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Abstract 

In this paper, a novel delay-independent control structure for a networked control system (NCS) 

which integrates packet-based control strategies with predictor-based and dual-rate control 

techniques, is proposed is proposed, where packet-based control strategies with predictor-based 

and dual-rate control techniques are integrated. The control solution is able to cope with some 

networked communication problems such as time-varying delays, packet dropouts and packet 

disorder. In addition, the proposed approach enables to reduce the network load, and the usage of 

the connected devices, while maintaining a satisfactory control performance. As a delay-

independent control solution, no network-induced delay measurement is needed for controller 

implementation. In addition, the control scheme is applicable to open-loop unstable plants. Control 

system stability is ensured in terms of linear matrix inequalities (LMIs). Simulation results show 

the main benefits of the control approach, which are experimentally validated by means of a 

Cartesian-robot-based test-bed platform. 
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NOMENCLATURE 

N, t, T, NT Multiplicity, and basic, actuation and 

sensor periods 

, ,lr rl

k k k    Local-to-remote, remote-to-local, and 

round-trip time network-induced delay 

,lr rl

k kd d  Local-to-remote and remote-to-local 

packet dropout occurrence 

ˆ, ,NT NT NT

k k ky y y  Actual, estimated, and actual or 

estimated, system output (at NT) 

NT

kr  Reference signal (at NT) 

NT

ke  Error signal (PI input) (at NT)  

ˆ, ,NT NT NT

k k kx x x  Actual, estimated, and actual or 

estimated, system state (at NT) 

ˆ, ,NT NT NT

k k kv v v  Actual, estimated, and actual or 

estimated, PI control action (at NT) 

T

kv  Expanded PI control action (at T) 

ˆ, ,T T T

k k kv v v  Actual, estimated, and actual or 

estimated, PI action converted at T  

ˆ, ,T T T

k k ku u u  Actual, estimated, and actual or 

estimated PD control action (at T) 

M Upper bound for estimations 

z t-unit operator 

,L T
z z L

t
   

T-unit operator 

N N L

Nz z z    NT-unit operator 
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1. - Introduction 

Networked Control Systems (NCSs) [33, 36] is a prolific control area, addressing control scenarios 

where different devices share a common communication link. There are several advantages 

associated with NCS such as cost reduction, flexibility and ease of installation and maintenance, but 

also drawbacks like the possible occurrence of time-varying delays [12, 26, 28-32, 37, 40], packet 

dropouts [9, 13, 18, 26, 30], packet disorder [9, 19, 20, 26, 30], and network bandwidth constraints 

[5, 11, 16]. One interesting aim in NCS is to reduce the number of transmissions through the 

network, which can result in some advantages such as increase in the network bandwidth, and 

enlargement of the battery usage of the different wireless devices connected to the NCS. But the 

reduction in transmissions should come along with preservation of stability and performance 

properties. In order to ensure this achievement, different control solutions have been proposed in 

literature, for instance: packet-based control [38, 39, 41], which enables to decrease the 

communication rate by simultaneously sending a set of data in each transmission; event-based 

control [4, 15, 32, 34, 35, 42], where the transmission is only carried out if control or output 

variables satisfy a certain event condition; multi-rate control [6, 8, 24], where a slower sensing rate 

in comparison to a faster actuation can be assumed; and predictor-based control [10, 14, 27, 35], 

which exploits model-based predictions to address scarce data and compensate for network-induced 

delays. The present work proposes a control structure for an NCS, which integrates packet-based 

control strategies with predictor-based and dual-rate control techniques. The systematic 

combination of these control solutions enables not only to reduce the number of transmissions 

through the network but also to face some networked communication problems such as time-

varying delays, packet dropouts, and packet disorder. In addition, the control approach is able to 
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keep a satisfactory control performance, which is defined by means of the nominal (no-delay, no-

dropout) dual-rate response. 

Dual-rate control techniques provide twofold benefits: to avoid packet disorder, and to reduce 

the number of transmissions through the network. The sensing period may be chosen to be larger 

than the largest round-trip time delay found in a statistical distribution for the network-induced 

delay, which is assumed to be known [2, 23]. In this way, no packet disorder is produced, and the 

use of the network and devices can be reduced. Despite the fact of choosing a slow sensing period, a 

satisfactory control performance may be achieved by selecting a faster actuation period [24]. In the 

present work, due to the wide knowledge of PID controllers in industrial and academic 

environments, a dual-rate PID control structure is taken into account. The controller is split into two 

parts: a slow-rate PI controller and a fast-rate PD controller. The integral action is applied at slow 

rate, because it usually operates at this frequency zone. As data travel through the network at slow 

rate, the PI controller is located at the remote side, with no direct connection to the plant. The 

derivative actions, which are associated with faster dynamics, are applied at fast rate to reach the 

satisfactory control performance, and hence, the PD controller is located at the local side, directly 

connected to the plant. Basic design procedures of dual-rate PID controllers can be looked up in 

[24].  

Combining packet-based control strategies with predictor-based control techniques enables to 

deal with packet dropouts and time-varying delays. Packet dropouts may occur because of the 

utilization of user datagram protocol (UDP) as the communication protocol in this work [2, 23]. 

Predictor-based control techniques can be used at the remote side in order to deal with up to M 

possible consecutive packet dropouts, being M an upper-bound which may be established from off-
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line experiences on in the NCS. The M future, estimated PI control actions will be sent to the local 

side by implementing a packet-based control strategy in order to compute the next PD control 

actions. This computation can be carried out following a delay-free control algorithm, which is a 

central aspect of this work. At the local side, when no packet arrives, the PD controller is able to 

compute an estimated control signal from the PI control actions received in the previous 

transmission, and then, it can apply the signal following a uniform actuation pattern, that is, not 

being influenced by the time-varying network-induced delay. When the packet arrives after the 

delay, the PD controller is able to compute the actual control actions irrespective of the delay, and 

replace the estimated control signal with the actual one. Assuming neither model uncertainties nor 

disturbances, the difference between actual and estimated control signals should be negligible. Note 

that, inside the current sensing period, the control signal estimated for this period is injected from 

the beginning of the period to the moment in which the new packet is received. This is an essential 

difference compared with [7], where the last control action of the previous sensing period is held 

along the current sensing period until the new packet arrives, being additionally required a gain-

scheduling approach to retune the controller according to the delay. To the best of the authors’ 

knowledge, the working mode of the delay-independent control algorithm proposed in this work is 

novel in this kind of frameworks. Since the present work is able to consider unstable plants to be 

controlled, the state prediction solution will include a state resetting procedure [7, 21, 22]. 

