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SUMMARY 

 

The aim of this Thesis is to investigate the use of hyaluronic acid as a 

material for the design of scaffolds aimed at CNS regeneration. The 

motivation comes from the need of searching for new strategies that allow 

regeneration in the central nervous system. In degenerative diseases, such 

as Parkinson’s disease, where the progressive loss of neuronal 

subpopulations occurs, a permissive environment able to support 

regeneration and connectivity of neurons from the host tissue may be a 

promising therapy to recover lost functionalities. In this Thesis we have 

focused on the development of structures able to integrate within the brain, 

supporting neural cells attachment and survival.  

We hypothesized that hyaluronic acid provides an enabling environment 

and appropriate for regeneration due to its biocompatibility and diverses 

physiological applications. Biocompatible hydrogels based on modified 

hyaluronic acid were synthesized. Covalently crosslinked hyaluronic acid 

hydrogels, alone or in combination with acrylic polymers, were synthesized 

and permitted to develop different porous structures which may serve in 

different applications as cell supply, cell repopulation or tissue regeneration. 

Highly porous with interconnected spherical pores, hollow tubes or 

multichanneled scaffolds were developed. The processes allow for a wide 

range of shapes for different applications within the scope of central nervous 

system regeneration.  

Furthermore, in vitro culture of human cell lines together with biomaterials 

was performed. A human microvascular endothelial cell line (hCMEC/D3) 

and a human glioma cell line (U373) were chosen for the studies. 

Experiments were focused on the interaction between hyaluronan based 

scaffolds and those cell lines composing the blood-brain-barrier (BBB) in the 

central nervous system. Biocompatibility, viability and phenotype 

characteristics were assessed. Hyaluronan based scaffolds did not elicit any 
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inflammatory response when cultured with endothelial cells and 

demonstrated to be a good cue to the growth of both cell lines in mono and 

co-culture. In addition, endothelial cells (ECs) exhibited reorganization into 

cord-like structures within the biomaterials. The reorganization of EC is 

necessary as response of angiogenic stimuli and the formation of new 

vascular sprouts which will guarantee a favourable integration of the scaffold 

with the host tissue.  The influence of two different protein coatings prior to 

cell seeding was evaluated. On the one hand, laminin (LN), a protein derived 

from the basal lamina that participates in neuronal development, survival 

and regeneration; on the other hand, a coating of fibrin matrix (fb), which 

provides a suitable scaffolding for invading inflammatory, endothelial, and 

other tissue cells during the healing process. Results did not show 

noticeable differences between one protein and another in long periods of 

culture.  
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RESUMEN 

El objetivo de esta tesis es investigar el uso de ácido hialurónico como 

material para el diseño de andamios “scaffolds” para su uso en la 

regeneración del sistema nervioso central (CNS de sus siglas en ingles: 

central nervous system). La motivación viene de la necesidad de buscar 

nuevas estrategias que permitan la regeneración del sistema nervioso 

central. En las enfermedades degenerativas, como la enfermedad de 

Parkinson, donde se produce una pérdida progresiva de las subpoblaciones 

neuronales, un ambiente permisivo capaz de apoyar la regeneración y la 

conectividad de las neuronas de los tejidos huésped puede ser una terapia 

prometedora para recuperar las funciones perdidas. En esta tesis nos 

hemos centrado en el desarrollo de estructuras capaces de ser integradas 

dentro del cerebro, que promuevan la adhesión celular y su supervivencia. 

Nuestra hipótesis es que el ácido hialurónico proporciona un buen 

ambiente para la regeneración, debido a su biocompatibilidad y su gran 

diversidad de aplicaciones fisiológicas. A tal efecto se sintetizaron 

hidrogeles biocompatibles basados en ácido hialurónico modificado, 

covalentemente entrecruzados, solos o en combinación con polímeros 

acrílicos. Dichos materiales permitieron desarrollar diferentes estructuras 

porosas que pudieran servir para diferentes propósitos, tales como el 

suministro de células, la repoblación de células en zonas dañadas y la 

regeneración del tejido. Se prepararon estructuras altamente porosas, con 

poros esféricos interconectados, tubos huecos o scaffolds con multiples 

canales longitudinalmente dispuestos. Los hidrogeles sintetizados 

permitieron obtener una amplia gama de estrucuras para diferentes 

aplicaciones dentro del ámbito de la regeneración del sistema nervioso 

central.  

Se llevaron a cabo cultivos in vitro de líneas celulares humanas con 

nuestros biomateriales basándonos en el uso de líneas celulares que 

componen la barrera hematoencefálica (BBB de sus siglas en inglés, blood-
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brain-barrier) en el sistema nervioso central. Las células escogidas fueron 

una línea celular humana endotelial de la microvasculatura del cerebro 

(hCMEC) y una línea de células de glioma humano (U373). Los 

experimentos se centraron en la interacción entre el ácido hialurónico y 

dichas células y se evaluaron características como biocompatibilidad, 

viabilidad y fenotipo. Los biomaterials basados en ácido hialurónico no 

provocaron ninguna reacción inflamatoria cuando se cultivaron con hCMEC. 

Los resultados demostraron que los materiales empleados eran favorables 

para el crecimiento de ambas lineas celulares tanto en mono como en co-

cultivo. Además, las células endoteliales mostraron reorganización de la 

matriz extracelular para formar estructuras en forma de cable creciendo en 

los biomateriales. La reorganización de las células endoteliales es necesaria 

como respuesta a estímulos angiogénicos y la formación de nuevos brotes 

vasculares que garantizan una integración favorable del scaffold con el 

tejido huésped. Se evaluaó asimimo la influencia del recubrimiento de dos 

proteinas diferentes antes de la siembra celular. Por un lado, laminina (LN), 

una proteína derivada de la lámina basal que participa en el desarrollo 

neuronal de supervivencia, y la regeneración, por otro lado, una red de 

fibrina (fb), que proporciona un andamiaje adecuado para la invasión de 

células endoteliales inflamatorias y células de otros tejidos durante el 

proceso de curación. Los resultados no mostraron diferencias notables entre 

una proteína u otra tras largos periodos de cultivo. 
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RESUM 

L'objectiu d'aquesta tesi és investigar l'ús d'àcid hialurònic com a 

material per al disseny de bastides "esquelets" per al seu ús en la 

regeneració del SNC. La motivació ve de la necessitat de buscar noves 

estratègies que permetin la regeneració del sistema nerviós central. En les 

malalties degeneratives, com la malaltia de Parkinson, on es produeix una 

pèrdua progressiva de les subpoblacions neuronals, un ambient permissiu 

capaç de donar suport a la regeneració i la connectivitat de les neurones 

dels teixits hoste pot ser una teràpia prometedora per recuperar les funcions 

perdudes. En aquesta tesi ens hem centrat en el desenvolupament 

d'estructures capaços de ser integrades dins del cervell, que promoguin 

l'adhesió cel.lular i la seva supervivència. 

La nostra hipòtesi és que l'àcid hialurònic proporciona un bon ambient 

per a la regeneració, per la seva biocompatibilitat i la seva gran diversitat 

d'aplicacions fisiològiques. A aquest efecte es van sintetitzar hidrogels 

biocompatibles basats en àcid hialurònic modificat, covalentment 

entrecreuats, sols o en combinació amb polímers acrílics. Aquests materials 

van permetre desenvolupar diferents estructures poroses que poguessin 

servir per a diferents propòsits, com ara el subministrament de cèl.lules, la 

repoblació de cèl.lules en zones danyades i la regeneració del teixit. Es van 

preparar estructures altament poroses, amb porus esfèrics interconnectats, 

tubs buits o esquelets amb múltiples canals longitudinalment disposats. Els 

hidrogels sintetitzats permetre obtenir una àmplia gamma de estructures per 

a diferents aplicacions dins l'àmbit de la regeneració del sistema nerviós 

central. 

Es van dur a terme cultius in vitro de línies cel.lulars humanes amb els 

nostres biomaterials basant-nos en l'ús de línies cel.lulars que componen la 

barrera hematoencefàlica (BBB de les seves sigles en anglès, blood brain 

barrier) en el sistema nerviós central. Les cèl.lules escollides van ser una 

línia cel.lular humana endotelial de la microvasculatura del cervell 
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(hCMEC/D3) i una línia de cèl.lules de glioma humà (U373). Els experiments 

es van centrar en la interacció entre l'àcid hialurònic i les cèl.lules i es van 

avaluar característiques com biocompatibilitat, viabilitat i fenotip. Els 

biomaterials basats en àcid hialurònic no van provocar cap reacció 

inflamatòria quan es van cultivar amb la línea de cel.lules endotelial. Els 

resultats van demostrar que els materials emprats eren favorables per al 

creixement de les dues línies cel.lulars tant en mono com en co-cultiu. 

A més, les cèl.lules endotelials van mostrar reorganització de la matriu 

extracelular per formar estructures en forma de cable creixent en els 

biomaterials. La reorganització de les cèl.lules endotelials és necessària 

com a resposta a estímuls angiogènics i la formació de nous brots vasculars 

que garanteixen una integració favorable del scaffold amb el teixit hoste. Es 

evaluó asimateix la influència del recobriment de dues proteïnes diferents 

abans de la sembra cel.lular. D'una banda, laminina, una proteïna derivada 

de la làmina basal que participa en el desenvolupament neuronal de 

supervivència, i la regeneración; d'altra banda, una xarxa de fibrina, que 

proporciona una bastida adequat per a la invasió de cèl.lules endotelials 

inflamatòries i cèl.lules de altres teixits durant el procés de curació. Els 

resultats no van mostrar diferències notables entre una proteïna o una altra 

després de llargs períodes de cultiu. 
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1.1. Tissue Engineering  

 

 Tissue Engineering (TE) was defined in 1993 by Robert Langer and 

Joseph P. Vacanti as “an interdisciplinary field that applies the principles of 

engineering and the life sciences toward the development of biological 

substitutes that restore, maintain, or improve tissue function”(Robert Langer 

& Joseph P Vacanti, 1993).  

Biological tissues are made up of cells, their extracellular matrix and a 

complex of signalling systems (Lanza, Robert Langer, & J. Vacanti, 2007). 

When designing an artificial construct to be used in applications for TE, it is 

necessary to take into account all those areas of knowledge remembering 

that the goal is a successful integration of the construct. 

 Two different strategies are commonly used in tissue engineering: the 

use of acellular matrices or the use of matrices with cells (Atala, 2004). The 

success of acellular matrices depends on the natural ability of a body to 

regenerate creating a new own tissue. These matrices can be engineered 

scaffolds or tissues which have been treated to remove its cellular 

components. The use of matrices with cells requires the dissociation of a 

small piece of donor tissue into individual cells and commonly further 

expansion in culture.  The source of the donor tissue can be allogenic (tissue 

from the same specie but from different individual) or autologous (from the 

same individual).  

 The engineered matrices used for scaffolding must be carefully chosen. 

The scaffold must provide the suitable environment for tissue building taking 

into account concepts such as biodegradation rate, signals needed for tissue 

building or integration with the host tissue without rejection. Otherwise, the 

scaffold will fail in its duty.  
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1.1.1. Scaffolds for TE.  

  

 To mimic the natural tissues in the body, 3D structures are needed to 

reconstruct the damaged tissue. For a successful integration, it must allow 

cell colonization and distribution as well as permit a good permeability and 

vascularization in it to ensure nutrients for every cell.  

 These 3D structures, commonly named scaffolds, can be defined as a 

structure intended to be used as substitute for a specified tissue either 

permanently or temporarily to restore its functionality. When a biomaterial is 

chosen for its application in TE, it must be considered in the context of its 

application taking into account their processing or ways of sterilization. In its 

design, some basic requirements must be accomplished (Atala, 2004):  

� the scaffold must have high porosity with a proper pore size to 

give a high surface area which is needed for its application. 

� the degradation rate must match with the formation of new 

tissue or be no degradable at all if needed. 

� the scaffold must have the required mechanical integrity to 

maintain the predesigned tissue structure.  

� the scaffold should positively interact with cells, including 

enhanced cell adhesion, growth, migration, and differentiated 

function. 

 Nowadays, due to the engineering improvements to fabricate materials in 

small dimension, it is possible to prepare different kinds of architectures with 

different shapes. Micro or nano-scaled patterns are used to study cell-

biomaterial interaction in order to understand better the cell-surface 

interaction (Magnani, Priamo, Pasqui, & Barbucci, 2003).  
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Many methods have been reported for the development of scaffolds. 

Fiber bonding, solvent casting/particulate leaching, gas foaming and phase 

separation are methods widely described in literature. 

 Fibers, when bonded together in three-dimensions, provide a large 

surface area which supports cell attachment while creating paths for the 

rapid diffusion of nutrients for cell survival and growth (Mikos & Temenoff, 

2000).  However, they lack of structural stability limiting their use in vivo.  

 Solvent casting and particulate-leaching techniques are also widely used 

to obtain such structures. In this technique, a solid porogen is used to create 

a mold. Then, polymer solution is forced to soak the mold. After 

polymerization, porogen is removed by dissolving it in a good solvent leaving 

the desired porous structure. This method allows to control the pore size by 

selecting the appropriate porogen. Porosity may be controlled as well by 

varying the porogen/polymer ratio (M Monleón Pradas et al., 2001; 

Spanoudaki et al., 2006) 

 In order to avoid the use of organic solvents to prepare scaffolds for 

biological application, gas foaming techniques were developed. The organic 

solvents employed in others methods may have toxic effects in vitro and 

elicit an inflammatory response in vivo. This fabrication method creates 

porous matrices by employing a gas foaming technique that brings porous 

structures without the use of toxic solvents (Mooney, Baldwin, Suh, J P 

Vacanti, & R Langer, 1996). 

