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Abstract

In this paper we present an example of a fuzzy ψ-contractive sequence in
the sense of D. Mihet, which is not Cauchy in a fuzzy metric space in the
sense of George and Veeramani. To overcome this drawback we introduce
and study a concept of strictly fuzzy contractive sequence. Then, we also
make an appropriate correction to Lemma 3.2 of [V. Gregori and J. Miñana,
On fuzzy ψ-contractive sequences and fixed point theorems, Fuzzy Sets and
Systems 300 (2016), 93-101].
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1. Introduction

In this paper we deal with the concept of fuzzy metric due to George
and Veeramani [1] which is a modification of the one given by Kramosil and
Michalek [9, 3]. If M is a fuzzy metric on X then M generates a topology
τM on X in a similar way to classical metrics. This topology is metrizable
[2, 7] and consequently, topics related to metrics have been systematically
extended and studied in this fuzzy setting. In particular, (fuzzy) fixed point
theory is a field of high activity.

Recall that in classical fixed point theory, a contractive sequence of iter-
ates

{
f (n)(x0)

}
of a self-contractive mapping f on a complete metric space X

is constructed, for all x0 ∈ X. This sequence converges in X since contrac-
tive sequences are Cauchy. But, what about this statement in fuzzy setting?
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We notice that in [8] the authors introduced a concept of fuzzy contractive
sequence and they posed the following question: Is every fuzzy contractive
sequence a Cauchy sequence? So far, there is no answer to this question
(D. Mihet [11] gave a negative answer, but for fuzzy metrics in the sense of
Kramosil and Michalek). The purpose of this article is to make a new con-
tribution to this field and, at the same time, to correct an error appeared in
[5]. For it, we will introduce and study a concept of strictly fuzzy contractive
sequence.

Regarding the last paragraph, on the one hand, we notice that there are
several concepts of Cauchy sequence in the literature [6]. Here we focus our
attention in the two concepts used in fuzzy fixed point theory. The first
one was given by M. Grabiec in [3] and it will be denoted by G-Cauchy (see
Definition 2.2). The second one will be called, simply, Cauchy (see Definition
2.3) and it is due to George and Veeramani [1] (although it comes from
PM-spaces [13]). It is well known that Cauchy implies G-Cauchy. On the
other hand, with respect to (fuzzy) contractive mappings, we deal with four
related concepts, named within brackets, due (chronologically) to Gregori
and Sapena (GS) [8], Mihet (ψ-contractive) [11], Romaguera and Tirado
(RT) [12], and Wardowski (H) [15] (see Definition 2.4). The relationship
among these concepts is shown in the following chain of (strict) implications:

RT-contractive =⇒ GS-contractive =⇒ H-contractive =⇒ ψ-contractive

According to these concepts, and in a similar way to classical metrics,
we obtain their corresponding concepts of (fuzzy) contractive sequence (see
Definition 2.5), which preserve the aforementioned chain of implications. In
this paper we study which of these contractive conditions implies Cauchyness.

We observe in Proposition 3.11 that every ψ-contractive sequence is G-
Cauchy. Nevertheless, our main result is Example 3.12 in which we con-
struct a ψ-contractive sequence in a stationary fuzzy metric, which is not
Cauchy. This example points out that the concept of ψ-contractivity needs
to be strengthened, to some strictly fuzzy contractivity, to get Cauchyness.
But in what form should it be done? Our decision is based on (the proof
of) Lemma 3.2 of [5], which asserts: “A ψ-contractive sequence {xn} sat-
isfying

∧
t>0M(x1, x2, t) > 0, is a Cauchy sequence”. It is clear, at the

light of Example 3.12, that this lemma is false. The error in the mentioned
proof is due to the fact that the authors have improperly used the prop-
erty: M(xm+1, xn+1, t) ≥ ψ(M(xm, xn, t)), for all m,n ∈ N. Therefore we
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just define a strictly fuzzy ψ-contractive sequence (see Definition 3.2) as a
ψ-contractive sequence that satisfies that property. In this manner, the men-
tioned Lemma 3.2 is valid for strictly fuzzy ψ-contractive sequences satisfying∧

t>0M(x1, x2, t) > 0.
In a similar way, the other three concepts of strictly fuzzy contractive

sequence are defined, and among these four concepts, again the above chain
of implications is satisfied. The given concept of strictly fuzzy contractive
sequence can be considered an appropriate concept, not only because it makes
true Lemma 3.2 aforementioned, but also because for x0 ∈ X the sequence of
iterates

