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A packet-based dual-rate PID control strategy for a slow-rate sensing 

Networked Control System. 

 

 

 

Abstract 

This paper introduces a packet-based dual-rate control strategy to face time-varying network-

induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate 

sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes 

reaching the desired control performance possible. The dual-rate PID controller is split into two 

parts: a slow-rate PI controller located at the remote side (with no permanent communication to the 

plant) and a fast-rate PD controller located at the local side. The remote side also includes a 

prediction stage in order to generate the packet of future, estimated slow-rate control actions. These 

actions are sent to the local side and converted to fast-rate ones to be used when a packet does not 

arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed 

control solution is able to approximately reach the nominal (no-delay, no-dropout) performance 

despite the existence of time-varying delays and packet dropouts. Control system stability is 

ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a 

Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous 

proposal by authors. 

 

Keywords 

Networked control systems; slow sensors; non-uniform sampling; multi-rate control; packet-based 

control. 
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1. - Introduction 

One of the main features of a Networked Control System (NCS) [1,2,3] is to send data via a 

shared communication medium in order to control a process. In the last few years, interesting 

applications have been reported in this field [4,5,6,7]. The present work considers a low cost 

distributed sensor net, which sends data to a powerful remote server (with high computation and 

information storage features). One of the main goals of the contribution is to achieve energy saving 

in this kind of set-up. Energy saving is a crucial issue, especially in battery-powered wireless 

sensors, having positive effects on their battery lives. As it is well known, the energy consumption 

in sensor networks is usually due to sensing, processing and communication operations. The last 

ones consume most part of this amount of energy. Therefore, in order to save energy, a good option 

is to reduce the data flow frequency through the net. However, a quite low transmission frequency 

could imply failure to fulfil control specifications, or even process instability. Different control 

proposals have been introduced to reduce the communication rate preserving the control 

performance. One of them is the packet-based approach [8,9,10,11], which enables a sequence of 

signals to be sent over the network simultaneously. In the same way, techniques based on sending 

data when some thresholds are exceeded [12,13,14] –i.e. event-based control-, or just considering 

some specific data priority [15], have been used. Another possible option is the so called “multi-rate 

control”, which is a control technique able to assume different rates for different control loop 

signals [16,17]. The present work combines multi-rate and packet-based control techniques for 

dealing, in addition, with some typical NCS problems such as time-varying network-induced 

delays, packet dropouts, and packet disorder. 

The considered NCS locates the low cost sensor net, the process and the actuator (with a low 

computation power) in the local side, whereas the server (with high computation power and other 

capabilities) is situated in the remote side. Sensed values must travel through the main network 

from the local side to the remote side, and control signals, from the remote side to the local side. As 

it can be said, to reduce energy, a slow transmission frequency was assumed in both links. 
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Therefore, slow-rate sensed values and slow-rate control actions travel through the NCS. Adopting 

a dual-rate control strategy, an N faster control updating (being N a positive integer greater than 

one) can be assumed at the actuator device by converting the slow-rate control signal into a fast-rate 

one, which enables to achieve the desired control performance. This proposal requires a special 

controller, actually a non-conventional controller, which is able to compute control actions at period 

T from signals taken at period NT [17]. In this work, due to the wide knowledge of PID controllers 

in industrial and academic environments, a non-conventional PID control structure is taken into 

account. The controller is split into two parts: a slow-rate PI controller and a fast-rate PD controller. 

The integral action is applied at slow rate because it usually operates at this frequency zone, and 

hence, it is located at the remote (server) side. The derivative actions, which are associated with 

faster dynamics, are applied at fast rate, and hence, the PD controller is located at the local side 

(inside the actuator). The basic design procedure can be looked up in [17,18,19].  

The additional difficulties caused by the shared communication medium (network-induced 

delays, packet dropouts, and packet disorder) can appear depending on the network protocol used in 

a specific application. Regarding the delays, these are due to waiting-transmission-picking up times 

and are time-varying during the course of the application. As it is well-known, not compensating for 

the delays can imply a worsening of the control performance. This problem can be overcome by 

using, for example, gain-scheduling control strategies such as the one used in [20]. This proposal 

allows obtaining a simple delay-dependent control law to retune the parameters of the fast-rate PD 

controller from the round-trip time delay. As the actuator is assumed to include low computation 

capabilities, it is able to measure the round-trip time delay and compute the fast-rate control signal. 

In this way, the nominal (no-delay) control performance can be closely maintained despite actuating 

in a non-uniform way due to the delays (that is, the last control action computed in the previous 

sensor period is held until new, current control actions are applied after the delay).  

Concerning the packet disorder, once again, the fact of choosing a slow sensing period NT 

(concretely, the sensing period will be longer than the longest round-trip time delay) is beneficial, 
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since it can avoid this phenomenon. Obviously, the decision needs to perform some off-line 

experiences with usual operation conditions to detect some delay features. Sometimes, a statistical 

distribution of the network-induced delay is even found [21,22]. As previously commented, despite 

the fact of choosing the slow sensing period in this way, dual-rate control techniques (with faster 

control period) enable to achieve a satisfactory performance [17,18]. And, once the sensing period 

and the rest of NCS parameters are defined, LMIs can be used to ensure control system stability. 