 In phase separtation based methods, freeze-drying and freeze-extraction, 

a solid-liquid demixing is created by freezing a polymer solution. Thus two 

phases are formed, frozen solvent and concentrated polymer phases. Then 

the frozen solvent is removed leading to a porous structure, corresponding 

to the volume occupied by the solvent. What makes different these 

techniques, freeze-drying and freeze-extraction, is the solvent removal 

strategy. The first method is based on the sublimation of the solvent while in 

the latter the solvent is revomed with a non-solvent of the polymer and 

without any drying step. Since the porous structure is obtained during the 
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freezing, similar porous structures may be obtained in both techniques. By 

changing the cooling rate, phase separation can occur via different 

mechanisms, resulting in scaffolds with various morphologies (M.-H. Ho et 

al., 2004).  

Furthermore, injection molds have been employed to obtain complex 

structure shapes such as the butterfly-shaped of the spinal cord (Moore et 

al., 2006). 

1.1.2. Biomaterials as scaffolds for TE applications 

 A biomaterial can be defined as a material intended to interface with 

biological systems to evaluate, treat, augment or replace any tissue, organ 

or function of the body (Williams, 1999).  

 Materials can be classified attending to their origin into naturally derived 

or synthetic. Taking into account the nature of their application, they can by 

consider as permanent or temporary materials (non degradable or 

degradable biomaterials respectively). A temporary structure is expected to 

provide the necessary support (mechanical or biological) to allow the new 

formed tissue to recover the expected shape and functionality. These 

biodegradable structures must accomplish some important properties (Nair & 

Laurencin, 2007) among which some must be highlighted: 

       - the biomaterial must not evoke inflammatory or toxic response upon 

implantation in the body, by itself or by their degradation products.  

       - the degradation products must be able to be metabolized and cleared 

from the body.  

 Biodegradable materials are currently employed for different applications 

such as bone screws (Dhillon, Prabhakar, & Prasanna, 2008) or 

biodegradable wound sealants (Tredwell, Jackson, Hamilton, V. Lee, & Burt, 

2006). One handicap in the use of biodegradable materials is that in some 

cases they fail to meet the requirements due to the loss of their mechanical 

properties or inappropriate degradation rates.  
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 Permanent structures are non biodegradable materials or those which 

have very low degradation rates. Some metals, as titanium, nickel and its 

alloys, are attractive materials due to its inertness and biocompatibility 

although they sometimes fail due to wear or provoking wear in bones. They 

are used in dental implants and in prosthesis (hips) (Donato et al., 2009). 

Ceramics are a good alternative to metallic implants but its use is so far 

limited. These kinds of materials have been employed in bone tissue 

engineering (Wilson, van Blitterswijk, Verbout, Dhert, & de Bruijn, 2011). 

 A diversity number of synthetic and natural materials have been 

employed in a wide range of applications in TE. Synthetic materials 

(polymers, ceramics and metals) are the classically described in literature. 

Applications for bone tissue engineering or other mineralized tissues widely 

employ these synthetic materials. Usually, for bone tissue engineering 

application, a stable porous structure is needed. A few polymers widely used 

as scaffolding biomaterials are poly(glycolic acid) (PGA), poly(lactic acid) 

(PLA), and their copolymers poly(lactic acid-co-glycolic acid) (PLGA) or 

poly(ε-caprolactone) (PCL).  

 Nowadays natural materials, most of them components found in the 

extracellular matrix, are gaining importance due to their properties such as 

bioactivity and biocompatibility. Fibrous proteins as collagen (Janakiraman, 

Kienitz, & Baskaran, 2007), a major component of the extracellular matrix 

(ECM) or silk (R E Unger et al., 2004), have been used for applications in 

tissue regeneration. 

Alginate (Purcell, Singh, Tech, & Kipke, 2009), chitosan (Freier, 

Montenegro, Koh, & Shoichet, 2005) or hyaluronic acid (Antunes et al., 

2010; Ibrahim, Q. K. Kang, & Ramamurthi, 2010; Y. Liu, Shu, Gray, & 

Prestwich, 2004) are examples of polisaccharides widely employed in tissue 

engineering scaffolds, alone or combined with other substances to improve 

their characteristics as biodegradability or mechanical properties. 
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Hydrogels represent an important and promising class of biomaterials 

because of their excellent biocompatibility, causing minimal inflammatory 

responses, thrombosis and tissue damage. 
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1.2. Neural Tissue Engineering 

 

Figure 1.1. “Rendering of human brain” created by Nicolas Rougier (Bat. C. INRIA Nancy - 
Grand Est research center).  

 Since the first reconstitution of living tissues reported in the late seventies 

by E Bell and co-workers, too much work has been developed in the design 

of tissue engineering constructs or regeneration of the different tissues 

within the human body as breast, cardiovascular system or bone within 

others. The development of tissue engineering applied to the brain is a 

young but expanding field.  A more detailed knowledge of mechanisms 

responses after damage or degeneration diseases has been accomplished 

by researchers in the field, thus, allowing the application of different 

therapies either in the central or in the peripheral nervous system. Therapies 

may be focused in the regeneration of the tissue with the consequent 

recovering of lost functions. Unfortunately, axonal outgrowth is limited in the 

central nervous system (CNS) and nowadays there is a lack of therapies to 

regenerate or slow down the degeneration of axonal pathways.  Human 

brain is a complex system which is still far from being defined in terms of a 

complete description of cellular behaviour and the responses after damage 

or degeneration disease.  

 A brief introduction related to the nervous system is provided next. 

Without trying to be exhaustive, the composition of the nervous system, 

responses after damage and degeneration diseases are briefly described to 

help us to understand the scope of this thesis.  
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1.2.1.  The Nervous system 

 The nervous system is comprised of two main divisions: the central 

nervous system, composed by the brain and the spinal cord, and the 

peripheral nervous system constituted of cranial, spinal and autonomic 

nerves that connect to the CNS. The special function of the nervous system 

is to establish communications with the brain and the whole organism and 

within the brain through electric stimulus.  

 

 

 

 

 

 

 

 

 

Figure 1.2. Central and Peripheric Nervous system representation in the human body. 

 

 Two main cell types are found in the nervous system: neurons and 

neuroglia. Neurons are the structural and functional cells of the nervous 

system. These cells do not have the ability to undergo mitosis although they 

can sprout new processes under certain conditions. They consist in the 

soma (cell body) and its extensions, named axons and dendrites. Axons are 

responsible of conducting the nervous impulse from the soma to other cells. 

Dendrites are implied in the reception of the stimulus.  

 Glial cells, or neuroglia, are the support cells of the nervous system. They 

aid in the function of neurons. Schwann cells are the support cells of the 

peripheral nervous system (PNS) while in the central nervous system (CNS) 

are astrocytes and oligodendrocytes. Unlike neurons, neuroglia has some 

capacity for cell division (Schmidt & Leach, 2003). 
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Figure 1.3. Schematic representation of the cells composing the central nervous system, 
neurons, oligodendrocytes and astrocytes and their conexión between them and capillaries.  

 

 Myelin is an insulating layer which surrounds the axons and aids to 

increase the speed at which impulses propagate along the myelinated fiber. 

In the PNS Schwann cells are the responsible of myelinization while in the 

CNS oligodendrocytes serve in this function. Astrocytes, the other type of 

microglia, contribute to the blood-brain barrier (BBB) (Schmidt & Leach, 

2003). They are the most abundant cells in the CNS. During ages, 

astrocytes were thought to be passive cells only providing structural support 

to neurons but nowadays it is clear that they are more important in the 

homeostasis of the brain. Astrocytes have been shown to be involved in 

metabolic support of neurons, regulation of energy metabolism, development 

and maintenance of the BBB, guidance of neuronal migration and immune 

function (Markiewicz & Lukomska, 2006). There are two types of astrocytes, 

The radial glia is characterized by a long, radial process contacting the basal 

lamina at the pial surface (the innermost layer the membranes surrounding 

the brain and spinal cord named meninges). Glia expresses the astroglial 

cell cytoskeletal proteins vimentin (VIM) and glial fibrilliary acidic protein 

(GFAP) in their primary or mature state respectively (Briefings, 2010). The 

expression of GFAP by astrocytes has been reported to be essential for 

normal white matter architecture, BBB integrity as well as astrocyte-neuronal 

interactions (Eng, Ghirnikar, & Y. L. Lee, 2000). 
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1.2.2. The blood brain barrier 

The blood brain barrier (BBB) is a natural barrier separating the blood 

flow and the brain. It is specific in the central nervous system and prevents 

the brain from bloodstream substances while allowing the access to 

nutrients and metabolites. 

Physiologically, blood is separated by a layer of specialized endothelial 

cells which allows relatively free diffusion through paracellular spaces. 

Endothelial cells in the CNS are completely sealed by thight junctions, highly 

tighter compared to peripheral microvessels (Abbott, 2002). These tight 

junctions act as a barrier limiting the pass of non-lipophilic substances into 

the brain. Another cellular constituent of the BBB are the pericytes. They are 

separated from the ECs by a layer of basal lamina composed by matrix 

proteins. Perycites actively communicate with other cells envolved in the 

neurovascular unit such ECs, astrocytes and neurons. The functions of 

perycites include regulation of brain angiongenesis, the ECs tight junction 

formation and BBB differentiation within others (Balabanov & Dore-Duffy, 

1998). Astrocytes complete the structure of the BBB playing a decisive role 

in the induction and maintenance of the BBB (Wolburg, Lippoldt, & Ebnet, 

2007).   

 

Figure 1.4. Cellular structure of the BBB (Figure from (Wilhelm, Fazakas, & Krizbai, 2011)) 
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A triple co-culture of ECs, pericytes and astrocytes is thought to 

represent a good model to study the BBB in vitro (Nakagawa S, Deli MA, 

Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, 2009). 

Couraud and co-workers (Weksler et al., 2005) developed the first stable 

and fully characterized endothelial human cell line (hCMEC/D3) to study a 

human model of the BBB in vitro. 

  

Damage in the nervous system 

 

As a response to damage in the nervous system, different processes 

occur in the central and peripheral nervous system which determine their 

different capacity to regenerate. When the PNS is damaged, support cells 

aid neuronal regeneration. Proliferating Schawnn cells, macrophages and 

monocytes are responsible of removing myelin debris, releasing of 

neurothophins, and lead axons toward their synaptic targets, resulting in 

restored neuronal function (Figure 1.5a). Typical treatments when injury 

occurs are based on the reconnection of the damaged nerve by surgery or 

by the use of an autologous nerve graft to guide the restoring of the PNS 

function (K.-kai Wang et al., 1998). 

The physiological response to injury in the CNS is different. When an 

injury to the central nervous system occurs, a glial scar is formed as a 

protection barrier and so the healing process begins. This glial scar is 

composed of astrocytes and connective tissue elements. (Figure 1.5b). 

Although the glial scar is formed as a defense of the body to control and 

suppress further physical damage in the brain, it is the ultimate responsible 

of failure of the central nervous system regeneration. The glial scar stops 

macrophages infiltration to remove the myelin and debris from the damaged 

axons while blocks regenerating neurons to reach their synaptic targets 

(Schmidt & Leach, 2003)  
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Figure 1.5. Regeneration in the peripheral (A) and central nervous system. (Figure from 

(Schmidt & Leach, 2003)) 

 When the central nervous system is damaged functions such as memory, 

cognition, language and voluntary movement may be lost. Normally it is the 

result of the interruption of communication between nerve cell bodies and 

their targets. But not only transaction of nerve tracts may end in the loosing 

of this functions, the disruption of the interrelations between neurons and 

their supporting cells, and the destruction of the BBB can cause irreparable 

damages resulting in death or permanent disability (Ning Zhang, Yan, & 

Wen, 2005).  



                                                                                                                             INTRODUCTION 

- 31 - 

1.2.3. Neurological diseases 

 Neurological diseases such as Alzheimer, Parkinson or Huntington 

disease, result from the deterioration of neurons or their myelin sheaths, 

which may eventually lead to CNS-related dysfunction. Parkinson’s disease 

(PD) is a neurodegenerative disorder characterized by a continuous and 

selective loss of dopaminergic neurons in the substantia nigra pars 

compacta with a subsequent reduction of neurotransmitter release mainly in 

the striatum (A. K. Meyer, Maisel, Hermann, Stirl, & Storch, 2010). These 

two areas of the mid brain are connected by the nigrostriatal pathway, one of 

the major dopamine pathways in the brain (Figure 1.6). This pathway is 

particularly involved in the production of movement, as part of a system 

called the basal ganglia motor loop.  

 

 

 

 

 

 

 

  

Figure 1.6. Nigrostriatal pathway, one of the major dopamine pathways in the brain. 

