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Correspondence should be addressed to Victor Yepes; vyepesp@cst.upv.es

Received 4 March 2019; Accepted 14 May 2019; Published 29 May 2019

Academic Editor: Abdul Aziz bin Abdul Samad

Copyright © 2019 Gaioz Partskhaladze et al. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

*is paper presents new approaches for solving a problem of the stability of compressed rods in the elastoplastic working region of
materials. It is known that the columns of buildings, supports of engineering devices, drill rods of oil, and gas extraction industry
may be subjected to significant risk of stability loss. Nowadays, there are designmethods based on test results defining the relations
(e.g., critical stresses-slenderness) to avoid this risk due to stability loss, but the precision and limits of definition are not always
known.*emain objectives of the study were to develop new approaches that would allow specifying the values of critical stresses
of compressed elements beyond the proportional limit. *e problem of stability of the compressed elements in the elastoplastic
region was studied according to the stability theory. *e authors suggested an original approach to the issue; in particular, the
determination of values of the critical stresses and the finding of the points of the bifurcation were carried out by the tangent
established by experimental results and by the approximation of the so-called double modulus. Comparative analysis showed the
advantage of the proposed approach, particularly that the new critical curves were located below the curves of Engesser-Karman
and Shanley and above the critical curves established by building codes. A new approach for the determination of critical stresses
in the elastoplastic region was developed through which the structural reliability and economic efficiency was increased by almost
12% compared to the existing approaches.

1. Introduction

For developing modern structural, civil, mechanical, and
other fields of engineering, it is necessary to work out very
precise calculating methods for the stability of rod systems.
Researchers still have a great interest in the failure of
structural elements due to the loss of stability.

A bulk-forming process from metallic materials, such as
stamping, forging, extrusion, and spinning, is one of the
main processes in industrial manufacturing. Some forging
tools, such as supports, punches, or ejectors, may be sub-
jected to significant risk of stability loss (buckling) when they
are used. Rods are used for drilling in oil and gas fields. *e
stability loss of the drill rod is one of the complicating factors
of the drilling process, which is a major problem for oil and

gas extraction industry [1]. In the seismic areas, steel frames
are known as an efficient arrangement for structures. In
addition, load-carrying capacity of the columns as the main
parts of the frame systems, using limit state design, is de-
termined by the stability in the elastoplastic region of the
material [2]. *erefore, steel columns have been widely used
to dissipate seismic energy in seismic regions. *ese con-
siderations are especially relevant in calculating the stability
of high-rise buildings taking into account the complicated
technological load on them [3–8].

*is paper presents new approaches for solving buckling
problems for axially compressed columns in the elastoplastic
working region of the material. A prismatic (rectangular)
steel column was studied as a sample that is depicted in
Figure 1. *e study of the buckling behavior of prismatic
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(rectangular) compressed elements is a relevant step towards
understanding and assessing the reliability of more complex
structures [9].

In steel columns, the issues of buckling can be divided
into three types: overall buckling, local buckling, and in-
teractive buckling [10, 11]. In prismatic columns with
rectangular cross section and medium slenderness ratio,
overall buckling is normally observed �rst [12].

 e buckling appearance (loss of stability) process was
assessed with critical forces (from which the values of re-
duction factor are de�ned).  e reduction factor approach
de�ned from critical stresses appears in two alternative
methods in the standards: (a) traditional method using
semiempirical design equations and (b) computer-aided
method based on linear buckling analysis [12, 13].

It is common knowledge that the physical action causing
the buckling of axially compressed columns is the depletion
of its lateral sti�ness to a value of zero. ere are a number of
problems in actual engineering situations, which complicate
the prediction of buckling loads, e.g., initial (geometric)
imperfection, material nonlinearity, and loading eccentric-
ity.  e linear elastic Euler model of a prismatic simply
supported rod is still the fundamental tool for studying
buckling stability [9, 10].