Finally, with regard to packet dropouts, if a network protocol like UDP is assumed, this 

phenomenon can occur [21,22]. In this work, a packet dropout can be derived either from an 

effective loss or from the expiration of a maximum waiting time. In addition, an upper-bound for 

consecutive packet dropouts M can be established from the off-line experiences. In order to deal 

with up to M possible packet losses, a prediction stage is included at the remote side, which 

contains a state resetting procedure [23,24] in order to face even unstable processes (or marginally 

stable ones, such as the position output for DC motors governing the axis of a Cartesian robot, 

which is used in this work). If a packet dropout occurs, a different solution is implemented for each 

network link. For the local-to-remote link, the process estimator provides the estimated output value 

in order to generate the current (estimated) PI control action. For the remote-to-local link, a packet-

based strategy is adopted. The packet includes the current PI control action and M future ones to be 

used just in case the dropout occurs. 

Summarizing, the main motivation of this paper is to introduce some control techniques 

(multi-rate and packet-based ones) in order to save energy (reducing the number of transmissions) 

while maintaining a satisfactory control performance in a NCS, where some typical problems (time-

varying network-induced delays, packet dropouts, and packet disorder) must be faced.  

The main contributions of this work with regard to another proposal in [20] are: 1) the remote-

to-local network link is now considered, which allows not only to distribute the controller between 

remote and local sides, but also to deal with remote-to-local delays; 2) the network-induced delay is 

now stochastic. Then, probabilistic LMIs are required to ensure control system stability; 3) packet 
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dropouts are considered in both network links. They are faced via a prediction technique which 

contains a state resetting procedure in order to even cope with unstable processes. 

The paper is structured in the following sections. In section 2, the problem scenario is formally 

introduced. In section 3, control techniques used in the remote and local sides are presented. 

Control system stability is enunciated in terms of probabilistic LMIs in section 4. Simulation results 

in section 5 illustrate the benefits of the proposed control strategy. Section 6 validates the results 

using a real physical process. Finally, conclusions close this contribution. 

NOMENCLATURE 

N, t, T, NT Multiplicity, and basic, actuation and 

sensor periods 

, ,lr rl

k k k    Local-to-remote, remote-to-local, and 

round-trip time network-induced delay 

,lr rl

k kd d  Local-to-remote and remote-to-local 

packet dropout occurrence 

ˆ, ,NT NT NT

k k ky y y  Actual, estimated, and actual or 

estimated, system output (at NT) 

NT

kr  Reference signal (at NT) 

,

NT

PI ke  Error signal (PI input) (at NT)  

ˆ, ,NT NT NT

k k kx x x  Actual, estimated, and actual or 

estimated, system state (at NT) 

, , ,
ˆ, ,NT NT NT

PI k PI k PI ku u u

 

Actual, estimated, and actual or 

estimated, PI control action (at NT) 

,

T

PI ku  Expanded PI control action (at T) 

, , ,
ˆ, ,T T T

PI k PI k PI ku u u  Actual, estimated, and actual or 

estimated, PI action converted at T  
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, , ,

, , ,
ˆ, ,k k kT T T

PD k PD k PD ku u u  

 

Actual, estimated, and actual or 

estimated, (retuned) PD control action 

(at T) 

M Upper bound for estimations 

z t-unit operator 

,L T
z z L

t
   

T-unit operator 

N N L

Nz z z    NT-unit operator 

 

 

2. - Problem description 

The proposed NCS is depicted in Figure 1, where the network is placed between the remote 

and local sides, and can introduce time-varying delays, packet dropouts and packet disorder. The 

round-trip time delay for the packet sampled at the instant kNT (where k , T is the actuation 

period, NT is the sensor period, and N  is a parameter known as multiplicity in a dual-rate 

control framework [17]) is defined as 

lr rl c

k k k k      , (2.1) 

where c

k  can be considered as a negligible computation time delay, lr

k  is the local-to-remote 

network-induced delay, and rl

k , the remote-to-local one. To avoid packet disorder,  max0,k   must 

fulfill max NT  . Since in this work, an IP network which uses UDP as the transport layer protocol 

is taken into account, the distribution of the round-trip time delay is a constant plus a Gamma 

distributed random variable, whose shape and scale parameters change with load and network 

segment [22]. Usually, this distribution is approximated as a generalized exponential distribution 

[25], whose probability density function can take this form 
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 

 
1

,

0 ,

k

k
k

k

e
P

 

  
 

 

 
 

 




, (2.2) 

being the expected value of the delay  kE     , and its variance 2[ ]kV   . A feasible choice of 

  is the median of the delay. From   and an experimental value of  kE   (or the mean),   can be 

easily approximated. Note that a common timer is supposed to be shared by the local devices in 

such a way that all of them are perfectly synchronized. Then, k  can be measured subtracting packet 

sending and receiving times, not requiring time-stamping techniques. 

As well-known, when using the UDP transmission model, packet dropouts appear. This 

phenomenon is essentially random [21], and hence, it can be modeled as a Bernoulli distribution 

[1]. The variable lr

kd  indicates the possible loss of the packet sent from the local side to the remote 

one at the instant kNT (similarly, rl

kd  is defined for the opposite network link). In this work, both 

variables are considered as a Bernoulli process with probability of dropout: 

Pr[ 0] [0,1)

Pr[ 0] [0,1)

lr lr

k

rl rl

k

p d

p d

  

  
, (2.3) 

Next, the different devices included in Figure 1 for the NCS are presented: 

 a process to be controlled: as it will be introduced in section 5 and 6, a Cartesian robot will 

be used. 

 a sensor, working at period NT, to sample the process output NT

ky . Sensing at this slow rate 

enables to achieve energy saving by reducing network load.   