In summary, the proposed delay-independent dual-rate PID controller may be defined as a PID 

controller, which is able to generate a fast-rate control signal from a slow-rate process output 

measurement, calculating the fast-rate control signal by following a delay-free control algorithm, 

which means that the network-induced delay does not affect the computation. Therefore, the 
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motivation of introducing this kind of controller is twofold: i) for implementation purposes, an 

obvious advantage derived from the delay-independent control solution is that the round-trip time 

delay is not required to be measured. This feature makes the solution applicable to a wide range of 

NCSs where the time delay is difficult to measure; and ii) no additional control techniques (e.g., 

gain-scheduling control [7, 25], optimal control [19], fuzzy control [31, 32], H∞ filtering techniques 

[30], etc.) may be required to compensate for the delay, which reduces the complexity of the control 

solution.  

Although the proposed controller is delay-independent, the plant, due to the time-varying 

network delay, is subjected to some variations in the instants where the input commands are 

presented to the plant. Then, the plant model can vary from sensor period to sensor period. If that 

were not the case, the eigenvalues of the NCS closed-loop model would determine stability and 

performance, but eigenvalues are of limited usefulness in time-varying contexts, such as the 

networked one in this paper. This leads to represent the NCS closed-loop model as a Linear Time 

Varying (LTV) system, which depends on the time-varying delay, and whose stability can be 

ensured via Linear Matrix Inequalities (LMIs). 

Summarizing, the main contribution of this paper is the development of a new and 

comprehensive approach, where dual-rate and predictor-based control techniques and packet-based 

control strategies are systematically brought together in an NCS in order to face some 

communication drawbacks and reduce the resource utilization, while maintaining a satisfactory 

control performance.  The central feature of the proposed control solution is its delay-free control 

signal computation. This is a distinguished improvement compared to other control solutions, where 
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the network-induced delay must be compensated for, and hence, additional control techniques may 

be required. 

The paper is structured in the following sections. In section 2, the problem scenario is formally 

introduced. In section 3, the control techniques used at the remote and local sides are presented. 

Control system stability is enunciated in terms of LMIs in section 4. Simulation results in section 5 

illustrate the benefits of the proposed control strategy in an unstable open-loop plant; concretely, by 

controlling the position output of a Cartesian robot. In Section 6, the previous results are 

experimentally validated in a test-bed platform based on the Cartesian robot, and using UDP as the 

network protocol. Finally, conclusions close this contribution. 

 

2. - Problem description 

The proposed NCS is depicted in Figure 1, where the network is placed between the remote and 

local sides, and it introduces some communication problems such as time-varying delays, packet 

dropouts, and packet disorder. In the next subsections, these problems are formally described, and 

the control structure is presented in detail.  

2.1. Time-varying delays, packet dropouts, and packet disorder 

The round-trip time delay for the packet sampled at instant kNT (where k , T is the 

actuation period, NT is the sensor period, and N   is a parameter known as multiplicity in a 

dual-rate control framework [24]) is defined as 

lr rl c

k k k k      , (2.1) 

being lr

k  the local-to-remote network-induced delay, rl

k  the remote-to-local delay, and c

k  a 

negligible computation time delay. In order to avoid packet disorder, in this work it is strictly 

necessary to know the maximum round-trip time delay max  such that max NT  . As a common 
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timer is supposed to be shared by the local devices in such a way that all of them are perfectly 

synchronized, k  can be measured subtracting packet sending and receiving times, not requiring 

time-stamping techniques. Therefore, from off-line experiences on in the NCS, the statistical 

distribution of the round-trip time delay can be obtained, and hence, max . Since in this work, an IP 

network which uses UDP as the transport layer protocol is taken into account, the distribution will 

be a constant plus a Gamma distributed random variable, whose shape and scale parameters change 

with load and network segment [23]. Usually, this distribution is approximated as a generalized 

exponential distribution [25], whose probability density function can take this form 

 

 
1

,

0 ,

k

k
k

k

e
P

 

  
 

 

 


 




, (2.2) 

being the expected value of the delay  kE     , and its variance 2[ ]kV   . A feasible choice 

of   is the median of the delay. From   and an experimental value of  kE   (or the mean),   can 

be easily approximated.  

As well-known, when using the UDP transmission model, packet dropouts may appear. This 

phenomenon is essentially random [2], and hence, it can be modeled as a Bernoulli distribution 

[33]. The variable lr

kd  indicates the possible loss of the packet sent from the local side to the remote 

side at instant kNT. Similarly, rl

kd  is defined for the opposite network link. In this work, both 

variables are considered as a Bernoulli process with probability of dropout: 

Pr[ 0] [0,1)

Pr[ 0] [0,1)

lr lr

k

rl rl

k

p d

p d

  

  
, (2.3) 

In some real scenarios, ,lr rlp p could be considered as the same value 
lr rlp p p  .  

Finally, let us define M as the upper bound of consecutive packet dropouts. From a significant 

number of off-line experiences in the considered NCS, where a certain probability of dropout for 

the Bernoulli process in (2.3) can be chosen, one can observe the resulting number of consecutive 
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packet dropouts which is produced in each experience. The largest number of consecutive packet 

dropouts for the whole set of experiences can be determined as the worst case. Although this 

number might appear with low probability, in order to consider a conservative decision it may be 

assigned to M. 