In a similar way, several empirical models, for instance,
Engesser’s [7, 13, 14], are proposed in the literature to

experimentally characterize the elastic-plastic and plastic
buckling. Later, Shanley [9, 15] o�ered a di�erent approach
for de�ning the buckling process with its semiempirical
design equation.

In the literature [16, 17], researchers presented a nu-
merical method for computing the load-de�ection re-
lationships of loaded square columns with various geometric
parameters, loading eccentricity, and column slenderness
ratios.

As mentioned above, steel frames are an e�cient ar-
rangement for structural systems in seismic regions. For this
reason, they have been the subject of strong research interest
in recent years. In practice, earthquakes generate multidi-
rectional ground motions, with the occurrence of yielding
and buckling e�ects [4, 6, 8]. Previous research studies
[3, 18] indicate how the development of local buckling
restricts the ability of the members to deform plastically; also
how cross-section geometry in�uences strength, ductility,
and the energy absorption process.

In literature [12], the researchers examined the simply
supported steel member with uniform cross section sub-
jected to uniform forces.  e results showed buckling re-
sistance for such members and were standardized by the
reduction factor based on the Ayrton–Perry formula [19]
and calibrated by strong theoretical and empirical back-
ground.  e local and overall stability of the columns
through simulating their geometric and material nonlinear
behavior was investigated [11]. A methodology [20] was
devised to estimate the elastoplastic properties of metallic
materials from the hardness measurements using the two
most frequently used sharp indenters, i.e., the Vickers in-
denter and the Knoop indenter. In the study [21], the re-
searchers studied overall buckling behavior and design of
high-strength steel columns.  e study results indicated that
with an increase of the yield strength of high-strength steel,
compressive residual stresses ratio to the yield strength
becomes evidently lower and possesses much less severe
e�ects on the overall buckling behavior. Di�erent H-shaped
sections of the welded steel columns were experimentally
and numerically investigated with their overall buckling
behavior, and their practical application was promoted [22].

 e main disadvantage of the previously proposed de-
sign methods to avoid risk due to loss of stability in the
elastoplastic region was that the accuracy and limits of the
de�nition were not always known.

 e main objectives of the study were to (a) develop the
approaches that would allow specifying the values of critical
stresses of compressed elements beyond their proportional
limit, (b) approximate and specify maximally the theoretical
and real values of critical loads, (c) �nd the possible points of
bifurcation in the elastoplastic region, and (d) eliminate the
existence of residual deformations in the cross-section and
eventually reduce the mass of the structure and increase its
reliability.

 e problem of the stability of the compressed elements
was studied according to the stability theory. Methods based
on the equations of equilibrium of mechanics for slightly
perturbed systems around the initial position were used to
study the stability.
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Figure 1: A prismatic (rectangular) pin-ended steel column.
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During the study, these steps were followed:

(a)  e energy method was used
(b)  e principle of initial imperfections of the rod was

considered
(c) Euler’s analytical method was used in (during)

compression, which, in turn, was based on Hooke’s
law

(d)  e process of stability loss (buckling) was studied
depending on the critical stresses and the slenderness
ratio [12, 23–26]

 e advantage of the proposed approach in determining
stability of the compressed elements compared to the
existing ones is that the critical stresses in the elastoplastic
region are derived analytically and they accurately re�ect the
experimental data.

2. Stability Problem Formulation

2.1. General Aspects of Understanding Stability.  e load-
carrying capacity of a compressed rod could be depleted as a
result of stability loss or as a result of the de�ection that
occurs before the rod fails due to compression.  e equi-
librium of a rigid body could be stable, unstable, or neutral.
 e same condition occurs in deformable body mechanics.
 e only di�erence is that the type of equilibrium depends
on the value of the acting load [8, 27].