Pharmacological treatment in the early stages of PD is based on the 

administration of “levodopa”. L-dopa is transformed into dopamine in the 

dopaminergic neurons. The administration of this drug is just a symptomatic 

treatment and has a wide variety of side effects: the excess of dopamine 

produced by the exogenous administration of the synergic substance,  which 

also results in a reduction of the endogenous formation of L-Dopa, makes 

the treatment eventually counterproductive. Besides,  the treatment loses its 

effectiveness over time and does not slow the disease progression (Joyce et 

al., 2002).  
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Surgery treatments to control parkisonians effects consists in an 

electrode implant in both subtalamic nuclei (STN) but, while the treatment 

has good results in the recover of motor symptoms, it does not stop the 

evolution of the disease. 

The ideal treatment for the PD may lie in the replacement of the lost cells 

in their original site. Indeed, cell-based strategies have been employed to 

overcome the limitations of the conventional symptomatic treatment. These 

strategies, focused on the transplantation of cells into the degenerated host 

brain, include bone narrow stromal cells (Naoyuki, Kakishita, & Itakura, 

2007) or neurothopic growth factors (Reeves et al., 2005). 

Clinical treatment for CNS regeneration is less promising. Even so, 

different approaches have been pursued in this area. After spinal cord injury, 

inflammation cell activation, reactive astrogliosis and the production of both 

growth promoting and inhibitory extracellular molecules occur. So when CNS 

is injured, anti-inflammatory drugs are administred to reduce swelling and 

secondary injury. Avoiding glial formation by inhibition of the involved 

molecular cascades, combined with the use of biomaterials in order to 

provide a biological environment that permits axons regeneration, seems to 

be a difficult but a promising strategy for CNS regeneration.  

A mild inflammation response which, in any case, is an inevitable phase 

of any wound healing, could be beneficial to the use of scaffold implants. 

This fact will assure the recruitment of cells and signals to promote 

angiogenesis and thus a good integration of the construct.  
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1.3. Hyaluronic acid 

1.3.1. Introduction  

 In 1934 Karl Meyer and John W. Palmer (Palmer & John, n d) working on 

the preparation of a supposed vitreous mucoid for further studies, obtained a 

free polysaccharide acid of high molecular weight, which was apparently in 

the vitreous humor in a salt-like combination. The polysaccharide was found 

to be very hygroscopic and not easily soluble in water. They showed that this 

substance contained uronic acid and an aminosugar, but no sulfoesters. 

They describe the procedure to obtain it from the vitreous humor of the eye 

and propose to name it “Hyaluronic acid” from hyaloids (vitreous) and uronic 

acid.  

 Until 1954, 20 years later, the structure of the molecule was not 

elucidated. Bernard Weissmann and Karl Meyer (Weissmann & K. Meyer, 

1954) published the precise chemical structure for what they had named 

hyaluronic acid (Figure 1.7).  

 

Figure 1.7. Molecule of HA as it was described for the first time by Bernard Weissmann and 
Karl Meyer in 1954 (Weissmann & K. Meyer, 1954).  

    Hyaluronic acid (HA) is described as a naturally occurring non-sulfated 

glycosaminoglycan (GAG) component of the ECM of connective, epithelial 

and neural tissues. Synovial fluid, vitreous humor, cartilage, blood 

vessels,skin and the umbilical cord are specific tissue types that contain 

significant amount of HA (Weissmann & K. Meyer, 1954). 

 During embryonic development, tissue regeneration and wound healing 

the ECM that surrounds migrating and proliferantig cells is rich in HA (Garg 

& Hales, 2004) Hyaluronan is widely distributed in a variety of tissue within 

the body (Table 1.1). 
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Table 1.1 Normal concentrations (µg·g-1) of HA in various organs of different species. Adapted 
from (J. R. E. Fraser, T. C. Laurent, & U. B. G. Laurent, 1997). 

Organ or fluid Man Sheep Rabbit Rat

Umbilical cord 4100
Synovial fluid 1400-3600 540 3890
Dermis 200
Vitreous body 140-338 260 29
Lung 98-243 34
Kidneys 93-113 30
Renal Papillae 250
Renal cortex 4
Brain 35-115 54-76 74
Muscle 27
Intestine 44
Thoracic lymph 8,5-1,8 1-34 5,4
Liver 1,5 4
Aqueous humour 0,3-2,2 1,6-5,4 0,6-2,5 0,2
Urine 0,1-0,3
Lumbar CSF 0,02-0,32
Plasma (serum) 0,01-0,1 0,12-0,31 0,019-0,086 0,048-0,26  

 Nowadays, hyaluronic acid, also referred to as hyaluronate or 

hyaluronan, is extensively studied for a wide range of applicatons intended 

to be biological (Jiang, Liang, & Noble, 2007) or not (coatings for electronic 

parts (Callegaro, 2002)). 

Structure 

 The polymer was determined to be a repeating unit of D-glucuronic acid 

and N-acetilglucosamide linked together by alternating ß-1,4 and ß-1,3 

glycosidic bonds. Hyalurononic acid is the only non-sulphated 

glucosaminoglycan (GAG), conferring to it unique properties. The long-chain 

polymer of HA is composed of repetitions of the disaccharide unit forming 

polymers with molecular weight between 105 and 107 Da (Garg & Hales, 

2004) (MWsugar= 417,1 g/mol). 

 In physiological solution, the backbone of the hyaluronan molecule is 

stiffened by a combination of the chemical structure of the disaccharide, 

internal hydrogen bonds, and interactions with the solvent. At physiological 

pH, the carboxyl groups of the molecule are predominantly ionized, making 
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the hyaluronic acid a polianion that associated exchangeable cations to 

maintain charge neutrality. 

The concentration of HA in the human body varies depending on its 

location from 4 g/kg in the umbilical cord to 0.1-0.01 mg/l in normal serum. 

The total amount of HA in a 70kg human body is stimated to be around 15g 

(Garg & Hales, 2004). 

Synthesis 

 In the inner surface of the plasma membrane of the cell, a group of 

membrane-bound synthases (HASs) synthesizes HA by cyclically adding the 

pertinent monomer units to the end of the forming polysaccharide chain. 

There are three different HAS required to synthesize HA which gives 

polymers of different molecular weighes (longer or shorter chains). 

Degradation 

 Hyaluronidases, the enzymes responsible of hyaluronan degradation 

which cleave HA chains by hydrolysis into shorter fragments, may be 

classified into 3 types based on the end products that they generate. The 

first type of hyaluronidases (testis type, enzyme comission number (E.C.) 

3.2.1.35) are endo-β-N-acetylhexosaminidases and cleaves ramdomly β 1-4-

glycosidic linkages in the HA chains yielding tetra and hexa oligosaccharides 

as the main end products with N-acetylglucosamine at the reducing terminal. 

The second type (E.C. 3.2.1.36) are hyaluronate-3-glycanohydrolases, 

which cleaves glucuronate linkages and are inert towards other GAGs. The 

cleavage HA in tetrasaccharides and hexasaccharides as the main products 

with glucuronic acid at the reducing end. The third type (Microbial 

hyaluronidases, E.C. 4.2.99.1) cleave HA at β 1-4 glycosidic linkages using β 

elimination processes yielding 4-5 unsatured oligosaccharides (Girish & 

Kemparaju, 2007) 

  The production and degradation of hyaluronan may be enhanced or 

diminished under physiological or pathological conditions.  
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1.3.2. Modification of hyaluronic acid 

 Hyaluronan, in spite of being an interesting biomolecule to use for the 

fabrication of new biomaterials, has very poor biomechanical properties that 

make necessary its modification in order to obtain manipulable biomaterials 

with the desired properties. 

 The goal of cross-linking the hyaluronan molecule is usually to enhance 

its rheological properties or to produce forms of hyaluronan less soluble in 

water, such as solids or gels. Gels have been employed for tissue 

augmentation (Redbord, Busso, & Hanke, 2011) as injectable hydrogels but 

the interest of working with scaffolds based on HA as tissue regeneration 

guides drives the need of fabricating HA insoluble structures.  

 A variety of modifications have been done to the natural molecule of HA 

to obtain improvements in its chemical and mechanical properties. Many 

applications have been achieved by preparing hyaluronan derivates: 

crosslinked hyaluronan, hyaluronan-drug bioconjugates, hyaluronan-grafted-

co-polymer and hyaluronan-liposome composites. Crosslinking has been 

performed with biepoxides (Zhao, 2006), divinilsulfone (Ibrahim, Q. K. Kang, 

& Ramamurthi, 2010), glutaraldehyde (Antunes et al., 2010), carbodiimides 

(Tomihata & Ikada, 1997) and hydrazides (Pitarresi, Craparo, Palumbo, 

Carlisi, & Giammona, 2007) among others. 

 Figure 1.8 shows the hyaluronic acid structure and the principal targets of 

covalent modifications.   
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Figure 1.8. Molecular structure of hyaluronic acid showing the main targets for chemical 
modification.  
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Reactions through carboxyl groups 

Typical reactions to cross-link hyaluronan through its carboxyl groups are 

esterification or carbodiimide-mediated reactions.  

Esterification on hyaluronan has been carried out by alkylation of the tetra 

(n-butyl) ammonium salt of hyaluronan with an alkyl halide in 

dimethylformamide (DMF) solution. Under these conditions and with high 

percentages of esterification, a wide range of materials called HYAFF® , 

have been prepared.  HYAFF® can be processed to obtain several types of 

devices such as tubes, membranes, non-woven fabrics, gauzes and 

sponges. These scaffolds are highly biocompatible, do not elicit any adverse 

reaction and are resorbed by the host tissues (Vindigni, Cortivo, Iacobellis, 

Abatangelo, & Zavan, 2009).  

 Carbodiimide-mediated reactions are frequently carried out by using 

dihydrize compounds. One typically used compound is adipic acid 

dihydrazide (ADH): in aqueous medium, a coupling reaction occurs between 

the glucuronic activated residue of the HA and the hydrazide group of ADH. 

The glucuronic acid residues are activated by reaction with soluble 

carbodiimides such as 1-ethyl-3(-3-dimethylaminopropyl) carbodiimide using 

hydroxybenzotriazole hydrate (HOBt) as precursor.  One advantage of using 

ADH is that the molecule provides multiple pendant hydrazide groups for 

further derivatization with drugs (Luo & Prestwich, 1999), grafting on 

different surfaces (Mason et al., 2000) or further cross-linking reactions with 

the above mencioned carbodiimides (J. Kim et al., 2007). 

Reactions with hydroxyl groups 

 Different reactions may be performed through the hydroxyl group of the 

molecule to modify the hyaluronic acid. A number of sulphated hyaluronic 

acid derivates, termed generically HyalSx, have been developed by sulfation 

of the -OH groups present on hyaluronic acid molecule (Barbucci, Magnani, 

Rappuoli, Lamponi, & Consumi, 2000). Esterification, isourea coupling or 
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periodate oxidations are also strategies of modification through the hydroxyl 

group. 
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1.3.3. Hyaluronic acid in tissue engineering 

 Hyaluronic acid is a promising hydrogel for TE applications due to its 

biocompatibility and its ubiquitous localization in the organism; however, 

several improvements must be done to succeed.  

 Hyaluronan has been widely used in tissue engineering in a broad range 

of applications. Kim and partners employed acrylated hyaluronic acid 

scaffolds for regeneration of bone tissue. They found that in those hydrogels 

carrying hMSCs and growth factors, stem cells differentiated into specific 

cells such as osteoblasts and endothelial cells (J. Kim et al., 2007). 

Patterson and co-workers employing glycidyl methacrylate modified HA, 

concluded that these hydrogels, in spite of their poor mechanical properties 

which make their utilization as composite scaffold necessary, have potential 

for clinical application in bone defects (Patterson et al., 2010).  

 Xinqiao Jia and partners developed HA-based microgel systems to be 

employed in the treatment of vocal fold scarring (Jia et al., 2006). They 

suggested that their novel materials were promising injectable hydrogels due 

to their biocompatible filler properties and viscoelasticity similar to the natural 

tissue. These properties have been emploited by several authors for tissue 

augmentation in dermal applications (Y. Liu, Shu, Gray, & Prestwich, 2004; 

Redbord et al., 2011). 

 Hyaluronan has also been applied in cartilage tissue engineering. Chang 

and co-workers developed a tri-copolymer scaffold made of gelatine, 

chondroitin and hyaluronan to mimic the natural cartilage matrix (Chang, H.-

C. Liu, C.-C. Lin, Chou, & F.-H. Lin, 2003). In vitro cultures with porcine 

chondrocytes showed that cells grew properly into the designed scaffold and 

furthermore started to secrete newly synthetized matrix, although not 

enough to form cartilage. Few years later, Nehrer and partners presented a 

three-year clinical assay testing hyaluronan matrices for cartilage repair [59]. 

They report favourable results compared with classic techniques of 

autologous chondrocyte transplantantion (ACT) suggesting Hyalurgraft® as 

an alternative to ACT. 
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1.3.4. Hyaluronic acid in the Nervous system 

 The nervous system has also been an important field for hyaluronan 

hydrogels applications. Periferal nerve regeneration has been assessed by 

Wang and partners by injecting hyaluronan solutions into nerve guides 

spanning a transected gap in the sciatic nerve (K.-kai Wang et al., 1998). 

