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Abstract

In this paper, we present some results about the spectrum of the matrix asso-
ciated with the computation of the Multiplex PageRank defined by the authors
in a previous paper. These results can be considered as a natural extension of
the known results about the spectrum of the Google matrix. In particular, we
show that the eigenvalues of the transition matrix associated with the multiplex
network can be deduced from the eigenvalues of a block matrix containing the
stochastic matrices defined for each layer. We also show that, as occurs in the
classic PageRank, the spectrum is not affected by the personalization vectors
defined on each layer but depends on the parameter α that controls the telepor-
tation. We also give some analytical relations between the eigenvalues and we
include some small examples illustrating the main results.

Keywords: PageRank, centrality measures, Multiplex networks

1. Introduction

This paper deals with two main topics: Multiplex networks and PageRank.
A Multiplex network can be considered as a network formed by several layers
(networks) with the same nodes, but different topology inside of each layer. A
typical example of a Multiplex network consists of the set of several networks
formed by the same people connected on different Social Networks like Facebook,
Twitter, Linkedin, etc. Among the applications of Multiplex Networks we can
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cite the following: In [24], Multiplex networks are applied to study the coupling
between the street network and the subway system for the metropolitan areas
of London and New York; in [20], the authors consider the different lines of the
Madrid Metro system to form a Multiplex network; in [5], the authors apply
Multiplex networks to consider the different layers of Wikipedia that cite some
scientists and philosophers. In the same paper, the authors form a Multiplex
network by considering some airports as the nodes and some airline companies
to define the layers. Some other applications can be found in [2].

The other topic of the paper is PageRank, which is a standard centrality
measure that can be defined on a network. Several new research works about the
PageRank algorithm, originally devised by the founders of Google [18], appear
in the literature with the aim of improving the numerical performance of the
method as well as the range of applications. For example, in the latest research
papers one can find new numerical methods for computing PageRank (see, e.g.,
[25], [27], [23], [17], [10]) and new applications (see, e.g., [1], [22], [12], [15], and
the dedicated paper [8]) including some applications related to the emerging
topic of multiplex networks, like the studies in [2] and [5]. New generalizations
of PageRank to usual networks also include the use of higher-order Markov
chains. We recall that PageRank can be considered as a stationary state of a
(1-order) Markov chain that transforms the state of a system with the knowledge
of the previous state. In a network of n nodes, this is modeled by considering a
transition stochastic matrix of size n× n. On the contrary, when considering a
higher order Markov chain, the changes in the state of the nodes can be modeled
by using a stochastic matrix of size n×nr, being r the number of previous states
to be considered. In [9] it is shown how to apply this formalism to define a new
PageRank called Multilinear PageRank (that is, in fact a monoplex PageRank
since it is applied on only one network). In this paper we only use 1-order
Markov chains.

Our interest in the PageRank algorithm was motivated by the property of the
algorithm to bias the PageRank -and therefore the resulting ranking- to some
preferred nodes. This biasing is done by means of the so-called personalization
vector, see [14], [3]. In [7] it is shown that the biasing produced by the person-
alization vector v is a limited one; the PageRank score of each node can only
attain values inside a precise subinterval of (0, 1) depending on the entries of a
certain matrix. Given that the increasing interest in Multiplex Networks (see,
e.g., [4], [13]) originated some generalizations of the concept of (classic, mono-
plex) PageRank to Multiplex PageRank, it was natural to extend the study on
the effect of the personalization vectors in this new framework.

There are different ways to define Multiplex PageRank (see, e.g., [11], [5],
[6]). In this paper we use the definition introduced in [20]. According to this
approach, the Multiplex PageRank is the unitary positive eigenvector of a cer-
tain stochastic matrix Mk associated with the multiplex network equipped with
k layers with n nodes on each layer (it is worth noting that Mk takes into ac-
count the personalization vectors for each layer). In the same manner as in the
monoplex PageRank, the Multiplex PageRank may change when there exists a
change in the personalization vectors. In [19] we showed the type of dependence
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of the Multiplex PageRank on the personalization vectors, as well as the precise
bounds for the multiplex PageRank, in a similar fashion as was done in [7] for
the monoplex PageRank.