Figure 2 depicts a long thin (slender) cantilevered rod
with axial force loading.  e rod is compressed by a rela-
tively small value of the force N and is present in a stable
equilibrium since it assumes a slight deviation from the
vertical as a result of any perturbed impact, and after the
removal of the force, it soon returns to the initial state
(Figure 2(a)).

 e rod gradually returns to the initial position together
with the increase of the load, and the state of the neutral
equilibrium occurs at a certain value of the critical forceNcr.
 e rod obtains equilibrium in the de�ected position during
the modest deviation from the vertical position (dashed line,
Figure 2(b)). At this time, the bifurcation (the coexistence of
contiguous equilibrium forms) is formed, which is char-
acterized by an “exchange” of stability between two equi-
librium forms of the rod.

 e rectilinear form “loses” stability, and the curvilinear
form still “tries” to obtain it. As it is known, the force that
transfers the rod from the rectilinear stable position to the
curvilinear stable position is a critical force Ncr.

 e new equilibrium curvilinear form theoretically
becomes stable at loading, the value of which exceeds
critical one (Figure 2(c)).  is condition is practically
unacceptable since the rod already works not for pure
compression but for compression with bending, i.e., when
the force reaches its critical value, the rectilinear form of the
rod is already unstable.  e rod will bend in a less rigid
plane and obtain (get) a stable curvilinear form.  e
curvature of the rod begins to increase rapidly even when
the load increases slightly, and it loses its load-carrying
capacity [2, 13].

2.2. �eoretical Analysis and Euler’s Critical Curves in the
Elastic Region. Figure 3(a) depicts the long narrow pin-
ended rod on which the compressive force is loaded
along the symmetrical axis. Taking into account the principle
of initial imperfections of the rod, the rod is bent during the
load by the axial force (Figure 3(b)), [12, 24]. In order to
reveal the internal bending momentM, it is necessary to cut
the column in the middle zone for creating the free body
(Figure 3(c)).

Moment equilibrium dictates that the bending moment is
given byM � −Ny. Here, y is the lateral de�ection. From the
resistance of materials, it is known thatM/EI ≈ d2y/dx2. e
above two relationships provide de�ning di�erential equation
for Euler buckling. In addition, according to the energy
method, the compressive force reaches its critical value when
the ends of the rod approach each other, and the work
performed by external forces is equal to the deformation work
of the bending of the compressed rod [6, 13, 14].

A di�erential equation of the curved axis for such rods is
shown as follows:

d2y

dx2
+
N

EI
y � 0. (1)

By solving it, the formula for calculating critical force/
stress was developed by Leonard Euler [9, 12]:

Ncr �
π2EImin

l20
,

σcr �
π2E
λ2
,

(2)

whereNcr is the critical force, σcr is the critical stress, E is the
modulus of elasticity (Young’s modulus), λ � l0/imin is the

N < Ncr

(a)

N = Ncr

(b)

N > Ncr

(c)

Figure 2: Equilibrium types of deformed body-cantilevered col-
umn under axial force. (a) Stable equilibrium; (b) neutral equi-
librium; (c) unstable equilibrium.

Advances in Civil Engineering 3



slenderness ratio that is equal to the ratio of the effective
length of the column to the least of radius gyration, l0 � μl is
the effective length of the rod/column, μ is the reduction
ratio, which depends on the boundary conditions at the ends
of the rod/column, the radius of gyration is equal to
imin �

������
Imin/A

􏽰
, Imin is the minimummoment of inertia (the

second moment of area) of the cross section, and A is the
area of the cross section of the column σ0 � N/A.

*e geometrical and material characteristics of the
carbon steel (S235) columns with various grades are pre-
sented in Table 1. A diagram depicting the stress-strain
relationship for carbon steel is constructed in Figure 4(a)
according to Table 1, and a diagram depicting the slen-
derness ratio of critical stresses (equation (2)) for carbon
steel is constructed in Figure 4(b), Curve 1 [9, 15, 21, 28].