{
f (n)(x0)

}
of a contractive mapping f , for each one of the mentioned

contractive conditions, is strictly fuzzy contractive (see Proposition 3.5). The
reader can find another favorable argument to this new concept in Proposition
3.7. Moreover, in (b) of Example 3.9 we give a convergent RT -contractive
sequence, which is not strictly RT -contractive.

After properly correcting Corollary 3.8 and Lemma 3.12 of [5] we show
two large classes of fuzzy metric spaces where the condition of strictly fuzzy
contractivity for a sequence implies Cauchy.

The structure of the paper is as follows. Section 2 is dedicated to prelimi-
naries. Section 3 contains the concept of strictly fuzzy ψ-contractive sequence
and related results. Section 4 is, basically, a correction to [5].

2. Preliminaries

Definition 2.1 (George and Veeramani [1]). A fuzzy metric space is an
ordered triple (X,M, ∗) such that X is a (non-empty) set, ∗ is a continuous
t norm and M is a fuzzy set on X × X × ]0,+∞[ satisfying the following
conditions, for all x, y, z ∈ X, s, t > 0:

(GV1) M(x, y, t) > 0;

(GV2) M(x, y, t) = 1 if and only if x = y;

(GV3) M(x, y, t) = M(y, x, t);

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);

(GV5) Mxy : ]0,+∞[→ ]0, 1] is continuous, where Mxy(t) = M(x, y, t).

The continuous t-norms commonly used in fuzzy logic are the minimum
(∧), the usual product (·), and the Lukasiewicz t-norm (L).

3



If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗), or simply
M , is a fuzzy metric on X. This terminology will also be extended along the
paper in other concepts, as usual, without explicit mention.

George and Veeramani proved in [1] that every fuzzy metric M on X
generates a topology τM on X which has as a base the family of open
sets of the form {BM(x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, where BM(x, ε, t) =
{y ∈ X : M(x, y, t) > 1− ε} for all x ∈ X, ε ∈ ]0, 1[ and t > 0.

Let (X, d) be a metric space and let Md be a function on X ×X × ]0,∞[
defined by

Md(x, y, t) =
t

t+ d(x, y)
.

Then (X,Md, ·) is a fuzzy metric space [1], and Md is called the standard
fuzzy metric induced by d. The topology τM coincides with the topology τ(d)
on X deduced from d.

A fuzzy metric M on X is said to be stationary if M does not depend on
t, i.e. if for each x, y ∈ X, the function Mxy(t) = M(x, y, t) is constant. In
this case we write M(x, y) instead of M(x, y, t). Also, we say that a fuzzy
metric M on X is strong (non-Archimedean) if it satisfies for each x, y, z ∈ X
and each t > 0 the following inequality:

M(x, z, t) ≥M(x, y, t) ∗M(y, z, t).

Definition 2.2 (Grabiec [3]). A sequence {xn} in a fuzzy metric space
(X,M, ∗) is called G-Cauchy if limnM(xn, xn+p, t) = 1 for each t > 0 and
each p ∈ N.

This definition is equivalent to limnM(xn, xn+1, t) = 1 for all t > 0 (see
[10]).

Definition 2.3 (George and Veeramani [1].). A sequence {xn} in a fuzzy
metric space (X,M, ∗) is said to be M-Cauchy, or simply Cauchy, if for each
ε ∈ ]0, 1[ and each t > 0 there exists n0 ∈ N such that M(xn, xm, t) > 1− ε
for all n,m ≥ n0 or, equivalently, limn,mM(xn, xm, t) = 1 for all t > 0.

