
time units in tccp. We use the stream Syn to simulate such clock. The stream
may contain the following values:

wait, that means that a resting point has not been reached.

ok, that simulates that the resting point of the current time interval has
been reached.

Remember that the initial call of the program initializes the stream Syn to
the value wait.

As a result of this second transformation phase, a new declaration utcc clock

for each utcc resting point is introduced. These new declarations are executed
in parallel with the initial call of the program. We need to run a pre-process
that computes such clock, i.e., identifies the resting points of the original utcc
program that define when a tick must occur. In the following, we show the
function instant that computes the store generated during one utcc time instant.
This information is used by the clock utcc clock. The auxiliary function follows
is used to compute the process that must be executed in the following time instant,
and simulates the F function of the utcc semantics.

Given the utcc program up, let us assume that it possess n resting point. First,
we define a tccp declarations of the following form.

utcc clock(Store1,Syn) :-

ask(Store1)→ ∃Sn,Sn1((tell(Syn = [ok | Sn]) ‖
ask(true)→tell(Syn = [wait | Sn1]))).

Then, for each value computed by the functions instant and follows described
below, we define in the initial term a call to such declaration with the computed
values. This means we define n runs for the above declaration. When new com-
puted values have already been computed (modulo renaming), then the process
ends. More specifically, the computation starts by computing the instant for the
initial call. Then, the function follows computes the process after the following
resting point for which the instant is computed. The iteration proceeds until a
loop is reached, i.e., the computed instant has already been computed (modulo
renaming).

5.2. FORMALIZATION OF THE TRANSFORMATION 39

The function instant computes the information at the resting point of a given
time interval, following the operational semantics of utcc:

instant(ur, st) =



st if ur ≡ skip
st ∪ c if ur ≡ tell(c)

instant(A[~x′\~x], c ∧ ∃~xst) if ur ≡ (local ~x; c) A and
~x′ are fresh variables

instant(A1, st) ∧ instant(A2, st) if ur ≡ A1 ‖ A2

st if ur ≡ next A
st if ur ≡ unless c nextA

instant(A, st) if ur ≡ !A∧
z∈θ instant(A[~y\~x], st) if ur ≡ (abs ~x; c)A and

st ` c[~y\~x] and
θ = {~y | st ` c[~y\~x]}

instant(A, st) if ur ≡ P = A

The function follows is similar to the future function F of utcc:

follows(ur, st) =



skip if ur ≡ skip
skip if ur ≡ tell(c)

(local ~x) follows(A, st ∧ c) if up ≡ (local ~x; c) A

follows(A1, st) ‖ follows(A2, st) if up ≡ A1 ‖ A2

A if up ≡ next A
A if up ≡ unless c nextA and

st 6` c
!A if up ≡ !A
(abs ~x; c) follows(A, st ∧ c) if up ≡ (abs ~x; c) A

follows(A, st) if up ≡ P = A

5.2.1. Correctness of the transformation

We have defined a transformation from utcc programs into tccp programs in
such a way that the resulting tccp program mimics the behavior of the original
utcc program. In this section we show that our method is sound in the sense that
each utcc trace of a program can be simulated by a tccp trace of the transformed
version.

We fist introduce some notations. Similarly to [44], we say that elements
c1, c2, c

′
1, c
′
2, . . . are the set of constraints defined by C. Then, α, α′, . . . denote

infinite sequences of constraints where α = c1.c2 . . . and α′ = c′1.c
′
2 Finally,

α(i) denotes the i-th element in α, for instance, α(2) = c2. Note that any

40 CHAPTER 5. EMBEDDING UTCC INTO TCCP

constraint by itself is (or can represent) a store, so we can use both terminologies
indistinctly.

Definición 5.2.1 (Input-Output Relations over utcc processes [44]) Given

the utcc process P , α = c1.c2 . . . and α′ = c′1.c
′
2 . . ., P

(α,α′)
=⇒ is used to represent

P = P1

(c1,c′1)
=⇒ P2

(c2,c′2)
=⇒ Then, the set

ioutcc(P) = {(α, α′) |P (α,α′)
=⇒}

denotes the input-output behavior of P . This sequence can be interpreted as an
interaction between the system P and an environment. At the time instant i, the
environment provides an input ci and Pi produces the output c′i.

Let us next define the notion of inclusion of a utcc trace into a tccp trace. We
write t0≤k≤jd with k, j ∈ N for the conjunction of all the stores 0 to j of the
given structured store d.

Definición 5.2.2 (Entailment Relation) Given the sequence of constraints α′ =
c′1.c

′
2 . . ., and the structured store d = d0 · d1 · d3 · Let i, j, k ∈ N. We say that

d entails the sequence of constraints α′, denoted as d `τ α′, iff

∀i∃j . (t0≤k≤j dk) ` α′(i) s.t. j + 1 ≥ i, i > 0, j, k ≥ 0

and the indexes j are pairwise distinct.

The following example illustrates the definition.

Example 5.2.3 Given the sequence α′ = (v = 1∧w = 2).z > 8.(x = 7∧ y = 5),
and the structured store d = true · (v = 1) · (w = 2) · z > 10 · x = 7 · r = 3 · (y =
5 ∧ q < 3). We can see that:

t0≤k≤2 dk ` α′(1) since it holds that (true∧v = 1∧w = 2) ` (v = 1∧w = 2)

t0≤k≤3 dk ` α′(2) since it holds that (true∧v = 1∧w = 2∧ z > 10) ` z > 8

t0≤k≤6 dk ` α′(3) since it holds that (true ∧ v = 1 ∧ w = 2 ∧ z > 10 ∧ x =
7 ∧ r = 3 ∧ y = 5 ∧ q < 3) ` (x = 7 ∧ y = 5)

Therefore, d `τ α′.

Now we are ready to define the notion of trace inclusion, i.e., when a utcc
trace is mimicked by a tccp trace.

Definición 5.2.4 Given (α,α′) sequences of constraints computed by a utcc pro-
gram, and d the structured store computed by a tccp program. Then, (α,α′) is
included in d, written (α, α′) ∼τ d, iff d `τ α′.

5.2. FORMALIZATION OF THE TRANSFORMATION 41

To guarantee the correctness of our method, we shall prove the correctness of
the synchronization and transformation processes.

Lemma 5.2.5 (Correctness of Synchronization) Consider a utcc program
U of the form U := UD.UR where UD is the declaration set and UR is the process
that initiates the execution of U . Let sti the store computed by the ith iteration
of the function instant on the program U . Let U1

R = follows(UR, st
0), where st0

is the initial store and U i
R = follows(U i−1

R , sti−1). Let ioutcc(U) = (α, α′). Then,
st1 ` α′(1), st2 ` α′(2), . . ., stn ` α′(n) s.t.:

st1 = instant(U1
R, true) and,

stn = instant(Un
R, true) s.t. n > 1

The following theorem states that a given utcc trace is included in the trace
generated by the equivalent tccp program, i.e., by the tccp program obtained by
the transformation.

Theorem 5.2.6 (Correctness of Transformation) Consider an utcc program
U . Let T the tccp program resulting of transforming U , τP (U) = T . Given
ioutcc(U) = (α, α′), and iotccp(T) = d. Then, (α,α′) ∼τ d.

Lemma 5.2.5 (Correctness of Synchronization). Consider a utcc pro-
gram U of the form U := UD.UR where UD is the declaration set and UR is the
process that initiates the execution of U . Let sti the store computed by the ith
iteration of the function instant on the program U . Let U1

R = follows(UR, st
0),

where st0 is the initial store and U i
R = follows(U i−1

R , sti−1). Let ioutcc(U) = (α, α′).
Then, st1 ` α′(1), st2 ` α′(2), . . ., stn ` α′(n) s.t.:

st1 = instant(U1
R, true) and,

stn = instant(Un
R, true) s.t. n > 1

Proof. Each store sti computed by the instant function at each time instant
i must entail the store α′(i) of the sequence (α, α′) generated by U . Note that the
computed store is used as the guard in the choice agent of the clock declaration
utcc clock, thus it determines when Syn

.
= ok, in other words, when to proceed

to the next time interval. We have to prove that the resting points (i.e., the
output of the observables), are well determined by these computed stores. To
this end, we proceed by structural induction on the form of the utcc processes
and by induction on the length of the traces. We proceed case by case with
the assumption that the agent considered is the last agent to be executed in
the interleaving computation of the parallel processes in a time interval. This
assumption is safe thanks to the deterministic nature of the languages: we can

42 CHAPTER 5. EMBEDDING UTCC INTO TCCP

choose any order for the execution of parallel agents to reach the same resting
point. st will denote the store computed by instant up to such execution point
in the current time instant whereas α(i)′ will denote the store computed by the
utcc process up to such execution point in the i-th interval time.

Case 1 : UR = skip. By definition, st1 = instant(skip, st) = st. Moreover,
ioutcc(skip) = (α, α). By induction hypothesis, st ` α(1). Then, st1 `
α(1) ∪ true.

Case 2 : UR = tell(c). By definition, st1 = instant(tell(c), st) = st ∪ c. Let
ioutcc(tell(c)) = (α, α′) where α(1) = α(1)′ ∧ c. By induction hypothesis;
st ` α(1)′. Then, st1 ` α(1) since c ` c.

Case 3 : UR = (local ~x; c)A. By definition, st1 = instant((local ~x; c)A, st) =
instant(A[~x′\~x], c ∧ ∃~x st) = c′ ∧ ∃ ~xst. Let ioutcc((local ~x; c)A) = (α, α′)
where α(1)′ = ∃~xα(1) ∧ d1 s.t. α(1) ` c and d1 is the store computed
by A renamed. By induction hypothesis; st ` α(1) and c′ ` d1. Then,
∃~x st ` ∃~xα(1) and st1 ` α(1)′.

Case 4 : UR = A ‖ B. By definition, st1 = instant(A ‖ B, st) = instant(A, st)∧
instant(B, st) = stA∧stB. Let ioutcc(A ‖ B) = ioutcc(A)∩ioutcc(B) where ∩,
as in [44], represents the intersection between two sequences of constraints,
the quiescent points present in both sequences. Let ioutcc(A) = (α, α′) and
ioutcc(B) = (β, β′) where α = c1.c2 . . ., α

′ = c′1.c
′
2 . . ., β = s1.s2 . . . and

β′ = s′1.s
′
2 Then, ioutcc(A ‖ B) = (c1 ∩ s1.c2 ∩ s2 . . . , c

′
1 ∩ s′1.c′2 ∩ s′2

By induction hypothesis we have that stA ` c′1 and stB ` s′1. Then, st1 `
α(1)′ ∪ β(1)′ = c′1 ∧ s′1.

Case 5 : UR = nextA. By definition, st1 = instant(nextA, st) = st. Let
(β, β′) = (s1.s2 . . .,s

′
1.s
′
2 . . .) the sequence computed in the time instant pre-

viously to the execution of the next process and ioutcc(A) = (α, α′). Then
ioutcc(nextA) = (β ∪ α, β′ ∪ α′). By induction hypothesis we have that
st ` s′1. Then, st1 ` β(1)′ = s′1.

Case 6 : UR = unless c nextA. By definition, st1 = instant(unless c nextA, st) =
st. Let (β,β′) = (s1.s2.sn,s′1.s

′
2.s

′
n) the sequence computed in the

time instant previously to the execution of the next process, where the final
store of this sequence (β(n)′ such that n is the current time instant) does
not entail c, and ioutcc(A) = (α, α′), then ioutcc(nextA) = (β ∪ α, β′ ∪ α′).
By induction hypothesis we have that st ` s′1. Then, st1 ` β(1)′ = s′1.

Case 7 : UR = !A. By definition, st1 = instant(!A, st) = instant(A, st) = stA.
The replication process means A ‖ nextA ‖ next2A ‖ Let ioutcc(A) =

5.2. FORMALIZATION OF THE TRANSFORMATION 43

(α, α′). Then, ioutcc(nextA) = (β∪α, β′∪α′), ioutcc(next2A) = (γ∪α, γ′∪α′),
and so on, where α = c1.c2 . . ., α

′ = c′1.c
′
2 . . ., β = s1.s2 . . ., β

′ = s′1.s
′
2 . . .,

γ = g1.g2 . . . and γ′ = g′1.g
′
2 Then, ioutcc(!A) = (α, α′)∩ (β∪α, β′∪α′)∩

(γ ∪α, γ′ ∪α′)∩ By induction hypothesis we have that stA ` c′1. Then,
st1 ` α(1)′ = c′1.