Equation (2) is valid for such rods that work in the elastic
region. Critical stresses (σcr) are less than the proportional
limit (σpl), σcr < σpl in this region (Figure 4(a)), and the
slenderness ratio (λ) is higher than the critical slenderness
ratio (λcr), λ> λcr for carbon steel. For example, the diagram
constructed on Figure 4(b) depicts that the elastic region
corresponds to λ∈[102, ..., 200], the zone of slenderness for
steel-S235. Here, λcr � π

�����
E/σpl

􏽱
, where σpl is the pro-

portional limit of the material. *e constant modulus of
elasticity (Young’s modulus) E spreads in the whole cross
section of the rod. A diagram constructed in the zone of the
large slenderness is called Euler’s quadratic hyperbola
(Figure 4(b), Curve 1) [9]. *e points of bifurcation are
located at the points existing on the hyperbola diagram. It
shows the coexistence of the neighboring equilibrium forms
for long flexible rods (i.e., columns with slender pro-
portions) working in the elastic region.

2.3. Critical Curves and /eoretical Analysis in the Elasto-
plastic Region. When a perfectly straight column is

subjected to an axial force, the state of internal stresses near
the midpoint of the rod/column is uniform compression.
For a crooked column (the principle of initial imperfec-
tions), the state of internal stress near the midpoint is not
uniform, and there arises the net tension stress on the outer
curve of the column [12, 24].

Figure 5 depicts a blowup of the middle slenderness ratio
of the column and the stress distribution in the cross section
of the middle zone (Figure 5(a)). *e tensile zone, i.e., the
unloaded zone (area A1 in Figure 5(b)) together with the
compressed zone (area A2 in Figure 5(b)), arises in the cross
section during buckling in which (tensile zone) constant
modulus of elasticity E will exist because of the relatively
small value of tensile stresses and Gerstner’s law (see the
zone, where σ < σel, Figure 4(a)) [9, 27].

*ere is no increase in compressive force during the
buckling in the elastoplastic region in accordance with the
first theory of calculating the stability of compressed ele-
ments. *e compressive stresses will transfer from the
unloaded zone to the compressed zone due to the crook-
edness of the column [18, 29]. Consequently, the stresses will
be increased in the compressed zone, and instead of the
constant modulus of elasticity E, the smaller value of the
tangent modulus Et will exist (Figure 5(b)).*us, in the cross
section, there will be simultaneously two elastic moduli. *e
modulus E will exist in the tensile zone, and the tangent
modulus Et will exist in the compressed zone (Figure 5(b)).

Only the constant modulus of elasticity E is no longer
useful in the elastoplastic working region of the material,
that is, the zone of slenderness—λ ∈ [40, . . ., 102] for the steel
S235 in the cross section, because the stress-strain re-
lationship in this region becomes nonlinear (Figures 4(a)
and 5(b) compressed zone) [22, 30].

*e formula for calculating critical stresses for the
elastoplastic region is identical to the calculation formula for
the elastic region. *ere is just one difference between them,
e.g., instead of the constant elastic modulus E, the reduced
modulus T of Engesser-Karman appears, which has the
following form in the case of a rectangular cross section
[13, 27].
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Figure 3: *e long slender pin-ended rod/column. (a) Design
scheme of a compressed pinned rod; (b) buckling of a long slender
rod; (c) free body for Euler buckling model.

Table 1: Design parameters of carbon steel with various grades.

ε × 108 σ (kN/cm2) Et × 10−4
(kN/cm2) T × 10−4 (kN/cm2) λT λt

0.95 20 2.06 2.06 102 102
1.0 21 1.42 1.72 90 81.8
1.1 22 0.99 1.39 79 66.6
1.2 22.8 0.67 1.05 67.6 54
1.3 23.4 0.46 0.85 59 44
1.4 23.8 0.26 0.54 47.5 32.7
1.5 23.9 0.13 0.33 37 23.1
1.6 24 0.06 0.19 28 15.7
1.8–4.0 24 0 0 0 0
4.5 24.1 0.02 0.07 17 9.1
5 24.2 0.04 0.13 23 12.7
6 24.7 0.05 0.15 24.5 14.2
8 25.75 0.05 0.15 24 13.8
10 26.85 0.05 0.15 23.6 13.6
12 28 0.05 0.15 23 13.5
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T �
4EEt��
E

√
+
��
Et
√

( )
2. (3)

In this case, when using equation (3), Euler’s formula
will be equal to the following:

σcr �
π2T
λ2
. (4)

Curve 2 in Figure 4(b) depicts the dependency diagram
[σcr − λ] in the zone of medium slenderness λ ∈ [40, ..., 102]
constructed by the use of equation (4).