 a slow-rate PI controller, which generates a PI control action ,

NT

PI ku  from the reference NT

kr

and the sample NT

ky , as long as it arrives to the remote side ( 1lr

kd  ) after lr

k . Otherwise     

( 0lr

kd  ), a previously estimated PI control action ,
ˆ NT

PI ku  will be used. Note that to detect a 

packet dropout in this device, a maximum waiting time max

lr  is considered. If max

lr  expires 

and the packet does not arrive, it will be considered as a dropout. More information about 
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the definition and operation mode of the slow-rate PI controller can be found in subsection 

3.1. 

 a prediction stage, which computes an array of M estimated, future PI control actions 

, 1 , 2 ,
ˆ ˆ ˆ, ,NT NT NT

PI k PI k PI k Mu u u  
    from the array of the actual and future references 

1 2,, , ,NT NT NT NT

k k k k Mr r r r  
   , and the actual (or estimated) PI control action ,

NT

PI ku  (or ,
ˆ NT

PI ku ), the 

process output NT

ky  (or ˆ NT

ky ), and the state NT

kx  (or ˆNT

kx ). For the sake of simplicity and 

brevity, both cases (actual and estimated) will be contained under the notation 

, , ,NT NT NT

PI k k ku y x  on the sequel. The main goal of the prediction stage is facing packet dropouts 

for both network links. A more detailed scheme about this stage is depicted in Figure 2, 

where a prediction cascade structure is considered. For more information about how the 

prediction stage works, see subsection 3.4. 

 a packet generator, which enables to consider a packet-based control strategy by creating 

the packet to be sent to the local side, containing , , 1 , 2 ,
ˆ ˆ ˆ, , ,NT NT NT NT

PI k PI k PI k PI k Mu u u u  
   . 

 a non-uniform actuator which includes a rate converter and a fast-rate PD controller: the 

rate converter converts the slow-rate PI control signal to a fast-rate one in order to be used 

as an input to the fast-rate PD controller (more details in subsection 3.2). The two main 

goals of the fast-rate PD controller are: 1) to achieve the required performance from a 

slow-rate sensing but acting at a fast rate (that is, a dual-rate control strategy [17]), 2) to 

compensate for the round-trip time delay, which can be measured at the local side. 

Depending on rl

kd , two different cases can be considered. Figure 3 illustrates the case when 

no packet dropout occurs from remote to local sides ( 1rl

kd  ), and Figure 4, the opposite 

case ( 0rl

kd  ).  In both cases, once the delay k  is known (or the packet dropout is detected 

after expiring a supposed maximum waiting time max , and hence maxk  ), the controller 

generates the PD control signal ( ,

,

, 1

,

, 1

,
, , ,k k k

PD k PD k PD

T T

k N

T
u u u

  

  
 
   or , ,

, 1 , 1

,

,, ,ˆ ˆ ˆ,k k k

PD k PD k PD k

T T T

Nu u u
  

  
 
  , 



9 

depending on rl

kd ) by adopting a gain scheduling approach [20]. The control signal is 

applied to the process by the actuator in a non-uniform way, since the last control action of 

the previous sensor period NT, 1

,

,
k

PD k

T
u



 , is held while no new one can be applied due to the 

delay k .  Note, max  could fulfill max ,dT d   , then the first d control actions would 

not be applied, and hence, the control performance could worsen. More information about 

the fast-rate PD controller can be found in subsection 3.3. 

 

3. - Packet-based control strategy. Prediction stage.   

In this section, the packet-based control strategy proposed in this work is formulated in 

subsections 3.1 (slow-rate PI controller), 3.2 (rate converter), and 3.3 (fast-rate PD controller). 

Since packet dropouts could occur in both network links, each control stage must consider two 

cases: a) no packet dropout, b) packet dropout. At the end of the section (in subsection 3.4), the 

prediction stage is enunciated.  

First of all, let us define the transfer function of the continuous plant to be controlled as ( )pG s . 

By using the Z-transform at different periods plus a zero order hold device ( )H s , different discrete-

time versions for Gp(s) can be calculated. Therefore, denoting Lz z and N N L

Nz z z   : 

 

 
( ) ( )

NT

NT

N NT

N

N

NT p NT
G z Z H G s

Y z

U z
  ; 

 

 
( ) ( )

T

T

T T p T
G z Z H G s

Y z

U z
   

 

 
( ) ( )

t

t

t t p t
G z Z H G s

Y z

U z
  , : ,t T t L T L     , 

(3.1) 

In addition, the consequent state-space representations for each case can be enunciated as 

1

NT NT NT NT NT

k k k

NT NT NT

k k

x A x B u

y C x

  







; 
1

T T T T T

k k k

T T T

k k

x A x B u

y C x

  







; 
1k k k

t t t t t

t t

k

t

k

x A x B u

y C x

  







, (3.2a) 
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Secondly, let us consider a continuous PID controller which is designed according to classical 

methods in order to achieve certain specifications for the process to be controlled. This is the 

configuration considered for the continuous PID controller: 

1
( ) 1PID p d

i

G s K T s
T s

 
   

 
, (3.2b) 

3.1. Slow-rate PI controller  

The following two cases must be considered: 

a) No dropout ( 1lr

kd  ): The PI controller working at period NT is enunciated as  

1
( )

( )
1 ( )

N NT
NT i PI N
PI N PI NT

N PI N

NT
z

T U z
G z K

z E z

 
  
  


, 
(3.3) 

being ( )NT

PI NU z  the PI control signal, ( )NT

PI NE z  the error signal, and ,PI iK T  the gains of the 

PI controller (usually, 1PIK  ) . The PI control signal is obtained as 

 ( ) ( ) ( ) ( ) ( ) ( )NT NT NT NT NT NT

PI N PI N PI N PI N N NU z G z E z G z R z Y z   , (3.4) 

and, from (3.3), the difference equation for the PI controller (with 1PIK  ) will be  

   , , 1 , , 1 , 1 1 11 1NT NT NT NT NT NT NT NT NT

PI k PI k PI k PI k PI k k k k k

i i

NT NT
u u e e u r y r y

T T
    

   
            

   
, (3.5) 

b) Dropout ( 0lr

kd  ): In this case, instead of using the actual PI control signal in (3.4), the 

estimated one ˆ ( )NT

PI NU z  must be used. This signal is previously generated at the prediction 

stage according to subsection 3.4.  

