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In this paper, a method to in vivo estimate the relative stiffness between a hepatic lesion and the liver parenchyma is presented.
This method is based on the finite element simulation of the deformation that the liver undergoes during the breathing process.
Boundary conditions are obtained through a registration algorithm known as Coherent Point Drift (CPD), which compares the
liver form in two phases of the breathing process. Finally, the relative stiffness of the tumour with respect to the liver parenchyma
is calculated by means of a Genetic Algorithm, which does a blind search of this parameter. The relative stiffness together with the
clinical information of the patient can be used to establish the type of hepatic lesion. The developed methodology was first applied
to a test case, i.e., to a control case where the parameters were known, in order to verify its validity. After that, the method was

applied to two real cases and low errors were obtained.

1. Introduction

There are four main types of cells in the liver: hepatocytes
(or parenchymal cells), Kupfter cells, endothelial cells, and
stellate cells, which can receive stimulations to produce
fibrous tissue [1]. A fibrous liver is less deformable and has less
tissue with good function. The blood passes with difficulty
and, therefore, is more prone to diseases. [2]. There are
different diseases that can attack the liver, such as cirrhosis
and hepatitis, and these attacks can be related to the type of
cells. For example, hepatocellular carcinoma (HCC), which
is the most common type of liver cancer, is produced by

hepatocytes, the main type of cells in the liver. Some diseases
can result in other more serious illnesses, such as cirrhosis or
hepatic tumour. These attacks are localized in a region, and a
main goal in clinical application is delimiting these regions in
situ for their treatment.

Traditionally, biopsy was the most effective test to identify
damage in the liver. However, nowadays, there are also
analytic tests, known as liver function tests (LFTs or LFs),
which are analyses of blood to extract additional information
about the state of liver. There are different types of test,
but among these, the liver transaminases tests, i.e., aspartate
transaminase (AST or SGOT) and alanine transaminase
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(ALT or SGPT), are the most important since they are used
as biomarkers of a liver injury. Other important biomarkers,
such as NAFLD (nonalcoholic fatty liver disease) fibrosis
score, FIB-4 index, and BARD score, or combination of
these, are used in the clinical setting [3]. However, these
analytic tests do not predict the degree of the disease and the
localization of the damaged tissue, which is very important
for a good diagnosis [2, 4]. The localization of the damaged
tissue can be proved through medical image. Computer
Tomography (CT) and Magnetic Resonance (MR) are the
most commonly used medical images, especially when there
is suspicion of a hepatic tumour [5].

Characterizing the liver through the study of its mechan-
ical properties can help to establish the degree of the illness.
Particularly, in HCC, the stiffness of the tumour tissue
is greater than the rigidity of the normal tissue, which
influences the progression of the illness and the probability
of normal cells transformation into malignant cells [6, 7].
Thus, the difference of stiffness between the tissue of a
tumour and the tissue of the parenchyma can be used as a
biomarker. Nowadays, ultrasound elastography (USE) is the
most used methodology to measure tissue stiffness. USE is
an ultrasound-based technique for measuring liver stiffness
according to the velocity of the elastic wave propagation
across the tissue [8]. Theoretically, elastography can assess the
stiffness of tumours. Several authors have studied the utility
of elastography for the characterization of liver tumours ([9-
12] and others). For focal liver lesions, elastography is still an
open investigation, because this method cannot distinguish
between benign and malignant lesions, although there are
studies with promising results. For example, in Ma et al. [11],
the sensitivity and specificity for differentiation of malign
from benign lesions were 85% and 84%, respectively. Also,
in Guo et al. [12], the sensitivity and specificity were 83.3%
and 77.9%, respectively. However, other studies, such as those
presented by Heide et al. [9] and Frulio et al. [10], showed
that this differentiation was not so significant. Therefore, the
results are not conclusive, and more research or an alternative
methodology is necessary.