If the sum of the moments of the internal forces will be
equal to the external moment, then the formula of the
bending moment for any cross section, with allowance for
the so-called tangent modulus, will be equal to the
following:

M � ∫
A1

σ1ydA + ∫
A2

σ2ydA⇔M � ∫
A1

E

ρ
y2dA

+ ∫
A2

Et

ρ
y2dA⇔M �

E

ρ
∫
A1

y2dA +
Et

ρ
∫
A2

y2dA.

(5)

Hence,

M �
1
ρ
EI1 + EtI2( ), (6)

where I1 and I2 are the moments of inertia of both parts
of the cross section towards the neutral axis (Figure 6).
 e tangent modulus Et is obtained as constant (an
average).

As commonly known, the formula will be obtained using
the elastoplastic modulus T∗ instead of the elastic modulus E
in the formula M � EI/ρ of the bending moment.

M �
T∗I

ρ
, (7)

whereM is the bending moment, T∗ is the double modulus,
I is the moment of inertia, and ρ is the local bending radius
(the radius of bending at the current section).

 e formula for the double modulus of elasticity is
derived by equating equations (6) and (7) and by solving T∗
[7] as follows:

T∗ �
1
I
EI1 + EtI2( ). (8)

As is obvious from equation (8), the double modulus
depends on the shape of the cross section of the rod.  e
neutral axis divides the cross section into parts having
various moduli that allow �nding the reduced sti�ness
(T∗ · I) of the rod as the product of the moment of inertia (I)
of the rod on the reduced modulus (T∗).

According to the second approach for calculating
the stability of compressed elements (Shanley’s theory),
there will not be the unloaded zone in the cross sec-
tion in the elastoplastic region of the material since
the compressive force increases along with the bending
[13].

At the beginning of stability loss, the loading speed with
the longitudinal forces of the rod will be much more than the
unloading speed of the bent �bers and the stresses will in-
crease throughout the section, i.e., a small bendwill not lead to
unloading.  erefore, above the limits of elasticity, the critical
tangential force will be the tangent according to modulus Et
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Figure 4: Blown up middle zone of a long slender rod. (a) Free body for Euler buckling model; (b) combined axial and bending stresses in a
crooked column.
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[7].  is assumption greatly simpli�es the calculation of the
compressed rods on critical forces, especially the di�cult tasks
of the stability of slabs and shells [15].

 en, the parabolic equation proposed by Shanley and
proven by Stelmakh’s tests can be used for the tangent
modulus of various steels at the elastoplastic stage.

Et � E 1−
σcrt − σel
σy − σel

( )
2

 , (9)

where σcrt is the critical stress in the elastoplastic region, σel
is the elastic limit, and σy is the yield strength.

On the contrary, the critical stress calculated by Engesser
can be expressed with the dependence of the slenderness, λ,
and the tangent modulus, Et. In this case, Euler’s formula
will be as follows [14, 27]:

σcr �
π2Et

λ2
. (10)

Curve 3 in Figure 4(b) depicts the dependency graph
[σcr − λ] in the zone of medium slenderness λ ∈ [40, ..., 102]
constructed by equation (10) and according to Table 1.

3. Problem Solution

3.1. Choice of Design Loads and Criteria for Stability. In
addition to the methods presented in the introduction, when
studying the rod deformations, small deviations compared
to the length of the rod are adopted, or when studying rod
deformation, it is assumed that the rod is in a geometrically
linear form.  e stress-strain relation is known. Despite all
this, the problem includes many di�culties.  e �rst di�-
culty is to determine the points of bifurcation.  e second
di�culty is to determine which of the loads, the tangent
modulus (Et), or the reduced modulus (Engesser-Karman-
T) must be chosen for the calculation.  e third di�culty is
how to eliminate residual deformations in the cross section.
It is necessary to obtain such a dependence, which by a single
approach will determine such critical stresses, which will be
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Figure 6:  e cross section of the rod.
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Figure 5: Euler diagram with a real elastoplastic behavior using a speci�c variation of stresses for carbon S235 steel. (a) Stress-strain
diagram; (b) dependence of the critical stresses and the slenderness ratio. (1) Euler’s quadratic hyperbola; (2) Engesser-Karman’s model; (3)
Shanley’s model; (4) authors approach; (5) model of building codes; (6) experimental data.
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close to the real values of critical loads.*ey will also be close
to the experimental data.