2.2. Control structure 

Next, the different devices included in Figure 1 for the NCS are presented: 

 the process to be controlled is a Cartesian robot. More information about this process can be 

found in Sections 5 and 6.  

 the sensor works at period NT to sample the process output NT

ky , which, in this case, is the 

position of the robot. Sensing at this slow rate enables to reduce the number of transmissions, 

reducing network load and device usage.  

 the slow-rate PI controller generates a PI control action NT

kv  from the reference NT

kr and the 

output NT

ky , as long as the output arrives to the remote side (when 1lr

kd  ) after lr

k . Otherwise 

(when 0lr

kd  ), a previously estimated PI control action ˆNT

kv  will be used. Let us consider a 

maximum waiting time max

lr  to detect a packet dropout in this device. If max

lr  expires and the 

packet does not arrive, it will be considered as a dropout. More information about the definition 

and operation mode of the slow-rate PI controller can be found in subsection 3.2. 

 the prediction stage computes an array of M estimated, future PI control actions 

1 2
ˆ ˆ ˆ, , ,NT NT NT

k k k Mv v v  
    taking into account: i) the array of the actual and future references 

1 2,, , ,NT NT NT NT

k k k k Mr r r r  
   , ii) the actual PI control action NT

kv  or its estimation ˆNT

kv , iii) the actual 

process output NT

ky  or its estimation ˆ NT

ky , and iv) the actual state NT

kx  or its estimation ˆ NT

kx . For 

the sake of simplicity and brevity, both cases (the actual and estimated ones) will be contained 

under the notation , ,NT NT NT

k k kv y x  in the sequel. The main goals of the prediction stage are: i) to 

face packet dropouts for both network links; and ii) to provide estimated PI control actions in 
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order to be suitably used at the local side to compute the PD control signal via a delay-

independent control algorithm. For more information about how the prediction stage works, see 

subsection 3.5. 

 the packet generator implements a packet-based control strategy, which creates the packet to be 

sent to the local side, containing the set of estimated PI control actions 1 2
ˆ ˆ ˆ, , , ,NT NT NT NT

k k k k Mv v v v  
   .  

 the actuator may include a rate converter and a fast-rate PD controller: firstly, the rate converter 

converts the slow-rate PI control signal into a fast-rate one to be used by the fast-rate PD 

controller as an input (more details in subsection 3.3). Secondly, the controller generates the 

fast-rate PD control signal in order to achieve the desired performance, which is defined by the 

nominal (no-delay, no-dropout) dual-rate control strategy. According to rl

kd , the actuator 

applies the PD control actions using a different actuation pattern: 

a) if dropout occurs ( 0rl

kd  ): the actuator injects the control actions following a uniform 

pattern at time instants  0, ,2 , ,( 1)T T N T  inside the current sensor period NT (see 

Figure 2). In this case, the PD control signal is computed from an estimated PI control value 

received in a previous successful delivery. Then, an estimated PD control signal 

1 1, , ,ˆ ˆ ˆ
k

T T

k N

T

ku u u  
    is generated. 

b) if no dropout occurs ( 1rl

kd  ): the actuator injects the control actions following a non-

uniform pattern. For a particular pattern where k T  , the actuation time instants would be 

 0, , ,2 , ,( 1)k T T N T   inside the current sensor period NT (see Figure 3). In this case, 

the PD control signal would take this form 1 1, , , ,ˆ
k

T T T T

k k k Nu u u u  
   , which would mean the 

injection of an estimated PD control action ˆT

ku  at the beginning of the current sensor period, 

and N actual or estimated PD control actions , [0.. 1]T

k iu i N    at the rest of the time 

instants after k . This subset of N control actions will be composed of actual values, when 
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an actual PI control signal NT

kv  is used to compute them. Otherwise, when an estimated PI 

control signal ˆNT

kv  is used, the subset will be composed of estimated values. In any case, 

assuming neither model uncertainties nor disturbances, ˆT

ku  should be very similar to T

ku .  

Under both actuation patterns, the PD control actions can be computed irrespective of the 

delay, resulting in a delay-independent control solution. This important feature distinguishes 

the solution, since no delay measurement is needed to implement the controller. More 

information about the fast-rate PD controller can be found in subsection 3.4. 

 

3. – Control design.   

The control proposal will be formulated in the next subsections. Firstly, some preliminaries, 

which are needed for the design step, will be presented. Secondly, the dual-rate controller will be 

stated. As commented in section 2, the controller is composed of a slow-rate PI controller, a fast-

rate PD controller, and between them, a rate converter. Subsections 3.2 to 3.4 will detail the design 

aspects for each part of the dual-rate controller, differentiating between the dropout case and the no-

dropout case. Finally, in subsection 3.5, the prediction stage will be enunciated. 

3.1. Preliminaries 

Let us define the transfer function of the continuous plant to be controlled as ( )pG s . By using 

the Z-transform at different periods plus a zero-order hold device ( )H s , different discrete-time 

versions for ( )pG s  can be considered. Therefore, denoting Lz z and N N L

Nz z z   : 

 

 
( ) ( )

NT

NT

N NT

N

N

NT p NT
G z Z H G s

Y z

U z
  ; 

 

 
( ) ( )

T

T

T T p T
G z Z H G s

Y z

U z
   

 

 
( ) ( )

t

t

t t p t
G z Z H G s

Y z

U z
  , : ,t T t L T L     , 

(3.1) 

In addition, the consequent state-space representations for each case (where matrices have 

suitable dimensions) can be enunciated as 
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1

NT NT NT NT NT

k k k

NT NT NT

k k

x A x B u

y C x

  







; 
1

T T T T T

k k k

T T T

k k

x A x B u

y C x

  







; 
1k k k

t t t t t

t t

k

t

k

x A x B u

y C x

  







, (3.2a) 

Finally, let us consider a continuous PID controller, which is designed according to classical 

methods in order to achieve some specifications for the process to be controlled. The controller 

gains used for the next design steps are given by this PID configuration: 

1
( ) 1PID p d

i

G s K T s
T s

 
   

 
, (3.2b) 

3.2. Slow-rate PI controller  

a) No-dropout case ( 1lr

kd  ): The PI controller working at period NT is enunciated as  

1
( )

( )
1 ( )

N NT
iNT N

PI N PI NT

N N

NT
z

T V z
G z K

z E z

 
  
  


,  
(3.3) 

      being ( )NT

NV z  the PI control signal, ( )NT

NE z  the error signal, and ,PI iK T  the gains of the PI 

controller. Let us consider 1PIK  . The PI control signal is obtained as 

 ( ) ( ) ( ) ( ) ( ) ( )NT NT NT NT NT NT

N PI N N PI N N NV z G z E z G z R z Y z   , (3.4) 

and, from (3.3), the difference equation for the PI controller with 1PIK   will be  

   1 1 1 1 11 1NT NT NT NT NT NT NT NT NT

k k k k k k k k k

i i

NT NT
v v e e v r y r y

T T
    

   
            

   
, (3.5) 

b) Dropout case ( 0lr

kd  ): In this case, instead of using the actual PI control signal in (3.4), the 

estimated one ˆ ( )NT

NV z  must be used. This signal is previously generated at the prediction stage 

according to subsection 3.5.  