They observed an increase in conduction velocities as well as an increase in 

myelinated axons in the hyaluronan containing group versus tubes filled with 

saline solutions (control group). Ten years later, Sakai and partners working 

on a photocrosslinked hyaluronic acid, reported that rat Schwann cells and 

neurospheres were grown onto HA conduits in vitro (Sakai et al., 2007). 

Furthermore, HA conduits mantained their shape after 3 weeks of cultivation.  

 In the last six years, hyaluronan has become an interesting biomaterial 

for central nervous system regeneration. Hyaluronan hydrogels modified 

with laminin (Shaoping Hou et al., 2005) or poly-D-Lysine (Wm Tian et al., 

2005) were reported to support cell infiltration and angiogenesis in vivo. In 

the following two years, the use of protein sequences involved in cell 

adhesion gained importance and sequences such as RGD (arginine-glycine-

aspartate) (I.S.Lee, 2006) or IKVAV (isoleucine-lysine-valine-alanine-valine) 

(Y. T. Wei et al., 2007) were employed by immobilization onto hyaluronan 

hydrogels. Considerable neural biocompatibility after implantation in vivo 

was reported showing that these materials formed a permissive interface 

that favoured cell ingrowth and angiogenesis. Bergman and co-workers 

prepared a scaffold of hyaluronan and collagen type I and demonstrated that 

neural stem/ progenitor cells (NS/PC) proliferated and formed neurons, 

astrocytes and oligodendrocytes in their synthetized scaffolds (Bergman, 

Wallenquist, Svahn, Bowden, & Bra, 2007). In the same year, Ma Jun and 

partners reported an experimental test of stroke recovery by implantation of 

HA hydrogel with the Nogo receptor antibody (NgR) in a rat model (Jun Ma 

et al., 2007). They reported that the hydrogels were invaded with some 

neurons and nerve fibers and suggested HA hydrogel as a promising 

scaffold material for the repair of defects in the brain.  
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 Wang and Spector developed hyaluronan-collagen (HA-coll) sponges 

and cultured them with neural stem cells (NSCs) (Sakai et al., 2007)(T.-wei 

Wang & Myron Spector, 2009). They assured that HA and HA-Coll scaffolds 

favored the differentiation of NSCs to neuronal cells in vitro. Following the 

studies with the Nogo receptor, Pa Linjie and partners worked on an 

hyaluronan scaffold containing anti-NgR antibody (Pan, Ren, Fuzhai Cui, & 

Qunyuan Xu, 2009); they reported that hyaluronan-antiNgR prevented the 

action of inhibitory factors that would limit axon outgrowth and, in addition, 

promoted cell attachment. Recently, Yue-Teng Wei and co-workers 

developed a hyaluronan hydrogel modified with nogo-66 receptor antibody 

and poly-L-lysine (Y.-T. Wei et al., 2010) ; the hydrogel was shown to inhibit 

the formation of glial scar as well as to support angiogenesis and to promote 

axonal extension after implantation into a injured region of the spinarl cord. 

1.3.5. Scaffold integration and angiogenesis 

 Apart from a good biocompatibility and a desired biodegradation rate, 

which depends on the final application, scaffolds must also allow 

connectivity with the host tissue. It is established that the maximum diffusion 

of nutrients and oxygen in tissues is not longer than 100 microns, making the 

formation of a new vascularization network within the 3D structure 

necessary. Thus, an adequate vascularization of the construct may be one 

of the most important issues to deal with to guarantee success after 

implantation.  

 Although angiogenesis is a very complex cascade of events, involving 

different cell types and protein signalling, several methods have been 

developed to test angiogenesis in biomaterials in vitro. J. Folkman and 

Christian Haudenschild were the first to decribe the development of capillary 

tube structures in vitro (Judah Folkman & Haudenschild, 1980). Then, 

Montesano and co-workers, improved the in vitro assays for the study of 

angiogenesis, providing a better understanding of the processes involved 

(Montesano, Orci, & Vassalli, 1983). 
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 In vitro angiogenesis assays are based on the use of ECM compounds to 

mimic tissue conditions. The addition of angiogenic stimuli as basic fibroblast 

growth factor (bFGF) or vascular endothelial growth factor (VEGF) is also 

required. 

 New blood vessels can be formed by one of two distinct mechanisms 

namely vasculogenesis or angiogenesis. Vasculogenesis is the process of 

forming new blood vessels developed from angioblast precursor cells. 

However, angiogenesis requires the pre-existing blood vessels to outgrow 

new sprouts (Werner Risau, 1997). 

 The process of angiogenesis has been described as a three step 

mechanism: initiation, proliferation/invasion and maturation (Stromblad & 

Cheresh, 1996). The initiation process involves the release of growth factors 

or cytokines from tumor and/or inflammatory cells. A wide number of 

angiogenesis stimulators have been described namely angiopoietin-1 (Ang-

1) (Koblizek, C. Weiss, Yancopoulos, Deutsch, & W Risau, 1998), basic 

fibroblast growth factor (bFGF) (Stromblad & Cheresh, 1996), and vascular 

endothelial growth factor (VEGF) (Breier & W Risau, 1996), among others. 

The released factors bind to specific receptors located on endothelial cells 

(ECs) in the nearby and EC turn into an activated state. ECs in turn begin to 

produce new molecules including enzymes that will be necessary in the 

further steps.  
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Figure 1.9. Angiogenesis process. 

  

 

The enzymes dissolve tiny holes in the basement membrane surrounding all 

existing blood vessels. The ECs begin to proliferate and a migration out 

through the dissolved holes starts towards the target tissue, being normally a 

tumor. Specialized transmembrane proteins called integrins serve to pull the 

new blood vessel sprout forward. Enzymes named metalloproteinases 

(MMP) are now produced to dissolve the target tissue in order to 

accommodate the sprouting vessel. Sprouting ECs roll up to form a blood 

vessel tube growing from the host blood vessel. The individual sprouts fuse 

into loops, to allow the circulation of blood within them at the end of the 

process. To stabilise the new blood vessel, specialized muscle cells (smooth 

muscle cells, pericytes) are recruited, providing structural support to the 

vessel. Then, blood flow begins (Bunone et al., 1999; J Folkman & D'Amore, 

1996; Werner Risau, 1997).  

1.3.6. Angiogenic growth factors 

In the adult, endothelial cells are in a quiescent stage until activation is 

required. Their angiogenic phenotype is stimulated under special conditions 

such as hypoxia. In addition, to facilitate migration the cell shape changes 

and a wide range of proteolytic enzymes are secreted in order to degrade 

the basement membrane, step needed during the development of new 

sproutings (Nomi, Atala, Coppi, & Soker, 2002). 

Evidences suggest the existence of angiogenesis activators or inhibitors 

for capillary sprouting. Thus, the normally quiescent vasculature can be 

activated or desactivated by an on-off switch mechanism (Figure 1.10). The 

“balance” of the mentioned angiogenic inducers or inhibitors may activate 

the switch. Inhibitors (α−interferon or platelet factor-4) of endothelial cell 

chemotaxis and proliferation were first described in the early eighties (Cook 

& Figg, 2011; Hanahan & J Folkman, 1996). 
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A large list of angiogenic inducers has been described. Direct angiogenic 

molecules such as VEGF or bFGF can stimulate the activation of ECs. On 

the other hand, indirect angiogenic factors as angiopoietins, although they 

have been found to be very weakly mitogenic for ECs, are necessary during 

the new blood vessel formation. 

 

 

Figure 1.10. The balance hypothesis for the angiogenic switch  (Hanahan & J Folkman, 
1996) 

  

Basic fibroblast growth factor (bFGF) 

 The basic fibroblast growth factor (bFGF) acts as a strong EC mitogen (J. 

A. Abraham et al., 1986). It is normally not secreted and it is still not clear 

how it is delivered into the extra-cellular matrix (ECM). 

 In contrast to VEGF, bFGF is not specific for ECs. ECs, fibroblasts, 

myoblasts and tumor cells express receptors to bind bFGF (Basilico & 

Moscatelli, 1992); it is mitogenic for neural cells such as oligodendrocytes, 

astrocytes and Schwann cells. 

Vascular Endothelial growth factor (VEGF) 

The vascular endothelial growth factor is a potent angiogenic factor. It is 

a specific mitogen for ECs, stimulating them to migrate and form tubes in 

vitro (Ferrara, 2001). A variety of cell types can express VEGF. Its 
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expression is up-regulated in tissues undergoing vascularization (Breier et 

al, 1992; Shweiki et al, 1993). Tumors secrete high levels of VEGF, while 

normal tissues do not, which is consistent with its role in tumor angiogenesis 

(Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., 

Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., 

Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., Nagy, n d).  

There is evidence that VEGF acts as a survival factor for EC (Alon et al., 

1995).  
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Angiopoietins (Ang) 

The angiopoietins are protein growth factors with specific roles in the 

angiogenic process but do not seem to be mitogenic to ECs (Suri et al., 

1996). The angiopoietins 1 and 2 (Ang-1, Ang-2) are competitive ligands that 

bind the same receptor, Tie-2, expressed on the surface of EC. While Ang-1 

acts as agonist of the Tie-2 receptor to signal the recruitment of specialised 

cells that stabilize new formed blood vessels, the Ang-2 acts as antagonist 

(Cook & Figg, 2011). It is thought that the role of Ang-2 is to inhibit the 

interaction between EC and the supporting cells in order to facilitate EC 

migration from the vessel to form a new capillary (Cook & Figg, 2011). 

Analyses of supernatants containing Ang-1 were found to induce the 

formation of capillary sprouts while its depletion inhibited the sprouting 

(Koblizek, C. Weiss, Yancopoulos, Deutsch, & W Risau, 1998). Furthermore, 

some studies have been shown that neutralization of Ang-2 decreases tumor 

growth and angiogenesis as well as suppress EC proliferation (Oliner et al., 

2004). The combined effect of Ang-1 and VEGF induce a synergistic 

angiogenic effect (Zacharek et al., 2007). 
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The aim of this work is the design of natural based scaffolds which 
seeded with neural cells in vitro or its precursors may be implanted in 
damaged areas in the brain and reach conectivitity with the host tissue ir 
order to provide a enable environment to recover lost functions.  
 
Hypothesis 
 

H1: Hyaluronic acid is a potencial biomaterial for scaffolding due to its 
biocompatibility to be used in neural regeneration,  
 
H2:  It is posible to produce hyaluronan based scaffolds with inner 
structures mimicking central nervous system tissue.  
 
H3: The biomaterial will not produce any inmunologic response, alone 
or combined with the substances employed during its fabrication, thus 
giving a good support for neural tissue regeneration. 
 

Objectives  
 

O1.  Development and physicochemical characterization of 3D materials 
(scaffolds) based on hyaluronic acid.  

O2. Characterization of the biological performance of human neural cells 
on hyaluronic acid 2D supports and in 3D scaffolds.  

O3.  Study of co-cultures of human endothelial and astrocytic human cell 
lines in hyaluronic acid 3D scaffolds.  
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2.1 Materials and cell lines 

2.1.1. Hyaluronan  

Hyaluronic acid sodium salt from Streptococcus equi was supplied by Fluka  

(Spain) with a molecular weigh of 1.63 106 Dalton. Sodium hydroxide (NaOH, 

pellets, extra pure), hydrochloric acid (HCl, 37%), acetone (synthesis grade) 

and isopropyl alcohol (IPA, synthesis grade) were purchased from Scharlab, 

Spain. 

Crosslinkers, 1,2,7,8-diepoxyoctane (DEO, 97%) and divinyl sulfone 

(DVS, 97%) were purchased from Sigma, Spain.   

S

O

O

divinyl sulfone

(DVS)

O

O

1,2,7,8-diepoxyoctane

(DEO)  

Figure 2.1 Molecules of crosslinkers used for hyaluronan crosslinking. 
 

2.1.2. Porogens 

100 microns polypropilene fibres (PP) were supplied by Plasticel (Spain).  

Polymethyl methacrylate beads with mean particle size in the range of 80-

110 microns (PMMA beads, Colacryl® DP300) were provided by Lucite 

International, UK. 

2.1.3. Human brain microvessel endotelial cells (hCMEC/D3) 

Human brain microvessel endothelial cell line, hCMEC/D3, developed by 

B.B. Weksler and co-workers(Weksler et al., 2005), were cultured in 

customer formulation endothelial cell BM (Promo Cell) containing 28 mM 

HEPES. The medium was supplemented with 15% of fetal calf serum (FCS; 

Gibco, Germany) + 100U/100µg/ml penicillin/streptomycin + 25 µg/ml 
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(1:500) sodium heparin (Sigma-Aldrich) + (1:5000) of basic fibroblast growth 

factor. Cells were sub-cultured and used between passages 30-33.  

2.1.3. Human glioblastoma-astrocytoma cell line (U373) 

Human glioblastoma-astrocytoma cell line U373-MG (Abcam, Germany) 

was cultured at 37°C in  minimum essential media (MEM, Gibco) 

supplemented with 10% (v/v) fetal calf serum (FCS), 1% 

penicillin/streptomycin (10.000 units penicillin/ml 10.000 µg/ml streptomycin 

sulphate and 1% Glutamax (Gibco, Germany). Cells were subcultured in the 

same medium used to endothelial cells previously described.  Cells were 

used in passages 10-15.  