3.2. Rate converter  

As it is well-known [17], a rate converter ( )
T

NTH z    between slow (remote) and fast (local) 

controllers is required. Its goal is to convert the slow rate PI control signal to a fast rate one in order 

to be used as an input to the fast rate PD controller. This operation can be carried out either at the 

remote side (sending the converted signal to the local side) or directly at the local side (this is the 

option used in this work). Two cases are considered:  
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a) No dropout ( 1rl

kd  ): The rate converter considers the actual slow-rate PI control signal 

( )NT

PI NU z  to obtain the held fast-rate one ( )T

PIU z . As, in this work, step references are 

considered, the rate converter becomes a digital zero order hold: 

1

( ) 1
( ) ( ) ( )

1( )

T N
T T T

NT NT NTPI
PI PI NT

NT

PI N

U z z
H z U z H U z

zU z






               

, (3.6a) 

Note that ( )NT

PI NU z  is required to be used in an expanded way ( )
T

NT

PI NU z   , that is,  

, ,

,

0 ,

,
( ) ( ) : ,

0,

T T
T PI k PI kNT T T k

PI N PI PI k T
k PI k

u u k N
U z U z u z Z

u k N







 



   
   

  
 , (3.6b) 

More information can be found in [17].  

b) Dropout( 0rl

kd  ): Now, the rate converter considers the estimated PI control signal 

ˆ ( )NT

PI NU z , that is 

ˆ ˆ( ) ( )
TT

NT NT

PI PI NU z H U z       , (3.7) 

As it was said in section 2, for the sake of simplicity and brevity, both cases ((3.6a) and (3.7)) 

will be contained under the notation ( )T

PIU z  from now on. 

3.3. Fast-rate PD controller 

a) No dropout ( 1rl

kd  ) 

After (2.1), the round-trip time delay was defined to fulfill  max0,k  . Let us suppose 

max T   (for example, max T t   ) in order to inject N control actions for each sensor 

period NT (remember Figure 3). The PD controller, working at period T, is enunciated as 

,
, , ,

1
( )

( ) ( ) ( ) ( )
( )

k k

k

k k k k

d d

T
T T T TPD
PD PD PD PD PIT

PI

T T
z

T T U z
G z K U z G z U z

z U z

 


   

 
  

     , 
(3.8) 

where ,k k

PD dK T
 

 are the gains of the PD controller, which are retuned according to k  via 

the gain-scheduling algorithm presented in [20]. Note that the notation 
,

( )kT

PDU z
 represents 
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the PD control signal obtained either from the actual PI control signal ( )T

PIU z  (in (3.6a)) or 

from its estimation ˆ ( )T

PIU z  (in (3.7)). At the current sensor period, in addition to the last 

PD control action of the previous period (which remains held), new N PD control actions 

are applied to the plant after k  (remember Figure 3). These N actions are obtained after 

iterating the difference equation deduced from (3.8) N times, that is 

,

, , , 11
k k

k k kT T Td d
PD k PD PI k PD PI k

T T
u K u K u

T T

 
  



   
     

   
, (3.9) 

As commented in section 2, due to the delay, these actions will be applied following a non-

uniform pattern. Then, a basic period t is required to adapt the non-uniformity to the delay 

in such a way that the actuation pattern inside the sensor period NT will take this form 

(where l=0..LN-1): 

,

,

,

, 1

,

,

,

1

, 1

, 0..

, ..

, ..2

, ( 1) ..

k

k

k

k

PD k

PD k

PD k

PD

T

k

k

N

T

T

T

k

lt

lt T

lt T T

lt N T N

u

u

u T

u

















 















 







, (3.10) 

b) Dropout ( 0rl

kd  ): The estimated PI control signal ˆ ( )T

PIU z  (to be defined in the last step in 

subsection 3.4) is now required. This control signal is available at the local side, since it 

was calculated at the remote side in a previous iteration and sent to the local side in a 

previous successful communication. 

The time max T t    is considered as the maximum waiting time established to detect a 

packet dropout (remember Figure 4). In this way, N PD control actions (in addition to the 

held action from the previous sensor period) are guaranteed to be applied in the current 

sensor period (as in (3.10)). In this case, with certainty, the PD control signal is an 

estimated one, since it depends on the estimated PI control signal. Then, with maxk   
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, , ˆˆ ( ) ( ) ( )k kT T T

PD PD PIU z G z U z
 

 , (3.11) 

From (3.9), but considering estimated signals, the set of N control actions can be computed 

and applied according to the next non-uniform actuation pattern inside the sensor period 

NT (where t is the basic period, and l=0..LN-1): 

,

,

,

, 1

,

, 1

,

, 1

, 0..

, ..

, ..2

, ( 1)ˆ ..