3.3. Rate converter  

As it is well-known [24], a rate converter ( )
T

NTH z    is required between slow and fast rate 

controllers. Its goal is to convert the slow-rate PI control signal into a fast-rate one to be used by the 
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fast-rate PD controller as an input. This operation, with low computational complexity, can be 

carried out at the local side. Two cases are considered: 

a) No-dropout case ( 1lr

kd  ): The rate converter considers the actual slow-rate PI control signal 

( )NT

NV z  to obtain the held fast-rate one ( )TV z . As, in this work, step references are 

considered, the rate converter becomes a digital zero-order hold: 

1

( ) 1
( ) ( ) ( ) ( )

1( )

T N
T T T

NT T NT NT

NT
NT

N

V z z
H z V z H z V z

zV z






                

, (3.6a) 

Note that ( )NT

NV z  is required to be used in an expanded way ( )
T

NT

NV z   , that is,  

0

,
( ) ( ) : ,

0,

T T
T k kNT T T k

N k T
k k

v v k N
V z V z v z Z

v k N







 



   
   

  
 , (3.6b) 

More information can be found in [24].  

b) Dropout case ( 0lr

kd  ): Now, the rate converter considers the estimated PI control signal 

ˆ ( )NT

NV z  

ˆ ˆ( ) ( ) ( )
TT

T NT NT

NV z H z V z       , (3.7) 

As said in section 2, for the sake of simplicity and brevity, both cases ((3.6a) and (3.7)) will be 

contained under the notation ( )TV z  from now on. 

3.4. Fast-rate PD controller  

a) No-dropout case ( 1rl

kd  ): Let us define 
PD pK K . Then, the controller is stated as 

1
( )

( ) ( ) ( ) ( )
( )

d d

T
T T T T

PD PD PDT

T T
z

T T U z
G z K U z G z V z

z V z

 
  

     , 
(3.8) 

and its difference equation is 

11T T Td d
k PD k PD k

T T
u K v K v

T T


   
     

   
, (3.9) 
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Observe that the notation ( )TU z  represents both ( )TU z  and ˆ ( )TU z , where ( )TU z  is the actual 

PD control signal obtained from the actual PI control signal ( )TV z  (in (3.6a)), and ˆ ( )TU z is the 

estimated PD control signal obtained from the estimated PI control signal ˆ ( )TV z  (in (3.7)). 

Iterating the difference equation deduced from (3.9) N times, the N PD control actions are 

generated and applied after k , which is the moment when ( )TV z  is available. As commented in 

Section 2, due to the delay, these actions will be applied following a non-uniform pattern. As 

there are different patterns depending on k , for the sake of clarity let us consider the particular 

case where k T   (as in Section 2). Then, a basic period t is required to adapt the non-

uniformity to the delay in such a way that the actuation pattern inside the sensor period NT will 

take this form (where l=0..LN-1): 

1

1

, 0..

, ..

, ..2

,

ˆ

( 1) ..

T

k

T

k

T

T

k

k

k

k N

u

u

u

u

lt

lt T

lt T T

lt N T NT







 



 




 







, (3.10) 

Note that the control action ˆT

ku , which is injected at the beginning of the sensor period NT, is 

an estimated control action. Depending on the occurrence, or not, of a dropout in the local-to-

remote link, the rest of control actions in (3.10), , 0.. 1k i

T iu N   , will be estimated actions ˆ
k i

Tu 

or actual actions k i

Tu  , respectively. In the first case, ˆ
k k

T Tu u , and hence (3.10) is equivalent to 

(3.12). In the second case, k k

T Tu u , and assuming an accurate prediction, the difference 

between ˆT

ku  and T

ku  will be negligible. 

b)  Dropout case ( 0rl

kd  ): The estimated PI control signal ˆ ( )TV z  (to be defined in the last step in 

subsection 3.5) is now required. This control signal is available at the local side, since it was 

received in a previous successful communication. 
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The estimated PD control signal takes this form 

 ˆ ˆ( ) ( ) ( )T T T

PDU z G z V z , (3.11) 

From (3.9), but considering now estimated signals, the set of N control actions are computed 

and applied according to the next uniform actuation pattern inside the sensor period NT:  

1

1

ˆ

ˆ

ˆ

, 0..

, ..2

, ( 1) ..

k

k

T

T

k N

T

kT T

kT T T

kT N T N

u

u

Tu



 










 





, (3.12) 

3.5. Prediction stage  

The prediction algorithm is executed M times (M was defined in section 2 as the upper bound 

of consecutive packet dropouts) in order to generate the packet that includes the M future, estimated 

PI control actions 1 2
ˆ ˆ ˆ, , ,NT NT NT

k k k Mv v v  
   . This packet is computed for every sensor period at the 

remote side, and it is sent to the local side in order to be used when subsequent dropouts occur 

through the remote-to-local communication link. Considering a for-loop, where i=1..M, the 

statements of the prediction algorithm included in the loop are based on the next steps:  

a. Resetting of the initial state: If the current state sensed at period NT, NT

kx , is available at the 

remote side, that is, no dropout occurs when being sent via the local-to-remote network 

link, a resetting of the initial condition for the state at period t and at period T can be carried 

out. This operation can be executed when i=1, and it is required to deal with possible 

unstable plants [7, 21, 22]. For the rest of iterations of the algorithm (i=2..M), or if the 

current state was dropped when i=1, the updating is computed from the estimated state 

1
ˆNT

k ix   , which will be defined in step 3. As in section 2, to contemplate every situation, let 

us define a generic (actual or estimated) state NT

kx . Therefore, the resetting carried out in 

each iteration is  
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( 1) 1 ( 1) 1

ˆ ˆ1: ;

ˆ ˆ ˆ ˆ1: ;

T NT t NT

k k k k

T NT t NT

k i N k i k i LN k i

i x x x x

i x x x x       

   

  

, (3.13) 

b. Estimation of the N PD control actions either from the estimated PI control signal ˆ ( )TV z  

(this case can occur when 1i  ) or from the actual one ( )TV z  (this case can occur only 

when i=1). Both cases assume the rate conversion previously carried out in (3.7) or (3.6a), 

respectively.  

Similarly to (3.9), the estimated control signal is computed by iterating the next difference 

equation for j=0..N-1. Each iteration i for the prediction algorithm is calculated as follows 

1

( 1) ( 1) 1 ( 1)

ˆ1: 1

ˆ ˆ ˆ1: 1

T T Td d
k j PD k j PD k j

T T Td d
k j i N PD k j i N PD k j i N

T T
i u K v K v

T T

T T
i u K v K v

T T

   

         

    
       

    


   
      

   

, (3.14) 

c. Estimation of the next state and output at period NT from the estimated PD control actions. 