2.2 Methods 

2.2.1. Hyaluronan crosslinking  

Two different crosslinkers were employed to obtain non soluble 

hyaluronan hydrogels. 1,2,7,8-diepoxioctane (DEO) and divinylsulfone 

(DVS) were employed to crosslink the hyaluronan macromolecule expected 

to react  through different functional groups n its structure.  

 

Crosslinking with 1,2,7,8-diepoxioctane (DEO) 

The crosslinking of hyaluronan with DEO was performed in a two step 

reaction. First, a 2% (w/w) aqueous solution of hyaluronan sodium salt was 

prepared. Films were obtained by solvent casting in Petri dishes by letting 

the solution evaporate at 37 ºC until dry. Samples were then cut and 

crosslinked in an acidic medium.  

Samples were immersed in acetone/HCl 0.1N (70/30) (from now on 

referred to as “solvent”) solution and allowed to swell during one hour. 

Afterwards, the crosslinker was added. Different ratios of HA:solvent were 

assessed to crosslink hyaluronan, namely 1:50, 1:70 and 1:100 HA:solvent 
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(R_50, R_70 and R_100 respectively). Table 2.1 resume the different 

conditions of HA:solvent employed for HA crosslinking.  

Table 2.1. Reaction conditions tested for hyaluronan crosslinking using 1,2,7,8-diepoxioctane 

R_50 R_70 R_100

acetone:HCl 0,1N 70:30 70:30 70:30

HA:(acetone:HCl) 1:50 1:70 1:100
 

Furthermore, different hyaluronan:crosslinker molar ratios were 

evaluated, namely from ratio 1:1 to 1:5 HA:crosslinker. Reaction time was in 

turn evaluated by leaving the reaction to continue during 24, 48 or 72h. 

Afterwards, samples were rinsed with isopropylalcohol/H2O until the pH of 

the washings was neutral and further washed in water. Samples were left to 

dry at room temperature and then dried under vacuum at 60ºC during 48h.  

 

Crosslinking with divinylsulfone (DVS) 

5 g of HA were dissolved in 100 mL of 0,2M NaOH solution and mixed 

during 24h at room temperature. 10ml of the hyaluronan solution was mixed 

carefully with 77 µL of divinyl sulfone (1:0,64 molar ratio HA:DVS) assuring 

the complete diffusion of the crosslinker in the viscous solution. Then, the 

mixture was injected into a self-made mold consisting in two parallel glasses 

separated by a cable of known diameter, thus, giving a film with the desired 

thickness. Hyaluronan hydrogel was allowed to crosslink at RT during 4h. 

Afterwards, the resulting films were immersed in different solutions to end 

the crosslinking reaction. Five different ratios of acetone and water were 

mixed to rinse the hydrogels after the crosslink reaction, namely 100:0, 

80:20, 50:50, 20:80 and 0:100 acetone:water (volume ratio).  

 

  



                                                                                                        MATERIALS AND METHODS 

- 59 - 

2.2.2. Scaffolds fabrication.  

Scaffolds with different inner porous structures were developed, both with 

DVS and DEO crosslinking procedures. Since the reaction of crosslinking is 

different in each case, different methodologies were employed.  

 

Structures based in HA-DEO 

Cylindrical tubes  

Cylindrical silicone tubes were used to obtain cylinders made of 

hyaluronan. 2% HA aqueous solutions were injected in different molds. Bulk 

cylinders were obtained injecting the solution in 1mm inner diameter silicone 

tubes and lyophilized afterwards. Tubes of HA were manufactured by 

injecting in a mold consisting in a concentrically disposed cylinders. The 

internal diameter of the external cylinder was 2.2mm and the external of the 

inner cylinder was 1.2mm.  

 

Channeled scaffolds   

Multiple parallel-disposed channeled scaffolds were prepared with molds 

containing different inner channels diameters and external cylinders. Molds 

made of glass or silicon tubes were employed. Drilled cups were disposed in 

both endings. Filaments with external diameters of 100 or 200 microns, 

made of copper or polypropylene, were disposed following the paralelly drills 

from one end to the other. Hyaluronan 2% aqueous solution was injected 

and then lyophilized. Dry non-crosslinked 3D structures were obtained. 

Samples were then crosslinked with DEO by the protocol described and the 

conditions summarized in Table 2.2. 
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Table 2.2. Conditions for DEO crosslinking on hyaluronan 3D structures. 

crosslinker
solvent (acetone:HCl 

0,1N)
HA:(solvent) 

(w:w)
HA:X

time                   
(h)

DEO 70:30 1:70 1:5 72
 

 

Scaffolds with different inner porous structures were prepared. Thus, 

interconnected spherical pores, interconnected cylindrical pores and non 

connected longitudinal cylindrical channels hyaluronan scaffolds were 

obtained. The specific methods used are explained in detail below. 

 

Matrix of interconnected spherical pores structure 

 

A particulate-leaching method was used to prepare constructs with 

interconnected spherical porous structure. Polymethylmethacrylate beads 

(PMMA) were used as porogen with particles ranging between 80-110 

microns.  

10 ml hyaluronan aqueous solution was mixed with PMMA in 1:20 ratio 

(w/w) solution:PMMA. The blend was carefully mixed to avoid air bubble 

formation. Once the mixture was homogeneous it was forced to fill a 

multidrilled Teflon® mold of empty cylinders of 7 millimetres diameter and 25 

millimetres long (Figure 2.2) which permitted to obtain an amount of 

reproducible samples at once. The blend was lyophilized resulting in dry 

cylinders of hyaluronan containing the porogen. Cylinders obtained were cut 

into 1mm thickness disks and washed in acetone to remove the porogen. 

Thus, gentle washings in acetone was carried out under stirring. The 

acetone was changed daily until no residual porogen was appreciated as no 

residual white powder after acetone evaporation.   

Samples were then crosslinked according to the conditions in Table 2.2 and 

kept immersed in acetone until further use.  
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Figure 2.2 Multidrilled Teflon® mold used to fabricate 3D structures of hyaluronan. 
 

Matrix of longitudinal parallel cylindrical channels 

Inner longitudinally channeled hyaluronan scaffolds were prepared by 

using a self-made mold. Thus, two pieces of microdrilled stainless steel with 

holes of 125 microns were disposed at the endings of Teflon® self made 

mold (Figure 2.3). These microdrilled pieces were used to support the fibers 

that will serve as template to obtain the longitudinal channels. Those pieces 

were fitted in both ends of a Teflon cylinder provided with a hole to inject the 

hyaluronan solution.  

 

Figure 2.3 Self-made Teflon® device to fabricate hyaluronan multichanneled scaffolds. 
 

A A 

B 
B 
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Structures based in HA-DVS 

Matrix with interconnected spherical pores  

10 ml hyaluronan sodium hydroxide solution was mixed with the 

corresponding amount of DVS and rapidly mixed with PMMA beads in 1:20 

ratio (w/w) solution:PMMA. Once the mixture was homogeneous it was 

forced to pass through multidrilled Teflon® mold as described for HA-DEO 

scaffolds.  The blend was allowed to react during 4h to get a 7 mm diameter 

and 25 mm long HA-PMMA cylinders DVS crosslinked. 

Immediately after demolding the cylinders, they were cut into disks of a 

1mm thickness and thoroughly washed in acetone. Samples were kept in 

acetone to remove the porogen under stirring at room temperature. The 

solvent was changed every day until no porogen was left (samples were 

considered clean of porogen when no residual white powder was found after 

evaporation of the acetone used in the washings). Samples were kept in 

acetone until further use.  

 

Longitudinal cylindrical channelled scaffolds 

5% hyaluronan solution in 0,2M NaOH containing the crosslinker (DVS) 

was injected with a syringe to fill the mold described in Figure 2.3. The mold 

consisted in longitudinally disposed polypropylene filaments of 100 microns 

in diameter used as a template. The mixture was allowed to react during 4h 

at room temperature and a hyaluronan cylinder was obtained. Then the 

cylinder was immersed in acetone containing the filaments to maintain the 

template during dehydration of the structure avoiding the collapse of the 

walls. Samples were allowed to dry at room temperature and then at 60ºC 

and vacuum until dryness. The filaments were then removed.  
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HA coating on acrylic scaffolds 

Acrylic matrices of interconnected cylindrical channels coated with 

hyaluronan were prepared following several steps. The matrix of a 3D mesh 

of cylindrical channels of poly(EA-co-HEA) 90/10 (v/v) were prepared 

employing a polyamide mesh template, protocol reported in (Rodriguez 

Hernández, Á. Serrano Aroca, José Luis Gómez Ribelles, & Manuel 

Monleón Pradas, 2008).  

The acrylic 3D structures were then sterilized by gamma radiation 

(25kGy, 60Co source). The coating of hyaluronan was performed by injecting 

under vacuum a solution of HA-DVS in 1:0,64 HA:DVS molar ratio.  To 

ensure a correct filling of the inner structure, hydrophobic samples were first 

filled with water under vacuum to wet the whole inner surface of the 

construct. Then, the hyaluronan solution containing the crosslinker was 

injected in the same way twice. Samples were allowed to react during 4h 

and then immersed in acetone to remove the remaining products, washed 

several times with 70% ethanol and dried under vacuum. Scaffolds were 

kept dry until further use. 

2.2.3. Materials characterization 

Formulations which displayed the lower values of equilibrium water 

content (EWC) in both DEO and DVS crosslinking were chosen for further 

characterization. Their FTIR-ATR spectra were recorded and compression 

tests were performed in both hydrogels. The degree of crosslinking was 

evaluated by measuring their ECW. Finally structures were compared by in 

vitro degradation in presence of hyaluronidase.   

To perform biological experiments HA-DVS hydrogels were cut into 7mm 

in diameter discs in swollen state. Samples were then dried at room 

temperature followed by vacuum drying at 60ºC. Discs were kept under dry 

conditions until their further use.  
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Fourier Transformed Infrared Spectra (FTIR-ATR) 

The infrared spectra were recorded on a spectrophotometer (FT-IR 

Thermo Nicolet Nexus). The spectra were averaged on 60 scans in the 

range of 650-4400 cm-1 with a resolution of 16 cm-1.  

Scanning Electron Microscopy (SEM) 

The morphology of the samples, surface and cross-section, was analyzed 

using a JEOL JSM 5410 scanning electron microscope (SEM), at an 

accelerating voltage of 15 KV at different magnifications. All specimens were 

pre-coated with a conductive layer of sputtered gold. 

Equlibrium Water Content (EWC) 

The equilibrium water content (EWC) was measured in each crosslinked 

hydrogel. Crosslinked samples were immersed in distilled water and allowed 

to swell until equilibrium for 24h. Afterwards, the fully swollen gels were 

weighed after the residual surface water was carefully removed using a 

fiberfree tissue. Samples were dried under vacuum and 60ºC and their 

weight was recorded. The equilibrium water content (EWC,%) was 

calculated according to equation 1: 

    
100(%) ⋅= wEWC

         [1] 
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where dw  weight of the dry sample (hyaluronan) and Sw  the weight of 

swollen sample in equilibrium. 
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Volumetric swelling (Q) 

The geometry of dry and swollen discs (n=3) was carefully measured to 

assess either the isotropic or anisotropic character of the swelling. The 

diameters of samples were measured with the help of a Vernier caliper and 

their thickness with a micrometer. The volumetric swelling is:  

  
1−== φ

dry

sw

V

V
Q                [3] 

where Q is the volumetric swelling of crosslinked hydrogels, swV  is the 

volume of the dry sample, dryV  is the volume of the swollen sample and φ  

is the polymer volume fraction in the hydrogel. 

The value of Q was determined according to equation 4 and calculated 

for the different crosslinked hydrogels.  
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If the volumetric swelling is isotropic, Q  can be expressed in terms of the 

ratio between the diameter of the swollen and the dry sample ( swd  and dryd  

respectively) expressed as the Λ the stretching ratio (equation 5)  
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If the volumetric swelling is non isotropic, Q can not be calculated from 

the change in the diameter of the sample. Thus, a diference in the 

calculations values of Q following equation 4 or equation 5 is an indication of 

anisotropy of swelling.  
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Compression tests 

The Young’ modulus is a measure of the stiffness of an elastic material 

and it is widely employed to characterize materials. It can be obtained 

experimentally from strain-stress curves. The Young modulus (E) is defined 

as the ratio of the uniaxial stress over the uniaxial strain (equation 6). 

       
ε
σ

=⋅E                           [6] 

where σ is the stress applied in N/m2 and ε the strain of the material 

resulting from the stress applied (m).  

Strain-stress curves of the different crosslinked hydrogels were measured 

in their swollen state in unconfined compression (n=3).  Tests were 

performed in a Seiko EXSTAR TMA/ss6000 Dilatometer (Seiko Instruments 

Inc., Chiba, Japan). Compression force was applied from 5 to 200 g at a rate 

of 5 gmin-1 at 37ºC. Bulk samples were disk shaped, 7mm in diameter. The 

elastic moduli measured under compression in swollen state, Esw, were 

calculated from initial linear slope of stress-strain curves.  

Using the appropriate equations, the Young modulus (E), the density of 

chains (
0V

nc ) and the average molecular weight between crosslinkings can 

be calculated. Since the crosslinking is performed in the presence of a 

solvent, it is necessary to take into account the polymer volume fraction of 

the matrix, φ  to relate the moduli in swollen state to the Young moduli in the 

dry rubbery state, E (equation 7). 