ˆ

ˆ

k

k

k

k

PD k

PD k

PD k

PD k N

T

k

T

k

T

T

lt

lt T

lt T T

lt N T

u

u

u

u NT

















 














  





, (3.12) 

3.4. Prediction stage  

The prediction algorithm is executed M times (M is the upper bound of consecutive packet 

dropouts) following a cascade structure (remember Figure 2) in order to generate the packet which 

includes the future, estimated M PI control actions , 1 , 2 ,
ˆ ˆ ˆ, ,NT NT NT

PI k PI k PI k Mu u u  
   . This packet is computed 

for every sensor period at the remote side, and it is sent to the local side in order to be stored, and 

used if subsequent dropouts occur through the remote-to-local communication. Considering a for-

loop where i=1..M, the statements of the prediction algorithm included in the loop are based on the 

next steps:  

1. Resetting of the initial state: If the current state sensed at period NT, 
NT

kx , is available at 

the remote side (that is, no dropout occurs when being sent via the local-to-remote network 

link), a resetting of the initial condition for the state at period t and T can be carried out. 

This operation can be executed when i=1, and it is required in order to deal with unstable 

plants or marginally stable plants [23, 24] such as the one used in this work. For the rest of 

iterations of the algorithm (i=2..M), or if the current state was dropped (for i=1), the 

updating is computed from the estimated state 1
ˆNT

k ix   (to be defined in step 3). As in section 

2, to contemplate every situation, let us define a generic (actual or estimated) state 
NT

kx . 

Therefore, the resetting carried out in each iteration is  
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( 1) 1 ( 1) 1

ˆ ˆ1: ;

ˆ ˆ ˆ ˆ1: ;

T NT t NT

k k k k

T NT t NT

k i N k i k i LN k i

i x x x x

i x x x x       

   

  

, (3.13) 

2. Estimation of the N PD control actions either from the estimated PI control signal ˆ ( )T

PIU z  

(it can occur for 1i  ) or from the actual one ( )T

PIU z  (it can only occur for i=1). Both cases 

assume the previous rate conversion ((3.7) or (3.6a), respectively).  

Similarly to (3.9), the estimated control signal is computed by iterating the next difference 

equation for j=0..N-1. Each iteration i for the prediction algorithm is calculated as follows 

,

, , , 1

,

, ( 1) , ( 1) , 1 ( 1) max

ˆ1: 1 ,

ˆ ˆˆ1: 1 ,

k k

k k k

k k

k k k

T T Td d
PD k j PD PI k j PD PI k j k m

T T Td d
PD k j i N PD PI k j i N PD PI k j i N k

T T
i u K u K u

T T

T T
i u K u K u

T T

 
  

 
  

 

 

   

         

    
        

    


   
       

   

, (3.14) 

where now, the equation for the first iteration of the prediction algorithm (i=1) is 

calculated supposing a successful remote-to-local communication (the packet which 

includes the estimated PI control actions will arrive to the local side) but unknowing the 

consequent remote-to-local delay (this information is not available at this moment) and 

hence, the round-trip time delay. This is the reason of adopting the statistical mode of the 

delay distribution m  as the delay to be considered at the first iteration. The mode can be 

obtained via a previous statistical analysis about the delay nature. For the rest of iterations 

(when i>1), the considered delay to generate the PD control actions is the maximum 

waiting time established to detect a dropout, that is, maxk  , since the next M-1 packets 

are assumed to be dropped. 

3. Estimation of the next state and output at period NT from the estimated PD control actions. 

As in (3.10) and (3.11), the basic period t is used. In this case, for each iteration of the 

prediction algorithm i=1..M, the next state-space representation is calculated by iterating 

for l=0..LN-1  
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1 ( 1) ( 1) ¨ , ( 1

,

)

1 ( 1) 1 ( 1)

ˆ ˆ ˆ

ˆ ˆ

k

k l i LN k l i LN PD k l i LN

k l i LN k l i LN

t
Tt t t t

t t t

x A x B u

y C x



         

       

 








, (3.15) 

where, for simplicity and brevity, let us represent by means of ¨ ,

,

( 1)
ˆ k

PD k l i

t
T

LNu


   the sequence 

of the N+1 PD control actions included in each sensor period by holding them at period t, 

that is, applying them via a non-uniform actuation pattern such as the one used in (3.12). 

As a result of iterating (3.15) for all i, the M estimated states and outputs at period NT, 

ˆ,ˆNT

i i

T

k

N

kx y  , are obtained. 

4. Estimation of the PI control signal ˆ ( )NT

PI NU z  from the estimated output signal ˆ ( )NT

NY z . 

Note that, particularly for the first iteration of the prediction algorithm (i=1), the actual 

output
NT

ky can be used if it is available at the remote side, that is, if no dropout occurs 

when being sent through the local-to-remote network link ( 1lr

kd  ). Then, the actual PI 

control action ,

NT

PI ku , which is generated by the output 
NT

ky  (remember (3.5)), can also be 

used. In this way, similarly to step 1, a resetting of the initial condition for the PI controller 

( ,

NT

PI ku ) is carried out in order to compute the next estimated PI control action , 1
ˆ NT

PI ku  . This 

operation is useful due to the marginally stable open-loop nature of the PI controller [23, 

24]. As usual, in order to contemplate every situation in the prediction algorithm, let us 

define a generic (actual or estimated) output 
NT

ky , and a generic (actual or estimated) 

control action ,

NT

PI ku . Therefore, similarly to (3.5), the iterations i of the prediction 

algorithm take the form  

   

   

, 1 , 1 1

, , 1 1 1

ˆ ˆ1: 1

ˆ ˆ ˆ ˆ1: 1

NT NT NT NT NT NT

PI k PI k k k k k

i

NT NT NT NT NT NT

PI k i PI k i k i k i k i k i

i

NT
i u u r y r y

T

NT
i u u r y r y

T

  

        

  
        

  


 
       

 

, (3.16) 
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4. Stability analysis 

4.1 Closed-loop model via lifting 

Let us consider a continuous linear time-invariant plant, which admits a state-space realization

( , , , )A B C D  , with suitable dimensions. Being   an arbitrary real number, one can denote 

0

( ) AB e Bd



   if 0  , or ( ) 0B   if 0  . The discrete time sampled-data model at period T of 

the previous plant was presented in (3.2a), being ; ( );T TAT Te B TA B CC   . 