Now, as in (3.12), a uniform pattern is used. Then, for each iteration of the prediction 

algorithm i=1..M, the next state-space representation at period T is computed for j=0..N-1: 

( 1) ( 11

1 ( 1)

) ( 1)

1 ( 1)

ˆ ˆ ˆ

ˆ ˆ

T T T T T

i N i Nk j k i N

T T T

k j i N

j k j

k j i N

x A x B u

y C x

     

   

   

   

 







, (3.15) 

As a result of iterating (3.15) for all i, the M estimated states and outputs at period NT, 

ˆ,ˆ NT

i i

T

k

N

kx y  , are calculated. 

d. Estimation of the PI control signal ˆ ( )NT

NV z  from the estimated output signal ˆ ( )NT

NY z . 

Note that, particularly for the first iteration of the prediction algorithm (i=1), the actual 

output NT

ky can be used if it is available at the remote side, that is, if no dropout occurs when 

being sent through the local-to-remote network link ( 1lr

kd  ). Then, the actual PI control 

action NT

kv , which is generated by the output NT

ky  (remember (3.5)), can also be used. In 

this way, similarly to step 1, a resetting of the initial condition for the PI controller ( NT

kv ) is 
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carried out in order to compute the next estimated PI control action 1
ˆNT

kv  . This operation is 

useful due to the unstable open-loop nature of the PI controller [7, 21, 22]. As usual, in 

order to contemplate every situation in the prediction algorithm, let us define a generic 

(actual or estimated) output NT

ky , and a generic (actual or estimated) control action NT

kv . 

Therefore, similarly to (3.5), the different iterations i of the prediction algorithm take the 

form  

   

   

1 1 1

1 1 1

ˆ ˆ1: 1

ˆ ˆ ˆ ˆ1: 1

NT NT NT NT NT NT

k k k k k k

i

NT NT NT NT NT NT

k i k i k i k i k i k i

i

NT
i v v r y r y

T

NT
i v v r y r y

T

  

        

  
        

  


 
       

 

, (3.16) 

 

4. Stability analysis 

4.1 Closed-loop model via lifting 

Let us consider a continuous linear time-invariant plant, which admits a state-space realization

( , , , )A B C D  , with suitable dimensions. Being   an arbitrary real number, one can denote 

0

( ) AB e Bd



   if 0  , or ( ) 0B   if 0  . The discrete time sampled-data model at period T 

of the previous plant was presented in (3.2a), being ; ( );T TAT Te B TA B CC   . 

In order to reflect the dual-rate sampling with either uniform actuation (when 0rl

kd ) or non-

uniform actuation (when 1rl

kd  ), the control system can be modeled via state-space representation 

adopting the so-called lifting methodology [17]. Then, let us represent the process as:   

1k p k p k

k

NT NT T

NT T

p

N

k

x A x B U

y C x

 







, (4.1) 

where  
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 * * *

0 1; ; ;ANT

p p pN
A e B B B B C C     where N N  for the non-uniform case, 

and 1N N   for the uniform case. In addition, 1( )*

1( ) iA NT

i i iB B e
  

  , where 

 0,1, ,i i N   are the actuation time instants.  

 T

kU  is a generic array of control signals to indistinctly represent either the uniform actuation 

as in (3.12) via ˆ T

kU , or the non-uniform actuation as in (3.10) via 
ˆ T

kU , where the particular 

case k T   is considered. 

The predictor stage can be modelled as follows: 

1

, i

,
ˆ

f 0

if 1

ˆNT T lr

kNT

NT T lr

p k p k

k p k k

k

p

dA x B U
x

A x B U d


 






 

, (4.2) 

For the sake of simplicity and brevity, let us consider the following assumptions to define the 

state-space representation of the delay-independent controller:  

1) the setpoints are constant, and hence we can assume them to be zero without loss of generality. 

Then, NT

k

NT

k ye  . 

2) the behaviour behavior of the control system when 0lr
kd  is similar to the one when 0rl

kd , 

since in both cases the control signal T

kU

 

is computed from the estimated output 
NT
kŷ .  

3) the dual-rate controller can be defined as a cascade-connected system. 

4) the network delay fulfills k T   as in Section 5 in order to check stability for the control system 

in that section. 

After manipulating the difference equations (3.5) and (3.9), and assuming that the integral 

actions are generated at slow rate, and the derivative actions are computed at fast rate (as 

commented in Section 1), the dual-rate controller can take this lifted expression 
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 

1 1

1 1

ˆ ˆ
, if 0 or 0

ˆ

, if 1
ˆ ˆ

NT NT NT NT

k c k c k c k lr rl

k kT NT

k c k

NT NT NT NT

k c k c k c k lr rl

k k
T T T NT

k k I k c k

A B y B y
d d

U C

A B y B y
d d

U U U C

 



 

   

 

 

   
 



   
 

   

, (4.3) 

where, using  
T

as transpose function, the controller state is  
T

NT NT NT

k k kv  , being 

1

NT NT

k kv  and  

2

11 0 1
; ; ;

1 0 0
0

1

0

0

ic c c

d d
PD PD

c PD

PD N

NT

TA B B

T T
K K

T T

C K

K


 
     

       
     

 

  
   

  
 
 
 
 
 

, (4.4) 

In addition, depending on the delay k , different configurations for  , I and cC  may be 

considered. Therefore, when k T   

 

1 1

1 2

0
; ;

1

1

0

0

N N

I

N N N N

d d
PD PD

d d
PD PD

c

PD

PD N

I

I I

T T
K K

T T

T T
K K

C T T

K

K

 
 

 

 

   
    
   

  
   

  
 

 
   

   
 
 
 
 
 
 

, (4.5a) 

When , 1.. 1k dT d N     
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 

     

 

     

 

1 1

1 2

0
; ;

0 0

1

0

0

d N d N

I

N d d N d N d N d d N d N d

d d
PD PD

c PD

PD N

I

I I

T T
K K

T T

C K

K

 
   

         

 

   
    
   
   

  
   

  
 
 
 
 
 

, (4.5b) 

And finally, when , 1.. 1k dT d N     

           

2

0
; ;

0 0

1

0

0

d N d N

I

N d d N d N d N d d N d N d

d d
PD PD

c PD

PD N

I

I I

T T
K K

T T

C K

K

 
 