Currently, there are different USE techniques, which
depend on the measured physical quantity [13, 14]. That
is, the displacement parallel to the normal stress is mea-
sured in strain imaging technique. However, the shear wave
speed is measured in shear wave imaging technique [15].
In general, these techniques present some limitations; for
example, tissue attenuation decreases the ultrasound signal
as a function of depth; for this reason, assessment of deeper
tissue or organs is limited. Other limitation is that fluid and
fat also attenuate the propagation of the external stimulus
applied at the skin surface as what happens with FibroScan™
(Echosens, Paris, France). For this reason, USE techniques
are not recommended for people with abdominal ascites
(accumulation of liquid, produced generally by cirrhosis) or
obesity [16, 17]. In these cases, other methods, such as image
techniques (CT or MR), are required. Concretely, clinical
applications of USE in liver are limited because, in general,
USE is susceptible to internal source of stress, i.e., cardiac
and breathing. For this reason, in the case of the liver, it
is better to measure the stiffness in the right lobe (far of
the heart) because the throbbing of the heart can result in
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erroneous measurements. Therefore, the measurement of the
stiffness of tumours, which are located near the heart, is also
limited [18, 19]. The last limitation is that, previously, the
patients need to be coached in breathing (to stop breathing
at the end of end-exhale state or end-inhale state) because
the deep breathing can increase the errors in the stiffness
measurements [20].

On the other hand, recently, Magnetic Resonance Elas-
tography (MRE) has appeared as a novel noninvasive imaging
technique to describe the biomechanical behaviour of soft
tissues in vivo, reducing the limitations of the traditional
USE method. For example, MRE can be applied in patients
with ascites or obesity. These patients have problems with
using the traditional USE method, as indicated in [21]. The
largest amount of clinical studies in MRE have been based
on the evaluation of chronical illness in the parenchymal
liver [22]. Thomson et al. [23] affirm that MRE has been
used clinically in the liver for diagnoses and for establishing
the liver stage of fibrosis, and they showed that the MRE
may be able to differentiate HCC tumour grade. However,
the MRE method has some limitations. The iron-overload
state is the most important, because this overload may result
in the MRI signal being too low for shear wave detection
on a MRE sequence. Other limitation of MRE is a possible
error of diagnosis of parenchymal organ fibrosis confounding
the causes that produce an increase tissue stiftness [22]. For
example, in the liver, the causes of elevated stiffness include
acute inflammation, biliary obstruction, passive hepatic con-
gestion from cardiac failure, and hepatic venous obstruction.
Although MRE proves capable of differentiating benign from
malignant tumours in a variety of organ systems, an overlap
of the causes of stiffness in the liver can be a limiting factor,
and prospective studies involving larger numbers of patients
are required for validation.

The purpose of this work is to present a novel methodol-
ogy for the patient-specific estimation of the relative stiffness
between a hepatic lesion and the liver parenchyma. The
methodology proposed uses a finite element (FE) simulation
of the liver deformation during a natural process such as
human breathing. This FE model is based on two CT images
of the patient’s abdomen, corresponding to two stages: end-
exhale and end-inhale. The patients of this study had a
hepatic tumour whose relative stiffness regarding the liver
parenchyma was estimated. Genetic Algorithms were used
to find this relative stiffness using a constitutive model to
characterize the mechanical behaviour of these tissues. An
iterative process was designed, so the simulation of the
deformation of the liver in breathing was performed varying
the elastic constants of the model. The shape of the tumour
volume in the FE simulation was compared with the shape
of the tumour volume in the experimentally deformed liver
(i.e., the volume in inhalation) until the overlap of these two
volumes was maximum, thus measuring the relative stiffness
between tumour and liver parenchyma.

The presented methodology reduces some of the limita-
tions that the elastography techniques present. For example,
in the case of USE, the attenuation of the ultrasound signal as
a function of the tissue depth allows the assessment of deeper
tissue or organs. In the case of the MRE, the iron-overload
state, which may result in the MRI signal being too low for
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FIGURE 1: Scheme of the generation of the model FE meshes.
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FIGURE 2: Model and mesh of liver and tumour in the end-exhale state and in the end-inhale state.

shear wave detection on a MRE sequence, is not a problem in
this methodology.