Case 8 : UR = (abs ~x; c)A. The utcc process abs means A [~y\~x] ‖ (abs ~x ; c∧~x 6=
~y)A, when exist a sequence of terms ~y s.t. c[~y\~x] is entailed by the given
store. By definition, st1 = instant ((abs ~x; c)A, st) =

∧
z∈N instant (A [~yz\~x],

st) = st ∧ st1A ∧ st2A ∧ . . . ∧ stzA where z is the number of times that the
given store st entails the constraint c[~yn\~x] (with 1 ≤ n ≤ z), and stnA
is the store computed by A each time. Let si (s at time instant i) the
given store. Let ioutcc(A[~yz\~x]) = (αz, α

′
z). Then, we can obtain that

ioutcc((abs ~x; c)A) = (si∧α1, si∧α′1)∩(si∧α2, si∧α′2)∩ . . .∩(si∧αz, si∧α′z).
By induction hypothesis we have that st ` si, and stnA ` αn(1)′. Then,
st1 ` si ∧ α1(1)′ ∧ α2(1)′ ∧ . . . ∧ αn(1)′.

Case 9 : UR = P = A. By definition, st1 = instant(A, st) = stA. The process
P = A implies that ioutcc(P) = ioutcc(A) = (α, α′) with the sequences
α = c1.c2 . . . and α′ = c′1.c

′
2 By induction hypothesis we have that

stA ` c′1. Then, st1 ` α(1)′ = c′1.

�

Theorem 5.2.6 (Correctness of Transformation). Consider an utcc pro-
gram U . Let T the tccp program resulting of transforming U , τP (U) = T . Given
ioutcc(U) = (α, α′), and iotccp(T) = d. Then, (α,α′) ∼τ d.

Proof. We prove that the trace computed by the utcc program U , of the form
U := UD.UR where UD is the declaration set and UR is the process that initiates
the execution of U , is included in the trace computed by the tccp program T ,
of the form T := TD.TA where TD is the declaration set and TA is the agent
that initiates the execution of T , which is generated by means of the function τP ,
namely T = τP (U). To this end, we proceed by structural induction on the form
of the utcc processes and by induction on the length of the traces. In particular,
given UR and TA, such that TA = τA(UR), we prove the inclusion of the trace
computed by the utcc processes UR in the trace computed by its corresponding
tccp agent TA. Let α = c1.c2 . . ., α

′ = c′1.c
′
2 . . ., β = s1.s2 . . . and β′ = s′1.s

′
2 . . .

sequences of stores. Let d = d0 · d1 · d2 · . . . a structured store. We assume that
both languages use the same constraint system.

Case 1 : UR = skip, then TA = skip. By definition these two operators do
not add any information, producing the empty store (true). Let ci (c at
time instant i) and d the given stores in the execution of both process,

44 CHAPTER 5. EMBEDDING UTCC INTO TCCP

respectively. Then, ioutcc(skip) = (ci, ci) and iotccp(skip) = d. By induction
hypothesis; d ` ci. Then, ioutcc(skip) ∼τ iotccp(skip).

Case 2 : UR = tell(c), then TA = tell(c). The utcc process tell adds the constraint
c in a given store si (s at time instant i). Then, ioutcc(tell(c)) = (si∧c, si∧c).
The tell tccp agent adds the constraint c in a given store dj (d at time instant
j). Then, iotccp(tell(c)) = d such that d = dj · c. Let dt = (t0≤k≤j dk) = dj
and d′t = (t0≤k≤j+1 dk) = dj ∧ c. By induction hypothesis; dj ` si then
d′t ` si ∧ c since c ` c. Then, ioutcc(tell(c)) ∼τ iotccp(tell(c)).

Case 3 : UR = (local ~x; c)A, then TA = ∃c ~x (A′) where A′ = τA(A). The
hiding operator of tccp, ∃, has the same function that the local of utcc.
Intuitively, they set the variables in ~x to be local in A′ and A, respectively,
moreover, the local information produced by A′ and A must be hidden
from the main operator. Usually, these two operators (∃ and local) evolve
renaming ~x by fresh variables, i.e., ~x′. By induction hypothesis we have
that ioutcc(A) ∼τ iotccp(A′). Then, ioutcc(A[~x′\~x]) ∼τ iotccp(A′[~x′\~x]) under
the same constraint system.

Case 4 : UR = A ‖ B, then TA = (A′ ‖ B′) where A′ = τA(A) and B′ = τA(B).
As in the previous case, these two parallel operators have the same goal.
Let ioutcc(A ‖ B) = ioutcc(A) ∩ ioutcc(B) where ∩, as in [44], represents
the intersection between two sequences of constraints, the quiescent points
present in both sequences. Let ioutcc(A) = (α, α′) and ioutcc(B) = (β, β′).
Then ioutcc(A ‖ B) = (c1 ∩ s1.c2 ∩ s2 . . . , c

′
1 ∩ s′1.c′2 ∩ s′2 Let iotccp(A

′) =
dA

′
= d · dA′

1 · dA′
2 · . . . and iotccp(B

′) = dB
′
= d · dB′

1 · dB′
2 · . . . where d is the

input structured store, dA
′
1 · dA′

2 · . . . the structured store computed by A′

and dB
′
1 · dB′

2 · . . . the structured store computed by B′. Then, iotccp(A
′ ‖

B′) = dA
′ t dB′

= d∧ d · dA′
1 ∧ dB′

1 · dA′
2 ∧ dB′

2 · By induction hypothesis
we have that ioutcc(A) ∼τ iotccp(A′) and ioutcc(B) ∼τ iotccp(B′) then, we can
deduce that ioutcc(A ‖ B) ∼τ iotccp(A′ ‖ B′).

Case 5 : UR = nextA, then TA = ask(Syn
.
= ok) → A′ where A′ = τA(A).

Let (β, β′) the sequence computed before the execution of the next process
and ioutcc(A) = (α, α′), then ioutcc(nextA) = (β ∪ α, β′ ∪ α′). Let d the
structured store computed until the time instant in which the constraint
Syn

.
= ok hold and iotccp(A

′) = d′ where d′ is the structured store computed
by A′. By Lemma 1 we know that d corresponds to the resting point. Then
iotccp(ask(Syn

.
= ok) → A′) = d · d′. By induction hypothesis we have that

(β, β′) ∼τ d and (α, α′) ∼τ d′. Then (β ∪ α, β′ ∪ α′) ∼τ d · d′. Then,
ioutcc(nextA) ∼τ iotccp(ask(Syn

.
= ok)→ A′).

5.2. FORMALIZATION OF THE TRANSFORMATION 45

Case 6 : UR = unless c nextA, then TA = ask(Syn
.
= ok)→ now c then skip elseA′

where A′ = τA(A). This case is very similar to the previous case. Let
(β, β′) be the sequence computed before the execution of the next process,
which means that the final store of this sequence (β′(n) such that n is
the current time instant) does not entail c. Moreover, ioutcc(A) = (α, α′),
then ioutcc(unless c nextA) = (β ∪ α, β′ ∪ α′). Let d be the structured store
computed until the time instant in which the constraint Syn

.
= ok does hold.

By Lemma 1 we know that d corresponds to the current resting point. The
constraint c of the conditional agent does not hold in d and iotccp(A

′) = d′.
Then, iotccp(ask(Syn

.
= ok) → now c then skip elseA′) = d · d′. By induction

hypothesis we have that (β, β′) ∼τ d and (α, α′) ∼τ d′. Moreover, (β ∪
α, β′ ∪ α′) ∼τ d · d′. In case that the constraint c is entailed by β′(n) and d
we can see that both process, unless and now, evolve into skip. Therefore,
ioutcc(unless c nextA) ∼τ iotccp(ask(Syn

.
= ok)→ now c then skip elseA′).

Case 7 : UR = !A, then TA = (A′ ‖ auxi) where A′ = τA(A) and auxi :- ask(Syn
.
=

ok)→ (A′ ‖ auxi). The replication process means A ‖ nextA ‖ next2A ‖
Let ioutcc(A) = (α, α′). Then we can obtain that ioutcc(nextA) = (β ∪
α, β′ ∪ α′), ioutcc(next2A) = (γ ∪ α, γ′ ∪ α′), and so on, where γ = g1.g2 . . .
and γ′ = g′1.g

′
2 We have that ioutcc(!A) = (α, α′)∩ (β ∪α, β′ ∪α′)∩ (γ ∪

α∪γ′∪α′)∩. . .. Let iotccp(A
′) = d and iotccp(auxi) = iotccp(ask(Syn

.
= ok)→

(A′ ‖ auxi)). We get that iotccp(A
′ ‖ auxi) = d t d′.d t d′′.d t . . ., where

dn (n ≥ 1) is the structured store computed until the time instant in which
the constraint Syn

.
= ok in the iteration n, does hold. By Lemma 1, dn

corresponds to the resting point of the current time interval. By induction
hypothesis we have that ioutcc(A) ∼τ iotccp(A′), (β, β′) ∼τ d′, (γ, γ′) ∼τ d′′,
etc. Therefore, we can deduce that ((α, α′) ∩ (β ∪ α, β′ ∪ α′) ∩ (γ ∪ α, γ′ ∪
α′) ∩ . . .) ∼τ d t d′.d t d′′.d t . . . and ioutcc(!A) ∼τ iotccp(A′ ‖ auxi).

Case 8 : UR = (abs ~x; c)A, then TA = ∃ ~x, S (absm(~x, S) ‖ tell(substm(S)))
with:

absi(~x, S):-∃~t, S ′ (now (c[~t\~x] ∧ ¬(find(S, {~t\~x})))
then (A′[~t\~x] ‖

tell(S = [{~t\~x} | S ′]) ‖
absi(~x, S))

else skip). and A′ = τA(A)

The utcc process abs means A[~t\~x] ‖ (abs ~x; c ∧ ~x 6= ~t)A, when exist a
sequence of terms ~t s.t. c[~t\~x] is entailed by the given store. Let si (s at
time instant i) the given store. Let ioutcc(A[~tj\~x]) = (αj, α

′
j) where j is the

number of times that A is executed with different ~t (si ` c[~tj\~x]). Then, we

46 CHAPTER 5. EMBEDDING UTCC INTO TCCP

can obtain that ioutcc((abs ~x; c)A) = (si ∧ α1, si ∧ α′1) ∩ (si ∧ α2, si ∧ α′2) ∩
. . . ∩ (si ∧ αj, si ∧ α′j).
iotccp(∃ ~x, S (absm(~x, S) ‖ tell(substm(S)))) = iotccp (absm (~x, S) [{~x′ \ ~x} ,
{S ′′\S}]) t iotccp(tell(substm(S))[{~x′\~x}, {S ′′\S}]) = iotccp(absm(~x′, S ′′))t
iotccp(tell(substm(S ′′))). abs(~x′, S ′′) executes ∃~t, S ′(now(c[~t\~x′]∧¬(find(S ′′,
{~t\~x′}))) then (A′[~t\~x′] ‖ tell(S ′′ = [{~t\~x′} | S ′]) ‖ abs(~x′, S ′′)), many times
as sequences of ~t can be found s.t. the constraint c[~t\~x′]∧¬(find(S, {~t\~x′}))
is entailed by the given store. In case that the constraint does not hold,
the process ends (skip). Then, iotccp(abs(~x′, S ′′)) = iotccp(now(c[~t′\~x′] ∧
¬(find(S ′′, {~t′\~x′}))) then (A′[~t′\~x′] ‖ tell(S ′′ = [{~t′\~x′} | S ′′′]) ‖ abs(~x′, S ′′))
else skip). Then, taking into account those cases when the constraint of
the conditional agent does hold, iotccp(abs(~x′, S ′′)) = (iotccp(A

′[~t′\~x′]) t
iotccp(tell(S ′′ = [{~t′\~x′} | S ′′′])) t iotccp(abs(~x′, S ′′))) = d s.t. d = ((dk ·
st1 · d1) ∧ (dk · st1 · S ′′ = [{~t′\~x′}|S ′′′]) ∧ (((dk · st2 · d2) ∧ (dk · st2 · S ′′′ =
[{~t′′\~x′}|S ′′′′]))∧ . . .∧ ((dk · stn · dn)∧ (dk · stn ·S ′n = [{~tn\~x′}|S ′′n])∧ true)))
where dk is the given store (d at time instant k), st is the structured
store computed so far, dn is the structured store computed by A′[~tn\~x′]
(iotccp(A

′[~tn\~x′]) = dn), and the superindex n (≥ 1) is the number of times
that A′ is executed with different ~t. Then, d = dk ·st1 ·d1∧S ′′ = [{~t′\~x′}|S ′′′]·
st2 · d2 ∧ S ′′′ = [{~t′′\~x′}|S ′′′′] · . . . · stn · dn ∧ S ′n = [{~tn\~x′}|S ′′n]. Moreover,
iotccp(tell(substm(S ′′))) = c s.t. c = ct · substm(S ′′) = dk since the tell and
the procedure call agents consume one time unit. By induction hypothesis
we have that ioutcc(A[~tj\~x]) ∼τ iotccp(A′[~tn\~x′]) = (αj, α

′
j) ∼τ dn and si ∼τ

dk. Then, ioutcc((abs ~x; c)A) ∼τ iotccp(∃ ~x, S (absi(~x, S) ‖ tell(substi(S)))).
Note that when the constraint c does not hold both processes evolve to skip.