D. Mihet introduced in [11] a family of mappings denoted by Ψ, which
we adapt to our context (see [5, Remark 2.13]). Then, Ψ is the class of all
mappings ψ : ]0, 1] → ]0, 1] such that ψ is continuous, non decreasing and
ψ(s) > s for all s ∈ ]0, 1[. Also, in [15] D. Wardowski denoted by H the
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family of mappings η : ]0, 1] → [0,∞[ satisfying that η is onto and strictly
decreasing. On account of both classes of mappings aforementioned, we have
the following definition.

Definition 2.4. Let M be a fuzzy metric on X. A mapping f : X → X is
called

(i) RT -contractive [12] if there exists k ∈ ]0, 1[ such that:

M(f(x), f(y), t) ≥ 1− k + kM(x, y, t) for all x, y ∈ X and t > 0.

(ii) GS-contractive [8] if there exists k ∈ ]0, 1[ such that:

1

M(f(x), f(y), t)
−1 ≤ k

(
1

M(x, y, t)
− 1

)
for all x, y ∈ X and t > 0.

(iii) fuzzy H-contractive [15] with respect to η ∈ H if there exists k ∈ ]0, 1[
such that:

η(M(f(x), f(y), t)) ≤ kη(M(x, y, t)) for all x, y ∈ X and t > 0.

(iv) fuzzy ψ-contractive [11], with respect to ψ ∈ Ψ, if:

M(f(x), f(y), t) ≥ ψ(M(x, y, t)) for all x, y ∈ X and t > 0.

The following definition is according to Definition 2.4.

Definition 2.5. Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} in
X is called

(i) RT -contractive [12] if there exists k ∈ ]0, 1[ such that

M(xn+1, xn+2, t) ≥ 1− k + kM(xn, xn+1, t) for all n ∈ N and t > 0.

(ii) GS-contractive [8] if there exists k ∈ ]0, 1[ such that:

1

M(xn+1, xn+2, t)
−1 ≤ k

(
1

M(xn, xn+1, t)
− 1

)
for all n ∈ N and t > 0.

(iii) fuzzy H-contractive [15] with respect to η ∈ H if there exists k ∈ ]0, 1[
satisfying

η(M(xn+1, xn+2, t)) ≤ kη(M(xn, xn+1, t)) for all n ∈ N and t > 0.

(iv) fuzzy ψ-contractive [11], with respect to ψ ∈ Ψ, if

M(xn+1, xn+2, t) ≥ ψ(M(xn, xn+1, t)) for all n ∈ N and t > 0.
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3. Strictly fuzzy contractive sequences

In this section (X,M, ∗) is a fuzzy metric space. By a (fuzzy) contrac-
tive sequence we refer to any of the ones mentioned in Definition 2.5, when
specification is not needed. The following proposition shows the relationship
among the different notions of contractive sequence.

Proposition 3.1. The following chain of implications related to sequences,
is satisfied:

RT-contractive =⇒ GS-contractive =⇒ H-contractive =⇒ ψ-contractive

Proof. The first implication is obtained with a simple computation (with the
same constant k). The second one is a consequence of [15, Example 3.1].
The last one is a consequence of [4, Proposition 6].

We introduce now the following concept as a result of the discussion made
in Introduction.

Definition 3.2. We will say that a sequence {xn} is strictly fuzzy ψ-contractive
if M(xm+1, xn+1, t) ≥ ψ(M(xm, xn, t)) for all n,m ∈ N and t > 0. In an anal-
ogous way are defined the concepts of strictly fuzzy contractivity for the
other three concepts of contractive sequence.

Proposition 3.3. A sequence {xn} is strictly fuzzy ψ-contractive if and only
if for each p ∈ N, M(xm+p, xn+p, t) ≥ ψ(M(xm, xn, t)) holds for all n,m ∈ N.

Proof. Suppose that the sequence {xn} is strictly fuzzy ψ-contractive and let
p ∈ N. Take t > 0. With an induction process on p, we have for all m,n ∈ N
that

M(xm+p, xn+p, t) ≥ ψ(M(xm+p−1, xn+p−1, t)) ≥ . . . ≥ ψ(ψp−1)(M(xm, xn, t)))

≥ ψ(M(xm, xn, t)).