 

In order to reflect the dual-rate sampling with non-uniform actuation (inputs are applied at 

instants  0,1, ,i i N  ; concretely, as detailed in Section 2, the actuation pattern inside a sensor 

period is  0, , ,2 , ,( 1)k T T N T  , and hence 0 1 20; ; ; ; ( 1)k NT N T         ), the 

control system can be modeled via state-space representation adopting the so-called lifting 

methodology [26]. Then, let us represent the process as:   

NT
kp

NT
k

T

PDp
NT
kp

NT
k

xCy

UBxAx k





,
1

, (4.1) 

where  

  
* **

10 ; ; 0 ;
0 10 0

ANT

N

p p p

B Be B
A B C C

   
     

  
being 1( )*

1( ) iA NT

i i iB B e
  

  . 

 
tr

, , , ,

, , 1 , 1
k k k kT T T T

PD PD k PD k PD k NU u u u
   

  
    is a generic array of N control signals (  

tr
 means 

transpose function) to indistinctly represent the N computed actions that appear both in 

(3.10) and in (3.12), that is, all the actions included in these equations except the last action 

from the previous sensing period, kT

kPDu
,

1,  . This action kT

kPDu
,

1,   is included in the state 
NT
kx as 

a state variable which is memorised from one sensing period to the next one, such as in [18], 

equation (13). 
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The predictor stage can be modelled as follows: 













1,

0,ˆ
ˆ

,

,

1 lr
k

T

PDp
NT
kp

lr
k

T

PDp
NT
kpNT

k
difUBxA

difUBxA
x

k

k





, (4.2) 

For the sake of simplicity and brevity, let us consider the following assumptions to define the 

state-space representation of the delay-dependent controller:  

1) if setpoints are constant, we can assume them to be zero without loss of generality, and hence 

NT
k

NT
k ye   

2) the control system behaviour when 0lr
kd  is similar to the one when 0rl

kd  from the point of 

view of computing the control signal kT

PDU
,

 

from the estimated output 
NT
kŷ . That is, when 0rl

kd , 

the control signal kT

PDU
,

 

to be applied at iteration k is generated from a PI control action which was 

previously computed at the predictor stage taking into account an output estimation for the time 

instant k,

 

NT
kŷ . When 0lr

kd , obviously the controller needs 
NT
kŷ  to calculate kT

PDU
,

. 

3) the dual-rate controller can be defined as a cascade-connected system. 

After manipulating the difference equations (3.5) and (3.9), and assuming such as in [18] 

(Section 5) that the proportional and integral actions are generated at the slow period, and the 

derivative one (which has relationship with anticipation and high-frequency behavior) is 

concentrated in the first sample, the dual-rate controller can take this lifted expression 

 1 1

,

1 1

,

ˆ ˆ
, 0 0

( )

, 1
( )

k

k

NT NT NT NT

k c k c k c k lr rl

k kT NT

PD c k k

NT NT NT NT

k c k c k c k lr rl

k kT NT

PD c k k

A B y B y
if d or d

U C

A B y B y
if d d

U C





 

 

 

 

 

 

   
 



   
 



, (4.3) 

where  
tr

,

NT NT NT

k PI k ku  , being 
, 1

NT NT

k PI ku  , and 
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11 0 1
; ; ;

1 0 0
0

1

( ) 0

0

k k

k k

k

k

ic c c

d d
PD PD

c k PD

PD

NT

TA B B

T T
K K

T T

C K

K

 
 







 
            

     
 

  
   

  
 
 
 
 
 

, (4.4) 

To obtain the closed-loop model, the following definition is used 

)ˆ(ˆ NT
k

NT
kp

NT
k

NT
k

NT
k xxCyyv  , (4.5) 

and this state variable is adopted  
tr

NT NT NT NT

k k k kx x v . Some manipulations lead to the 

closed-loop model: 












1,)(

00,)(

1,

0,

1 rl
k

lr
k

NT
kkcl

rl
k

lr
k

NT
kkclNT

k
ddifxA

dordifxA
x




, (4.6) 

where 

,0

,1

( ) 0

( ) ( )

0 0

( ) 0

( ) ( ) 0

0 0 0

p p c k

cl k c p c p p c c p p c k c p c

p

p p c k

cl k c p c p p c c p p c k

A B C

A B C B C A A B C B C B A B

A

A B C

A B C B C A A B C B C



 



 

 
 

     
 
 

 
   
 
  

, (4.7) 

4.2 Closed-loop stability 

Similarly to [9,19], the next Theorem can be enunciated to assess the closed-loop system 

stability. 

Theorem: Given  kP   in (2.2), the closed-loop system in (4.6) is stable if there exists a positive 

definitive solution 
tr 0Q Q   for the following probabilistic LMIs 
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tr

,0 ,0

1

tr

,1 ,1

1

( ) ( ) 0

( ) ( ) 0

l

j cl j cl j

j

l

j cl j cl j

j

P A Q A Q

P A Q A Q

  

  





      

      




, (4.8) 

where   is a dummy parameter ranging in a set   where k  is assumed to take values in, being 

an interval  max0, , and  l the number of equally spaced values to get a dense enough gridding in 

.  (4.8) can be solved by means of widely known methods [27].  