In order for the critical curves to be determined not only
in the elastoplastic region on the basis of the experimental
data, the authors proposed a new approach to the analytical
solution of the formula for calculating critical stresses.

3.2. Proposed New Approach for Obtaining Critical Stresses in
the Elastoplastic Region and Its /eoretical Analysis. *e
calculation methods based on the results of the experimental
research have been the most common up to now. *erefore,
various authors have proposed formulas for calculating the
longitudinal bending beyond the limits of elasticity [12].

*e authors suggested an original approach to the issue;
in particular, the determination of values of the critical
stresses and the finding of the points of the bifurcation were
carried out by the tangent (Et) established by experimental
results and by the approximation of the so-called double
modulus (T∗).

If the modulus of elasticity E is replaced by the double
modulus T∗ in the Euler’s formula, the critical stress will
have the following form:

σcr �
π2T∗

λ2
. (11)

In this study, the authors substituted the value of the
double modulus (T∗) from equation (8) into the formula of
the critical stress (equation (11)), and it was assumed that
Euler’s critical stress is valid until the critical slenderness
(λcr).

*e cross section was divided into the tensile and
compressed zones. *e constant modulus of elasticity E will
be used for the tensile zone and the tangent modulus Et from
equation (9) established by Shanley and proven by Stel-
makh’s tests in the compressed zone.

*e joint work of both moduli in the cross section
(modulus of elasticity E in the tensile zone and the tangent
modulus Et in the compressed zone) was used in the double
modulus (T∗) (equation (8)) to obtain the following
equation:

σcr �
π2T∗

λ2
�

π2 · 1( 􏼁/I EI1 + EtI2( 􏼁

λ2
�
π2E

λ2cr

I1

I
+
π2Et

λ2t

I2

I
.

(12)

From equation (12), the following equation is obtained:

σcr � σcr′
I1
I

+ σcrt
I2
I

, (13)

where σcr′ is the critical stress when the critical slenderness
within the elasticity reaches the limit value (λcr � 102), and
λt ≤ λcr is the critical slenderness that has low value in
comparison with λcr (Figure 4(b)).

σcrt is the critical stress for the tangent modulus (in the
elastoplastic region) and is equal to the following:

σcrt �
π2Et

λ2t
. (14)

Input the value of Et from (9) into equation (14). In this
case, the formula of σcrt will be as follows:

σcrt �
π2E

λ2t
1−

σcrt − σel
σy − σel

􏼠 􏼡

2
⎡⎣ ⎤⎦. (15)

*e following quadratic equation is obtained by solving
σcrt from equation (15):

σ2crt − 2σel −
σy − σel􏼐 􏼑

2

π2E
λ2t

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦σcrt + σy 2σel − σy􏼐 􏼑 � 0. (16)

*e value of the critical stress-σcrt was solved from
quadratic equation (16) and substituted in equation (13), and
thus, the adjusted formula for calculating the critical stresses
was obtained in the elastoplastic working region of the
material.

σcr �
π2E

λ2
1−

I2
I

􏼒 􏼓 + σel −
λ2t σy − σel􏼐 􏼑

2

2π2E
⎛⎝ ⎞⎠

I2
I

+
I2

I

������������������������������

σel −
λ2t σy − σel􏼐 􏼑

2

2π2E
⎛⎝ ⎞⎠− σy 2σel − σy􏼐 􏼑

􏽶
􏽴

.