Case 9 : UR = P = A, then TA = p where p : −A′, such that A′ = τA(A).
The process P = A implies that ioutcc(P) = ioutcc(A) = (α, α′). The
procedure call agent p, following its operational semantics, executes the
agent A′ with a given store dj (d at time instant j). Then iotccp(p) = d,
such that d = dj · dA

′
where dA

′
is the structured store computed by A′. By

induction hypothesis we have that ioutcc(A) ∼τ iotccp(A′). Then, (α, α′) ∼τ
dA

′
therefore (α, α′) ∼τ d. Then, ioutcc(P = A) ∼τ iotccp(p).

�

5.3. Concluding remarks

In this chapter, we have presented how the tccp language embeds the utcc
language. We have defined a transformation that translates a given utcc program
into a tccp program simulating the behavior of the input program.

5.3. CONCLUDING REMARKS 47

We have proven that the proposed transformation is correct so that tools de-
fined for tccp can be reused for utcc. Mainly due to the fact that it is necessary to
define the utcc abstraction operator in terms of existing tccp operators, the pro-
gram resulting from the transformation is bigger than the original utcc program.
Nevertheless, the size increase is not too hard.

We have proven that the proposed transformation is correct.

48 CHAPTER 5. EMBEDDING UTCC INTO TCCP

6
A tccp interpreter

The tccpInterpreter system is the result of the implementation in Maude of the
tccp formalism, i.e., the language operational semantics plus a specific constraint
solver. The tool takes as input the specification of a tccp program and simulates
its behavior following the semantics of the language. tccpInterpreter consists of
approximately 1320 lines of code divided in six Maude modules. Each module
models one or more of the entities of tccp: agents, constraints, programs, the
store, the underlying constraint system, the operational semantics, etc. Maude
allows us to implement a constraint solver for the language or to use an existing
one to handle constraints.1 The interested reader can consult [12, 13] for a more
detailed documentation about Maude.

6.1. Syntactic objects

The representation of the syntax of tccp in Maude is quite intuitive for all tccp
constructs. Agents are defined to be terms of sort TccpAgent. For instance, the
tell agent is encoded by using a Maude constructor symbol with identifier tell

followed by the given constraint (a term of sort TccpConstraint):

op tell : TccpConstraint -> TccpAgent .

The skip agent is encoded as:

skip : -> TccpAgent .

The conditional agent is encoded by defining the identifier now followed by a
boolean constraint (term of sort TccpBoolean), the then block which consists of
an agent, and the else block with another agent.

op now then else : TccpBoolean TccpAgent TccpAgent -> TccpAgent .

1It is possible to interact with Maude from other platforms, for example from Java.

50 CHAPTER 6. A TCCP INTERPRETER

The choice agent is encoded by using two Maude constructor symbols. The
first one models a single branch of a choice: the identifier ask is followed by
a Boolean constraint, the arrow -> and an agent. The second one models the
composition of two or more branches:

op ask -> : TccpBoolean TccpAgent -> TccpChoice .

op + : TccpChoice TccpChoice -> TccpChoice [assoc comm] .

Note that the operator + is labeled with the attributes assoc and comm since it
is associative and commutative.

The parallel agent is encoded by using the constructor symbol || composed
by two agents.

op || : TccpAgent TccpAgent -> TccpAgent [assoc] .

The hiding agent is encoded by using the constructor symbol exists followed
by a list of variables (term of sort TccpVariableList), and the corresponding
agent.

op exists : TccpVariableList TccpAgent -> TccpAgent .

The procedure call agent is identified by using the constructor symbol { },
which contains the procedure’s name (term of sort TccpConstant) and the pa-
rameters of the call (term of sort TccpExpressionList).

op { } : TccpConstant TccpExpressionList -> TccpAgent .

The system models all the agents appearing in Figure 2.6, including those
introduced in [30].

A tccp program is modeled by using the operator:

op { . } : TccpDeclarationSet TccpAgent -> TccpProgram .

where the sort TccpDeclarationSet represents the set of procedure declarations
of the program and the sort TccpAgent represents the agent that initiates the
execution.

A tccp declaration is modeled by using the operator:

op { =def } : TccpConstant TccpVariableList TccpAgent ->

TccpDeclaration .

where the sort TccpConstant represents the declaration’s name, the sort TccpVaria
bleList represents the declaration’s parameters and the sort TccpAgent repre-
sents the agent describing the declaration’s behavior.

6.2. THE OPERATIONAL SEMANTICS 51

6.2. The Operational Semantics

The operational semantics of tccp are encoded in Maude as transitions over
configurations by means of Maude rules. For readability, we label each rule with
an identifier.

Let us first introduce how we represent the store and the structured store. We
denote the store (a term of sort TccpStore) as a set of constraints (terms of sort
TccpConstraint) separated by the symbol ,, (for example, (’X > 5,,’X < 10)).
The constructor symbol empty represents the empty store.

Then, a structured store is represented by a store together with a natural
number (between braces). The natural number represents the current time instant
(for example, ((’X > 5,,’X < 10) {2})) is the store at time instant 2). Formally,

op { } : TccpStore Nat -> TccpStructuredStore .

We use the arrow => to separate each store in the sequence representing a
structured store. We use the sort TccpStrStoreList) to represent such sequence.

A configuration (state) of the system is encoded by using a term of the form <

P1,P2,P3,P4 > {P5}, where P1 represents the given tccp program, P2 repre-
sents the structured store, P3 contains the list of variables present in the store, P4
is a boolean constraint used to control the execution of certain agents, and P5 is
a given threshold (a natural number that states the amount of time units that we
can establish for the execution of the given program). In case that the threshold
is non-instantiated, the system may run infinite computations. Formally,

op < , , , > : TccpProgram TccpStrStoreList TccpVariableList Bool

Nat -> TccpConfig .

In the following, we show how some of the semantics’ rules are specified in
Maude. Let us start by describing the case for the conditional agent, modeled by
the Maude conditional rules now-true and now-false. Maude conditional rules
are of the form crl T => T ′ if C and state that one term T rewrites (=>) to
a second term T ′ whenever the condition C is satisfied. Then, the now-true rule
shown below is executed just when its condition holds. In other words:

1. the given constraint Bl must be true,

2. the store TpSt represents all the information stored in SS up to the current
time instant,

3. TpSt satisfies the constraint CtBl of the conditional tccp agent. This is
checked by means of the function consultTccpStore (TpSt , CtBl), and

4. Ag1’ is the result of executing Ag1 with the current store.

52 CHAPTER 6. A TCCP INTERPRETER

crl [now-true]:<{DcSt.now (CtBl) then Ag1 else Ag2},SS,VrLt,Bl>{Nt}
=> <{DcSt.Ag1’},SS1,VrLt1,Bl1>{Nt}

if Bl == true ∧
TpSt := returnGlobalStoreFromStructuredStoreList (SS) ∧
consultTccpStore (TpSt , CtBl) == ctrue ∧
<{DcSt.now (CtBl) then Ag1 else Ag2},SS,VrLt,Bl>{Nt} =>
<{DcSt.Ag1’},SS1,VrLt1,Bl1>{Nt} .

consultTccpStore (TpSt , CtBl) gets as input the store TpSt and the boolean
constraint CtBl and returns ctrue when the store entails the given constraint
or cfalse otherwise. When the condition holds, we reach the configuration
<{DcSt.Ag1’},SS1,VrLt1,Bl1>{Nt + 1} resulting of executing the agent in
the then branch of the conditional agent.

The conditional rule describing the case when the constraint of the conditional
agent does not hold is shown below.

crl [now-false]:<{DcSt.now (CtBl) then Ag1 else Ag2},SS,VrLt,Bl>{Nt}
=> <{DcSt.Ag2’},SS1,VrLt1,Bl1>{Nt}

if Bl == true ∧
TpSt := returnGlobalStoreFromStructuredStoreList (SS) ∧
consultTccpStore (TpSt , CtBl) == cfalse ∧
<{DcSt.now (CtBl) then Ag1 else Ag2},SS,VrLt,Bl>{Nt} =>
<{DcSt.Ag2’},SS1,VrLt1,Bl1>{Nt} .

In this case, consultTccpStore (TpSt , CtBl) returns cfalse then the agent
Ag2 is executed.

The following code excerpt describes the rules modeling the semantics of the
choice agent. The rule ask-true specifies the case when a choice agent with a
single branch can be executed. In this case, the agent ask(CtBl) -> Ag evolves
to a configuration containing the original declarations set DcSt, the agent to
be executed Ag, the structured store SS1 (SS => empty{t+1}, where t is the
current time instant) resulting from updating the given structured store SS with
the empty store (empty), the given list of variables and false. The conditional
rule states that the agent is executed only when the given constraint Bl is true

and the store TpSt satisfies the constraint CtBl of the agent, checked by means
of consultTccpStore (TpSt , CtBl) == ctrue.

crl [ask-true]:<{DcSt.ask(CtBl) -> Ag},SS,VrLt,Bl>{Nt} =>
<{DcSt.Ag},SS1,VrLt,false>{Nt}

if Bl == true ∧
TpSt := returnGlobalStoreFromStructuredStoreList (SS) ∧
consultTccpStore (TpSt , CtBl) == ctrue .

6.2. THE OPERATIONAL SEMANTICS 53

The conditional rule choice-true models the case when the choice agent has
more than one branch and one of them can be executed. Since the operator + is
associative and commutative, we have to describe just the first branch (ask(CtBl)
-> Ag) of the given agent. The choice agent AgCh models the remaining branches:

crl [choice-true]:<{DcSt.(ask(CtBl) -> Ag + AgCh)},SS,VrLt,Bl>{Nt}
=> <{DcSt.Ag},SS1,VrLt,false>{Nt}

if Bl == true ∧
TpSt := returnGlobalStoreFromStructuredStoreList (SS) ∧
consultTccpStore (TpSt , CtBl) == ctrue .

Finally, the choice-false rule models the case when the choice agent sus-
pends, meaning that none of the constraints appearing in the choice agent AgCh

is satisfied. In this case, the agent AgCh is executed in the following time instant:

crl [choice-false]:<{DcSt.AgCh},SS,VrLt,Bl>{Nt} =>
<{DcSt.AgCh},SS1,VrLt,false>{Nt}

if Bl == true ∧
TpSt := returnGlobalStoreFromStructuredStoreList (SS) ∧
consultTccpStore (TpSt , AgCh) == cfalse .

The parallel agent is specified as the following conditional rule, where it is
reached the configuration resulting of executing, at the same time, the agents
Ag1 and Ag2. The execution of Ag1 produces Ag1’ and the structured store SS1,
whereas the execution of Ag2 produces Ag2’ and the structured store SS2. Then,
the resulting configuration contains the parallel composition of both Ag1’ and
Ag2’, and the structured store resulting of joining the structured stores: (SS1 ∧
SS2):

crl [parallel]:<{DcSt.(Ag1 || Ag2)},SS,VrLt,Bl>{Nt} =>
<{DcSt.(Ag1’ || Ag2’)},(SS1 ∧ SS2),VrLt2,true>{Nt}

if Bl == true ∧
<{DcSt.Ag1},SS,VrLt,Bl>{Nt} =>
<{DcSt.Ag1’},SS1,VrLt1,Bl1>{Nt} ∧
<{DcSt.Ag2},SS,VrLt1,Bl>{Nt} =>
<{DcSt.Ag2’},SS2,VrLt2,Bl2>{Nt} .