The converse is obvious.

Remark 3.4. Analogous statements can be given for the rest of the notions
of strictly fuzzy contractivity.

The following proposition ensures the existence of strictly fuzzy contrac-
tive sequences.
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Proposition 3.5. Let f : X → X be a contractive mapping in any of the
senses in Definition 2.4. Then, for each x0 ∈ X, the sequence of iterates{
f (n)(x)

}
is strictly fuzzy contractive for the same sense.

Proof. Let x0 ∈ X and suppose that f is ψ-contractive. Put xn = f (n)(x),
n = 1, 2, . . .. For t > 0 we have that

M(xm+1, xn+1, t) = M(f(xm), f(xn), t) ≥ ψ(M(xm, xn, t))

for all m,n ∈ N.
The proof for the other contractive concepts is analogous.

At the light of Proposition 3.1 the reader can easily obtain the same
chain of implications with strictly fuzzy contractive sequences instead of the
contractive ones.

The concept of strictly contractive sequence can also be given in metric
spaces, as follows.

Definition 3.6. Let (X, d) be a metric space. A sequence {xn} in (X, d) is
strictly contractive if there exists k ∈ ]0, 1[ such that

d(xm+1, xn+1) ≤ kd(xm, xn), for all m,n ∈ N.

It is also said that {xn} is strictly d-contractive. This terminology is
commonly used in topology and we will use it in other concepts without
explicit mention. Obviously, if f is a contractive self-mapping of (X, d) then
{fn(x)}n is strictly d-contractive, for each x ∈ X.

Proposition 3.7. Let (R,Md, ·) be the standard fuzzy metric where d is the
usual Euclidean metric on R. Then, every monotone (non decreasing or non
increasing) GS-contractive sequence in R is strictly GS-contractive.

Proof. Suppose that {xn} is a non-decreasing GS-contractive sequence in R.
On account of [8, Proposition 3.9], {xn} is a d-contractive sequence for the
same constant of contractivity, say k ∈ ]0, 1[. We will prove that {xn} is
strictly d-contractive. Indeed, for m,n ∈ N, with m > n, we have that

d(xm+1, xn+1) ≤ d(xm+1, xm) + d(xm, xm−1) + . . .+ d(xn+2, xn+1).
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Since {xn} is d-contractive and monotone we have that

d(xm+1, xn+1) ≤ kd(xm, xm−1) + kd(xm−1, xm−2) + . . .+ kd(xn+1, xn)

= k (d(xm, xm−1) + . . .+ d(xn+1, xn))

= k (d(xm, xn)) ,

and so {xn} is strictly d-contractive. Therefore,

1

Md(xm+1, xn+1, t)
− 1 =

t+ d(xm+1, xn+1)

t
− 1 =

d(xm+1, xn+1)

t

≤ kd(xm, xn)

t
= k

(
1

Md(xm, xn, t)
− 1

)
,

and hence {xn} is strictly GS -contractive.

In Example 3.9 we will construct a contractive sequence in R, provided
with its usual metric, which is not strictly contractive. Then, based on
this sequence, we will give an example of an RT -contractive sequence (the
strongest concept of contractivity, here considered) which is not strictly RT -
contractive. Before, we need the following proposition.

Proposition 3.8. Let (X, d) be a metric space such that d(x, y) < 1 for
all x, y ∈ X. Denote by (X,N,L) the stationary fuzzy metric space where
N(x, y) = 1− d(x, y). Then

(i) τN = τ(d).

(ii) {xn} is (strictly) RT -contractive in (X,N,L) if and only if {xn} is
(strictly) d-contractive.

(iii) {xn} is N-Cauchy if and only if {xn} is d-Cauchy.

(iv) (X,N,L) is complete if and only if (X, d) is complete.

Proof. It is straightforward.