In this paper we focus on the spectral properties of matrix Mk. This study
can be considered as a natural extension of the existing studies about classic
PageRank focused on the spectrum of the so-called Google matrix (see, e.g.,
[14], [26], [3]). It turns out that the definition of matrix Mk is related with
a particular interpretation of the classic PageRank in terms of two layers (we
called this concept the two-layer approach PageRank, see [20]); this procedure
is formulated by introducing a certain transition matrix MA (where A denotes
the adjacency matrix of the monoplex network). As a consequence, when con-
sidering a multiplex network composed of k layers, the matrix Mk is related to
a block matrix, denoted by B1,1, that takes into account the adjacency matrices
Ai associated with each layer identified by i = 1, . . . , k. This paper is, therefore,
focused on the properties of the eigenvalues of Mk and B1,1. The study of the
eigenspaces of these matrices is beyond our objectives but it could be done by
following the techniques shown in [21].

The structure of the paper is as follows. In section 2 we establish the notation
and recall some known results. In section 3 we show the spectrum of the matrix
MA as well as some properties derived from the main theorem in this section. In
section 4 we give the spectrum of the matrix Mk associated with the multiplex
PageRank, in terms of the spectrum of the block matrix B1,1.

2. Notation and some preliminary definitions

We recall some notation from [7] and [20]. Vectors of Rn×1 will be denoted
by column matrices and we will use the superscript T to indicate matrix trans-
position. The vector of Rn×1 with all its components equal to 1 will be denoted
by e. That is, e = (1, · · · , 1)T .

Let G = (N , E) be a directed graph where N = {1, 2, . . . , n} and n ∈ N. The
pair (i, j) belongs to the set E if and only if there exists a link connecting node
i to node j. The adjacency matrix of G is an n× n-matrix

A = (aij) where aij =

{
1, if (i, j) is a link of G
0, otherwise.

A link (i, j) is said to be an outlink for node i and an inlink for node j. We
denote kout(i) the outdegree of node i, i.e., the number of outlinks of a node i.
Notice that kout(i) =

∑
k aik. The graph G = (N , E) may have dangling nodes,

which are nodes i ∈ N with zero outdegree. Dangling nodes are characterized
by a vector d ∈ R

n×1 with components di defined by

di =

{
1, if i is a dangling node of G
0, otherwise.

Let PA = (pij) ∈ R
n×n be the row stochastic matrix associated with G

defined in the following way:
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• if i is a dangling node, pij = 0 for all j = 1, . . . , n,

• otherwise, pij =
aij

kout(i)
=

aij∑
k aik

.

Note that each coefficient pij can be considered as the probability of jumping
from the node i to the node j.

We recall that one of the features of the personalized PageRank algorithm
is that some extra probability of jumping is given to any node. This extra or
teleportation probability is assigned by using a personalization vector v, which is
a probability distribution vector. If, in addition, the graph has dangling nodes
then the algorithm needs to assign an additional probability of jumping to these
dangling nodes; this is done by introducing a probability distribution vector u.
With these ingredients, plus a teleportation parameter α, we have everything
to build a primitive and stochastic matrix, called Google matrix, that we denote
by G.

Formally, G = G(α,u,v), with α ∈ (0, 1), is defined as

G = α(PA + duT ) + (1− α)evT ∈ R
n×n. (2.1)

Note that G is row-stochastic, i.e., Ge = e. Recall that v ∈ R
n×1, with v > 0

and vT e = 1. Analogously, u ∈ R
n×1 such that u > 0 and uTe = 1.

The spectrum of a square matrix M is the set of all its eigenvalues that will
be denoted by σ(M) (see, for example [16]).

The PageRank vector π = π(α,u,v) is the unique positive eigenvector of
GT associated to eigenvalue 1 such that πT e = 1, i.e., π > 0, πT e = 1 and
πTG = πT (see [18]). Since we focus our interest in v we also refer to π as the
personalized PageRank vector.

Note also that from (2.1) we easily have

πT = απT (PA + du
T ) + (1− α)vT . (2.2)

We will assume throughout the paper that d = 0 because similar results to
those presented here can be straightforwardly obtained when d 6= 0.

We recall the definition of two-layer approach PageRank π̂A introduced
in [20].