3
1

φ⋅= EEsw           [7] 

In turn, the Young modulus of the matrix (E, in the rubbery state) can be 

expressed as a function of the mol number of polymer chains  (nc) and the 

volume of the matrix without deformation (equation 8): 
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TR
V

n
E c ⋅⋅⋅=

0

3  [8] 

where R is the ideal-gas constantt (R=8.31451 JK-1mol-1) ant T is the 

temperature (K).  

Equation 8 can be rearranged and written as a function of the polymer’s 

density (ρHA)  and the molecular weight of the chains (Mc):  

TR
M

E
c

HA ⋅⋅⋅=
ρ

3         [9] 

If E can be measured, the average molecular weight cM  can be calculated 
through equation  9.  
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Density 

The density of non-crosslinked hyaluronan was measured gravimetrically 

in an analytical balance (Mettler Toledo analytical balance, sensitivity 

0,00001 mg). The density can be measured in two steps, weighing the dry 

sample and the sample immersed in n-octane. The density of hyaluronan 

was calculated through equation 10,  

      01 ρρ
P

A
=           [10] 

where 

1ρ =density of hyaluronan (g/cm3) 

0ρ = density of n-octane (g/cm3) 

A = weight of dry hyaluronan in air (g) 

P = weight of hyaluronan in n-octane minus A (g)  

Porosity  

Porosity (Π) is defined as the the ratio between the volume of pores 

(Vpores) and the total volume of the structure (Vtotal): 

    

  [11] 

 

where the volume of the pores and the volume occupied by the polymer 

(HA) can be  calculated experimentally by weighing the dry and the swollen 

samples:  

      

w
ρ

1
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HA

HAHAHAHA ρ

1
mυmV ⋅=⋅=       [13] 

The expressions wυ and HAυ  correspond to the specific volumes for water 

and hyaluronan respectively. In the same manner, the volume of hyaluronan 

can be obtained as a function of the mass of polymer (mHA) and its apparent 

density (ρHA) calculated previously by equation 10. This method has the 

advantage of reducing the scatter of the results due to geometry 

irregularities of samples as the calculations are made directly from weight 

measurements.  

The calculation of the porosity may be rearranged as  
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⋅−⋅
=Π      [14] 

where mw refers to the total amount of water in the sample.       

The inner porosity of hyaluronan scaffolds was calculated in samples cut 

into pellets of 1mm in high and 7 mm in diameter. Scaffolds were allowed to 

swell in water to equilibrium and then their weight was recorded. Afterwards, 

samples were lyophilized and weighed again. Same assay was performed 

by immersing similar samples in ethanol where the hyaluronan does not 

swell. The porosity was evaluated in the swollen and dry states of the 

polymer. 

Degradation of hyaluronan 

Hyaluronate lyase from Streptomyces hyalurolyticus (3.2.1.35) used for 

degradation studies was supplied by Sigma, Spain. The enzymatic 

degradation of hyaluronan crosslinked hydrogels was evaluated by in vitro 

tests. 5 mm disc shaped samples of each composition were introduced in 

individual vials containing 100U/ml of hyaluronidase in citrate buffer (pH=5). 

Each point time tested was evaluated by triplicate. Vials were incubated at 

37 ºC and sampled at days 1, 2, 3, 8 and 14.   
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The enzymatic solution was refreshed weekely in order to assure the 

activity of hyaluronidase.  The degradation rate of hyaluronan crosslinked 

hydrogels was quantified by measurement of the residual weight of the 

samples at different time points. Supernatants were boiled during 2 minutes 

to deactivate the enzyme and then kept at -80ºC. Samples were washed in 

distilled water prior to lyophilize and then weighed. The remaining mass 

(RM) was calculated for each sample as: 

  100(%)
0

⋅=
day

dayX

m

m
RM           [15] 

where dayXm  corresponds to the weight of the sample at day X and 0daym  to 

the initial weight of the sample.  
 
Molecular weight of degraded HA 

Supernatants of hyaluronan enzymatic degradation were lyophilized and 

the molecular weight of hyaluronan released during degradation analyzed by 

gel permeation chromatography (GPC).  Water styragel HR columns with 

water as mobile phase (0,8 mL/min) and 11 polyethyleneglycol (PEG) 

standards ranging from 106 to 79000 Da (Polymer Standard Service Win 

GPC software fit to a third order polynomial equation) as a reference for the 

number-average and weight-average molecular weight calculations, 

refractary index (RI, Waters 1525) detection. 

Alcian blue assay 

To evaluate whether the hyaluronan coating on acrylic samples was or 

not ubiquitous, samples were Alcian blue stained.  The Alcian blue dye, 

which contains copper, stains acid mucopolysaccharides and 

glycosaminoglycans giving a blue color. It binds by electrostatic forces with 

the negatively charged macromolecules.  

 The assay consists in a two step protocol. First, samples were immersed 

during 10 minutes in Alcian blue solution (1% aqueous Alcian blue solution, 
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pH=1-2 was achieved with HCL 0,1M) forcing the liquid to fill the scaffold 

with a pipette. Then, samples were washed several times with fresh water 

and subsequently immersed in the neutral red solution (0,3 g of neutral red 

dye in 100 ml of water+0,1 ml glacial acetic acid) during 1min and washed 

again thoroughly with water.  Samples without HA coating were used as 

controls. 

2.2.4. Cell culture  

Biomaterials preparation for cell culture.  

Biomaterials were sterilized with 70% ethanol (3x10min washings) and 

protein coated, to prepare them for cell culture. 2D HA-DVS hydrogels were 

7mm disc-shaped. 3D HA-DVS interconnected spherical pores structure was 

used as obtained after fabrication (7mm disc-shaped in non swollen state). 

HA-DVS coated acrylic scaffolds were 5x5 mm square shaped. Table 2.3 

summarizes the shape, the protein coating and cultured cells onto the 

different HA-DVS biomaterials.  Either laminin (LN) or fibrin (fb) protein 

coating was used on HA-DVS hydrogels. After the coating, biomaterials 

were conditioned by incubation 30 minutes with fresh medium, same as 

employed during cell culture. In 3D samples medium was forced to pass 

through the scaffold to enssure their filling with medium. Afterwards, cell 

seeding was carried out onto biomaterials in 48 well plates.  

Table 2.3. Shape of samples, protein coating and cultured cells onto HA-DVS materials.  

Structure
LN fb hCMEC U373 co-CULTURE

2D HA-DVS hydrogels disc √ √ √ √ -

3D HA-DVS interconnected spherical pores disc √ √ √ √ √

HA-DVS coated acrylic scaffolds square √ - √ √ √

Sample 

shape

Protein coating Cell culture

Note. HA-DVS: hyaluronan hydrogels crosslinked with divinyl sulfone  
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LN coating.  

Biomaterials were sterilized by being washed in 70% ethanol (3 times) 

and then rinsed in Dulbecco’s phosphate buffered saline (DPBS) allowing 

then to swell to equilibrium. Then, laminin (laminin from Engelbreth-Holm-

Swarm murine sarcoma basement membrane, LN, Sigma, Spain) coating 

was applied with a concentration of 20µg/ml in DPBS in an incubator at 37°C 

and 5% CO2 overnight. Afterwards, materials were washed three times with 

DPBS prior to cell seeding.  

 
Fibrin coating.  

Fibrin coating was performed in a two-step procedure. First, biomaterials 

were immersed in a 400 µL solution of trisbuffersaline (TBS, Sigma) 

containing 2% fibrinogen (fibrinogen, Fraction I, Sigma) during 2h. Then, the 

solution was removed and 400 µL of thrombin (from human plasma, Sigma) 

in concentration 0.3 units/ml in TBS-CaCl2 20 mM were added. The fibrin 

matrix was allowed to polymerize for another two hours. Afterwards, the 

biomaterials were washed with DPBS and sterilized with ethanol (70% 

ethanol, 3 washings). Sterilized fibrin coated scaffolds were then rinsed in 

DPBS allowing them to swell to equilibrium prior to cell seeding. 

hCMEC/D3 and U373 monocultures  

A suspension containing either 2,2·104  hCMEC/well (50 µL) or 2,2·104  

U373/well (50 µL) was added to each sample with the help of a micropipette. 

The seeding density of the 3D structures was incremented three fold with 

respect to the 2D structures due to the increase of the available surface for 

cell attachment. Cells were incubated at 37ºC and 5% CO2 for 30 minutes to 

favor initial cell adhesion. Then 350µL of fresh medium was added to each 

well. The seeded biomaterials were incubated at 37°C and 5% CO2 up to 21 

days. The medium was refreshed every 2/3 days and replaced with fresh 

medium. The supernatants were kept at -20ºC for further studies. In the first 

refreshment of the medium, samples were moved to a new plate to keep 
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only the cells adhered to the scaffolds. Gelatin coated cover slides were 

employed as controls. 

hCMEC/D3 and U373 co-culture  

hCMEC/D3 and U373 were co-cultured by two different procedures either 

in a 1 to 10 ratio or in a 1 to 1 ratio (U373:hCMEC/D3) onto hyaluronan 

biomaterials. 

Succesive cell seeding 

A suspension containing 2,2·105  hCMEC/well (50 µL/well) was injected 

with the help of a micropipette. Cells were incubated at 37ºC and 5% CO2 for 

30 minutes to favor cell adhesion in the hydrogels. Afterwards fresh medium 

was added (350 µL). Endothelial cells were incubated at 37ºC and 5% CO2 

for 24h prior to addition of the astrocytes. Then, a suspension containing 

2,2·104  U373/well (50 µL/well) was added by direct injection into the 

biomaterials with a micropipette.   Cells were co-cultured in a 1 to 10 ratio 

(U373:hCMEC/D3) at 37ºC and 5% CO2 onto biomaterials up to 21 days. 

Cell medium was collected and changed every 2/3 days. Gelatin coated 

plastic cover slides were used as controls. 

Simultaneous cell seeding 

 A suspension of both cell lines was prepared containing 2,2·104  

hCMEC/D3 and 2,2·104  U373 for 2D samples and 6,6·104  hCMEC/D3 and 

6,6·104  U373 for 3D structures. Cells were seeded together by injection of 

50 µL of the cell suspension with the help of a micropipette. Cells were 

incubated at 37ºC and 5% CO2 for 30 minutes to favor the adhesion their 

adhesion to the biomaterials. Afterwards, fresh medium was added (350 µL). 

Cells were co-cultured up to 21 days. Cell medium was collected and 

changed every 2/3 days. Gelatin coated cover slides were used as controls. 
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Viability 

To assess the viability of cells growing on hyaluronan based biomaterials 

individual cell lines, hCMEC/D3 and U373, were cultured on each 

biomaterial up to 8 days. At two times, 2 and 8 days, samples were 

incubated for 10 minutes in medium supplemented with 0,1 µM calcein-AM 

(1:1000, invitrogen). This acetomethoxy derivate can be transported through 

the cellular membrane of living cells by active esterases which transform the 

molecule by binding the calcium within the cell giving a strong fluorescence. 

The stained samples were observed in CLSM (Leica TCS NT) by placing 

them individually in microscope slides.    

Inflammatory effects. E-selectin 

Inflammatory effects of the materials to be used in in vitro studies were 

assessed by examining expression of E-selectin, a proinflammatory marker 

of endothelial cells. E selectin is expressed in cells upon activation by 

cytokines, as a response to an inflammatory stimulus.  

 With this aim, hCMEC/D3 cells were cultivated on two samples of each 

biomaterial for 72h. For each biomaterial set, one sample was stimulated 

with lipopolyssacharide [LPS from Escherichia coli, Sigma, Germany], a 

characteristic component of the cell wall of Gram– bacteria, as a model 

inflammatory substance serving as positive control. Stimulation was 

performed by adding 1µg/ml of LPS and cultured further 4h with the 

lipopolyssacharide. Subsequently samples fixed with paraformaldehyde 

(PFA) at 3,7% during 15 minutes at room temperature. 

Samples were inmunostained against E-selectin. Shortly, after fixation 

with paraformaldehyde for 15 minutes at room temperature, constructs were 

washed 3 times with DPBS, and cells were permeabilized with 0,2x Triton-X 

during 10 minutes. Thereafter, constructs were washed and incubated with 

E-selectin antibody (Mouse anti-human, 1:100, ELAM-1) under mild shaking 

during 1h at room temperature. Samples were then washed 3 times with 

PBS and incubated with secondary antibody (1:1000, Alexa Fluor 488 



                                                                                                        MATERIALS AND METHODS 

- 75 - 

antimouse, Molecular Probes) at RT in the dark under mild shaking. 

Samples were washed extensively with DPBS and the nucleus stained for 5 

minutes with DAPI (1:10000). After 3 new washings samples were mounted 

with fluoromount and examined by CLSM. 

Inmunofluorescent analysis  

The expression of the platelet endothelial cell adhesion molecule 

(PECAM-1, CD-31) or von Willebrand Factor (vWF) were assessed in the 

cultures of endothelial cells. Astrocytes were evaluated by their expression 

of Glial Fribrillar Acid Protein (GFAP). Immunocytochemistry of these 

proteins was assessed at day 14 and 21 both in mono and co-cultures. For 

this end, after fixation with 3,7% paraformaldehyde (10min, RT) cultured 

samples were rinsed in PBS and the cell membranes were permeabilized 

with 0.3% Triton X-100 (10 min, RT).  Samples were then incubated with the 

corresponding primary antibody diluted in PBS-BSA 1% at RT for 1h (mouse 

anti-human PECAM-1, 1:50, DAKO; rabbit anti-human vWF, 1:8000 

respectively, DAKO and mouse anti-human GFAP, 1:200, Sigma, Germany). 