The hiding agent is specified as the following conditional rule. It proceeds by
renaming its associated agent Ag. By using the auxiliary functions getFreshVar
ListFromVarList and replaceVarListInAgent, we recover in VrLt2 a list of
fresh variables and in Ag’ the renamed agent Ag, respectively. Then, the hiding
reaches the configuration resulting of executing the renamed agent Ag’. The
execution of Ag’ produces Ag’’ and the structured store SS1:

54 CHAPTER 6. A TCCP INTERPRETER

crl [hiding]:<{DcSt.exists VrLt Ag},SS,VrLt1,Bl>{Nt} =>
<{DcSt.Ag’’},SS1,VrLt3,Bl1>{Nt}

if Bl == true ∧
VrLt2 := getFreshVarListFromVarList (VrLt , VrLt1) ∧
Ag’ := replaceVarListInAgent (VrLt , VrLt2 , Ag) ∧
<{DcSt.Ag’},SS,(VrLt1,VrLt2),Bl>{Nt} =>
<{DcSt.Ag’’},SS1,VrLt3,Bl1>{Nt} .

To simulate the execution of a program, we define the constructor symbol
runs:

op runs : TccpProgram Nat -> TccpConfig .

and the equation:

eq [program] : runs (DcSt.TpAg,Nt) =

<{DcSt.TpAg},(empty {0}),nil,true>{Nt} .

The function runs takes as argument the program to be executed and a natural
number that states the threshold for the execution of the program. The equation
label with program takes, in the lhs, the function runs with its parameters and
translated it, in the rhs, in an initial configuration containing the given program,
the empty store, the empty list and true.

6.3. The underlying constraint solver

Other important point in the tccp framework is the interaction with the un-
derlying constraint solver. Typically, the constraint solver must be able of solving
arithmetic and boolean constraints, and to perform some operations with streams.
These goals can be achieved in an elegant way implementing the constraint system
in Maude. Once defined the types of the expressions and the syntax of the oper-
ators needed to handle constraints, we specify the rules describing the evolution
of each possible combination, thus the satisfaction relation.

We model the constraints representing terms and streams by using the sorts
TccpTerm and TccpStream, respectively. We use the Maude operators:

op [] : TccpConstant TccpExpressionList -> TccpTerm .

to represent a term which is specified by its name (a constant) and its arguments
(an expression list), and:

op [|] : TccpExpressionList TccpVariable -> TccpStream .

6.3. THE UNDERLYING CONSTRAINT SOLVER 55

to represent the content of a stream which is specified by a list of values and the
current tail (a variable).

The sort TccpArithmetic is used to represent the data types for arithmetic
operations:

subsorts Float TccpVariable < TccpArithmetic .

Currently, TccpArithmetic includes floating-point numbers and variables.
The following operators represent the sum, rest, multiplication and division

of two arithmetic terms (TccpArithmetic) returning another arithmetic term,
respectively:

ops +’ -’ : TccpArithmetic TccpArithmetic ->

TccpArithmetic [prec 33 gather (E e)] .

ops *’ /’ : TccpArithmetic TccpArithmetic ->

TccpArithmetic [prec 31 gather (E e)] .

The attribute prec sets the precedence of the operators given as a natural number:
a lower value indicates a tighter binding and the attribute gather (E e) restricts
the precedence of TccpArithmetic terms that are allowed as arguments. Both
mechanisms avoid possible ambiguities arising when parsing TccpArithmetic

terms.
The operation semantics for the constraint system is modeled by using Maude

equations in the module TCCP-STORE. For example, we define a Maude equation
to add two numbers, another equation to add a variable (of sort TccpVariable)
whose value must be recovered from the current store and a number, etc. We have
an operator evalTccpArithmetic that, given a TccpArithmetic expression and
the current store, returns the expected result. In case that the expression cannot
be evaluated, it returns the original expression. The following equation specifies
the simple case when, given the store TpSt, we add two floating numbers: Ft1

and Ft2.

eq evalTccpArithmetic (Ft1 +’ Ft2 , TpSt) = Ft1 + Ft2 .

Below we show the case for the sum of two variables TpVar1 and TpVar2 given
the store TpSt. By means of the operator evalArithmeticVariableInStore we
can recover from the store the value of TpVar1 and TpVar2. In case that both
values are floating numbers, evalArithmetic returns the sum of both:

ceq evalTccpArithmetic (TpVar1 +’ TpVar2 , TpSt) = Ft1 + Ft1

if Ft1 := evalArithmeticVariableInStore (TpVar1 , TpSt) ∧
Ft1 =/= noIsFloat ∧
Ft2 := evalArithmeticVariableInStore (TpVar2 , TpSt) ∧
Ft2 =/= noIsFloat .

56 CHAPTER 6. A TCCP INTERPRETER

When a computation cannot be taken, then the input expression is returned:

ceq evalTccpArithmetic (TpAr , TpSt) = TpAr [owise] .

The expression TccpBoolean is used to represent the data types needed to
handle boolean constraints:

subsorts TccpExpression TccpArithmetic < AuxConstraint .

subsorts Float TccpConstant TccpVariable < TccpExpression .

subsorts TccpTerm TccpStream < TccpExpression .

ops <’ >’ ==’ !=’ <=’ >=’ : AuxConstraint AuxConstraint ->

TccpBoolean [prec 37] .

op and’ : TccpBoolean TccpBoolean -> TccpBoolean [prec 55 assoc comm] .

op or’ : TccpBoolean TccpBoolean -> TccpBoolean [prec 59 assoc comm] .

op not’ () : TccpBoolean -> TccpBoolean [prec 53] .

We can consult whether two numbers (Float) are equal, whether one is smaller
than the other, one variable (TccpVariable) is greater or equal to another (their
values are recovered from the store), etc. Regarding streams, we can recover the
values stored in a stream, the current tail, and also the current value of a stream
(the last added value).

6.4. Running the interpreter

The interface of our tool is guided in a Maude console. To run the tool, we
have to use the Maude command load file-name:

Maude> load . . ./tccpInterpreter.maude

Once the interpreter is loaded, we can use the Maude commands to invoke
actions. For example, we can use the command red expression to parse or to
identify an expression (an entity of the language). The command checks the given
expression and returns the type or the sort associated to it. In other words, it
tries to reduce the given expression following the specified grammar.

The following example shows the output of Maude when reducing a tccp agent.

Maude> red tell (’X :=’ 1.) .

reduce in TCCP-INTERPRETER : tell(’X :=’ 1.0) .

rewrites: 5 in 0ms cpu (0ms real) (∼ rewrites/second)

result TccpAgent: tell(’X :=’ 1.0)

6.4. RUNNING THE INTERPRETER 57

TCCP-INTERPRETER is the main module of the tccpInterpreter.
The example shows that the given expression is an agent of the language. We

can also use the command rew expression to explore the possible behavior of a
tccp program. For example:

Maude> rew < DcSt , tell(’C :=’ 2.) , (strue {0}) > .

rewrite in TCCP-INTERPRETER : < DcSt,tell(’C :=’ 2.0),empty{0} > .

rewrites: 16 in 0ms cpu (0ms real) (∼ rewrites/second)

result TccpConfig: < DcSt,skip,(empty{0}) => (’C :=’ 2.0){1} >

The execution of the given tell agent creates a new structured store with the
information (’C := 2.0){1} that is added to the initial store empty{0}.

Finally, the search command allows us to explore the reachable state space in
different ways. We write:

search Term1 =>* Term2 .

to carry out the proof from the term Term1 consisting of none, one, or more steps
(=>*) to the pattern Term2 to be reached.

6.4.1. Illustrative example

Here we describe an example of use of the tccpInterpreter system. In Figure 6.1
we show the specification in tccp of a part of a microwave oven controller that
we have borrowed from [17]. To make the description clearer we show a labeled
version of the declaration. Labels appear within braces { }:

{D} microwave error(Door,Button,Error) :-

{le0}∃ D,B,E ({lp1}({lt2}tell(Error=[|E]) ‖
{lp3}({lt4}tell(Door=[|D]) ‖
{lp5}({lt6}tell(Button=[|B]) ‖
{lp7}({ln8}now(Door=[open|D] ∧ Button=[on|B]) then

{lp9}({le10}∃E1({lt11}tell(E=[yes|E1])) ‖
{le12}∃B1({lt13}tell(B=[off|B1])))

else{le14}∃E1({lt15}tell(E=[no|E1])) ‖
{lc16}microwave error(D,B,E))))).

Figure 6.1: The microwave error declaration in tccp.

The declaration D models the process of detecting whether the door of the
microwave is open at the same time that it is turned-on. This situation is con-
trolled by the conditional agent in ln8. In case the condition holds, the process

58 CHAPTER 6. A TCCP INTERPRETER

forces (with the tell agent in lt13) the microwave to be turned-off in the follow-
ing time instant. Moreover, an error signal must be emitted (agent lt11). If the
condition does not hold, then the system emits (via another tell agent lt15) a
signal of no error that will be available in the store at the following time instant.
These signals may be captured by other processes, thus it can be seen that the
store allows the synchronization of processes. Finally, the procedure call agent
microwave error(D,B,E) models the recursion of the system.

By using the following command in the Maude console, once loaded the tc-
cpInterpreter, the system simulates the behavior of the given declaration D2.

Maude> search< {D.’microwave error([’open|’],[’on|’],[’no|’])},
empty{0},nil,true>{2}=>*< {D.Ag},St,Vl,Bl>{2} .

The first term specifies the configuration, composed by the declaration D, the
procedure call agent ’microwave error ([’open|’],[’on|’],[’no|’]), the
empty store at time instant 0, the empty list and true. The proof consists in
reaching the second term that specifies the configuration containing D, an agent
Ag, the structure store St, the list of variables and the boolean constraint true.
By using the non-instantiated variables Ag, St, Vl and Bl we can simulate the
behavior of the given procedure call agent at each time unit. Note that we can
perform a different proof by using a specific agent or a specific structured store in
the second term. The recursive procedure call agent (lc16) causes the system not
to end, but this is the expected behavior in the tccp execution model. Therefore,
we have to deal with infinite sets of states. To control the computation steps, we
can use the Maude debugging feature [12] to capture each step of the computation.

In the following we show a part of the Maude output for the execution of the
command described previously. It shows the resulting store at time instant 2.
In the execution graph, at time instant 0 the store is empty. At time instant
1, the store contains the information resulting by the procedure call in the first
term, where the parameters of the call are instantiated. Finally, at time instant
2 the store contains the information added by the tell agents lt11 and lt13 (the
constraint of the conditional agent ln8 is satisfied), and the information added
by the second procedure call lc16:

(empty {0}) =>

(((’Button :=’ [’on | ’TailStr’]) (’Door :=’ [’open | ’TailStr])
(’Error :=’ [’no | ’TailStr’’])) {1}) =>

((’B :=’ [’off | ’B1]) (’Button’ :=’ ’B) (’E :=’ [’yes | ’E1])
(’Error’ :=’ ’E) (’TailStr :=’ ’D) (’TailStr’ :=’ ’B)

(’Door’ :=’ ’D) (’TailStr’’ :=’ ’E)) {2}
2For readability, we use D instead of the whole code of the declaration.

6.5. EXPERIMENTAL RESULTS 59

The system returns the final configuration reached by the given specification
when it ends. The most relevant information in the configuration is the resulting
structured store which can be used later to reason with the given specifications.

6.5. Experimental results

In this section, we illustrate how it is possible to analyze a protocol specified in
tccp by using the interpreter and some capabilities from the specification language
Maude. Given the specification of a tccp program we can simulate the behavior of
such program following the semantics of the language and, taking advantage of the
Maude model-checking feature, we can also carry out certain kind of reachability
analysis.

The underlying constraint system. To refine the verification process, we use
the auxiliary function getGlobalStoreFromStrStoreList which, given a struc-
tured store, returns a unique store with all the information stored so far. This
transformation facilitates the action of consulting the store. Moreover, we imple-
ment some auxiliary functions in the underlying constraint system. These func-
tions are getStreamOfTrmKnowInStore, getExpFromStream and consultContent.
The first one returns the stream that contains, in a given store, the private knowl-
edge of a given principal (whose identifier is given in the term know). The second
returns the value (TpEx) that is currently labeled as secret in a given stream (in
this case TpVr1, that models the private knowledge of ’b). Finally, the function
consultContent checks if the values of a given stream, recovered from the given
store, contain the given expression (TpEx).