It is left to the reader to introduce a similar proposition for (X,Md, ·).
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Example 3.9. (a) (A non-strictly contractive sequence). Consider the
metric space (X, d), where X = R and d is the Euclidean metric.
Let a, b ∈ R with 0 ≤ a < b. We define the sequence {xn} in R,
by recurrence as follows.

x1 =
a+ b

2
, x2 =

a+ x1
2

,

x2k−1 =
x2k−2 + x2k−3

2
, x2k =

x2k−1 + x2k−3

2
, for k ≥ 2.

The sequence {xn} is d-contractive. Indeed,

d(xk+1, xk) = |xk+1− xk| = |xk+1 + xk−1− xk−1− xk| = 2|xk+2− xk+1|,

that is, d(xk+2, xk+1) ≤ 1
2
d(xk+1, xk), and so {xn} is d-contractive. This

sequence is not strictly d-contractive. Indeed, for k ≥ 1, we have that

d(x4k+2, x4k) = |x4k+1

2
+
x4k−1

2
− x4k| =

∣∣∣∣x4k + x4k−1

4
+
x4k−1

2
+ x4k

∣∣∣∣
=

3

4
|x4k−1 − x4k| >

1

2
|x4k−1 − x4k| =

∣∣∣∣x4k−1 −
x4k − x4k−1

2

∣∣∣∣
= |x4k−1 − x4k+1| = d(x4k+1, x4k−1),

and hence, the sequence {xn} is not strictly contractive.

On the other hand, the sequence {xn} is convergent in R, since every
contractive sequence in a metric space is Cauchy, and R is complete.

(b) (A non-strictly RT -contractive sequence). Now, take a = 0, b = 1/2 in
the part (a) of this example. The corresponding sequence {xn}, named
now {yn}, is a non-strictly contractive sequence in the complete metric
space ([0, 1/2] , d) and by (ii) of Proposition 3.8, {yn} is a non-strictly
RT -contractive sequence in ([0, 1/2] , N,L). Moreover, by (iii)−(iv) of
Proposition 3.8 the sequence {yn} is N -Cauchy and then it converges
in [0, 1/2].
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Remark 3.10. After a tedious computation it can be proved that the sequence
{xn} in (a) of Example 3.9 converges to (3a + 2b)/5. Indeed, by induction
on k, it is easy to prove that

x4k − x4k−1 =
(b− a)

16k
. (1)

Furthermore, for every k ∈ N, we have that

x4k =
x4k−1 + x4k−3

2
=

(x4k−2 + x4k−3) + (x4k−4 + x4k−5)

4

=
x4k−3 + x4k−5 + x4k−4 + x4k−5 + 2x4k−4 + 2x4k−5

8

=
x4k−4 + x4k−5 + 2x4k−5 + 2x4k−4 + 2x4k−5 + 4x4k−4 + 4x4k−5

16

=
7x4k−4 + 9x4k−5

16
=

7x4(k−1) + 9x4(k−1)−1

16
.

Now, using Equation (1), we have that

x4k =
7x4(k−1) + 9

(
x4(k−1) − (b−a)

16k−1

)
16

= x4(k−1) −
9(b− a)

16

1

16k−1
.

Using the notation yk = x4k, we get a recurrence sequence given by

yk = yk−1 −
9(b− a)

16k
, for k = 2, 3 . . . (2)

Now, one can prove that y1 = x4 = 9a+7b
16

, and then, by a few calculations
one obtains

yk =
3a+ 2b

5
− 3(a− b)

5

1

16k
.

Therefore the sequence {yn}, obviously, converges to (3a + 2b)/5. Our
conclusion holds by the fact that all subsequences of a convergent sequence
converge to the same point.

Now we are interested in the relationship between fuzzy contractive se-
quences and Cauchy sequences. The most general result that we can give is
the following proposition, which states that every fuzzy contractive sequence
of Definition 2.5 is G-Cauchy.
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Proposition 3.11. Every ψ-contractive sequence is G-Cauchy.

Proof. Let {xn} be a ψ-contractive sequence. Then, for t > 0 we have that

M(xn, xn+1, t) ≥ ψ(M(xn−1, xn, t)) ≥ . . . ≥ ψn)(M(x1, x2, t)),

for all t > 0. Now for each s ∈ ]0, 1[ it is easy to verify that limn ψ
n)(s) = 1,

and then limnM(xn, xn+1, t) = 1 for each t > 0.