Definition 2.3. Given an adjacency matrix A we define the two-layer approach
PageRank of A and denote it by π̂A as the vector π̂A = πu + πd ∈ R

n×1, where
π̂T
M = [πT

u πT
d ] ∈ R

1×2n is the unique vector that satisfies:

(i) π̂T
M = π̂T

M MA with π̂T
Me = 1,

(ii) πT
u e = α, πT

d e = 1− α,

where MA is the row stochastic matrix associated to A given by

MA =

(
αPA (1− α)In
αIn (1− α)evT

)
∈ R

2n×2n. (2.4)
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An extension of this concept to the case of multiplex networks was presented
in [20], as follows. Given a Multiplex network M = (N , E ,S), with layers
S = {ℓ1, . . . , ℓk} whose adjacency matrices are A1, . . . , Ak ∈ R

n×n and some
personalized vectors v1, . . . ,vk ∈ R

n×1, then we take

Mk =
1

k

(
B1,1 B1,2

B2,1 B2,2

)
∈ R

2kn×2kn, (2.5)

where

B1,1 =




αPA1
In · · · In

In αPA2
· · · In

...
...

. . .
...

In In · · · αPAk


 , (2.6)

B2,2 = (1− α)




evT
1 · · · evT

k
...

. . .
...

evT
1 · · · evT

k


 , (2.7)

B1,2 = (1 − α)Ikn ∈ R
kn×kn, B2,1 = kαIkn ∈ R

kn×kn. (2.8)

Definition 2.9. The Multiplex PageRank π̂k is the vector

π̂k =
1

k
(πu1 + πu2 + · · ·+ πuk + πd1 + πd2 + · · ·+ πdk) ∈ R

n×1,

where π̂T
M = [πT

u1 πT
u2 . . . πT

uk πT
d1 πT

d2 . . . πT
dk] is the unique vector

that satisfies:

(i) π̂T
M = π̂T

M Mk with π̂T
Me = k,

(ii) πT
uie = γ, πT

die = 1− γ for all i = 1, 2, . . . , k and γ = kα
1+α(k−1) .

3. Spectrum of the matrix of the two-layer approach PageRank

Spectral properties of matrix G (see (2.1)) are well established (see, for
example [3]). In particular, it is known that the spectrum of G and the spectrum
of PA are deeply related [14], as the following result shows:

Theorem 3.1 ([14], Thm.5.1). Following the notation of the previous section,
if σ(PA) = {1, µ2, µ3, . . . , µk}, then σ(G) = {1, αµ2, αµ3, . . . , αµk}.

If we consider the two-layer approach of PageRank or the Multiplex PageR-
ank defined before, it is natural to look for similar results relating the spectrum
of the involved stochastic matrices. In this section we will focus on the two-layer
approach case and next section is devoted to the Multiplex PageRank setting.
Therefore, the main goal of this section is relating σ(PA) with σ(MA).

First, note that if λ ∈ σ(MA), there exists a nonzero eigenvector [uT wT ]
associated to λ, i.e., satisfying

[uT wT ]MA = λ[uT wT ].
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Hence
uTαPA + αwT = λuT

(1 − α)uT + (1− α)wT evT = λwT

}
(3.2)

Note that since PA is row stochastic, then 1 ∈ σ(PA). By Definition 2.3, it
is clear that λ = 1 is the dominant eigenvalue of MA (note furthermore that
MA is row-stochastic, irreducible and primitive and therefore the eigenvalue 1
is simple and the unique with norm equal to the unity).

Lemma 3.3. The eigenvalues of PA can be classified into two sets:

(i) Those that have eigenvectors u such that uTe 6= 0. The only element of
this set is µ = 1.

(ii) Those that have eigenvectors u such that uTe = 0. This happens for the
rest of the eigenvectors of PA, including those associated to µ = 1 if it
is multiple. If µ = 1 has multiplicity q, in this set we have µ = 1 (with
multiplicity q − 1) and the rest of eigenvalues µi.

Proof. Let µ be an eigenvalue of PA. If µ 6= 1, let u be an associated left
eigenvector u, i.e., a nonzero vector such that uTPA = µuT . Multiplying by e

on the right and using that µ 6= 1 we obtain that uTe = 0.
Now, suppose that µ = 1. Notice that µ = 1 coincides with the spectral

radius of PA, so there exists an associated left eigenvector û such that ûTe 6= 0.
We consider the following two possibilities:

(1) If µ = 1 is a simple eigenvalue of PA, its associated left eigenvectors must
satisfy uTe 6= 0, since they all belong to the one-dimensional eigenspace
generated by ûT .