6.5.1. Analyzing the Needham-Schroeder protocol

Let us show an excerpt of the execution of a trace that simulates the correct
behavior of the Needham-Schroeder protocol. Consider the tccp program model-
ing the specification of the Needham-Schroeder protocol presented in Chapter 4
and whose initial agent is (init(’a,’b) || (resp(’b) || environment(’i))).
For readability, we use the variable DS instead of the whole code specifying the
set of declarations of the considered program presented in Chapter 4. It can be
seen that, the initial agent initiates a communication of the participant ’a with
’b. To run the interpreter, we must invoke the following instruction.

search runs ({DS . (init(’a,’b) || (resp(’b) || environment(’i)))} , 22)
=>* < TpPg , StL , VrLt , Bl > {Nt} such that
TpSt := getGlobalStoreFromStrStoreList (StL) ∧
TpVr := getStreamOfTrmKnowInStore (TpSt , [’know (’a,’)]) ∧

60 CHAPTER 6. A TCCP INTERPRETER

TpVr1 := getStreamOfTrmKnowInStore (TpSt , [’know (’b,’)]) ∧
TpVr2 := getStreamOfTrmKnowInStore (TpSt , [’know (’i,’)]) ∧
TpEx := getExpFromStream (TpVr1 , [’secret (’)] , TpSt) ∧
consultContent (TpVr , TpEx , TpSt) == true’ ∧
consultContent (TpVr2 , TpEx , TpSt) == false’ .

The term in the left hand side of the symbol =>* is the initial state in the
execution of the tccp program. The right hand side of the symbol specifies the final
state of the execution. The symbol =>* searches for a proof consisting of none,
one, or more steps that reaches the final state. The final state which is composed
by some variables following the structure for configurations presented above. TpPg
represents the given program, StL represents the resulting structured store, VrLt
represents the corresponding list of variables, Bl is a boolean constraint and Nt

represents the given threshold. With the command such that, we filter the
expected result. In this case, we establish that the resulting structured store StL

must contain 1) the term secret/1 in the private knowledge of the responder
’b, which means that the protocol ended; 2) the value, labeled as secret by ’b,
in the private knowledge of the initiator ’a; and finally 3) the value, labeled as
secret by ’b must be known just by ’a.

As one can see below, the tccpInterpreter computes one solution at state 60.
We know that the protocol has been completed since the expected nonce has been
declared secret. Thus, ’a is able to complete the protocol with the responder ’b
at time instant 21. Since we are dealing with structured stores, we can observe
which information has been added at each time instant.

Solution 1 (state 60)
states: 61 rewrites: 324834 in 620ms cpu (627ms real) (523925 rewrites/second)
StL --> (empty{0}) =>
(((’A :=’ ’a),,(’B :=’ ’b),,(’B’ :=’ ’b),,(’I :=’ ’i)){1}) =>
(([’know(’A,’SAi)],,(’NAi :=’ ’nNAi)){2}) =>
(([’chn([’msg([’enc([’k(’B)],[’cons(’A,[’cons(’NAi)])])])],’Si1)],,

(’SAi :=’ [[’a(’B)],[’n(’NAi)] | ’SAi1])){3}) => (empty{4}) =>
(([’know(’I,’SI)],,(’Si1 :=’ ’S),,(’S :=’ ’ok),,
(’M :=’ [’msg([’enc([’k(’B)],[’cons(’A,[’cons(’NAi)])])])])){5}) =>
(([’rcv(’M,’S1)],,(’I’ :=’ ’I)){6}) => (empty{7}) =>
(([’know(’B’,’SBr)],,(’Ar :=’ ’A),,(’NAr :=’ ’NAi),,(’NBr :=’ ’nNBr),,
(’S1 :=’ ’Sr1),,(’Sr1 :=’ ’ok)){8}) =>
(([’chn([’msg([’enc([’k(’Ar)],[’cons(’NAr,[’cons(’NBr)])])])],’Sr2)],,

(’SBr :=’ [[’a(’Ar)],[’n(’NAr)],[’n(’NBr)] | ’SBr1])){9}) =>
(empty{10}) =>
(((’M’ :=’ [’msg([’enc([’k(’Ar)],[’cons(’NAr,[’cons(’NBr)])])])]),,

(’S’ :=’ ’ok),,(’SI :=’ ’SI’),,(’Sr2 :=’ ’S’)){11}) =>
(([’rcv(’M’,’S1’)],,(’I’’ :=’ ’I)){12}) => (empty{13}) =>
(((’NBi :=’ ’NBr),,(’S1’ :=’ ’Si2),,(’Si2 :=’ ’ok)){14}) =>

6.5. EXPERIMENTAL RESULTS 61

(([’chn([’msg([’enc([’k(’B)],[’cons(’NBi)])])],’Si3)],,
(’SAi1 :=’ [[’n(’NBi)] | ’SAi2])){15}) => (empty{16}) =>

(((’M’’ :=’ [’msg([’enc([’k(’B)],[’cons(’NBi)])])]),,(’S’’ :=’ ’ok),,
(’SI :=’ ’SI’’),,(’Si3 :=’ ’S’’)){17}) =>

(([’rcv(’M’’,’S1’’)],,(’I’’’ :=’ ’I)){18}) => (empty{19}) =>
(((’S1’’ :=’ ’Sr3),,(’Sr3 :=’ ’ok)){20}) =>
(’SBr1 :=’ [[’secret(’NBr)] | ’SBr2]){21}

We have shown how to interpret the output for an execution. Let us now
demonstrate how to look for an attack in the protocol. Similarly to the first case,
we have to specify an initial and final state. The idea is to introduce a bad final
state, i.e., a state where an attack has occurred. In this case, the final state
says that both the honest principal ’a and the intruder ’i know the secret nonce
generated by ’b.

search runs ({DS . (init(’a,’i) || (resp(’i) || (environment(’i) ||
ask(true)-> (init (’i,’b) || resp(’b)))))} , 26)

=>* < StL > such that
TpSt := getGlobalStoreFromStrStoreList (StL) ∧
TpVr := getStreamOfTrmKnowInStore (TpSt , [’know (’a,’)]) ∧
TpVr1 := getStreamOfTrmKnowInStore (TpSt , [’know (’b,’)]) ∧
TpVr2 := getStreamOfTrmKnowInStore (TpSt , [’know (’i,’)]) ∧
TpEx := getExpFromStream (TpVr1 , [’secret (’)] , TpSt) ∧
consultContent (TpVr , TpEx , TpSt) == true’ ∧
consultContent (TpVr2 , TpEx , TpSt) == true’ .

We can see that at time instant 25, the responder ’b stores that the nonce
generated by him is secret, thus the protocol run has finished. We can also
see that during the execution, it has been stored the knowledge gained by the
different participants of the protocol. The initiator ’a has also been completed
the protocol (to her knowledge). Moreover, note that ’a thinks, from the time
instant 3, that the messages she will receive come from ’i , which is true but
from the time instant 11, ’b thinks that he is communicating with ’a, which is
false.

Solution 1 (state 592)
states: 593 rewrites: 259361436 in 591320ms cpu (591321ms real)

(438614 rewrites/second)
StL --> (empty{0}) =>
(((’A :=’ ’a),,(’B :=’ ’i),,(’B’ :=’ ’i),,(’I :=’ ’i)){1}) =>
(([’know(’A,’SAi)],,(’A’ :=’ ’i),,(’B’’ :=’ ’b),,(’B’’’ :=’ ’b),,
(’NAi :=’ ’nNAi)){2}) =>

(([’chn([’msg([’enc([’k(’B)],[’cons(’A,[’cons(’NAi)])])])],’Si1)],,
[’know(’A’,’SAi’)],,(’NAi’ :=’ ’nNAi’),,

62 CHAPTER 6. A TCCP INTERPRETER

(’SAi :=’ [[’a(’B)],[’n(’NAi)] | ’SAi1])){3}) =>
(([’chn([’msg([’enc([’k(’B’’)],[’cons(’A’,[’cons(’NAi’)])])])],’Si1’)],,

(’SAi’ :=’ [[’a(’B’’)],[’n(’NAi’)] | ’SAi1’])){4}) =>
(((’M :=’ [’msg([’enc([’k(’B)],[’cons(’A,[’cons(’NAi)])])])]),,

(’S :=’ ’ok),,(’SI :=’ ’SAi’),,(’Si1 :=’ ’S)){5}) =>
(((’C :=’ [’cons(’A,[’cons(’NAi)])]),,(’I’ :=’ ’I)){6}) =>
(((’SAi1’ :=’ [[’cnt(’C)] | ’Si]),,(’X :=’ ’B’’)){7}) =>
(([’rcv([’msg([’enc([’k(’X)],’C)])],’S1)],,(’S’ :=’ ’ok),,

(’M’ :=’ [’msg([’enc([’k(’B’’)],[’cons(’A’,[’cons(’NAi’)])])])]),,
(’SI’ :=’ ’SAi’),,(’Si1’ :=’ ’S’)){8}) =>

(((’I’’ :=’ ’I),,(’Si :=’ [[’blk(’M’)] | ’Si’])){9}) =>
(([’know(’B’’’,’SBr’)],,(’Ar’ :=’ ’A),,(’NAr’ :=’ ’NAi),,
(’NBr’ :=’ ’nNBr’),,(’S1 :=’ ’Sr1’),,(’Sr1’ :=’ ’ok)){10}) =>

(([’chn([’msg([’enc([’k(’Ar’)],[’cons(’NAr’,[’cons(’NBr’)])])])],’Sr2’)],,
(’SBr’ :=’ [[’a(’Ar’)],[’n(’NAr’)],[’n(’NBr’)] | ’SBr1’])){11}) =>
(empty{12}) =>

(((’M’’ :=’ [’msg([’enc([’k(’Ar’)],[’cons(’NAr’,[’cons(’NBr’)])])])]),,
(’S’’ :=’ ’ok),,(’SI’’ :=’ ’SAi’),,(’Sr2’ :=’ ’S’’)){13}) =>

(([’rcv(’M’’,’S1’)],,(’I’’’ :=’ ’I)){14}) => (empty{15}) =>
(((’NBi :=’ ’NBr’),,(’S1’ :=’ ’Si2),,(’Si2 :=’ ’ok)){16}) =>
(([’chn([’msg([’enc([’k(’B)],[’cons(’NBi)])])],’Si3)],,

(’SAi1 :=’ [[’n(’NBi)] | ’SAi2])){17}) => (empty{18}) =>
(((’M’’’ :=’ [’msg([’enc([’k(’B)],[’cons(’NBi)])])]),,(’S’’’ :=’ ’ok),,

(’SI’’’ :=’ ’SAi’),,(’Si3 :=’ ’S’’’)){19}) =>
(((’C’ :=’ [’cons(’NBi)]),,(’I’’’’ :=’ ’I)){20}) =>
(((’Si’ :=’ [[’cnt(’C’)] | ’Si’’’]),,(’X’ :=’ ’B’’)){21}) =>
(([’rcv([’msg([’enc([’k(’X’)],’C’)])],’S1’’)]){22}) => (empty{23}) =>
(((’S1’’ :=’ ’Sr3’),,(’Sr3’ :=’ ’ok)){24}) =>
(’SBr1’ :=’ [[’secret(’NBr’)] | ’SBr2’]){25}

Apart from the solution to the query, Maude shows up the time spent during
the computation of each solution and the number of rewrites performed. In the
first case, the result is given in 627ms after rewriting 324834 steps. For the second
case, the system spent almost 10 minutes after 259361436 rewrites. Note that,
due to the generality of the model, that does not restricts to the detection of a
single attack but is general for all the Dolev-Yao attacks, we have to explore more
possible execution paths for the protocol. We think that this performance is also
caused due to the non-determinism of some of the parts of the interpreter.

6.5.2. Analyzing the Otway-Rees protocol

Let us show an excerpt of the execution of a trace that simulates the cor-
rect behavior of the Otway-Rees protocol. Consider the tccp program model-
ing the specification of the Otway-Rees protocol presented in Chapter 4 and

6.5. EXPERIMENTAL RESULTS 63

whose initial agent is (init(’a,’b,’s) || (resp(’b,’s) || || (server(’s) ||
environment(’i)))). For readability, we use the variable DS instead of the
whole code specifying the set of declarations of the considered program. It can
be seen that, the initial agent initiates a communication of the participant ’a

with ’b via a trusted third party ’s. To run the interpreter, we must invoke the
following instruction.

search runs ({DS . (init(’a,’b,’s) || (resp(’b,’s) || (server(’s) ||
environment(’i))))} , 28)

=>* < TpPg , StL , VrLt , Bl > {Nt} such that
TpSt := getGlobalStoreFromStrStoreList (StL) ∧
TpVr := getStreamOfTrmKnowInStore (TpSt , [’know (’a,’)]) ∧
TpVr1 := getStreamOfTrmKnowInStore (TpSt , [’know (’b,’)]) ∧
TpVr2 := getStreamOfTrmKnowInStore (TpSt , [’know (’s,’)]) ∧
TpVr3 := getStreamOfTrmKnowInStore (TpSt , [’know (’i,’)]) ∧
TpEx := getExpFromStream (TpVr2 , [’pk (’)] , TpSt) ∧
consultContent (TpVr , TpEx , TpSt) == true’ ∧
consultContent (TpVr1 , TpEx , TpSt) == true’ ∧
consultContent (TpVr3 , TpEx , TpSt) == false’ .