         



   
       
   

  
   

  
 
 
 
 
 

, (4.5c) 

Note that, as a delay-independent control solution, the controller in (4.3)-(4.5c) is defined 

irrespective of the delay k , that is, no controller’s parameter is retuned according to the delay (as 

needed, for example, in [7]). In addition, when dropouts occur ( 0lr

kd   or 0rl

kd  ), as the 

configuration of cC  does not depend on the delay because of the uniform actuation of the estimated 

control signal, the closed-loop model is also not dependent on the delay, 
,0clA . However, when no 

packet dropout occurs ( 1lr rl

k kd d  ), the configuration of cC does depend on the time-varying 

delay in order to satisfy the consequent input pattern to the plant. In this case, the plant is subjected 

to variations in the instants where the input commands are presented, and hence, matrices AP, BP, CP 

in (4.1) may vary from sensor period to sensor period. This leads to represent the NCS closed-loop 

model as an LTV system depending on k , 
,1( )cl kA  .  

To obtain the closed-loop system, the following definition is used 
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 ˆ ˆNT NT NT NT NT

k k k p k kw y y C x x    , (4.6) 

and this state variable is adopted  
T

NT NT NT NT

k k k kx x w . Some manipulations lead to the 

closed-loop system: 

,0

1

,1

, if 0 or 0

( ) , if 1

NT lr rl

cl k k kNT

k NT lr rl

cl k k k k

A x d d
x

A x d d


  
 

 

, (4.7) 

where 

,0

,1

0

0 0

0

( ) 0

0 0 0

p p c

cl c p c p p c c p p c c p c

p

p p c

cl k c p c p p c c p p c

A B C

A B C B C A A B C B C B A B

A

A B C

A B C B C A A B C B C

 
 

     
 
 

 
 

   
 
 

, (4.8) 

4.2 Closed-loop stability 

To assess the closed-loop system stability, the next Theorem can be enunciated. 

Theorem: Given  kP   in (2.2), which is normalized to take values in  0,1 , the closed-loop system 

in (4.7)-(4.8) is stable if there exists a positive definitive solution 
T 0Q Q   for the following 

LMIs 

T

,0 ,0

T

,1 ,1

1

0

( ) ( ) 0

cl cl

l

j cl j cl j

j

A Q A Q

P A Q A Q  


   

      
, (4.9) 

where   is a dummy parameter ranging in a set   where k  is assumed to take values in, being 

an interval  max0, , and  l the number of equally spaced values to get a dense enough gridding in 

.  To solve (4.9), widely known methods [3] can be used.  

Proof: Let  
T

NT NT NT

k k kV x Q x    be a Lyapunov candidate. Taking NT

kE V 
   as the statistical 

expectation for the Lyapunov function, and assuming a probabilistic LMI gridding procedure, then 
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the expectation of the increment NT

kE V    along subsystem 
,1( )cl kA   in (4.7)-(4.8) can be obtained 

as follows 

   

   

   

 

T T

1 1 1

T T

,1 ,1

T T
T

,1 ,1

T

,

( ) ( )

( ) ( )

NT NT NT NT NT NT NT

k k k k k k k

NT NT NT NT

cl k cl k k kk k

NT NT NT NT

cl k cl k k kk k

NT

clk

E V E V V E x Q x x Q x

E A x Q A x x Q x

E x A Q A x x Q x

E x A

 

 

  
                   

         
  

        
  

  

 

T

1 ,1

T
T

,1 ,1

1

( ) ( )

( ) ( ) 0

NT

k cl k k

l
NT NT

k j cl j cl j k
j

Q A Q x

x P A Q A Q x

 

  


     
  

 
       

 


, 
(4.10) 

By including every possible delay in  , system stability can be ensured for the different 

configurations of the controller in (4.5a)-(4.5c). Regarding 
,0clA , a similar development can be 

carried out, not considering neither the expectation nor the delay. Finally, both developments lead 

to (4.9).  

 

Discussion on feasibility: Note that the first inequality in (4.9), i.e. T

,0 ,0 0cl clA Q A Q    , would 

never hold if the plant were open-loop unstable (as the one considered in next Sections). However, 

if no model uncertainties and an accurate prediction were assumed (i.e. 0NT

kw  ), the designed 

controller would be able to stabilize the plant. Then, under these conditions, in order to assess 

feasibility for the LMIs in (4.9), 
,0clA  may be replaced by   

,0

p p c

cl

c p c p p c c p p c

A B C
A

B C B C A A B C B C

 
    

, (4.11) 

And, 
,1( )cl kA   may consequently reduce its dimensions as follows 

,1( )
p p c

cl k

c p c p p c c p p c

A B C
A

B C B C A A B C B C


 
  

  
, (4.12) 
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5. Simulation results 

This section is split into three subsections. In subsection 5.1, the data used in the simulations 

will be presented. In addition, stability for the proposed NCS will be assessed by means of the LMIs 

stated in Section 4. The aim of subsection 5.2 will be to reveal the benefits of the proposed control 

solution by comparison with a delay-dependent approach in [7]. The system responses are shown 

and analyzed via some cost indexes. Finally, in subsection 5.3, model mismatches are considered 

for the delay-independent control solution, and their consequent effects on the system response are 

depicted and analyzed by means of some cost indexes.   

5.1. Simulation data. Control system stability assessment 

The process to be controlled is a Cartesian robot manufactured by Inteco, specifically, the 3D 

CRANE module (see in Figure 4). The rail measures of this plant for each axis are: X=0.050m, 

Y=0.040m, Z=0.050m. 

Focusing on the X axis, its identification leads to  

6.3
( ) m c.a.u.

( 17.7)
pG s

s s



, (5.1) 

where c.a.u. means control action units, which are generated by a PWM signal normalized in the 

range [0,1]. 

The system also presents two non-linear behaviors to be taken into account in real-time 

implementation: saturation limits of control actions in ±1, and dead zone values of ±0.06. Both of 

them are identified experimentally and measured in normalized c.a.u.  