Proof: Let  
tr

NT NT NT

k k kV x Q x    be a Lyapunov candidate. Taking NT

kE V    as the statistical 

expectation for the Lyapunov function, and assuming a probabilistic LMI gridding procedure, then 

the expectation of the increment NT

kE V    along subsystem 
,0( )cl kA   in (4.6) can be obtained as 

follows 

   

   

   

 

tr tr

1 1 1

tr tr

,0 ,0

tr tr
tr

,0 ,0

tr
tr

,0

( ) ( )

( ) ( )

( )

NT NT NT NT NT NT NT

k k k k k k k

NT NT NT NT

cl k cl k k kk k

NT NT NT NT

cl k cl k k kk k

NT

cl kk

E V E V V E x Q x x Q x

E A x Q A x x Q x

E x A Q A x x Q x

E x A

 

 



  
                   

         
  

        
  

  

 

,0

tr
tr

,0 ,0

1

( )

( ) ( ) 0

NT

cl k k

l
NT NT

k j cl j cl j k
j

Q A Q x

x P A Q A Q x



  


    
  

 
       

 


, 
(4.9) 

A similar development for subsystem 
,1( )cl kA   leads to (4.8).  

 

5. Simulation results 

5.1. Simulation data 

In this section, a particular case for the proposed NCS is presented. The control solution is 

shown by simulation, which is based on a model of a plant available in the laboratory in order to 

then validate the results experimentally (in section 6). 
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The process selected to be controlled is a Cartesian robot manufactured by Inteco, specifically, 

the 3D CRANE module (see in Figure 5). The rail measures of this plant for each axis are: 

X=0.050m, Y=0.040m, Z=0.050m. 

Focusing on the X axis, it is identified, obtaining the next model  

6.3
( ) m c.a.u.

( 17.7)
pG s

s s



, (5.1) 

where c.a.u. means control action units, which are generated by a PWM signal normalized in the 

range [0,1]. 

The system also presents two non-linear behaviors to be taken into account in real-time 

implementation: saturation limits of control actions in ±1, and dead zone values of ±0.06. Both of 

them are identified experimentally and measured in normalized c.a.u.  

In [20], a conventional PID controller such as in (3.2b) is used with 12pK  , 0.01dT   and 

3.5iT  , which reaches certain specifications (null steady-state error, settling time around 4s, and 

overshot around 5%). Digitally implementing this controller at a period higher than 0.1s, the 

aforementioned specifications cannot be assured. It is assumed that the sensor’s nature or the 

network load do not allow a sampling period below 0.2s. Therefore, a sample time of NT=0.2s is 

used, and a dual-rate controller with N=2 is implemented using (3.3)-(3.12) (assuming PD pK K  

and 1PIK  ) in order to reach the specifications. The following gain-scheduling law for the dual-rate 

delay-dependent controller is used to deal with the round-trip time delay k : 

50

0.5

k

k

PD k PD

d k d

K K

T T









  

 
, (5.2) 

For the present study, as enunciated in (2.2), a generalized exponential distribution is 

considered. The histogram used in this case is shown in Figure 6, where k  takes values in the range 

 0.04,0.08  . In addition, as presented in (2.3), packet dropouts are modeled as a Bernoulli 

distribution, being in this case 0.3lr rlp p p    and M=3.  
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In order to assess the stability of the setup in probabilistic time-varying delays, the LMI 

gridding in (4.8) has been carried out taking l=20 grid points so as to compute the closed-loop 

realizations 
,0( )cl jA   and 

,1( )cl jA  for the parameter space  . From Figure 6, 
jP     is normalized 

in order to take values in  0,1 . As a result, it can be checked that a feasible solution Q exists, 

which guarantees stability for the control system design: 

6

 1.20050   0.03926  -0.11557   -0.13543   -0.01666    0.27511              0     0.00041

 0.03926   2.30974   0.00751    0.80299   -0.00905   -0.26529              0    -0.00046

-0.11557   0.00751 

10Q 

  0.04032   -0.06609   -0.11587    0.02679              0     0.00003

-0.13543   0.80299  -0.06609    2.53137   -0.01202   -0.68629              0    -0.00036  

-0.01666  -0.00905  -0.11587   -0.01202    1.13465   -0.02103              0    -0.00004

 0.27511  -0.26529   0.02679   -0.68629   -0.02103    3.08272   0.06604    0.00297

            0              0              0               0               0     0.06604   1.16892    0.00639

 0.00041  -0.00046   0.00003   -0.00036   -0.00004    0.00297   0.00639    1.15074

 
 
 
 
 
 
 
 
 
 
 
  

, (5.3) 

 

Figure 7 shows the results obtained for the control solution, where filtered step references are 

used in order to avoid the saturation of the control signal. Note that the sequence of packet dropouts 

is represented in the time axis in such a way that a point indicates a packet dropout in the time 

instant where it is plotted. If the point increases its value in the vertical axis, then consecutive 

dropouts are occurring in this instant. Figure 7 also shows the desired, nominal (no-delay, no-

dropout) output. When packet dropouts appear in the NCS, if the delay-dependent control solution 

does not include the prediction stage, behavior deterioration is observed. Then, including the 

prediction stage, the control performance can be restored at about the same level as the nominal 

one.  

