

Study of high flash point ethyl alcohol based secondary fluids applied in Ground Source Heat Pumps systems

Luis Enrique Carrion Domenech

Master of Science Thesis

KTH School of Industrial Engineering and Management Energy Technology EGI-2018-2019 Division of Applied Thermodynamics and Refrigeration SE-100 44 STOCKHOLM

Table of Contents

1	Abs	stract	2
2	Inte	roduction	12
	2.1	Refrigerant	12
	2.1.	.1 Climate change	12
	2.1.	.2 Classification of refrigerants	16
	2.2	Refrigeration sector	17
	2.2.	.1 Energy use in the refrigeration sector	17
	2.2.	.2 Environmental impact of the refrigeration sector	18
	2.3	Refrigeration system	20
	2.4	Ground source heat pumps systems (GSHP)	22
	2.4.	.1 Market applications	22
	2.4.	.2 New development: Dual source HP	26
	2.4.	.3 Natural and Low GWP refrigerants for GSHP	26
	2.5	Objective	27
3	Gro	ound source heat pumps in Sweden and Spain	28
	3.1.	.1 Sweden	28
	3.1.	.2 Spain	28
	3.1.	.3 Differences	29
4	Sec	condary fluids	34
	4.1	Main properties	34
	4.2	Secondary fluids for indirect refrigeration system	35
	4.3	High flame point additives	36
5	Me	37	
	5.1	Limitations	38
	5.2	Freezing point temperature	39
	5.3	Density	40
	5.4	Viscosity	43
	5.5	Thermal conductivity	
	5.6	Specific heat capacity	46
	5.7	Error analysis	48
	5.7.	.1 Density error analysis	49
	5.7.	2 Dynamic viscosity error analysis	49
	5.7.	.3 Thermal conductivity error analysis	50
	5.7.	.4 Specific heat capacity error analysis	51
	5.8	Excel model of Ground Source Heat Pump	52
6	Res	sults	53

	6.1	,				
	6.2					
	6.3	Density	57			
	6.3.	Density results for solutions with freezing point of -10 °C	57			
	6.3.	2 Density for solutions with freezing point of -15 °C	58			
	6.3.	3 Density results for solutions with freezing point -20 °C	60			
	6.4	Viscosity	60			
	6.4.	1 Viscosity results for solutions with freezing point of -10 °C	61			
	6.4.	2 Viscosity results for solutions with freezing point -15 °C	62			
	6.4.	3 Viscosity results for solutions with freezing point -20 °C	62			
	6.5	Thermal conductivity	63			
	6.5.	Thermal conductivity results for solutions with freezing point -10 °C	64			
	6.5.	Thermal conductivity results for solutions with freezing point -15 °C	65			
	6.5.	Thermal conductivity results for solutions with freezing point -20 °C	65			
	6.6	Specific heat capacity	66			
	6.6.	1 Specific heat capacity results for solutions with freezing point -10°C	66			
	6.6.	2 Specific heat capacity results for solutions with freezing point -15°C	67			
	6.6.	3 Specific heat capacity results for solutions with freezing point -20°C	68			
	6.7	Performance	69			
	6.7.	Reynolds number results for solutions with the freezing point of -10 °C	70			
	6.7.	2 Heat transfer coefficient results for solutions with the freezing point of -10°C	71			
	6.7.	3 Pumping power performance results for solutions with the freezing point of -10 °C	73			
	6.7.	4 Reynolds number results for solutions with the freezing point of -15 °C	75			
	6.7.	Heat transfer coefficient results for solutions with the freezing point of -15°C	78			
	6.7.	6 Pumping power performance results for solutions with the freezing point of -15 °C	80			
	6.7.	Reynolds number results for solutions with the freezing point of -20 °C	81			
	6.7.	8 Heat transfer coefficient results for solutions with the freezing point of -20°C	83			
	6.7.	Pumping power performance results for solutions with the freezing point of -20 °C	85			
7	Cor	nclusion and Future work	87			
	7.1	Conclusions	87			
	7.2	Future Work	88			
B	Sibliography8					