In the following example we show a ψ-contractive sequence which is not
Cauchy.

Example 3.12 (A ψ-contractive sequence which is not Cauchy). Consider
the real line R endowed with the usual Euclidean metric d. We define the
mapping ψ̃ : [0, 1]→ [0, 1] as follows.

Consider the partition {[`/(`+ 1), (`+ 1)/(`+ 2)[ : ` = 0, 1, 2, . . .} of [0, 1[.
We define

ψ̃(s) =


`+ 1

`+ 3
· s+

2`+ 3

(`+ 2)(`+ 3)
, for s ∈

[
`

`+ 1
,
`+ 1

`+ 2

[
,

1 for s = 1.

Let ψ the restriction of ψ̃ to ]0, 1].Then, it is easy to verify that ψ(s) > s
for all s ∈ ]0, 1[, and that ψ is non-decreasing on [0, 1]. Also ψ is continuous
on ]0, 1[. We will see that ψ is continuous at s = 1. Suppose that {sj} is a
sequence in [0, 1] that converges to 1. We will see that {ψ(sj)} converges to
1.

Let 0 < ε < 1. Choose `0 ∈ N such that `0/(`0 + 3) > 1− ε. Then

ψ

(
`0

`0 + 1

)
=
`0 + 1

`0 + 3
· `0
`0 + 1

+
2`0 + 2

(`+ 2)(`+ 3)
>
`0 + 1

`0 + 3
· `0
`0 + 1

=
`0

`0 + 3
> 1−ε

Take δ > 0 such that `0/(`0 + 1) < δ < 1. Then, there exists j0 ∈ N such
that sj ∈ ]δ, 1] for j ≥ j0, since {sj} converges to 1. Hence, for j ≥ j0 we
have that ψ(sj) ≥ ψ(δ) ≥ ψ( `0

`0+1
) > 1− ε. Hence, ψ is continuous at s = 1.

Consider the sequence (harmonic series) {xn} where xn =
∑n

i=1 1/i. It
is well known that {xn} is a G-Cauchy sequence which is not Cauchy in the
standard fuzzy metric space (R,Md, ·) (see [1]). Then it is clear that {xn} is
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G-Cauchy in the stationary fuzzy metric space (X,M1, ·) where M1(x, y) =
1

1+d(x,y)
and it is almost immediate that {xn} is not Cauchy in (R,M1, ·).

Now we will prove that {xn} is ψ-contractive.
For n ∈ N we have that

d(xn, xn+1) =
1

n+ 1
, d(xn+1, xn+2) =

1

n+ 2
.

Then,

M1(xn, xn+1) =
1

1 + 1
n+1

=
n+ 1

n+ 2
, M1(xn+1, xn+2) =

1

1 + 1
n+2

=
n+ 2

n+ 3
.

Now, since

ψ(M1(xn, xn+1)) = ψ

(
n+ 1

n+ 2

)
=
n+ 2

n+ 4
· n+ 1

n+ 2
+

2(n+ 1) + 3

(n+ 3)(n+ 4)
=

=
n+ 1

n+ 2
∈
[
n+ 1

n+ 2
,
n+ 2

n+ 3

[
,

we have that

M1(xn+1, xn+2) =
n+ 2

n+ 3
≥ ψ(M1(xn, xn+1)),

and so {xn} is ψ-contractive.

Remark 3.13. The sequence {xn} of Example 3.12 is not strictly fuzzy ψ-
contractive in (R,M1, ·). Indeed, d(x2, x4) = 7/12 and d(x3, x5) = 9/20.
Then M1(x3, x5) = 20/29 and M1(x2, x4) = 12/19. Since 12/19 ∈ [1/2, 2/3[,
then

ψ(M1(x2, x4)) = ψ(12/19) =
2

4
· 12

19
+

7

20
=

373

380
.