2. Materials and Methods

CT images of the abdomen and pelvis of two anonymous
patients, who had an internal tumour in the liver, were
supplied by the Unidad de Cirugia Hepatobiliopancreatica
y Trasplante Hepatico of Hospital Universitari i Politécnic
La Fe de Valéncia (CT images used to support the findings
of this study have not been made available because they are
property of this hospital). Two CT images were acquired from
each patient, corresponding to two different states of the liver
deformation related to position of diaphragm in breathing:
end-exhale and end-inhale. Each patient’s abdomen was

scanned with Philips Diamond Select Brilliance CT 64-slice.
The scan parameters were 120 kVp and 86 mA s. CT images
of the liver were acquired in DICOM format with a size of
512x512x258 voxels, with a voxel size of 0.64x0.64x1.5 mm.
The software Simpleware (version 4.2; Synopsys, Inc.,
Mountain View, California, USA) was used to process these
two series of images in order to obtain the FE meshes of
the models. First, liver and tumour were segmented and the
two 3D geometrical models were generated (one for the end-
inhale state and other for the end-exhale state). Afterwards,
a smoothing Gaussian filter was used to obtain continuous
surfaces for both models. Finally, the two FE meshes corre-
sponding to each state were generated (Figure 1). The element
type used for each tissue, liver, and tumour, was the linear
tetrahedron. Figure 2 shows the models and FE meshes in
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both states, end-exhale and end-inhale, for the same pa-
tient.

After constructing the FE meshes of the models, it was
necessary to define the boundary conditions of the problem
and a suitable constitutive model for liver and tumour in
order to perform the simulation of their deformation in
breathing.

2.1. Boundary Conditions. FE modelling allows simulating
the mechanical response of the tissues of an organ by means of
the relationship between a displacement and/or a force field
applied to the organ and a constitutive model of the organ
tissues. For that, it is necessary to establish the boundary
conditions (BC) of the problem to be tackled, in this case, the
BC corresponding to the simulation of the liver deformation
in breathing. To obtain the BC of the problem, we propose
the use of point set registration, whose main goal is to find
correspondences between two sets of points and obtain the
transformation that maps one of the sets to the other. There
are two types of transformation: rigid and nonrigid. The
second type is used in medical registration and it allows
translation, rotation, scaling (included anisotropic scaling),
and skews. There are different registering algorithms, but a
lot of them have a high computational complexity and are
limited to rigid registrations. For this reason, in this study,
the Coherent Point Drift (CPD) algorithm [24] was used.
CPD considers the alignment between both sets of points
as a probability density estimation problem, where the first
point set (Gaussian Mixture Model centroids) is fitted to
the second point set (data points). CPD forces the centroids
to move coherently preserving the topological structure
through a transformation function, which is defined as the
initial position plus a displacement function, v:

TY,v)=Y+v(Y) 1)

where Y is the first point set (Gaussian Mixture Model
centroids). In the work of Myronenko and Song [24], the
mean squared distance between the corresponding points
after registration was used as error measure, which rises
with the deformation level. In this study, the maximum error
obtained was about 2%, and the authors concluded that CPD
shows robust and accurate performance, especially in cases
with noise, outliers, and missing points.

In this work, CPD was used to align the nodes of the
external surface of the liver mesh at exhalation considered
as the initial state to the external nodes of the liver surface
at inhalation; thus the displacements to be applied to the
nodes of the liver mesh (Dirichlet conditions) were obtained.
This point set registration algorithm allowed mapping the
end-exhale FE mesh to the end-inhale FE mesh, creating a
displacement field that defined the transition between both
states and provided the boundary conditions of the prob-
lem. The displacements obtained from the liver registration
(Figure 3) were used as the boundary conditions and applied
to the liver at the end-exhale state for the FE simulations
of the breathing process. Once the boundary conditions
were established, the final location of the tumour in the
FE-simulated deformed state (end-inhale) would allow the
estimation of the relative stiffness between the tumour and
the liver parenchyma.

2.2. Constitutive Model. Nonlinear constitutive models,
which are described by a specific strain energy function (W),
are used to define the biomechanical behaviour of the liver
tissue. There are a lot of types of constitutive laws to describe
the mechanical behaviour of the liver in the literature, for
example, polynomial hyperelastic models, exponential and
logarithmic hyperelastic models, and combined models.
In this study, a first-order Ogden model was chosen to
represent the mechanical behaviour of the liver and the
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tumour based on the results from Martinez-Martinez et al.
[25] and Untaroiu and Lu [26]. For this model, the strain
energy potential for the Ogden model [27], W, is defined as

—a -0 = K,
WO:§(1+A2+)L3—3)+70(I—1)2 )

where N denotes the order of the model; y; and «; stand
for the material elastic parameters; A, A,, and A; denote the
deviatoric stretches; K, is the initial bulk modulus; and J is
the determinant of the elastic deformation gradient.