For a fair comparison in the next subsection, the simulations are based on the consideration of a 

UDP network with the same parameters used in [7], that is,  

 the network-induced delays are given by the histogram shown in Figure 5, which can be 

modeled as a generalized exponential distribution (2.2), where k  takes values in the range 
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 0.04,0.08 . As max 0.08  , then the sensor period can be chosen, for instance, as NT=0.2s 

in order to avoid packet disorder.  

 the control design considers a conventional PID controller, being 12pK  , 0.01dT   and 

3.5iT   in (3.2b) in order to reach the following specifications: null steady-state error, settling 

time around 4s, and overshot around 5%. From this controller, the dual-rate control is set up 

using (3.3)-(3.12), where N=2 is assumed.  

 the packet dropouts are modeled by means of a Bernoulli distribution (2.3), being 

0.3lr rlp p p    and M=3.  

In order to assess the stability of the setup in probabilistic time-varying delays, the LMI 

gridding in (4.9) has been carried out taking l=20 grid points so as to compute the closed-loop 

realization 
,1( )cl jA  for the parameter space  . From Figure 5, jP     is normalized in order to take 

values in  0,1 . As the plant in (5.1) is open-loop unstable, both 
,0clA  and 

,1( )cl jA   in (4.11) and 

(4.12) are respectively used to check LMI feasibility. As a result, stability for the proposed NCS can 

be guaranteed, since the following feasible solution Q exists 

2

 0.311893   0.056373  -0.076933  -0.063061

 0.056373   0.661763   0.347536   0.023331
10

-0.076933   0.347536   1.247753  -0.032175

-0.063061   0.023331  -0.032175   0.329738

Q

 
 
 
 
 
 

, (5.2) 

5.2. System responses. Cost indexes 1J  and 2J   

In this subsection, the delay-independent control solution proposed in this work will be 

compared to the delay-dependent approach based on a gain-scheduling technique presented in [7].  

Figure 6 shows this comparison, where filtered step references (in dashed line) are used in 

order to avoid the saturation of the control signal. Note that the sequence of packet dropouts is 

represented in the time axis in such a way that each point indicates a packet dropout in the time 

instant where it is plotted. If the point increases its value in the vertical axis, then consecutive 
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dropouts are occurring in this instant. Circles are used to show the delay-independent control 

solution, and a thin line is used to depict the delay-dependent approach. In addition, two more 

responses are included in Figure 6: the nominal, desired response, that is, the output obtained for the 

dual-rate control when no delay and no dropout are considered (in bold line), and the response for 

the dual-rate control when time-varying delays and dropouts occur but no prediction stage is 

included (in dotted line).  

The simulation results show the next conclusions: i) as expected, the dual-rate control solution 

with no prediction stage is negatively affected by delays and dropouts, exhibiting the worst 

behavior, ii) as the delay-dependent approach includes a prediction stage, it is able to restore the 

control performance, but it is not able to accurately reach the desired specifications, and iii) the 

delay-independent control solution is able to achieve the nominal, desired behavior.  

In order to better quantify these results, the cost indexes 1J  and 2J  are stated. 1J  is based on the 

Integral of Absolute Error (IAE), and 2J  on the overshoot value.  

Let us consider the array Y , which includes the four control responses shown in Figure 6, that 

is,  , , ,Nom NP DD P DI PY Y Y Y Y  , being (1) NomY Y  the output for the nominal (no-delay, no-dropout)  

dual-rate control, (2) NPY Y  the output for the dual-rate control with no prediction stage and 

occurring delays and dropouts, (3) DD PY Y   the output for the delay-dependent approach (which 

includes prediction stage), and (4) DI PY Y   the output for the delay-independent proposal (which 

also includes prediction stage). From Y , the following accumulated (integrated) error YE  in a range 

of time instants   can be computed 

( ) ( ) , 1..4Y NomE i Y i Y i


   , (5.3) 

Then, the 1J  cost index takes this form 

1

( )
( ) 100 100 (%), 1..4

(2)

Y

Y

E i
J i i

E
   , (5.4) 
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being (2)YE  the worst expected accumulated error, that is, the error calculated for (2) NPY Y . 

Therefore, the rest of the errors are measured by 1J  as an improvement (in %) with respect to (2)YE .  

Additionally, from Y , the following overshoot YO  in a range of time instants   can be 

calculated (considering positive -max- or negative -min- filtered step references) 

 ( ) max max ( ) max , min ( ) min , 1..4Y Nom NomO i Y i Y Y i Y i
  

    , (5.5) 

Then, the 2J  cost index is defined as 

2

( )
( ) 100 100 (%), 1..4

(2)

Y

Y

O i
J i i

O
   , (5.6) 

being (2)YO  the worst expected overshoot, that is, the overshoot obtained for (2) NPY Y . Similarly 

to 1J , the rest of the overshoots are measured by 2J  as an improvement (in %) with regard to (2)YO . 

Table 1 summarizes the cost indexes 1J  and 2J  obtained for each output. The delay-dependent 

control solution significantly improves 2J  (around 85%) with respect to the worst response NPY , 

but it exhibits a poor improvement (around 42%) for the value 1J . Nevertheless, the delay-

independent control approach is able to accurately achieve the same control properties as the 

nominal dual-rate control solution, since 1J  and 2J  practically reach 100%. 

5.3. Model mismatch. Cost indexes 3J  and 4J . 

As the proposed delay-independent control solution is model-based, both the controller design 

and the prediction computation depend on how accurate the model represents the plant behavior. If 

some uncertainty between plant and model were assumed, the robustness of the model-based 

control proposal could be checked.  

In this subsection, some a certain model mismatch in the characteristic parameters of the plant, 

say, the static gain K and the time constant  , will be considered. Let us consider a percentage q% 

of increase in K, %q K , and a percentage r% of increase in  , %r  . Figure 7 shows a 

comparison among the nominal response and the outputs obtained when [ 20%K , 8%  ] and       
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[30% K , 12%  ]. As expected, the larger the percentage of uncertainty is considered, the worse 

the behavior becomes (with regard to the nominal response). Despite assuming a significant model 

mismatch when [30% K , 12%  ], the system remains stable. However, the response is clearly 

worsened, exhibiting a 60% increase in settling time, and a 6% increase in overshoot. 

In order to better quantify these results and the robustness of the approach, the cost indexes 3J  

and 4J  are stated. 3J  is based on the Integral of Absolute Error (IAE), and 4J  on the overshoot 

value.  

Let us consider the matrix W , which includes different outputs for the proposed delay-

independent approach. These outputs are obtained as a result of varying %q K  and %r  . In this 

study, q takes the values q=0, 20, 30, and r the values r=0, 8, 12. Combining these values, nine 

different responses in W  can be considered. The nominal response NomY  is obtained when q=r=0. 