In this case, we establish that the resulting structured store StL must contain
1) the term pk/1 in the private knowledge of the server ’s, which means that
the server has generated the secret key; 2) the value, labeled as pk by ’s, in the
private knowledge of the initiator ’a and the responder ’b; and finally 3) the
value, labeled as pk by ’s must be unknown by ’i.

Following, we show the trace corresponding to the correct behavior of the
protocol. We can see at time instants 21 and 27 the expected key, unknown by
the intruder, stored in the private knowledge of the responder ’b and the initiator
’a, respectively.

Solution 1 (state 91)
states: 92 rewrites: 2371443 in 7770ms cpu (7769ms real)

(305205 rewrites/second)
StL --> (empty{0}) =>
(((’A :=’ ’a),,(’B :=’ ’b),,(’B’ :=’ ’b),,(’I :=’ ’i),,(’S :=’ ’s),,

(’S’ :=’ ’s),,(’S’’ :=’ ’s)){1}) =>
(([’know(’A,’SAi)],,(’NAi :=’ ’nNAi),,(’Ni :=’ ’nNi)){2}) =>
(([’chn([’msg([’enc(’plain,[’cons(’Ni,[’cons(’A,[’cons(’B)])])])],

[’enc([’sk(’A,’S)],[’cons(’NAi,[’cons(’Ni,[’cons(’A,
[’cons(’B)])])])])])],’S1i)],,

(’SAi :=’ [[’a(’B)],[’a(’S)],[’n(’Ni)],[’n(’NAi)] | ’SA1i])){3}) =>
(empty{4}) =>
(([’know(’I,’SI)],,(’M :=’[’msg([’enc(’plain,[’cons(’Ni,[’cons(’A,

[’cons(’B)])])])],

64 CHAPTER 6. A TCCP INTERPRETER

[’enc([’sk(’A,’S)],[’cons(’NAi,[’cons(’Ni,
[’cons(’A,[’cons(’B)])])])])])]),,

(’S’’’ :=’ ’ok),,(’S1i :=’ ’S’’’)){5}) =>
(([’rcv(’M,’S1)],,(’I’ :=’ ’I)){6}) => (empty{7}) =>
(([’know(’B’,’SBr)],,(’Ar :=’ ’A),,(’NBr :=’ ’nNBr),,(’Nr :=’ ’Ni),,
(’Enc1 :=’ [’enc([’sk(’A,’S)],[’cons(’NAi,[’cons(’Ni,[’cons(’A,

[’cons(’B)])])])])]),,
(’S1 :=’ ’S1r),,(’S1r :=’ ’ok)){8}) =>

(([’chn([’msg([’enc(’plain,[’cons(’Nr,[’cons(’Ar,[’cons(’B’)])])])],
’Enc1,[’enc([’sk(’B’,’S’)],[’cons(’NBr,[’cons(’Nr,

[’cons(’Ar,[’cons(’B’)])])])])])],’S2r)],,
(’SBr :=’ [[’a(’Ar)],[’a(’S’)],[’n(’Nr)],[’n(’NBr)] | ’SB1r])){9}) =>

(empty{10}) =>
(((’M’ :=’ [’msg([’enc(’plain,[’cons(’Nr,[’cons(’Ar,[’cons(’B’)])])])],

’Enc1,[’enc([’sk(’B’,’S’)],[’cons(’NBr,[’cons(’Nr,
[’cons(’Ar,[’cons(’B’)])])])])])]),,

(’S’’’’ :=’ ’ok),,(’S2r :=’ ’S’’’’),,(’SI :=’ ’SI’)){11}) =>
(([’rcv(’M’,’S1’)],,(’I’’ :=’ ’I)){12}) => (empty{13}) =>
(([’know(’S’’,’SSs)],,(’A :=’ ’A),,(’As :=’ ’A),,(’B :=’ ’B’),,
(’Bs :=’ ’B’),,(’KABs :=’ ’nKABs),,(’NAs :=’ ’NAi),,(’NBs :=’ ’NBr),,
(’Ni :=’ ’Ni),,(’Ns :=’ ’Ni),,(’S1’ :=’ ’S1s),,(’S1s :=’ ’ok)){14}) =>

(([’chn([’msg([’enc(’plain,[’cons(’Ns)])],
[’enc([’sk(’As,’S’’)],[’cons(’NAs,[’cons(’KABs)])])],
[’enc([’sk(’Bs,’S’’)],[’cons(’NBs,[’cons(’KABs)])])])],’S2s)],,

(’SSs :=’ [[’a(’As)],[’a(’Bs)],[’n(’Ns)],[’n(’NAs)],[’n(’NBs)],
[’pk(’KABs)] | ’SS1s])){15}) => (empty{16}) =>

(((’M’’ :=’ [’msg([’enc(’plain,[’cons(’Ns)])],
[’enc([’sk(’As,’S’’)],[’cons(’NAs,[’cons(’KABs)])])],
[’enc([’sk(’Bs,’S’’)],[’cons(’NBs,[’cons(’KABs)])])])]),,

(’S’’’’’ :=’ ’ok),,(’S2s :=’ ’S’’’’’),,(’SI :=’ ’SI’’)){17}) =>
(([’rcv(’M’’,’S1’’)],,(’I’’’ :=’ ’I)){18}) => (empty{19}) =>
(((’Enc2 :=’ [’enc([’sk(’As,’S’’)],[’cons(’NAs,[’cons(’KABs)])])]),,

(’KABr :=’ ’KABs),,(’S1’’ :=’ ’S3r),,(’S3r :=’ ’ok)){20}) =>
(([’chn([’msg([’enc(’plain,[’cons(’Nr)])],’Enc2)],’S4r)],,

(’SB1r :=’ [[’pk(’KABr)] | ’SB2r])){21}) => (empty{22}) =>
(((’M’’’ :=’ [’msg([’enc(’plain,[’cons(’Nr)])],’Enc2)]),,

(’S’’’’’’ :=’ ’ok),,(’S4r :=’ ’S’’’’’’),,(’SI :=’ ’SI’’’)){23}) =>
(([’rcv(’M’’’,’S1’’’)],,(’I’’’’ :=’ ’I)){24}) => (empty{25}) =>
(((’KABi :=’ ’KABs),,(’S1’’’ :=’ ’S2i),,(’S2i :=’ ’ok)){26}) =>
(’SA1i :=’ [[’pk(’KABi)] | ’SA2i]){27}

In the following, we show the trace corresponding to the typing attack dis-
covered in the Otway-Rees protocol. We can see at time instant 11, the principal
’a stores in her private knowledge the expected key, but this time the key is

6.6. CONCLUDING REMARKS 65

a sequence of terms. By using the auxiliary function isSequenceOfTerm that
returns true’ if the given argument is a sequence of terms, we can detect the
vulnerability.

search runs ({DS . (init(’a,’b,’s) || (resp(’b,’s) || (server(’s) ||
environment(’i))))} , 28)

=>* < TpPg , StL , VrLt , Bl > {Nt} such that
TpSt := getGlobalStoreFromStrStoreList (StL) ∧
TpVr := getStreamOfTrmKnowInStore (TpSt , [’know (’a,’)]) ∧
TpEx := getExpFromStream (TpVr , [’pk (’)] , TpSt) ∧
isSequenceOfTerm (TpEx) == true’ .

Solution 1 (state 31)
states: 32 rewrites: 319156 in 1380ms cpu (1378ms real)

(231257 rewrites/second)
StL --> (empty{0}) =>
(((’A :=’ ’a),,(’B :=’ ’b),,(’B’ :=’ ’b),,(’I :=’ ’i),,(’S :=’ ’s),,

(’S’ :=’ ’s),,(’S’’ :=’ ’s)){1}) =>
(([’know(’A,’SAi)],,(’NAi :=’ ’nNAi),,(’Ni :=’ ’nNi)){2}) =>
(([’chn([’msg([’enc(’plain,[’cons(’Ni,[’cons(’A,[’cons(’B)])])])],

[’enc([’sk(’A,’S)],[’cons(’NAi,[’cons(’Ni,[’cons(’A,
[’cons(’B)])])])])])],’S1i)],,

(’SAi :=’ [[’a(’B)],[’a(’S)],[’n(’Ni)],[’n(’NAi)] | ’SA1i])){3}) =>
(empty{4}) =>
((’M :=’ [’msg([’enc(’plain,[’cons(’Ni,[’cons(’A,[’cons(’B)])])])],

[’enc([’sk(’A,’S)],[’cons(’NAi,[’cons(’Ni,[’cons(’A,
[’cons(’B)])])])])])]),,

([’know(’I,’SI)],,(’S’’’ :=’ ’ok),,(’S1i :=’ ’S’’’)){5}) =>
(((’E1 :=’ [’enc([’sk(’A,’S)],[’cons(’NAi,[’cons(’Ni,[’cons(’A,

[’cons(’B)])])])])]),,
(’C :=’ ’Ni),,(’I’ :=’ ’I),,(’K :=’ [’cons(’Ni,[’cons(’A,

[’cons(’B)])])]),,
(’N# :=’ [’cons(’A,[’cons(’B)])]),,
(’N#’ :=’ [’enc([’sk(’A,’S)],[’cons(’NAi,[’cons(’Ni,[’cons(’A,

[’cons(’B)])])])])])){6}) =>
((’SI :=’ [[’cnt(’C)],[’pk(’K)],’E1 | ’Si]){7}) =>
([’rcv([’msg([’enc(’plain,[’cons(’C)])],’E1)],’S1)]{8}) => (empty{9}) =>
(((’KABi :=’ [’cons(’Ni,[’cons(’A,[’cons(’B)])])]),,(’S1 :=’ ’S2i),,
(’S2i :=’ ’ok)){10}) => (’SA1i :=’ [[’pk(’KABi)] | ’SA2i]){11}

6.6. Concluding remarks

In this chapter, we have presented the tccpInterpreter system, an interpreter
for the tccp language implemented in Maude. We have described how the Maude

66 CHAPTER 6. A TCCP INTERPRETER

language allows us to model the syntax and the operational semantics of tccp, as
well as the underlying constraint system. To our knowledge, this is the first tccp
interpreter.

By using several examples, we have described the functionalities of the tool.
We have show how the tccpInterpreter allows us to simulate the execution of a
given tccp program and to carry out certain reachability proofs over tccp specifi-
cations. We have also presented the verification process carried out in the analysis
of the security protocols presented in Chapter 4.

7
Conclusions and Future Work

In this thesis, we have shown how tccp can be used as a suitable language to
verify security protocols. We have taken advantage of the underlying constraint
system by introducing several functions that allow us to carry out and refine
the verification process. This allows us to improve the compactness and clarity
of the model. Many of the defined components in our model, in particular the
environment, the specified constraints and the auxiliary functions can be reused
for the analysis of other protocols.

We have presented a sound transformation from utcc processes into tccp spec-
ifications. The two languages belong to the concurrent constraint paradigm, but
they have very different features which make the transformation difficult. They
both can be used to specify protocols. The transformation shows that tccp is
expressive enough to model utcc processes. In particular, by means of a synchro-
nization mechanism based on a shared stream that acts as a clock, the explicit
notion of time of utcc can be simulated. Moreover, the new abstraction operation
can be expressed in terms of parameters passing among calls. The transformation
can be automatized, which would allow us to reuse the tools defined for the tccp
language, such as the recent tccp interpreter.