(2) If µ = 1 is a multiple eigenvector with algebraic multiplicity q, then the
eigenspace associated to 1 has dimension q because PA is row stochastic,
see [16, p. 696]. Let ui, i = 1, . . . , q, be q linearly independent eigenvectors
associated to 1. Since ûT belongs to this eigenspace and ûTe 6= 0, we
can suppose without loss of generality that uT

q e 6= 0. Replace each ui,
i = 1, . . . , q − 1, by

ũi = ui −
ui

T e

uT
q e

uq, i = 1, . . . , q − 1.

Then ũ1, . . . , ũq−1 are q − 1 linearly independent eigenvectors associated
to 1 and all of them satisfy ũT

i e = 0.

Therefore, if an eigenvector u associated to µ satisfies uT e 6= 0, then µ = 1.
If uTe = 0, then either µ 6= 1 or µ = 1 is a multiple eigenvalue.

Now we will focus on the spectrum of MA with a series of technical lemmas.

Lemma 3.4. Let 0, 1 6= λ ∈ σ(MA) and [uT wT ] be a (left) eigenvector associ-
ated to λ. Then, uTe = 0 and wTe = 0.
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Proof. By multiplying equation (3.2) by e on the right, we get that

α(uT +wT )e = λuTe

(1− α)(uT +wT )e = λwT e

}
(3.5)

Now, adding up last two equations we obtain that

(uT +wT )e = λ(uT +wT )e. (3.6)

Note that (uT +wT )e ∈ R and since λ 6= 1 the unique solution of (3.6) is

(uT +wT )e = 0.

Now, if we plug the last expression into the first equation in (3.5) we get that
uTe = 0, since λ 6= 0 and thus also vT e = 0.

Lemma 3.7. λ = 0 is an eigenvalue of MA.

Proof. Let

z =

(
e

−α
1−α

e

)
∈ R

2n×1.

Since PA is row stochastic and eTv = 1, then we have

zTMT
A = [eT

−α

1− α
eT ]

(
αPT

A αIn
(1− α)In (1 − α)veT

)
= [01×n 01×n] = 0 zT

and thus MA z = 0 z.

By using the previous Lemmas, we get the main result of this section relating
σ(PA) with σ(MA).

Theorem 3.8. If σ(PA) = {1, µ2, µ3, . . . , µk}, then

σ(MA) = {1, 0} ∪ {λ+
i , λ

−

i ; 1 ≤ i ≤ k},

where

λ+
i =

α

2

(
µi +

√
µ2
i − 4 +

4

α

)
, λ−

i =
α

2

(
µi −

√
µ2
i − 4 +

4

α

)
. (3.9)

Proof. Since PA and MA are row stochastic it is straightforward that 1 ∈ σ(PA)
and 1 ∈ σ(MA). From Lemma 3.7, 0 ∈ σ(MA). Now, let us show that any
0, 1 6= λ ∈ σ(MA) is of the form

λ =
αµ±

√
α2µ2 + 4α(1− α)

2
=

α

2

(
µ±

√
µ2 − 4 +

4

α

)

for some µ ∈ σ(PA). Let [uT wT ] be a (left) eigenvector associated to such
λ. From Lemma 3.4 we know that wTe = 0, and therefore from the second
equation of (3.2) we get

wT =
1− α

λ
uT .
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By plugging last expression into the first equation of (3.2) we get

uTαPA + α
1 − α

λ
uT = λuT ,

that can be rewritten as

uTPA =

(
λ

α
− 1− α

λ

)
uT . (3.10)

Therefore, we conclude that

µ :=

(
λ

α
− 1− α

λ

)
(3.11)

is an eigenvalue of PA associated to the eigenvector uT .
By manipulating (3.11) we get to

λ2 − λαµ − α(1− α) = 0

and therefore

λ =
αµ±

√
α2µ2 + 4α(1− α)

2
=

α

2

(
µ±

√
µ2 − 4 +

4

α

)
.

For the converse let any µ be in the spectrum of PA with associated (left)
eigenvector uT such that uTe = 0. Define the second degree polynomial on the
variable x

m(x) = x2 − αµx − α(1− α)

and let λ be a root of m(x). Since λ(1−λ) 6= 0, it is clear that λ 6= 0 and hence
we can define the vector

wT :=
1− α

λ
uT .