As previously commented, the worst behavior will be obtained for q=30 and r=12, since it 

represents the largest model mismatch. Let us assume this behavior as the worst permissible one. 

From W the following accumulated (integrated) error WE  in a range of time instants   can be 

computed 

( , ) ( , ) , , 1..3W r q r q Nom r qE i i W i i Y i i


   , (5.7) 

Then, the 3J  cost index takes this form 

3

( , )
( , ) 100 100 (%), , 1..3

(3,3)

W r q

r q r q

W

E i i
J i i i i

E
   , (5.8) 

being (3,3)WE  the worst permissible accumulated error, that is, the error reached when r=12 and 

q=30. Therefore, the rest of the errors are measured by 3J  as an improvement (in %) with respect to

(3,3)WE . 

Additionally, from W , the following overshoot WO  in a range of time instants   can be 

calculated (considering positive -max- or negative -min- filtered step references) 
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 ( , ) max max ( , ) max , min ( , ) min , , 1..3W r q r q Nom r q Nom r qO i i W i i Y W i i Y i i
  

    , (5.9) 

And then, the 4J  cost index is defined as 

4

( , )
( , ) 100 100 (%), , 1..3

(3,3)

W r q

r q r q

w

O i i
J i i i i

O
   , (5.10) 

being (3,3)WO  the worst permissible overshoot, that is, the overshoot reached when r=12 and q=30. 

Similarly to 3J , the rest of the overshoots are measured by 4J  as an improvement (in %) with 

regard to (3,3)WO . 

Tables 2 and 3 respectively summarize the cost indexes 3J  and 4J  obtained for each output 

depending on the model mismatch considered. As expected, the smaller the percentage of mismatch 

is considered, the larger 3J  and 4J  become, that is, a closer behavior to the nominal one is 

obtained.   

 

6. - Experimental results 

To validate the simulation results obtained in section 5, a laboratory test-bed platform is set up, 

which includes the CRANE module previously presented, two computers and an Ethernet cable.  

One computer is directly connected to the plant and includes the local part of the control 

system. The aims of this computer are: firstly, to be in charge of the sampling measurement and 

transmission at NT=0.2s; secondly, to receive the packet which includes the current and predicted 

PI control signals; thirdly, to compute, and inject to the plant, the fast-rate PD control actions at 

T=0.1s.  

The second computer performs the remote part of the controller, receiving the outputs of the 

plant, calculating the current and the predicted slow-rate PI control actions, and sending back these 

actions to the local system. Both computers are connected by a UDP network through an Ethernet 

cable that performs the local-to-remote and remote-to-local links. In order to obtain the same 
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conditions as those considered in simulation, packet delays and packet dropouts are modified by 

software. 

Figure 8 shows the outputs obtained in the experiment, which clearly validates the trend 

observed in Figure 6, that is, the delay-independent control solution improves the results obtained 

by the delay-dependent approach in [7], being able to reach the nominal, desired behavior. To better 

validate the results, Table 4 details the cost indexes 1J  and 2J  computed for the experiment. While 

the delay-independent approach exhibits values for 1J  and 2J very close to 100%, which means that 

it practically achieves the nominal behavior, the delay-dependent proposal presents percentages 

which are significantly smaller. 

Finally, to strengthen the previous conclusions, Figure 9 compares the behavior achieved by 

every control solution when the robot tries to track a 2D trajectory based on the well-known 

Lissajous curves (see, e.g., [1]). As expected, the response for the dual-rate control system when no 

prediction stage is included presents the worst behavior, mainly, when the curves are more 

pronounced. Once again, the difference between the delay-dependent strategy in [7] and the delay-

independent control solution proposed in this work is clearly observed, since, whereas the former 

does not accurately track the nominal response, the latter does. 

 

7. - Conclusions  

In this work, an NCS is presented where time-varying delays, packet dropouts and packet 

disorder can occur. By means of a novel delay-independent control solution, which integrates 

packet-based control strategies with dual-rate and predictor-based control techniques, the above 

problems are faced, and in addition, the usage of the network resources is reduced, while keeping 

the desired control specifications.  

Control system stability is ensured in terms of LMIs. The benefits of the control solution are 

illustrated by simulation, and experimentally validated by means of a robotic test-bed platform. 
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Figure 1. NCS scenario. 
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Figure 2. Packet dropout ( 0rl

kd  ). 

 

 

Figure 3. No packet dropout ( 1rl

kd  ). 

 

 

 

Figure 4. Cartesian robot (3D CRANE module). 
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Figure 5. Delay histogram. 

 

 

Figure 6. Comparison: nominal vs no prediction vs delay-dependent vs delay-independent. 
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Figure 7. Comparison: nominal vs delay-independent (model mismatch). 

 

 

Figure 8. Comparison: nominal vs no prediction vs delay-dependent vs delay-independent. 
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Figure 9. Comparison (Lissajous curves): nominal vs no prediction vs delay-dependent vs 

delay-independent. 

 

Output YE  1(%)J  
YO  2 (%)J  

NPY  291.19 0 0.047 0 

DD PY   168.64 42.09 0.007 85.64 

DI PY   0.02 99 0 100 

Table 1. Simulation: accumulated error YE  and cost index 1J ; overshoot YO  and cost index 2J . 

 

WE  
 

   0 

%q K

      20 

 

   30 

                 0 0 183.46 302.60 

  %r      8 59.82 248.62 373.11 

               12 88.56 280.65 407.19 
 

3J  
 

0 

%q K

20 

 

30 

                 0 100 54.94 25.68 

 %r       8 85.31 38.94 8.36 

                12 78.25 31.07 0 
 

Table 2. Accumulated error WE and cost index 3J . 
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WO  
 

0 

%q K

20 

 

30 

                  0 0 0.0087 0.0142 

 %r       8 0.0027 0.0117 0.0169 

                12 0.0041 0.0130 0.0182 
 

4J  
 

0 

%q K

20 

 

30 

                  0 100 52.19 21.97 

 %r       8 85.16 35.71 7.14 

                12 77.47 28.57 0 
 

Table 3. Overshoot WO  and cost index 4J . 

 

Output YE  1(%)J  
YO  2 (%)J  

NPY  290.55 0 0.042 0 

DD PY   207.53 28.58 0.012 70.80 

DI PY   19.53 93.28 0.001 97.62 

Table 4. Experiment: accumulated error YE  and cost index 1J ; overshoot YO  and cost index 2J . 

 