One limitation of this study is that the liver is prestressed
inside the body at the end-exhale state. Establishing the
nondeformed state of the liver inside the body is an unsolved
problem of great difficulty due to the fact that all the interac-
tions of the liver with the rest of the organs and fluids should
be known in order to apply an algorithm to determine this
nondeformed state. Therefore, a first approximation, the end-
exhale state, was considered as a nondeformed state in our
methodology. Anisotropy is considered another important
factor. Most of the biological soft tissues have properties
highly anisotropic, such as the cartilage or the muscular
tissue, and the liver is not an exception. However, liver
tissue is considered as isotropic in a large majority of studies
[28, 29], as a good approximation to model its behaviour.
Therefore, the mechanical behaviour of the liver parenchyma
and the tumour tissue was considered isotropic.

The elastic constants of the first-order Ogden constitutive
model of the tumour, y and «p, were related to the elastic
constants first-order Ogden constitutive model of the liver
parenchyma, y; and oy, as (3) and (4) show.

Ur = krelML (3)
ar =ag (4)

The purpose of this work was to find the relative stiffness
factor between tumour and liver parenchyma using the first-
order Ogden model, k,,;. Small strains are not considered in
this work. However, this model must verify that, for small
strains, the material elastic parameters (¢ and «) are related
to the modulus of rigidity (G) as (5) shows.

ey =2G €)

For this study, the elastic constants of the liver

parenchyma were fixed to yi' = 364.74 Pa and ol =
16.19 [25]. Therefore

HUr = krel‘uL = 364'74krel (6)
ap = o =16.19. (7)

The bulk modulus K, was fixed to 10* Pa based on the
results measured by Hostettler et al. [30] for the bulk modulus
of the human liver in vivo.

2.3. Iterative Process and Cost Function. In this study, a FE
simulation of the deformation from end-exhale sate to the
target deformation, end-inhale, state was included within an

iterative optimization routine based on Genetic Algorithms,
which is aimed at finding the relative stiffness that defines the
biomechanical behaviour of the tumour with respect to the
liver parenchyma. The computation of the optimal values of
the relative stiffness is based on an iterative process that is per-
formed in two steps: the first step consists in estimating the
error committed by a selected value of the stiffness factor, and
the second one consists in recomputing this value to reduce
the above-mentioned error. This iterative process is carried
out by minimising an error function that is dependent on this
relative stiffness factor called cost function. In this work, a
metaheuristic method called Genetic Algorithms (GAs) [31]
was chosen for the global optimization of the relative stiffness
factor of the biomechanical model based on the result from a
previous research, where the performance of gradient descent
algorithms was compared with the performance of several
evolutionary algorithms Martinez-Martinez et al. [32]. GAs
belong to the family of evolutionary computation algorithms,
which are inspired in biological evolution [33, 34]. GAs
mimic the natural evolution of a population by allowing
solutions (parents) to reproduce new ones (children) and
competing for survival in the following generations. After
generations, the population progresses toward an optimal
solution.

2.3.1. Geometric Similarity Function. In this work, a mod-
ified version of the Geometric Similarity Function (GSF)
presented by Martinez-Martinez et al. [32] was chosen as a
cost function in order to find the optimal stiffness factor. This
modified version is shown in

GSF =1In((1 - JC) MHD) (8)

where JC stands for the Jaccard coefficient and MHD stands
for the modified Hausdorff distance. JC [35] measures the
overlap between two volumes A and B providing values
between 0, no overlap, and 1, total overlap, through

_JANB|

C= .
JC= A 0B

)
On the other hand, MHD [36] measures the maximum of the
minimum distances between any pair of points belonging to
the border of two different overlapping volumes through

MHD = max (dj (i), d (i)) (10)

where d (i) is the distance between the voxel i and the closest
voxel of a volume X.