It is easy to see that [uT wT ] satisfies equation (3.2) and therefore it is an
eigenvector of MA associated to λ.

Remark 3.12. Note that, as in the classic PageRank, the eigenvalues of MA

do not depend on the choice of the personalization vector v.

Remark 3.13. Note that Theorem 3.8 provides a method to compute the spec-
trum ofMA from the spectrum of PA: apart from the eigenvalue 1, which always
belongs to σ(MA), any eigenvalue µi 6= 1 of PA gives rise to two eigenvalues λ+

i

and λ−

i of MA. Moreover, if 1 is a multiple eigenvalue then also

α

2

(
1±

√
4

α
− 3

)
∈ σ(MA).

Hence Theorem 3.8 allows computing the spectrum of a 2n× 2n matrix (MA)
in terms of the spectrum of a smaller n× n matrix (PA), so the computational
complexity decreases its order.
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Remark 3.14. Note that λ+
i + λ−

i = αµi for every 2 ≤ i ≤ k and therefore
these sums together with λ = 1 is in fact the spectrum for matrix G in the
classic PageRank given by Theorem 3.1. This property shows that the two-
layer PageRank is an extension of classic PageRank that spreads -in a beautiful
simple way- the spectrum.

Given that the pair of complex eigenvalues λ+
i and λ−

i in Theorem 3.8 are the
solutions of a quadratic equation (3.9), we have the following straightforward
result.

Corollary 3.15. If λ+
i and λ−

i are two eigenvalues of MA given by equation
(3.9) in Theorem 3.8 then it holds that

λ+
i λ

−

i = α(α− 1) < 0

for all i = 2, . . . , k.

Finally, we can state one more property about correspondence between the
eigenvalues of PA and MA.

Corollary 3.16. If µi and µj are complex conjugate eigenvalues of PA then λ+
i

and λ+
j are complex conjugate eigenvalues of MA. The same holds for λ−

i and

λ−

j .

Proof. By hypothesis we have that µi = µj . Then it is clear that µ2
i = µ2

j and
therefore √

µ2
i =

√
µ2
j =

√
µ2
j .

Thus we also have that

√
µ2
i − 4 +

4

α
=

√
µ2
j − 4 +

4

α
. (3.17)

From (3.9) we have that

λ+
j =

α

2

(
µj +

√
µ2
j − 4 +

4

α

)
.

By using that µj = µi and (3.17) we get that

λ+
j =

α

2

(
µi +

√
µ2
i − 4 +

4

α

)
= λ+

i .

Clearly the same proof can be repeated to prove that λ−

i and λ−

j are also complex
conjugate.

A situation in which the previous corollary applies is illustrated in Exam-
ple 3.18 where µ2 and µ3 are complex conjugate and therefore λ+

2 and λ+
3 are

also a complex conjugate pair (the same holds for λ−

2 and λ−

3 ).
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Figure 1: A graph with four nodes used in Example 3.18.

Example 3.18. Given a four-noded graph whose adjacency matrix is

A =




0 1 0 0
0 0 0 1
1 1 0 1
1 1 1 0


 ,

we have

PA =




0 1 0 0
0 0 0 1
1
3

1
3 0 1

3
1
3

1
3

1
3 0




and computing the spectrum of PA we get {1, 13 (−1± i
√
2),− 1

3}. Denoting

µ2 =
1

3
(−1 + i

√
2), µ3 =

1

3
(−1− i

√
2), µ4 = −1

3

by Theorem 3.8, the spectrum of MA is the union of {1, 0} and the eigenvalues

λ+
2 = 0.1967 + 0.1165i,

λ−

2 = −0.4800+ 0.2842i,
λ+
3 = 0.1967− 0.1165i,

λ−

3 = −0.4800− 0.2842i,
λ+
4 = 0.2425,

λ−

4 = −0.5258,

where we have used the typical value of α = 0.85.

4. Spectrum of the matrix of the Multiplex PageRank

In this section we move to the Multiplex PageRank setting. While in the
previous section we analyzed the relationships between σ(MA) and σ(PA), now
it is natural to study the relationships between σ(Mk) and σ(B1,1) for every
k ≥ 2.
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First, note that if λ ∈ σ(Mk), there exists a nonzero eigenvector [uT wT ]
associated to λ, i.e., satisfying

[uT wT ]Mk = λ[uT wT ].