After extensive washing with PBS, samples were incubated with secondary 

antibody (PECAM and vWF: anti-mouse Alexa Fluor 488, 1:1000; GFAP: 

anti-mouse Alexa Fluor 654, 1:1000; Invitrogen, Germany) and newly rinsed 

before nucleus staining. This was done by incubating samples for 10 

minutes with DAPI in DPBS.  Samples were then washed with DPBS and 

mounted with Fluromount for visualization by confocal laser scanning 

microscopy (CLSM).  
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Growth factors release  

Enzyme linked inmunosorbent assay (ELISA) was used for the detection 

and quantification of growth factors released by activated cells in culture 

medium. The supernatants of the cultured biomaterials were collected every 

2-3 days during the period of culture; reserved supernatant was frozen and 

kept at -20ºC until further use. 

DuoSet Elisas for Vascular Endothelial Growth Factor (VEGF, R&D 

Systems), Angiopoietin-1 (Ang-1, R&D Systems) and Angiopoietin-2 (Ang-2, 

R&D Systems) were used for the analysis of the collected supernatants at 

time points of 3, 7, 10, 14, 17 and 21d for each biomaterial both in mono and 

co-cultures. All Elisa kits were used according to the manufacturer’s 

protocol.
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3.1. Hyaluronan crosslinking 

Even though hyaluronan is widely used due to its biological properties, its 

application requires in the most of the cases modification by crosslinking or 

derivatization. Thus, hyaluronan may enhance its poor mechanical 

properties and be used in different aims. In this work hyaluronan chemical 

crosslinking was carried out with two different crosslinkers, namely 1,2,7,8-

diepoxioctane (DEO)  and divinylsulfone (DVS). The reaction medium was 

selected in convenience thus guiding the reaction through the desired 

functional group. 

Crosslinking with 1,2,7,8-diepoxioctane 

The crosslinking of hyaluronan with 1,2,7,8-diepoxioctane (DEO) was 

carried out in an acidic medium provided by a mixture of acetone and 

hydrochloride solution. The pH of the resulting solution was around 4-5.   

Different volumetric ratios acetone:HCl 0,1N were examined, from ratios  

50:50 (acetone:HCl 0,1 N) where the film dissolved completely to 100:0 

(acetone:HCl 0,1 N) where it did not swell at all. A 70:30 ratio acetone:HCl 

0,1N (volume) was chosen to perform further probes for an optimized 

crosslinking of hyaluronan.  

Results showed the influence of different factors during crosslinking such 

as water content, crosslinker concentration or reaction time. As hyaluronan 

is a hydrogel, the measurement of the equilibrium water content of the 

crosslinked structures gives us information about the degree of crosslinking. 

A hydrophilic matrix with high degree of crosslinking is expected to retain 

small amounts of water; therefore, lower values of EWC will be measured.  

In order to study the influence that crosslinker concentration employed have 

on the final hydrogel, the equilibrium water content measured after 

crosslinking was plotted as a function of reaction time (24, 48 and 72h) for 

the three different conditions independently (R_50, R_70 and R_100) 

(Figure 3.1). Moreover, the EWC was plotted as a function of the different 
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conditions to make evidence of the influence of crosslinker concentration 

within the same reaction times (Figure 3.2).  

 

� Same ratio HA:solvent, different reaction times 

 

Equilibrium water content for crosslinked hyaluronan samples under 

R_50 condition displayed differences for the different times evaluated. 

Samples which were crosslinked during 48 or 72 hours displayed low values 

of EWC (between 200 to 400 %) while samples crosslinked during shorter 

times (24 h) differ in the EWC depending on the crosslinker ratio. In those 

samples, the ones crosslinked with ratios HA:DEO of 1 to 1 or 1 to 2  

resulted in hydrogels with considerably higher values of EWC while those 

samples crosslinked with ratios 1 to 3 to 1 to 5 (HA:DEO) showed similar 

values of swelling. EWC of samples crosslinked upon conditions R_70 

displayed slightly lower values of EWC for samples crosslinked during 48 or 

72 h. Those crosslinked during 24h revealed higher swelling in water for low 

ratios of HA:DEO (1:1 and 1:2) while for higher ratios the EWC was similar 

and lower. Samples crosslinked with R_100 conditions displayed lower 

values of EWC in longer reaction times which resulted in values of EWC  

between 250 and 350%, similar in the case of 48 and 72h. Samples 

crosslinked during shorter times (24h) displayed the higher values of EWC 

for lower HA:DEO ratios (1 to 1) while  values decreased below 400% 

afterwards. Plotted results can be found in Figure 3.1. 
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Figure 3.1. EWC in HA-DEO crosslinked samples using a 1:50  ratio (w/w) (acetone:HCl 
0,1N):HA  during different times reactions. (72h ―▲―,  48h −−○−−, 24h ····♦···). B) EWC in 
HA_DEO crosslinked samples using a 1:70  ratio (w/w) (acetone:HCl 0,1N):HA  during different 
timed reactions. (72h ―▲―,  48h −−○−−, 24h ····♦···); C) EWC in HA_DEO crosslinked 
samples using a 1:100  ratio (w/w) (acetone:HCl 0,1N):HA  during different timed reactions. 
(72h ―▲―,  48h −−○−−, 24h ····♦···) 

 

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5

crosslinker molar ratio to HA

E
W

C
 (
%

)

200
400
600
800

1000
1200
1400
1600
1800
2000

0 1 2 3 4 5
crosslinker molar ratio to HA

E
W

C
 (
%

)

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5

crosslinker molar ratio to HA

E
W

C
 (
%

)



                                                                                                                                       RESULTS                                                                                              

- 83 - 

� Same reaction time, different HA:solvent ratios 

 

Same results were plotted as a function of the reaction time for every 

ratio HA:crosslinker employed. The EWC measured for 24h reaction showed 

the lower values for 1:70 and 1:100 (HA:solvent) compared with 1:50 for 

ratios of crosslinker higher  than 1:3 (HA:DEO).  High EWC values were 

measured for low crosslinker concentrations. Those samples crosslinked in a 

1:50 ratio HA:solvent showed the higher EWC values. In general, 24h 

reaction resulted in high values of EWC for ratios of crosslinker equal or 

lower than 2, the lower the content of water in the reaction medium the lower 

the value of EWC. For ratios equal or higher than 3 value stabilized 

displaying slight differences within them. The higher values of swelling were 

observed for samples crosslinked with 1:1 ratio (HA:DEO) and conditions 

R_50 reaching 1700% of EWC. Those samples were very difficult to 

manage. Figure 3.2 collects the plotted data for measured EWC. 

48h reaction showed to be less influenced by crosslinker concentration. 

Except to 1:1 HA:DEO ratio, the measured EWC values were between 250 

and 400%. The larger reaction time evaluated (72h) showed slight 

differences in the EWC values demonstranting less dependence with  

concentration of crosslinker or solvent employed in longer times (note the 

small scale in Y axis in Figure 3.2).   
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Figure 3.2. EWC in 24h crosslinking reaction of HA_DEO hydrogels. (1:100 HA :solvent 
―▲―; 1:70 HA:solvent −−○−−; 1:50 HA:solvent ····♦···) B) EWC in 48h crosslinking reaction of 
HA_DEO hydrogels. (1:100 HA :solvent ―▲―; 1:70 HA:solvent −−○−−; 1:50 HA:solvent ····♦···) 
C) EWC in 72h crosslinking reaction of HA_DEO hydrogels. (1:100 HA :solvent ―▲―; 1:70 
HA:solvent −−○−−; 1:50 HA:solvent ····♦···) 
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 Summarizing, samples crosslinked during shorter times (24h) showed a 

higher dependence with crosslinker concentration than those crosslinked 

during 48 or 72h. The longer the reaction time the lower the EWC. Within the 

same reaction times, the higher the water content on the reaction the lower 

the swelling values. Figure 3.3 shows the lower values of EWC for every 

condition as a function of reaction time.  

 

Figure 3.3. The lower EWC for 1:5 HA_DEO molar ratio employed to crosslink hyaluronan 
during three times, 24, 48 and 72 h. R_50 (····♦···), R_70 (−−○−−) and R_100 (―▲―).  

 

Crosslinking with divinylsulfone 

Hyaluronan divinylsulfone crosslinked samples were obtained by mixing a 

basic solution of hyaluronan (5% HA in 0,1M NaOH) and the crosslinker 

were left to react for 4h.  

To end the crosslinking reaction, the hydrogel was gently rinsed with 

solvent to eliminate the unreacted divinylsulfone. The solution employed for 

the washing was noticed to influence the properties of the crosslinked 

hydrogel. In order to assess the effect of the solvent composition employed 

for the rinsing, the hydrogel was exposed to solutions containing different 

acetone-water ratios. Immersion time in the different solutions was evaluated 

as well. The EWC measured are in the graph  Figure 3.4. 

Results may be arranged into two different groups. A first group 

composed of those samples rinsed with acetone alone or with low contents 

of water. A second range, grouping those samples immersed in acetone 

200

250

300

350

400

450

500

550

0 24 48 72

t (h)

E
W

C
 (
%

)



                                                                                                                                       RESULTS                                                      

- 86 - 

solutions with high ratios of water or only water. Samples, all of them 

crosslinked in equal conditions, showed lower rates of EWC when washed 

with solvent containing high concentrations of acetone or only acetone after 

10 minutes of immersion to keep the value of swelling low afterwards (group 

1). Besides, samples rinsed with solvents containing 50% or more water in 

volume showed similar behaviour in terms of swelling, displaying high values 

of retained water.  
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Figure 3.4. EWC of hyaluronan crosslinked films with DVS after ending the reaction by rinsing  
with different acetone-water solutions. ( ▬□▬ acetone; ···∗···80:20 acetone:water; −−○−− 50/50 
acetone:water; ─◊─ 20:80 acetone:water; ▪▪▪x▪▪▪ water) 

 

3.2. HA hydrogels characterization 

Those samples which displayed the lower rates of EWC for each 

crosslinker were selected for further characterization. The crosslinked 

hydrogels were characterized by their FTIR-ATR spectra, EWC in fixed 

conditions, volumetric swelling and Young modulus measured in 

compression.  Biodegradability of hydrogels in presence of hyaluronidase 

was also evaluated as well as the fragments resulted from the enzymatic 

degradation. Table 3.1 summarizes the conditions and crosslinkers selected 

for  its characterization. 



                                                                                                                                       RESULTS                                                                                              

- 87 - 

Table 3.1. Selected conditions for Hyaluronan crosslinking with 1,2,7,8-diepoxioctane (HA-
DEO) and divinylsulfone (HA-DVS) for characterization. 

X HA:X reaction phase medium time  (h)

DEO 1:5 solid acid 72

DVS 1:0,64 liquid basic 4

X: crosslinker; DEO: 1,2,7,8-diepoxioctane; DVS: divinylsulfone; molar ratios   

 

3.2.1. Fourier Transformed Infrared Spectra (FTIR-ATR) 
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Figure 3.5. FTIR spectra of Hyaluronic acid and crosslinked derivates synthetized. (natural HA 
─x─; HA-DVS ─♦─ ; HA-DEO ─○─) 
 

Figure 3.5 shows the infrared spectra measured in the range of 600-4000 

cm-1 for natural hyaluronan and chemically crosslinked derivates. 

In a general view there is a broad band with a maximum in 3340cm-1 due 

to the N-H stretching and O-H stretching. Bands in 2931cm-1 and 2893cm-1 

correspond to the C-H bond stretching. Band with maximum in 1836cm-1 

correspond to the mixture of the vibrations of several bonds. In one side 
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there is the C=O carboxyl from amide I and from ester bond, giving a slight 

shoulder in higher frequencies for the later. The shoulder in lower 

frequencies may correspond to the amide II bond. Amide I and amide II 

bands are schematically represented in Figure 3.6 for a better 

understanding. 

 

Figure 3.6. Different bond vibrations in the amide group. 
 

Continuing toward lower band frequencies CH2, CH3 deformation and the 

combination of C-O with C=O bond (1412cm-1, 1404cm-1) and the stretching 

of C-O-C, C-O and C-O-H (1149, 1080 and 1049 cm-1) appears. Finally, in 

the lower frequencies of the spectra there are the bands corresponding to C-

O-C stretching, O-H deformation and C=O deformation (957, 895 and 810 

cm-1). 

The typical bands describing the IR spectra of natural HA and both 

crosslinked hydrogels are collected in Table 3.2. 
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Table 3.2. Peaks in FTIR-ATR spectra for natural hyaluronan and their crosslinked structures 
HA-DEO and HA-DVS.  