The idea underlying the choice of this function is the
comparison of the total deformed shape of two volumes
as a whole, representing the deformed shape of an organ.
A previous study about several coefficients carried out by
Lago et al. [37], which could be used to measure the error
committed in the comparison of a deformed state of a
body with a reference state of that body, proved that JC
and MHD coefficients performed better than other classic
comparisons. Furthermore, it was proved that a combina-
tion of both coeflicients provided more information about
the error committed in the comparison than using them
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separately. Therefore, GSF was computed as a combination
of both coefficients, so when overlap is maximum (JC = 1)
and Hausdorff distance is minimum (MHD = 0), GSF tends
to zero. The natural logarithm of the combination of both
coeflicients was chosen in order to distinguish values close
to zero with more precision. It is important to notice that
these coefficients, Jaccard coefficient and modified Hausdorff
distance, which are commonly used in medical image anal-
ysis, make comparisons of volumes. This means that the FE
meshes to be compared are voxelized before the comparison.
In this work, GSF provided the error in the comparison
between the deformed shape of the two tumour volumes, one
corresponding to the tumour in the actual deformed state
(end-inhale) and the other corresponding to the tumour in
simulation of this situation using the biomechanical model
with the proposed elastic parameters and relative stiffness
provided by the GA algorithm. The smaller the committed
error, the lower the GSF value.

2.3.2. Genetic Algorithm. In this work, GAs were used to find
the patient-specific relative stiffness factor between tumour
and liver parenchyma within certain bounds. The choice of
these bounds were based on values provided in the literature.
These bounds were normalized (between 0 and 1) to allow the
optimization to converge faster avoiding the cost function to
take skewed shapes.

Firstly, GAs randomly generated an initial population in
the first generation which contained 50 individual candidate
solutions. GAs create a new population, with 50 individuals,
from the population of the previous generation (30 indi-
viduals are created through crossover and the remaining 20
through mutation). The two of the individual solutions in the
current generation that have the best GSF values are chosen
as elite and replicated to the next generation. The terminating
condition in this case was achieved when the cost function
value of the best solution was below a given threshold.

The entire method was implemented in a MATLAB script
(version: MATLAB TAH 2018a, MathWorks, Inc.), which

TaBLE 1: Lower and upper bounds of the search intervals for the
optimization of the relative stiffness factor of the test sample.

Interval
1<k,,; <50

Case
Test Case

rel

communicates with the free FE software FEBio (version
2.7).

3. Results

3.1 Test Case. To begin with, the feasibility of the proposed
methodology was proved using a test case. In this case, the
constitutive model of liver parenchyma and tumour was
obtained fixing to 10 the relative stiffness between both tissues
(k,; = 10) and using the elastic parameters proposed in
Section 2.2. GAs were used to find this factor choosing the
bounds shown in Table1 for its searching. The algorithm
performed a blind search of it. The final result was obtained
choosing the best GSF value among the values obtained in the
iterative process.

Figure 4 shows a schematic of the methodology applied
for the test case. This approach is based on getting a reference
deformed state for the liver and the tumour, which is com-
pared with each deformed state simulated through GA and
evaluated by means of a cost function (GSF). The reference
deformed state was obtained from the model of the liver at
the end-exhale state using a reference relative stiffness k,,;
and the liver and tumour properties provided in Section 2.2,
in addition to the model the displacements obtained with
CPD algorithm as boundary conditions. The shape of the
tumour in the deformed state of reference was compared
with the shape of the tumour in each simulation obtained
for each generation of parameters. This process was iterative,
and when the minimal value of GSF was obtained, the relative
stiffness was selected.
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TABLE 2: Optimal values of the relative stiffness between tumour and liver estimated by GAs (k,,;) together with Jaccard coefficient (JC),
modified Hausdorff distance (MHD), and Geometric Similarity Function (GSF) values for test case.

Case Ko JC MHD (mm) GSF
Test Case 10.003 0.99983 0.5493 -9.2906
. Exhalation + BC Parameters to
Inhalation X; be tested X,
Actual Simulated
Deformation ——> GSF <— Deformation
Genetic
Algorithm

FIGURE 5: Schematic of th

The optimal value of the relative stiffness factor obtained
by GAs for the test case is shown in Table 2. The test case
provided an overlap greater than 99%. The relative stiffness
factor obtained was 10.003, and theoretically this value should
be 10, so the relative error committed in the estimation of
this factor was only 0.03%. This way, the capability of the
algorithm to perform the estimation of the relative stiffness
factor was proved.