Hence
1

k
uT

B1,1 + αwT = λuT

1− α

k
uT +

1− α

k
wT e[vT

1 . . .vT
k ] = λwT





(4.1)

It is clear that λ = 1 is the dominant eigenvalue of Mk (note furthermore
that Mk is row-stochastic, irreducible and primitive and therefore the eigenvalue
1 is simple and the unique with norm equal to the unity), while

µd := α+ k − 1 (4.2)

is the dominant eigenvalue of B1,1.
In this section e denotes the column vector of all ones in R

k n×1.
We will see later that the eigenvectors u of B1,1 such that uTe = 0 play a

central role in the proof or the relationships obtained between σ(Mk) and σ(B1,1)
so we start this section by analyzing σ(B1,1) in terms of such eigenvectors.

Lemma 4.3. The eigenvalues of B1,1 can be classified into two sets:

(i) Those that have eigenvectors u such that uTe 6= 0. The only element of
this set is µd.

(ii) Those that have eigenvectors u such that uTe = 0. This happens for the
rest of the eigenvectors of B1,1, including those associated to µd if it is
multiple. If µd has multiplicity q, in this set we have µd (with multiplicity
q − 1) and the rest of eigenvalues µi.

Proof. The proof is analogous to the proof of Lemma 3.3.

Now we will focus on the spectrum ofMk by starting with a series of technical
lemmas.

Lemma 4.4. Let 1 6= λ ∈ σ(Mk) and let [uT wT ] be a (left) eigenvector asso-
ciated to λ. Then, uTe+wTe = 0.

Proof. Since [uT wT ]Mk = λ[uT wT ], we have that

[uT wT ]Mk

(
e

e

)
= λ[uT wT ]

(
e

e

)
= λ(uT e+wTe), (4.5)

but since λ 6= 1 and

Mk

(
e

e

)
=

(
e

e

)
, (4.6)

we get (uT e+wT e) = 0.
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Lemma 4.7. λ = 0 is not an eigenvalue of Mk.

Proof. Suppose on the contrary that λ = 0 ∈ σ(Mk), i.e., [u
T wT ]Mk = [0,0].

Then, by (4.1) with λ = 0,

1

k
uT

B1,1 + αwT = 0

1− α

k
uT +

1− α

k
wT e[vT

1 . . .vT
k ] = 0





Hence, by multiplying the second equation by e on the right,

1− α

k
uTe+

1− α

k
wTek = 0,

leading to uTe = −kwTe. If k ≥ 2 this contradicts uT e = −wTe from the
previous lemma.

Lemma 4.8. If we take

λ̂ :=
1

k
(k − 1)(1− α), (4.9)

then λ̂ ∈ σ(Mk). Moreover, if 1 6= λ ∈ σ(Mk) is associated to an eigenvector

[uT wT ] such that uTe 6= 0 6= wT e, then λ = λ̂.

Proof. By using Lemma 4.3 we can consider an eigenvector u associated to µd

such that uTe = 1. Take

wT =
1

k − 1
(uT − [vT

1 vT

2 · · · vT

k ]).

It is easy to see that
[uT wT ]Mk = λ̂[uT wT ].

Note that since [vT
1 vT

2 · · · vT

k
]e = k we obtain wT e = −1.

On the other hand, suppose without loss of generality that uTe = −1 and
wTe = 1. If we multiply the second equation of (4.1) by e on the right and use
the fact that uT e = −1 and wT e = 1 we get

λ =
1

k
(k − 1)(1− α).

Theorem 4.10. Let σ(B1,1) = {µd} ∪ {µ2, · · · , µm}, then

σ(Mk) = {1, λ̂} ∪ {λ+
i , λ

−

i ; 2 ≤ i ≤ m},

where

λ+
i =

µi +
√
µ2
i + 4α(1− α)k

2k
, λ−

i =
µi −

√
µ2
i + 4α(1− α)k

2k
.
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Proof. Let λ ∈ σ(Mk) with an associated eigenvector [uT wT ] such that uT e =
0 = wTe. By using that wTe = 0 in the second equation of (4.1) we get
wT = 1−α

kλ
. Now if we plug this in the first equation of (4.1) we get

uT 1

k
B1,1 =

(
λ− α(1 − α)

kλ

)
uT .