We have presented the tccpInterpreter system, an interpreter for the tccp lan-
guage that, given the specification of a tccp program, is able to simulate the
corresponding behavior of such program following the semantics of the language.
To our knowledge, there was no adequate and public implementation of tccp so
far. It has been implemented in Maude, an executable rewriting logic language
that allows a precise specification of tccp describing, in a intuitive way, all the
entities of the language such as the underlying constraint system, agents, and its
operational semantics. We have presented how the Maude system can be used
as a semantic framework and metalanguage to build an entire environment and
mechanisms for the execution of the formal specification language tccp. Maude
leads to a perspicuous formulation in the task of specifying transition systems.
It presents a rich notation supporting formal specification and implementation of
concurrent systems. In this work, we demonstrate the feasibility and the interest
of formalizing the behavior of tccp with the Maude language. This interpreter

68 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

allows us to explore the particular features of tccp and its behavior (maximal
parallelism and the underlying constraint system). One of the important advan-
tages of this implementation is that once we have the tccp language encoded in
Maude, we can use the Maude related-tools to reason about tccp programs, for
example, for model checking.

Finally, by using the tool, we have shown how we can check safety properties
on tccp programs to detect vulnerabilities that may lead to unexpected states.
Specifically, we have detected the traces describing the attacks discovered in the
Needham-Schroeder protocol and the Otway-Rees protocol.

The tccpInterpreter is publicly available at the following address:
http://www.dsic.upv.es/~alescaylle/tccp.html.

We plan to extend the specification of the environment, increasing actions an
attacker can perform, for modeling other kind of protocols. We plan to implement
the transformation, that translates a utcc program into a tccp program, and to
study the relation of the tccp language with other concurrent languages such as
Linda. We plan to extend the tccpInterpreter in several ways. To improve the
interface of the system we plan to construct a graphical web interface. We also
plan to improve the performance of the interpreter and to study how to adapt the
model-checking technique existing for tccp programs [17] in the Maude rewriting-
based framework.

Bibliography

[1] M. Alpuente, M. M. Gallardo, E. Pimentel, and A. Villanueva. Verifying
Real-Time Properties of tccp Programs. Journal of Universal Computer
Science, 12(11):1551–1573, 2006.

[2] M. Alpuente, M.M. Gallardo, E. Pimentel, and A. Villanueva. A semantic
framework for the abstract model checking of tccp programs, 2005.

[3] D. Basin and G. Denker. Maude versus Haskell: an Experimental Compar-
ison in Security Protocol Analysis. In Kokichi Futatsugi, editor, Electronic
Notes in Theoretical Computer Science, volume 36, Amsterdam, 2001. Else-
vier Science Publishers.

[4] G. Bella and S. Bistarelli. Soft constraint programming to analysing security
protocols, 2004.

[5] J. A. Bergstra and J. W. Klop. Algebra of Communicating Processes with
Abstraction. Theor. Comput. Sci., 37:77–121, 1985.

[6] C. Bodei. Security Issues in Process Calculi. PhD thesis, Dipartimento di
Informatica, Universitadi Pisa, January 2000.

[7] F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Constraint
Language. Information and Computation, 161(1):45–83, 2000.

[8] C. Boyd. Hidden Assumptions in Cryptographic Protocols. IEE Proceedings,
6(137):433–436, November 1990.

[9] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establish-
ment. Springer-Verlag, Berlin Heidelberg, 2003.

[10] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: a declara-
tive language for real-time programming. In POPL ’87: Proceedings of the
14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 178–188, New York, NY, USA, 1987. ACM.

[11] J. A. Clark and J. L. Jacob. A survey of authentication protocol literature.
Technical report, Defence Evaluation Research Agency, 1997.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. L. Talcott. All About Maude - A High-Performance Logical Framework,

70 CHAPTER 7. BIBLIOGRAPHY

How to Specify, Program and Verify Systems in Rewriting Logic, volume
4350 of Lecture Notes in Computer Science. Springer, 2007.

[13] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. L. Talcott. Maude Web Site, 2009. http://maude.csl.sri.com/.

[14] R. Corin, S. Etalle, P. H. Hartel, and A. Mader. Timed model checking of
security protocols. In FMSE ’04: Proceedings of the 2004 ACM workshop on
Formal methods in security engineering, pages 23–32, New York, NY, USA,
2004. ACM.

[15] G. Denker, J. Meseguer, and C. Talcott. Protocol Specification and Analysis
in Maude. In N. Heintze and J. Wing, editors, Proceedings of Workshop on
Formal Methods and Security Protocols, Indianapolis, Indiana, June 1998.

[16] D. Dolev and A. C. Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, 29(2):198–208, March 1983.

[17] M. Falaschi and A. Villanueva. Automatic Verification of Timed Concurrent
Constraint Programs. Theory and Practice of Logic Programming, 6(3):265–
300, May 2006.

[18] A. Farzan, F. Cheng, J. Meseguer, and G. Rosu. Formal analysis of Java pro-
grams in JavaFAN. In Proceedings of Computer-aided Verification (CAV’04),
volume 3114 of LNCS, pages 501 – 505, 2004.

[19] V. Gupta, V. A. Saraswat, and R. Jagadeesan. Foundations of Timed Con-
current Constraint Programming. In Proceedings, Ninth Annual IEEE Sym-
posium on Logic in Computer Science, pages 71–80, Paris, France, July 1994.
IEEE Computer Society Press.

[20] V. Gupta, V. A. Saraswat, and R. Jagadeesan. Hybrid cc, hybrid automata
and program verification, 1996.

[21] V. Gupta, V. A. Saraswat, and P. Struss. A model of a photocopier paper
path. In Proceedings of the 2nd IJCAI Workshop on Engineering Problems
for Qualitative Reasoning, August 1995.

[22] V. Gupta, V.A. Saraswat, and R. Jagadeesan. Timed Default Concurrent
Constraint Programming. Journal of Symbolic Computation, 22(5–6):475–
520, December 1996.

[23] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-
flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–
1320, September 1991.

7.0. BIBLIOGRAPHY 71

[24] D. Harel and A. Pnueli. On the development of reactive systems, 1985.

[25] S. Haridi, P. Van Roy, P. Brand, and C. Schulte. Programming Languages
for Distributed Applications, 1998.

[26] C. A. R. Hoare. Communicating sequential processes, 1978.

[27] J. Jaffar and J.-L. Lassez. Constraint logic programming. In POPL ’87:
Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 111–119, New York, NY, USA, 1987. ACM.

[28] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming
real-time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321–
1336, September 1991.

[29] A. Lescaylle and A. Villanueva. Using tccp for the Specification and Verifi-
cation of Communication Protocols. In Proceedings of the 16th International
Workshop on Functional and (Constraint) Logic Programming (WFLP’07),
2007.

[30] A. Lescaylle and A. Villanueva. Verification and Simulation of protocols in
the declarative paradigm. Technical report, DSIC, Univeridad Politécnica de
Valencia, 2008. Available at http://www.dsic.upv.es/˜alescaylle/files/dea-
08.pdf.

[31] A. Lescaylle and A. Villanueva. The tccp Interpreter. Electronic Notes in
Theoretical Computer Science, to appear, 2009.

[32] A. Lescaylle and A. Villanueva. The typing attack detected in the
Otway-Rees Protocol. Technical report, DSIC, Univeridad Politécnica de
Valencia, 2009. Available at http://www.dsic.upv.es/˜villanue/techrep-
FORTE09.pdf.

[33] L. Logrippo, M. Faci, and M. Haj-Hussein. An introduction to LOTOS:
learning by examples, 1992.

[34] G. Lowe. Breaking and Fixing the Needham-Schroeder public-key protocol
using FDR. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 147–166. Springer Verlag, 1996.

[35] Z. Manna and A. Pnueli. Temporal verification of reactive systems: safety.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[36] F. Maraninchi. Operational and compositional semantics of synchronous au-
tomaton compositions. In In CONCUR. LNCS 630, pages 550–564. Springer-
Verlag, 1992.

72 CHAPTER 7. BIBLIOGRAPHY

[37] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework, January 2004.

[38] C. Meadows. Formal Verification of Cryptographic Protocols: A Survey. In
ASIACRYPT: Advances in Cryptology – ASIACRYPT: International Con-
ference on the Theory and Application of Cryptology. LNCS, Springer-Verlag,
1994.

[39] C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic
Programming, 26(2):113–131, 1996.

[40] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[41] R. Needham and M. Schroeder. Using Encryption for Authentification in
Large Networks of Computers. Communications of the ACM, 21(12):993–
999, December 1978.

[42] M. Nielsen, C. Palamidessi, and Valencia F.D. Temporal Concurrent Con-
straint Programming: Denotation, Logic and Applications. Nordic Journal
of Computing, 9(1):145–188, 2002.

[43] M. Nielsen, C. Palamidessi, and F. D. Valencia. On the expressive power
of temporal concurrent constraint programming languages. In PPDP ’02:
Proceedings of the 4th ACM SIGPLAN international conference on Princi-
ples and practice of declarative programming, pages 156–167, New York, NY,
USA, 2002. ACM.

[44] C. Olarte and F. D. Valencia. The expressivity of universal timed CCP:
undecidability of Monadic FLTL and closure operators for security. In PPDP
’08: Proceedings of the 10th international ACM SIGPLAN conference on
Principles and practice of declarative programming, pages 8–19, New York,
NY, USA, 2008. ACM.

[45] C. Olarte and F. D. Valencia. Universal concurrent constraint programing:
symbolic semantics and applications to security. In SAC ’08: Proceedings of
the 2008 ACM symposium on Applied computing, pages 145–150, New York,
NY, USA, 2008. ACM.

[46] D. Otway and O. Rees. Efficient and timely mutual authentication. ACM
Operating System Review, 21(1):8–10, 1987.

[47] V. A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis,
Carnegie-Mellon University, Cambridge, MA, January 1989.

7.0. BIBLIOGRAPHY 73

[48] V. A. Saraswat. Concurrent Constraint Programming Languages. The MIT
Press, Cambridge, MA, 1993.

[49] E. Shapiro. The family of concurrent logic programming languages, 1989.

[50] T. Sjöland, E. Klintskog, and S. Haridi. An interpreter for Timed Concurrent
Constraints in Mozart (extended abstract). 2001.

[51] P. Syverson and C. Meadows. Formal requirements for key distribution pro-
tocols. In Proceedings of Eurocrypt ’94, pages 320–331. Springer-Verlag,
1994.

[52] S. Tini. On the Expressiveness of Timed Concurrent Constraint Program-
ming. In Electronics Notes in Theoretical Computer Science. Electronics,
1999.

[53] A. Verdejo. A tool for Full LOTOS in Maude. Technical Report 123-02,
Dpto. Sistemas Informaticos y Programacion, Universidad Complutense de
Madrid, 2002.

[54] A. Verdejo and N. Marti-Oliet. Implementing CCS in Maude 2. In Proceed-
ings Fourth International Workshop on Rewriting Logic and its Applications,
WRLA 2002, pages 239–257. Elsevier, 2002.

74 CHAPTER 7. BIBLIOGRAPHY

A
Papers developed from this thesis

Internationals

• Lescaylle, A. and Villanueva, A.
Automated verification of security protocols in tccp. Submitted to the
19th International Workshop on Functional and (Constraint) Logic
Programming (WFLP’10).
Madrid (Spain) 2010

• Lescaylle, A. and Villanueva, A.
Bridging the gap between two Concurrent Constraint Languages. Sub-
mitted to the 19th International Workshop on Functional and (Con-
straint) Logic Programming (WFLP’10).
Madrid (Spain) 2010

• Lescaylle, A. and Villanueva, A.
A tool for Generating a Symbolic Representation of tccp executions.
Proceedings of the 17th International Workshop on Functional and
(Constraint) Logic Programming (WFLP’08). Electronic Notes in
Theoretical Computer Science, Volume 246, Pages 131-145, August
2009.
Siena (Italy) 2008

• Lescaylle, A. and Villanueva, A.
Using tccp for the Specification and Verification of Communication
Protocols. Proceedings of the 16th International Workshop on Func-
tional and (Constraint) Logic Programming (WFLP’07).
Paris (France) 2007

Nationals

• Lescaylle, A. and Villanueva, A.
The tccp Interpreter. IX Jornadas sobre Programación y Lenguajes
(PROLE’09). Electronic Notes in Theoretical Computer Science, Vol-
ume to appear.
San Sebastián (Spain) 2009.

76 APPENDIX A. PAPERS DEVELOPED FROM THIS THESIS

• Lescaylle, A. and Villanueva, A.
Using tccp for the Specification of Communication Protocols. Actas
de las VII Jornadas sobre Programación y Lenguajes (PROLE’07).
Zaragoza (Spain) 2007

Technical reports (unpublished)

• Lescaylle, A. and Villanueva, A.
Bridging the gap between two Concurrent Constraint Languages. Sub-
mitted to the 19th International Workshop on Functional and (Con-
straint) Logic Programming (WFLP’10).
DSIC, Univeridad Politécnica de Valencia. 2009

Others

• Lescaylle, A. and Villanueva, A.
Implementing tccp in Maude. Reunión de la Red Maude 2009.
Málaga (Spain) 2009.