3.2. Real Cases. After that, the methodology was applied to
two real cases. Figure 5 shows a scheme of the methodology
used for the real cases. In this kind of cases, the two states
of the liver, end-inhale state and end-exhale state, were
compared through GA to find the relative stiffness factor
between tumour and liver parenchyma. In the same way as
before, the final result was obtained choosing the best GSF
value among the obtained values in the iterative process. For
these cases, the liver at the end-inhale state was the deformed
reference state and each simulation was performed from
the model of the liver at the end-exhale state to which the
boundary conditions obtained with the CPD algorithm were
applied. These BC were the displacements of the nodes of the
external surface of the liver. It is important to highlight that,
in this case, the value of k,,; was unknown, and, therefore, the
committed error could only be evaluated studying the values
of JC and MHD (overlap and distance between borders) in
the comparison of the two tumour shapes.

For this part, the bounds shown in Table 3 were chosen
for this search.

The relative stiffness factor provided by GAs for each of
the actual samples is shown in Table 4.

New generation of parameters
Xi+1

e process in both real samples.
TABLE 3: Lower and upper bounds of the search intervals for the

optimization of the relative stiffness factor of the actual livers for the
Ogden model.

Case Interval
Liver 1 1<k, <50
Liver 2 1<k, <50

rel

For these cases, the value of the overlap (JC coeflicient)
was about 85.7% for Liver 1 and a value of about 92.2% was
obtained for Liver 2. The Hausdorff distances were 1.43 mm
for Liver 1 and 1.29 mm for Liver 2, and the relative stiffness
was 31.19 and 41.502 for Liver 1 and Liver 2, respectively.

4. Discussion

The method proposed in this document has been proved by
means of a test case, where the relative stiffness was known
and the algorithm made a blind research of it. In this case,
the error was very low, only 0.03%. Moreover, the overlap
between the tumour volume in the reference state and the
tumour in the simulated state was very high, JC coefficient
was 99.98%, and HMD was 0.55 mm. Taking into account
the fact that the voxel size was 0.64x0.64x1.5 mm, these
values showed that the methodology achieves good results
and can be used to estimate the relative stiffness between
the tumour and the liver parenchyma. This methodology had
already been applied to establish the elastic constants of a
constitutive model for the cornea [38] and for the breast [39].
However, this is the first time that this methodology is applied
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TABLE 4: Optimal values of the relative stiffness between tumour and liver estimated by GAs (k,,;) together with Jaccard coefficient (JC),
modified Hausdorff distance (MHD), and Geometric Similarity Function (GSF) values for each real sample.

Case Ko JC MHD (mm) GSF
Liver 1 31.186 0.85744 1.4342 -1.5874
Liver 2 41.502 0.92189 1.2886 -2.2996

to estimate the relative stiffness between tumour and liver
parenchyma.

Regarding the real cases, the overlap between the tumour
in the actual deformed state and in the simulated state is
smaller than for the test case, but still acceptable. As the values
of the relative stiffness for the real cases were unknown, the
committed error can be analysed looking at the values of JC
and MHD for the test case, which guarantees an error of
0.03%. For Liver 1, the overlap obtained in the comparison of
the shape of the tumour volume was of 85% with a maximum
distance between borders (MHD) of 1.4 mm, and for Liver
2 the overlap obtained was 92% and the distance between
borders was 1.3 mm, indicating higher errors than for the test
case, but still acceptable. The difference with the test case and
the difference between both results in the real cases could
be due to the material model used, but it could mainly be
due to the quality of the segmentation. In other words, in the
test case, the reference state of the liver was obtained from
the same state used for performing the simulation (the liver
at end-exhale). Hence, the segmentation error did not affect
the search. However, for the real cases, two different states
were used, end-inhale state as the reference state, and end-
exhale state as the initial state for performing the simulation.
Thus, two processes of segmentation were necessary. For this
reason, the error committed in the segmentation processes
could have affected the comparison between the tumour in
the actual deformed state and the tumour in the simulated
configuration.