Therefore, we conclude that

µ := λk − α(1 − α)

λ
(4.11)

is an eigenvalue of B1,1 associated to the eigenvector uT .
For the converse, let us study the eigenvalues of the matrix B1,1. Clearly

B1,1




e
...
e


 = (α+ k − 1)




e
...
e


 ,

so µ = α + k − 1 is always an eigenvalue of B1,1. Our aim is to prove that the
rest of the eigenvalues in the spectrum of B1,1 give rise to eigenvalues in the
spectrum of Mk. We will also study the case when µ = α+ k − 1 is a multiple
eigenvalue of B1,1.

Now, let µ ∈ σ(B1,1) such that µ 6= α + k − 1, or let µ = α + k − 1 be a
multiple eigenvalue of B1,1. Let uT be a (left) eigenvector associated to µ and
such that uTe = 0 (see Lemma 4.3).

As in the proof of Theorem 3.8, let us define the polynomial

m(x) = kx2 − µx− α(1 − α) ∈ R[x],

and let λ be any of its roots. Notice that λ 6= 0 since α(1 − α) 6= 0. Let us
define

wT :=
1− α

λk
uT .

Then it is easy to check that [uT wT ] satisfies (4.1), so the eigenvalue µ of B1,1

gives rise to the eigenvalues λ+, λ− ∈ σ(Mk) as it was stated in the claim.

Remark 4.12. The spectrum of Mk can be computed from the spectrum of
B1,1. Apart from the eigenvalues 1 and 1

k
(k− 1)(1−α), which always belong to

σ(MA), for any µ 6= α+ k − 1 we obtain two eigenvalues

λ+ =
µ+

√
µ2 + 4α(1− α)k

2k
, λ− =

µ−
√
µ2 + 4α(1− α)k

2k
∈ σ(Mk).

Furthermore, if α+ k − 1 is a multiple eigenvalue of B1,1 also

λ+ =
α+ k − 1 +

√
(α+ k − 1)2 + 4α(1− α)k

2k
∈ σ(Mk),

λ− =
α+ k − 1−

√
(α+ k − 1)2 + 4α(1− α)k

2k
∈ σ(Mk).

13



Figure 2: A multiplex example with 3 layers and 3 nodes used in Example 4.15.

As in the previous Section, note that Theorem 4.10 allows computing the spec-
trum of a 2kn× 2kn matrix (Mk) in terms of the spectrum of a smaller kn×kn

matrix (B1,1), so the computational complexity decreases its order.

Corollary 4.13. Given the eigenvalues λ+
i and λ−

i , then for every i = 2, . . .m.

λ+
i λ

−

i =
1

k
α(α − 1) < 0.

Corollary 4.14. Given the eigenvalues λ+
i and λ−

i , if µi and µj are complex
conjugate eigenvalues of B1,1 then λ+

i and λ+
j are complex conjugate eigenvalues

of Mk. The same holds for λ−

i and λ−

j .

Example 4.15. Let k = 3, α = 3
4 and take the multiplex network whose adja-

cency matrices are given by

A1 =




1 1 1
0 1 1
0 0 1


 , A2 =




1 0 0
1 1 1
1 0 1


 , A3 =




1 0 1
0 1 1
0 0 1


 .

Then we have

B1,1 =




1
4

1
4

1
4 1 0 0 1 0 0

0 3
8

3
8 0 1 0 0 1 0

0 0 3
4 0 0 1 0 0 1

1 0 0 3
4 0 0 1 0 0

0 1 0 1
4

1
4

1
4 0 1 0

0 0 1 3
8 0 3

8 0 0 1

1 0 0 1 0 0 3
8 0 3

8
0 1 0 0 1 0 0 3

8
3
8

0 0 1 0 0 1 0 0 3
4




.
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The spectrum of B1,1 is

σ(B1,1) =





µ1 = 11
4

µ2 = 1
16

(
13 +

√
593 + 32i

√
2
)

µ3 = 1
16

(
13 +

√
593− 32i

√
2
)

µ4 = 1
16

(
13−

√
593− 32i

√
2
)

µ5 = 1
16

(
13−

√
593 + 32i

√
2
)

µ6 = − 5
8 (double)

µ7 = − 1
4 (double)





The spectral radius is µd = α + k − 1 = µ1 that is simple. In this example we
have λ̂ = 1

k
(k−1)(1−α) = 1

6 . By taking the personalization vectors vT
1
= vT

2
=

vT
3
= 1

3 (1, 1, 1) we obtain:

M3 =
1

3

(
B1,1 B1,2

B2,1 B2,2

)

where B1,1 has been given above, B1,2 = 1
4I9, B2,1 = 9

4I9, and

B2,2 =
1

12




1
1
1
1
1
1
1
1
1




(
1 1 1 1 1 1 1 1 1

)
.