• Lescaylle, A. and Villanueva, A.
Authentication Protocol Analysis in a Timed Concurrent Constraint
Language. XVII Jornadas de Concurrencia y Sistemas Distribuidos
(JCSD 2009)
Sagunto (Spain) 2009.

B
The tccpTranslator framework

In Figure B.1, we show the sketch of the transformation from utcc into tccp.
The tccpTranslator framework is composed by two principal modules, the first
is related to the encoding process and the second specifies the synchronization
process between both languages, since the resulting tccp agents must be executed
following the notion of time of utcc. tccpTranslator gets from a file the specification
of the given utcc program which, by using the auxiliary function τP , is mapped in
a tccp program, the result of the encoding. τP invokes the auxiliary functions τA
and synchronization to complete the translation. τA generates a tccp agent from
a given utcc process, whereas synchronization takes as input an utcc process
and generates a tccp agent who captures the passing of time, from the evolution
of the given utcc process, in tccp. synchronization uses the auxiliary functions
instant and follows to achieve its goal. instant and follows, given an utcc
process and an initial store, return the store generated by the given process and
the process to be executed in the following time instant, respectively. We explain
each function in more detail below.

The body of the function controlling the framework, tccpTranslator, is shown
below. up is instantiated to the given utcc program, which is obtained using
the auxiliary function read. The variable tp, whose content is finally returned,

Figure B.1: The tccpTranslator framework

78 APPENDIX B. THE TCCPTRANSLATOR FRAMEWORK

is instantiated to the tccp program embedding the given utcc program. The
auxiliary function τP carries out the embedding process.

tccpProgram tccpTranslator()

up : utccProgram;

tp : tccpProgram;

utccProgramfile : file;

up = read(utccProgramfile);

tp = τP(up);
return tp;

end;

τP , given an utcc program, returns a tccp program that embeds the input
program. The embedding process (the general idea) contains the following steps:
1) to convert the set of utcc declarations of processes in a set of tccp declarations;
2) to convert the utcc process to be executed in a tccp agent. To complete the
first step, the variable uds is instantiated to the set of utcc declarations, where
the function declarations extracts them from the given program. To complete
the second step, upr is instantiated to the utcc process to be executed, where
the auxiliary function process extracts it from the given program. The while

loop is part of the first step, in which each utcc declaration is translated in a
tccp declaration which is add it to the set of declarations of the tccp program
that is being built. The variable ud is instantiated to an utcc declaration from
the set uds. Then, by using functions name and body, variables udn and u′pr are
instantiated to the name and the process of the current declaration, respectively.
t′a is instantiated to the tccp agent, generated by the function τA, encoding the
given utcc process. Thus, the tccp declaration can be created. Therefore, by
using the function updateDelarationSet, the set of tccp declarations stored in
tds, is updated. Once the set of utcc declarations is processed, the utcc process
recovered in the second step is encoded to the corresponding tccp agent. ta
is instantiated to the resulting tccp agent, which is composed by the parallel
composition of the tccp agent returned by τA, a tell agent and the tccp agent
returned by synchronization. The tell agent and the function synchronization

are used to achieve the time synchronization between utcc and tccp. Note that
the notion of time of utcc (explicit) and tccp (implicit) differ. A time unit in utcc
(the observable transition) corresponds with several time unit in tccp, so we need
to specify a mechanism that emits a signal when the tccp agents, obtained by
the encoding process, must be executed following the behaviors of their original
utcc processes. The variable Syn is used to emits such signal. The value wait

means that the agents to be executed in the following time instant, according
to the execution of the original utcc processes, must wait. ok means that such
agents must be executed. The tell agent initialises the variable Syn to wait.

79

synchronization contains in its body the mechanism to update the variable Syn.
Finally, the variable tp is instantiated to the generated tccp program (tds.ta) and
returned.

tccpProgram τP(input up : utccProgram)

uds : utccDeclarationSet;

upr : utccProcess;

cursor : integer;

tp : tccpProgram;

tds : tccpDeclarationSet;

ta : tccpAgent;

Syn,CT : stream;
uds = declarations(up);

upr = process(up);

cursor = 0;
while (uds[cursor] 6= Null) do

ud : utccDeclaration;

udn : utccDeclarationName;

u′pr : utccProcess;

t′a : tccpAgent;

ud = uds[cursor];

udn = name(ud);

u′pr = body(ud);

t′a = τA(u
′
pr,tds);

updateDelarationSet(tds,udn :- t′a.);

inc(cursor);
end while;

ta = (τA(upr,tds) ‖ tell(Syn = [wait | CT]) ‖
synchronization(upr,Syn));

tp = tds.ta;

return tp;

end;

The heart of the function τA is specified in a block case where each branch
contains the instructions to transform an utcc process. The first four cases: the
skip, tell, local and ‖have a direct transformations in tccp; they are: the skip, tell,
∃ and ‖agents, respectively. As we need to encode the input utcc process, we
recursively process all its sub-processes. For instance, the process A of the local
constructor is processed recursively. The units delay next and unless are encoded
in tccp by using the choice agent shown in each case. The constraint Syn

.
= ok

consults whether the current value of Syn is instantiated to ok. If the constraint
holds (which means that the program can reach the next time instant, according

80 APPENDIX B. THE TCCPTRANSLATOR FRAMEWORK

with utcc) then τA(A,tds) is executed in the first case and, if the constraint c of
the conditional agent does not hold, in the second case. To model the replica-
tion of utcc in tccp we need to specify a fresh declaration, auxi, with recursion.
Such declaration is added in the given declaration set of the tccp program being
built. The choice agent, in the declaration, will execute the transformation of
A in parallel with the call to itself (auxi) when the constraint Syn

.
= ok holds.

Then, the tccp agent resulting from the replication process, stored in ta, is the
parallel composition of the transformation of A and the procedure call auxi. The
translation of the parametric ask is the most complicated due to its behavior.
The difficulties arise in the fresh declaration absi since the resulting tccp agent
is ∃ ~x, S (absi(~x, S) ‖ tell(substi(S))). The local variable S is instantiated to the
stream containing the substitutions applied so far. substi/1 is a term whose
argument, a stream, contains such substitutions. Thus, in absi, if the constraint
c[~t\~x] holds and S does not contain the substitution {~t\~x} then, in parallel, the
transformation of A with the free occurrences of xi replaced with ti, the updat-
ing of the stream S with the found substitution to avoid executing A[~t\~x] again
and the procedure call absi(~x, S), allowing other replacements of ~x in A, are ex-
ecuted; otherwise the process ends, skip. The last case models a process of the
form Name = Process, since it was previously translated in a tccp declaration,
it is traduced in a procedure call agent. τA ends returning, in ta, the generated
tccp agent.

tccpAgent τA(input upr : utccProcess,

input/output tds : tccpDeclarationSet)

ta : tccpAgent;

case upr of

skip: ta = skip;
tell(c): ta = tell(c);
(local ~x;c) A: ta = ∃c ~x (τA(A,tds));
A ‖ B: ta = (τA(A,tds) ‖ τA(B,tds));
next A: ta = ask(Syn

.
= ok)→ τA(A,tds);

unless c next A:
ta = ask(Syn

.
= ok)→ now c then skip else τA(A,tds);

!A: updateDelarationSet(tds,

auxi:- ask(Syn
.
= ok)→ (τA(A,tds) ‖ auxi).);

ta = (τA(A,tds) ‖ auxi);
(abs ~x;c) A: updateDelarationSet(tds,

absi(~x, S):-∃~t, S ′ (now(c[~t\~x] ∧ ¬(find(S, {~t\~x})))
then (τA(A[~t\~x],tds) ‖

(tell(S = [{~t\~x} | S ′]) ‖
absi(~x, S)))

else skip).);

81

ta = ∃ ~x, S (absi(~x, S) ‖ tell(substi(S)));
A = P: a;

end case;

return ta;

end;

The function synchronization returns a tccp agent who handles the passing
of time of utcc in tccp to achieve the synchronization, on the time, between both
languages. This resulting agent, ta, handles the values of the given variable
Syn, i.e., when it must be instantiated to ok. This situation represents the case
when the remaining process, of the given utcc program, must be executed in the
following time instant. Thus, the corresponding tccp agent must be executed. In
the while loop, we calculate, by using the function instant, the store generated
by the execution of the given utcc process (d in Figure 2.4). The calculated store
is compared with the store calculated previously to stop or continue with the
generation of clocks process. If both stores are equal then generation process is
stopped; otherwise the process continues by generating the resulting tccp agent.
The case when the calculated store is equal to the store calculate previously takes
place when the given utcc process is the process modeling the replication. Then,
to ensure the termination of this process we carry out such comparison. In the
block else, ta is updated with the parallel composition of the procedure call
utcc clock whose declaration contains the mechanism to update Syn, its first
parameter is the store calculated recently and the second is the given stream Syn.
By using the function follows, we may process in each step of the loop the utcc
process that must be executed in the current utcc time instant.

tccpAgent synchronization(input upr : utccProcess,

input Syn : stream)
u′pr : utccProcess;

cnt : integer;

store [] : set of store;

ta : tccpAgent;

u′pr = upr;

cnt = 1;

ta = skip;
while (u′pr 6= skip) do

store [cnt] = instant(u′pr,true);
if store [cnt] == store [cnt - 1]
then u′pr = skip;
else ta = (ta ‖ utcc clock(store [cnt],Syn));

u′pr = follows(u′pr,store [cnt]);
++ cnt;

82 APPENDIX B. THE TCCPTRANSLATOR FRAMEWORK

end while;

return ta;

end;

instant calculates the store generated by a given utcc process, upr. The
function is specified in a block case whose possible actions calculate the store
generated by upr following its semantics rules. The most peculiar case is given in
the process abs since to calculate the resulting store, first the constraint c must
be entailed by the given store str. Then, the instant of the ”new” A (A with
the free occurrences of xi replaced by yi) and the ”new” abs (in order to run
another possible substitution) are calculated, respectively. The resulting store is
the conjunction of both results.

store instant(input upr : utccProcess,

input/output str : store)
st : store;

case upr of

skip: st = str;
tell(c): st = str ∪ c;
(local ~x;c) A: st = instant(A[~x′\~x],c ∧ ∃~xstr);

//where ~x′ is a sequence of fresh variables

A ‖ B: st = (instant(A,str) ∧ instant(B,str));
next A: st = str;
unless c next A: st = str;
!A: st = instant(A,str);
(abs ~x;c) A:

if str ` c[~y\~x] then

st1,st2 : store;

st1 = instant(A[~y\~x],str);
st2 = instant((abs ~x;c ∧ ~x 6= ~y)A,str);
st = (st1 ∧ st2);

else st = true;
A = P: st = instant(P,str);

end case;

return st;

end;

The function follows obtains the utcc process that must be executed in the
following time instant. It simulates the execution of such process following the
functionality of the function F , used in the specification of the semantics of
utcc, which determines the ”future” of the given process, see [45] for more detail.
Similar to instant, it is specified in a block case that obtains the process to be
executed, depending on the evolution of the given utcc process, upr.

83

utccProcess follows(input upr : utccProcess,

input store : store)
u′pr : utccProcess;

case upr of

skip: u′pr = skip;
tell(c): u′pr = skip;
(local ~x;c) A: u′pr = (local ~x) follows(A,store ∧ c);
A ‖ B: (follows(A,store) ‖ follows(B,store));
next A: u′pr = A;
unless c next A: if store ` c then u′pr = skip

else u′pr = A;
!A: u′pr = !A;
(abs ~x;c) A: u′pr = (abs ~x;c) follows(A,store ∧ c);
A = P: follows(P,store);

end case;

return u′pr;

end;

Finally, the tccp declaration utcc clock, modeling the clock, updates the given
variable Syn to ok (tell(Syn = [ok | Sn])) when the store, resulting from the
execution of the generated tccp program, entails the given store in the variable
Store (the constraint of the choice agent holds). Then, in the following time
instant, the current value of Syn is instantiated to wait avoiding the execution
of agents that must be executed in a different time instant.

utcc clock(Store,Syn) :-

ask(Store)→ ∃Sn,Sn1((tell(Syn = [ok | Sn]) ‖
ask(true)→ tell(Syn = [wait | Sn1]))).