It is important to notice that the estimated relative
stiffness is not the real relative stiffness because the end-
exhale state of the liver was considered as a nondeformed
state. As previously commented, this is an approximation
that allows us to establish a suitable parameter to measure
relative stiffness that can be used as a biomarker of a hepatic
lesion, since liver is prestressed inside the body. It is also
important to notice that the relative stiffness was obtained
because Dirichlet BC were applied to the problem. However,
the Ogden parameters y; and y could also be obtained if
the forces that the liver undergoes in the breathing process
would be applied, as it was performed for the mechanical
characterization of the cornea in vivo [38] or for the estima-
tion of the elastic constants of the breast [39]. However, the
in vivo measurement of these forces is still a challenge due to
the difficult access to the internal organs. This makes it very
difficult to establish boundary conditions and loads for the
simulation process of liver deformation during the breathing
process. Therefore, the presented work can be considered a
small step in the in vivo estimation of the patient-specific
stiffness of liver and tumour. In these cases, the results about
the relative stiffness can be supported with other type of test,
such as analytic tests or elastography in order to determine

the state of the liver parenchyma since relative stiffness is a
relative parameter. Although, the latter has limitations, it can
be used as a test to verify the results.

Keeping in mind that there are differences of relative
stiffness between patients, it is interesting to use the rel-
ative stiffness between tumour and liver parenchyma as a
biomarker, since these differences can arise due to different
causes: the type of tumour (metastasis or hepatocarcinoma),
the ground pathology (i.e., if liver is healthy or has cirrhosis),
the patient having received chemotherapy previously, or the
age of the patient (if the patient is older, he/she has more
fibrosis). In our case, Liver 1 had suffered metastasis, and
due to chemotherapy it was showing calcifications. However,
Liver 2 had suffered a portal embolization, and this liver
was showing cirrhosis and hepatocarcinoma. Therefore, the
different nature of the tumours and liver parenchyma is
reflected in the different relative stiffness obtained. It is
important to notice that some authors have studied the
stiffness as biomarker of tumours, but these studies have been
on breast [40], prostate [41], or ovarian cancer cells [42].
For example, Hoyt et al. [41] showed that increasing tumour
aggressiveness is associated with increased collagen in the
healthy tissue, and this statement was supported by Fenner et
al. [40]) and Xu et al. [42]. This result shows that stiffness may
be used as biomarker to evaluate the relative metastasis in
different types of cancer, because the stiffness can distinguish
malignant cells from benign cells and the aggressivity of the
cancer cells.

Finally, it is important to highlight the methodology used
to establish the BC of the problem. Establishing Dirichlet
BC by CPD is a novel methodology that can be very useful
for other models and applications in which the access to
the organs is invasive, but displacements from two different
deformed states must be obtained from medical images.

5. Conclusion

This paper has presented a computational method to obtain
the patient-specific relative stiffness between tumour and
liver parenchyma; this relative stiffness can be used together
with the pathological information as a biomarker of the
type of tumour. The method allows the measurements of
the relative stiffness of tumours regarding liver parenchyma
by means of the use of medical images. Two CT images of
the liver in two different states of deformation are needed
to estimate this relative stiffness factor, which is computed
by an iterative algorithm based on the FE simulation of
the human breathing. To establish the boundary conditions
of the FE problem, a registration algorithm provides the
displacements to be applied to reach the end-inhale state
from the end-exhale state. This methodology tries to overlap
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the limitations that other methods present, for example, the
limitations in ultrasound elastography. The method could
also be used to model the behaviour of the tumour during
image-guided interventions (as biopsy or radiation therapy)
improving tumour targeting accuracy, reducing the margins
of the irradiated tissue, or reducing the treatment duration,
if the elastic constants of the liver parenchyma are known.
Furthermore, this methodology could be applied to other
organs, for example, lungs or prostate.

As future research, this work will expand the number of
cases to be studied. The main idea is getting a database large
enough to definitively verify the feasibility of the proposed
methodology. Moreover, the presented methodology will be
applied to other organs, such as breast and prostate.
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