The computation of the eigenvalues of M3 gives

σ(M3) =





λ1 = 1.0000
λ2 = 0.8519 + 0.0178i
λ3 = 0.8519− 0.0178i
λ4 = −0.3949 + 0.0138i
λ5 = −0.3949− 0.0138i
λ6 = −0.0733 + 0.0015i
λ7 = −0.0733− 0.0015i
λ8 = 0.1581 + 0.0055i
λ9 = 0.1581− 0.0055i
λ10 = − 3

8 (double)

λ11 = − 1
24

(
1 +

√
37
)

(double)

λ12 = − 1
24

(
1−

√
37
)

(double)
λ13 = 1

6 (triple)





.

Let us analyze the theoretical form of the spectrum of M3 to illustrate Theo-
rem 4.10. λ1 = 1 is the expected spectral radius. One of the values of λ13
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corresponds to λ̂. The rest of eigenvalues derive from µi according to the fol-
lowing:

λ2 comes from µ2 by using the formula of λ+
2

λ3 comes from µ3 by using the formula of λ+
3

λ4 comes from µ4 by using the formula of λ+
4

λ5 comes from µ5 by using the formula of λ+
5

λ6 comes from µ2 by using the formula of λ−

2

λ7 comes from µ3 by using the formula of λ−

3

λ8 comes from µ4 by using the formula of λ−

4

λ9 comes from µ5 by using the formula of λ−

5

Both λ10 come from µ6 by using the formula of λ+
6

λ11 comes from µ7 by using the formula of λ+
7

λ12 comes from µ7 by using the formula of λ−

7

Two values of λ13 come from µ6 by using the formula of λ−

6

Note also that this example illustrates Corollary 4.13 and. Corollary 4.14.

5. Conclusions and final remarks

We have related the spectrum of the matrices associated with the computa-
tion of the Multiplex PageRank, both in the monoplex case and in the multiplex
cases, which allows reducing the computational complexity of this problem. In
particular, if G = (N , E) is a (monoplex) network with n nodes and whose as-
sociated two-layer approach stochastic 2n × 2n matrix is given by MA, then
Theorem 3.8 shows that σ(MA) can be computed in terms of σ(PA), where PA

is the row stochastic n × n matrix associated to G. In the multiplex setting,
Theorem 4.10 proves the connection between σ(Mk) and σ(B1,1), where Mk is
the 2kn × 2kn matrix giving the Multiplex PageRank of a multiplex network
and B1,1 is the kn × kn matrix containing the adjacency information of the
corresponding layers.

It is also worth noting that some of the obtained results show that the
concept of two-layer approach PageRank has some traits similar to the concept
of classic PageRank. In particular, we show that the spectrum does not depend
on the personalization vector (Remark 3.12) and that if we sum two by two the
eigenvalues of the matrix MA associated to the two-layer approach PageRank,
we obtain the eigenvalues of the matrix G associated to the classic PageRank
(Remark 3.14).

Acknowledgements

We thank the two anonymous reviewers for their constructive comments,
which helped us to improve the manuscript. This work has been partially sup-
ported by the projects MTM2014-59906-P, MTM2014-52470-P (Spanish Min-
istry and FEDER, UE), MTM2017-84194-P (AEI/FEDER, UE) and the grant
URJC-Grupo de Excelencia Investigadora GARECOM (2014-2017).

16



References

[1] T. Agryzkov, L. Tortosa, and J. F. Vicent, New highlights and a new central-
ity measure based on the Adapted PageRank Algorithm for urban networks,
Applied Mathematics and Computation, 291, (2016), 14-29.

[2] S. Boccaletti, G. Bianconi, R.Criado, C.I. delGenio, J.Gómez-Gardeñes,
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M.A. Porter, S.Gómez, and A.Arenas, Mathematical formulation of
multi-layer networks, Phys. Rev. X 3, 041022 (2013).
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