Then, M1(x3, x5) = 20/29 < 373/380 = ψ(M1(x2, x4)), and so, {xn}
is not strictly fuzzy ψ-contractive. Furthermore, it can be proved that for
each n ∈ N there exists m ∈ N with m > n satisfying M1(xn+1, xm+1) <
ψ(M1(xn, xm)). Indeed, fix n ∈ N. Since {xn} is a sequence of positive terms
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which diverges to infinity, then we can find m > n satisfying
∑m+1

i=n+2 1/i ≥ 1.
Then,

d(xn+1, xm+1) =
m+1∑
i=n+2

1

i
≥ 1, d(xn, xm) =

m∑
i=n+1

1

i
>

m+1∑
i=n+2

1

i
≥ 1.

Thus,

M1(xn+1, xm+1) =
1

1 + d(xn+1, xm+1)
≤ 1

2

and

M1(xn, xm) =
1

1 + d(xn, xm)
<

1

2
.

As M1(xn, xm) ∈ [0, 1/2[, we take ` = 0 to compute ψ(M1(xn, xm)), and so,
since M1(xn, xm) > 0, we have that

ψ(M1(xn, xm)) =
1

3
M1(xn, xm) +

1

2
>

1

2
≥M(xn+1, xm+1).

Remark 3.14. Recently in [14] the following contractive condition, related
with the above ones, has been given.

Denote by Z the family of all functions ζ :]0, 1]×]0, 1] → R satisfying
ζ(t, s) > s for all t, s ∈]0, 1[. Let (X,M, ∗) be a fuzzy metric space and let
f : X → X be a mapping. Then, f is called a fuzzy Z-contractive mapping
with respect to ζ if M(f(x), f(y), t) ≥ ζ(M(f(x), f(y), t),M(x, y, t)) for all
x, y ∈ X, f(x) 6= f(y), t > 0 where ζ ∈ Z. According to this definition, we
can say that a sequence {xn} in X is Z-contractive with respect to ζ ∈ Z
if M(xn+1, xn+2, t) ≥ ζ(M(xn+1, xn+2, t),M(xn, xn+1, t)) for all n ∈ N and
t > 0.

In [14] it is observed that every ψ-contractive mapping is fuzzy Z-contractive
wih respect to the function ζM given by ζM(t, s) = ψ(s) for all s, t ∈]0, 1].
Then it is immediate that every ψ-contractive sequence is Z-contrative se-
quence with respect to ζM . Therefore the sequence {xn} constructed in Ex-
ample 3.12 is a fuzzy Z-contractive sequence which is not Cauchy.

4. Correction to Lemma 3.2 of [5]

Lemma 3.2 of [5] asserts that if {xn} is a ψ-contractive sequence satisfying∧
t>0M(x1, x2, t) > 0 then {xn} is Cauchy. Clearly, at the light of Example
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3.12 this assertion is false. Nevertheless one can observe on the proof of this
lemma that this assertion is true if we assume that {xn} is strictly fuzzy
ψ-contractive.

Then, accordingly to the last paragraph, Corollary 3.8 and Lemma 3.12
of [5] must also be corrected as show the next propositions.

Proposition 4.1. (Correction of [5, Corollary 3.8]). Let (X,M, ∗) be a
fuzzy metric space such that

∧
t>0M(x, y, t) > 0 for all x, y ∈ X. Then every

strictly fuzzy ψ-contractive sequence is a Cauchy sequence.

Proposition 4.2. (Correction of [5, Lemma 3.12]). Let (X,M, ∗) be a strong
fuzzy metric space. Then every strictly fuzzy ψ-contractive sequence is a
Cauchy sequence.

Remark 4.3. The fixed point theorems of [5] remain valid, since the sequence
of iterates

{
f (n)(x0)

}
for each x0 ∈ X, for a fuzzy ψ-contractive mapping f

of X, is a strictly fuzzy ψ-contractive sequence by Proposition 3.5.

At the light of Proposition 4.2, we propose to investigate the next prob-
lem.

Problem 4.4. Is every strictly fuzzy ψ-contractive sequence a Cauchy se-
quence?
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