(17)

3.3. Numerical Analysis. According to equation (17) of the
critical stresses obtained by the authors, the dependence
between the slenderness and the critical stresses in the region
of medium slenderness is constructed as Curve 4 in
Figure 4(b).

*e following data were used for obtaining the numerical
values:

*e material: carbon steel (S235); proportional limit
σpl � 19.6 kN/cm2; elastic limit σel � 20 kN/cm2; yielding limit
σy � 24 kN/cm2; modulus of elasticity E � 21000 kN/cm2;
design resistance Ry � 23.5 kN/cm2; slenderness ratio 40≤
λt ≤ 102; critical slenderness ratio λcr ≈ 102.

At the elastoplastic region and middle slenderness ratio,
λ ∈ [40, ..., 102]; from Figure 4(b), it is seen that the curve of
critical stresses constructed according to the reduced
modulus (T) of Engesser-Karman equation (4) is above all
the graphs.

Curve 3 of the critical stresses (equation (10)) de-
termined by the tangent modulus (Et) of Shanley is located
below Curve 2 (Figure 4(b)).

Curve 4 of the critical stresses (equation (17)) obtained
by approximating the double modulus proposed by authors
is located below the curve of Shanley, which is very close to
the results obtained by the experimental data (Figure 4(b),
asterisks-6). It confirms the accuracy of the new approach
(Figure 4(b)).

Curve 5 depicts values of critical stresses defined by
building codes for the rectangular cross section
(Figure 4(b)).

On the basis of theoretical and numerical analysis, the
following results were obtained:

Advances in Civil Engineering 7



(1) A new approach to the determination of critical
stresses in the elastoplastic region was developed, as a
result of which the values of critical stresses with a
high accuracy were determined.

(2) *e locations of possible points of the bifurcation-
buckling in the elastoplastic region were established.
*ese bifurcation points are on Curve 4 (authors
approach) because this curve is the closest to the real
bifurcation points, i.e., the experimental data.

(3) *e approach for the elimination of the presence of
residual deformations in the cross section was de-
veloped because Curve 4 in Figure 4(b) is below
Curve 2 and Curve 3 and closer to the experimental
data.

(4) Approximation and accuracy of theoretical and real
critical loads were arisen because Curve 4 is the
closest to the real critical loads, i.e., the experimental
data.

(5) *e results obtained from the proposed new ap-
proaches indicate that the structure reliability was
enhanced by almost 10–12% in comparison with
existing approaches.

(6) Economic efficiency was increased by almost 12–14%
in comparison with the building codes. Since the new
critical curve is located above the curves determined
by building codes, which is defined by using a safety
factor gained empirically.

(7) *e study of the buckling behavior of prismatic
(rectangular) compressed elements is a relevant step
towards understanding and assessing the reliability
of more complex structures. For the column of
other cross sections, e.g., circular and open-section,
the formula for calculating critical stress (equation
(17)) remains the same, only some geometrical
characteristics need to be changed, e.g., moments of
inertia.

4. Conclusions

From the results of this study, the following conclusions can
be made:

(1) It is recommended to use the tangent modulus-Et
(equation (9)) compared with the reduced modulus-
T (equation (3)) in determining the critical stresses
in the elastoplastic region

(2) It is recommended to use the new approach pro-
posed by the authors to determine the stability of the
compressed rod in the elastoplastic region, where the
values of the critical stresses (equation (17)) are
determined by approximation of the doublemodulus
T∗ (equation (8)) and the tangent modulus Et
(equation (9)) established by the results of experi-
mental studies

(3) A new approach to the determination of critical
stresses, proposed by the authors, increases reliability
by almost 10–12%

(4) In rods (columns) of medium slenderness, the points
below the critical curve obtained as a result of new
approaches will not experience stability loss and the
development of residual plastic deformations, and
the bifurcation points will be located on this Curve 4
(Figure 4(b))

(5) A new approach to the determination of critical
stresses, proposed by the authors, achieves economic
efficiency by almost 12–14%

(6) Reduction of the mass of the structure, respectively,
reduces CO2 emissions
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