5.2. Data anylisis via cost indexes  

In this subsection four different cost indexes will be used. Firstly, in order to better quantify 

the benefits of the packet-based control solution, the cost indexes 1J  and 2J  are utilized. The first 

one, 1J , is based on the Integral of Absolute Error (IAE), and the second one, 2J , on the overshoot 

value. 1J  and 2J take the worst behavior, that is, the delay-dependent controller with no prediction 
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stage as the reference value to be compared to the rest of behaviors in order to compute the 

consequent improvements.  

In order to define 1J  let us consider the array Y , which includes the different sequence of 

outputs to be analyzed for the dual-rate control system, that is,  , ,Nom DD NP DD PY Y Y Y  , being NomY  

the output for the nominal (no-delay, no-dropout) case, DD NPY   the output for the delay-dependent 

controller with no prediction stage, and DD PY   the output for the delay-dependent controller with 

prediction stage. 

From Y  the following accumulated (integrated) error YE  in a range of time instants   can be 

computed 

( ) ( ) , 1..3Y NomE i Y i Y i


   , (5.4) 

Then, the 1J  cost index takes this form 

1

( )
( ) 100 100 (%), 1..3

(2)

Y

Y

E i
J i i

E
   , 

(5.5) 

 

being (2)YE  the worst expected accumulated error, that is, the error reached by the delay-dependent 

controller with no prediction stage. Therefore, the rest of the errors are measured by 1J  as an 

improvement (in %) with regard to (2)YE . 

In order to define 2J , from Y  the following overshoot YO  in a range of time instants   can be 

calculated (considering positive -max- or negative -min- filtered step references) 

 ( ) max max ( ) max , min ( ) min , 1..3Y Nom NomO i Y i Y Y i Y i
  

    , (5.6) 

Then, the 2J  index is 

2

( )
( ) 100 100 (%), 1..3

(2)

Y

Y

O i
J i i

O
   , (5.7) 



23 

being (2)YO  the worst expected overshoot, that is, the overshoot reached by the delay-dependent 

controller with no prediction stage. Similarly to 1J , the rest of the overshoots are measured by 2J  as 

an improvement (in %) with regard to (2)YO . 

Table 1 summarizes the cost indexes obtained for each output. As expected, considering 

packet dropouts, the packet-based control strategy which includes prediction stage clearly improves 

the control performance obtained by the no-prediction control strategy.  

 

6. - Experimental results 

To validate the simulation results obtained in section 5, a laboratory test-bed platform is set 

up, which includes the CRANE module previously presented, two computers and an Ethernet cable. 

One computer is directly connected to the plant and composes the local part of the control system. 

The aims of this computer are: firstly, to be in charge of the measures on the plant at NT=0.2s and 

their communication; secondly, to be responsible for the reception of the slow-rate control signal 

from the PI controller, the calculation of the fast-rate PD control actions (at T=0.1s) and their 

injection over the plant. When convenient, it is also in charge of the reception and selection of 

signals predicted to be applied to the plant when loss of communication occurs.  

The second computer performs the remote part of the controller, receiving the outputs of the 

plant, calculating the slow-rate PI controller, and sending back these actions to the local system. 

When required, this part is also in charge of the calculation of future, slow, predicted control 

actions, which will be sent together with the slow-rate control signal.  

These computers are connected by a UDP network through an Ethernet cable that performs the 

local-to-remote and remote-to-local links. In order to obtain similar conditions to those considered 

in simulation, network delays and packet dropouts are modified by software. 

Figure 8 shows the outputs obtained in the experiment, which clearly reveals the same trend 

observed in Figure 7. To better validate the results, Table 2 details the cost indexes 1J  and 2J  
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computed for the experiment, where lower improvements than in simulation are achieved due to 

practical issues (possible divergences between model and plant, dead zone, and so on). 

 

7. - Conclusions  

In this work, a packet-based dual-rate control solution is presented for an NCS where time-

varying delays, packet dropouts and packet disorder can occur. Selecting the sensing period greater 

than the longest round-trip time delay, the packet disorder is avoided. In addition, energy saving can 

be achieved by reducing network load, which is a crucial issue, especially in battery-powered 

wireless sensors. However, in order to reach certain specifications, an N times faster actuation 

period must be used, leading to the dual-rate control structure. The time-varying delays are dealt 

with the gain scheduling approach in [20]. By means of the packet-based control strategy, and 

including a prediction stage which is able to treat unstable or marginally stable plants, the packet 

dropout problem is solved.  Control system stability is ensured via probabilistic LMIs. 

Simulation results reveal the improvements reached by the control proposal, which are 

validated by means of a laboratory test-based platform, where the process to be controlled is a 

Cartesian robot. 
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Figure 1. NCS scenario. 
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Figure 2. Prediction stage in detail. 

 

Figure 3. No packet dropout ( 1rl

kd  ). 

 

Figure 4. Packet dropout ( 0rl

kd  ). 
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Figure 5. Cartesian robot (3D CRANE module). 

 

Figure 6. Delay histogram. 

 

Figure 7. Simulation results: nominal vs delay-dependent with packet dropouts and no 

prediction vs delay-dependent with packet dropouts with prediction. 
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Figure 8. Experimental results: nominal vs delay-dependent with packet dropouts and no 

prediction vs delay-dependent with packet dropouts with prediction. 

 

Output YE  1(%)J  YO  2 (%)J  

DD NPY   291.19 0 0.047 0 

DD PY   168.64 42.09 0.007 85.64 

NomY  0 100 0 100 

Table 1. Cost indexes 1J and 2J  in simulation. 

 

Output E  1(%)J  O  2 (%)J  

DD NPY   290.55 0 0.042 0 

DD PY   207.53 28.58 0.012 70.80 

NomY  0 100 0 100 

Table 2. Cost indexes 1J and 2J  in experimentation. 