HA HA-DEO HA-DVS band description 

1 3440 3379 3348 N-H, O-H stret
2 - - 2978 Csp3-H DVS
3 2931 2931 2931
4 2893 2893 2893
5 1836 1759 1728 C=O carboxyl amide I
6 1620 1620 1620
7 1574 1581 1574
8 - - 1466 Asim stret S=O 
9 1412 1412 1419 CH2, CH3, COH def C-O and C=O 
10 1404 1396 1404
11 - 1327 1334
12 1227 1234 1234
13 1149 1157 -
14 1080 1072 1088
15 1049 1034 1034
16 957 957 -
17 895 918 926
18 810 818 810

C-O-C stret, O-H def, C=O def

C-H stret

C-O-C; C-O; C-O-H stretching

 

3.2.2. Water absorption capacity  

The amount of water retained in a hydrogel is associated with the amount 

of hydrophilic groups and the crosslinking density of the matrix among other 

factors. Crosslinking may be considered as an opposed force to the 

solvatation of the matrix. If the polymer was not crosslinked, the result of its 

immersion in solution will be its dissolution.  

Hydrogels, in their crosslinked state, are able to retain high amounts of 

water. The total amount of water in a hydrogel, result of taking together the  

primary bound water (water hydrating the most polar hydrophilic groups) and 

secondary water (responsible of the swelling of the matrix) will determine the 

absortion and diffusion of solutes through the hydrogel. The water absorbed 

in the hydrogel matrix depends mainly on the crosslinking density which can 

be estimated by their equilibrium water content (EWC). 

Water vapour absorption and water swelling by immersion was evaluated 

for the different crosslinked matrices. On the one hand, the capacity of the 
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material for gainning and keeping water vapour will give us information about 

the intrinsic hydrofilicity of the molecules making up the matrix. The amount 

of vapour gained depends on the nature of the material.  On the other hand, 

the total capacity of the hydrogel for absorbing water was evaluated by 

immersion of the samples in distilled water. In this situation, both the 

chemical affinity for water of the HA molecules and the ability of the 

materials to lodge a pure water phase are taken into account together.  

The EWC was measured for the different crosslinked matrices (HA-DEO 

and HA-DVS) and the different values obtained were compared. Swelling 

was higher for the DVS crosslinked matrices reaching values higher than 

600% (weight) versus the 140% of HA-DEO matrices. The values of EWC in 

water vapour, compared with swelling under immersion, were slightly lower 

for HA-DEO (131%) while quite noticeable for HA-DVS hydrogels (400%). 

The evidences in the results showed different behaviour depending on the 

matrix. HA-DEO hydrogels revealed high hydrophilicity displaying low 

differences between the immersion and vapour water retention which may 

be interpreted as a high crosslinked matrix. Besides, HA-DVS matrices 

behave noticeably different under such conditions demonstrating a higher 

hydrophilic matrix compared with HA-DEO.  The HA-DVS matrix displays 

favourable characteristics for the desired applications as a highly open 

matrix which may permit a proper diffusion through the hydrogel. The 

different hydrophilicity of the crosslinker chains may affect the amount of 

water gained by exposition to water vapour. The longer hydrophobic chains 

resulting from diepoxioctane crosslinking will retain less primary bound water 

than the higher hydrophilic chains resulting from the divinyl sulfone.  

The EWC of the different hydrogels are plotted in Figure 3.7. 
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Figure 3.7. EWC of HA-DEO ( ) and HA-DVS ( ) hydrogels by immersion (water) or by water 
vapour absorption at 37°C.  

 

3.2.3. Volumetric swelling   

To assess the isotropy or anisotropy of the swelling in hyaluronan 

crosslinked matrices, swollen samples were geometrically measured. HA-

DVS hydrogels become larger compared to the HA-DEO samples fact that is 

in agreement with the values of EWC measured for each matrix. The Q 

values were calculated considering both an isotropic or non isotropic 

swelling. HA-DEO hydrogels displayed lower Q values both for isotropic or 

anisotropic calculations in the order of 3. In those hydrogels, the Q values do 

not greatly differ, displaying approximately an isotropic swelling. In the case 

of HA-DVS hydrogels, Q values calculated in both considerations were very 

different ( 4=Q  versus 8=Q  considering an isotropic and anisotropic 

swelling respectively) thus demonstrating a non isotropic swelling. For better 

a better understanding of the result visualize the data graphed in Figure 3.8. 
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Figure 3.8. Volumetric swelling for HA-DEO ( ) and HA-DVS ( ) crosslinked hydrogels. Q 
values for isotropic calculation according to equation 5 (solid colour); Q values according to 
equation 4 (striped colour) 

 

3.2.4. Compression tests 

Isothermal mechanical analysis is useful to assess the mechanical 

properties of materials. Analyzing the strain during unconfined compression 

with significant load in thin films, the Young modulus can be measured and 

the crosslinking density evaluated.  

The stress-strain curves indicated different responses for HA-DEO and 

HA-DVS crosslinked hydrogels. HA-DVS matrices displayed higher capacity 

of deformation without breaking as well as a higher yield strain. In HA-DEO 

matrices, yield values up to 140% were calculated while HA-DVS reached 

values higher than 220%. 

The Young modulus in swollen state, Esw, can be calculated for each 

hydrogel from the initial slope of the elastic deformation on stress-strain 

curves. The value of Young modulus allows us to evaluate the crosslinking 

degree of each matrix in the terms of density of chains,
0V

nc  and the 

molecular weight between crosslinks, cM .  

Lower values of Esw were obtained for HA-DVS compared to HA-DEO. 

This value gives us an approximation of the stiffness of the matrices, the 
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higher the value the lower the stiffness of the matrix. Higher elastic 

behaviour was found in HA-DVS matrix versus a more rigid structure 

measured for HA-DEO matrices. 

The physical characteristic of the matrices as density of chains and 

molecular weight between crosslinks were estimated from the calculated 

values for Esw. Calculations demonstrated longer chains of polymer between 

crosslinks for HA-DVS compared to the HA-DEO structure. 

Figure 3.9 shows stress-strain curves for hyaluronan crosslinked 

hydrogels both with DEO and DVS. The physical properties of hydrogels 

both calculated and stimated for those crosslinked matrices are collected  in 

Table 3.3. 

 

0

20

40

60

80

100

120

140

160

180

0 0,05 0,1 0,15 0,2 0,25strain

s
tr

e
s
s
 (
k
P
a
)

 

Figure 3.9. Typical stress-strain curve for hyaluronan crosslinked hydrogels. HA_DVS ─♦─ ; 
HA_DEO ─○─.  
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Table 3.3. Physical properties for hyaluronan crosslinked matrices.  

matrix EWC (%) Q Esw (kPa) Mc (g/mol)

HA-DEO 144±4 3±0 311±35 41400

HA-DVS 615±54 8±2 164±23 139000

Note . Abreviations: equilibrium water content (EWC); volumetric swelling ratio (Q); Measured Young 
modulus in swollen state (Esw); Average molecular weight between crosslinks (Mc)

 

3.2.5. Enzymatic degradation of HA crosslinked hydrogels 

Although there are non-enzymatic mechanisms which degrade 

hyaluronan, it is thought that hyaluronidases are the main cause responsible 

for hyaluronan degradation within the body. The stability of crosslinked 

hydrogels synthetized in this work was assessed in vitro by immersing the 

samples in aqueous solutions containing 100U/ml of hyaluronidase (testis. 

type).   

The remaining weight of samples exposed to in vitro degradation in 

presence of hyaluronidase was recorded and are graphed in Figure 3.10. 

According to the results, both the HA-DVS and HA-DEO matrices degraded 

following the same pattern but, within the time evaluated, HA-DEO matrix 

were slightly more stable (35% remaining weight of HA-DVS versus 50% of 

the HA-DEO hydrogels in day 14). Samples maintained their bulk integrity 

while becoming degraded losing weight but displaying their cylindrical 

shapes.  
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Figure 3.10. In vitro enzymatic degradation of hyaluronan crosslinked hydrogels. HA-DVS (♦) 
and HA-DEO (○).  
 

Molecular weight of degraded hyaluronan  

The molecular weights of hyaluronan polymers released to the medium in 

the in vitro enzymatic degradation studies were assessed and analyzed by 

GPC with the help of PEG standards. HA-DVS crosslinked hydrogels were 

found to be broken into polymer chains of different lengths thus, in high 

molecular weight hyaluronan (HMW-HA, higher than 50000 g/mol) and low 

molecular weight hyaluronan (LMW-HA, lower than 10000 g/mol). The 

molecular weights of DEO crosslinked hydrogels were a mix of both high 

and low molecular weight in most of the days evaluated although during the 

first 24 hours only low molecular weight was released. Table 3.4 contains 

the results obtained for both crosslinked matrices.  
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Table 3.4. GPC measured molecular weighes for HA matrices by enzymatic degradation.  

days M n (g/mol) M w (g/mol) M w/M n M n (g/mol) M w (g/mol) M w/M n

1 51719 54502 1,05381001 9194 9443 1,02708288

4202 4409 1,04926226

2 55679 57678 1,03590223 20805 21610 1,03869262

4380 4624 1,05570776

3 52416 53962 1,02949481 28995 30259 1,04359372

4308 4617 1,07172702 3227 3372 1,04493337

8 52071 53447 1,02642546 30338 31850 1,04983849

4209 4421 1,05036826 3240 3390 1,0462963

molecular weight (GPC)

Hydrogel

HA-DVS HA-DEO

 

3.3.  Development of HA based 3D structures   

With the compromise to produce different geometric scaffolds made on 

crosslinked hyaluronan, several 3D structures with different inner porosities 

were prepared. Hyaluronan scaffolds were performed by crosslinking either 

with DEO or DVS. Different methods were employed, adapting the 

procedure to the conditions of crosslinking for each substrate.   

Generally, porogens employed were easily removed from the structures. 

The porosity and interconnection of the matrix in spherical pores distribution, 

were able to be tuned by changing the ratio of porogen:polymer, from 

matrices in which there were not observed interconnection of the pores to 

highly interconnected matrices which are further characterized below. The 

method provided reproducible samples to carry out further assays.    

Figure 3.11 shows images of the cylinders obtained after demolding the 

hyaluronan mixtures and detail of disc cut for further studies.   

         

Figure 3.11. Optic microphotographs of a complete cylinder obtained by porogen leaching in a 
mold (a); b and c correspond to details of dry discs cut from the cylinder used for further studies. 

B CA 
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3.3.1. Structures based in HA-DEO 

Cylinders 

Cylinders made of HA were obtained by lyophilisation of hyaluronan 

solutions. Afterwards those cylinders were crosslinked with DEO following 

the described protocols. The pores within the structure had sizes in the 

range of 30 microns. Two different architectures were developed, highly 

porous cylinders 1mm in diameter and tubes with inner diameter of 1,2mm 

and outer diameter of 2,2mm (Images A and B respectively in Figure 3.12). 

The thickness of the tube wall was around 500 microns displaying a highly 

open structure with high microporosity. Figure 3.12 collects the SEM 

microphotographs of different cylinders made on HA-DEO where it can be 

most appreciated of its detailed bulk porosity.  

 

 

Figure 3.12. Scanning electron microscopy of 1mm diameter porous cylinders made on HA-
DEO. A) 1mm in diameter highly porous bulk cylinder; B) tube with large inner diameter.  
 
 

A 

B 

a 

b 
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Interconnected spherical porous structures 

Hyaluronan scaffolds with inner interconnected spherical pores were 

prepared by a porogen leaching technique. Those structures displayed 

highly open matrix with micro and macroporosity.  Figure 3.13 shows the 

SEM photographs were the pores can be observed in detail (photographs 

a.1 and a.2). The microporosity, obtained as result of lyophilyzation, had 

sizes around 2 microns.  

 

Figure 3.13. Scanning electron microscopy of lyophylized HA-DEO scaffolds obtained by 
porogen leaching with low interconnection between pores. A) Panoramic view of the scaffold; 
a.1) detail of the pores; a.1) detail of the pores showing the microporosity of the walls; a.3) 
detail of the microporosity of the bulk hyaluronan.  

 

Channelled scaffolds  

Multiple parallel-disposed channelled scaffolds were prepared following a 

fiber molding method employing metallic or polymeric filaments. Structures 

with different architectures and pore sizes were built. Porosity was originated 

either by lyophilization (A and C in Figure 3.14) or by the use of porogen (B 

in Figure 3.14) obtaining smaller or bigger porous sizes respectively. The 

pores provoked by the lyophilization process had sizes in the range of 30 

microns while the pores obtained with porogen had higher sizes in the range 

of 120 microns approximately. There were differences observed by the use 

of polypropylene, stainless steel or copper filaments (filaments diameters: 

100, 200 and 100 microns respectively). The composition of the tube used 

as a mold, either made of silicon or glass, thus resulted in differences in the 

final structures. Scaffolds fabricated into glass tubes and coper filaments 

A  a.3 

 

  a.1 

 

  a.2 
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(photograph C in Figure 3.14) presented aligned disposition of porosity 

resulted from lyophilization. Those gradients were not observed when using 

stainless steal or polymeric filaments and silicon tubes as a mold 

(photographs A and B in Figure 3.14). This fact is thought to appear due to 

the temperature gradients produced by conductivity of filaments which were 

not found with non conductive filaments. In Figure 3.14 there are collected 

the SEM photographs of those structures including detail of the cylinders 

created within the scaffold.  

 

Figure 3.14. Scanning electron microscopy of 3D structures with multiple parallel-like distributed 
channels made on HA-DEO. Scaffolds were fabricated using different filaments: A) 100 microns 
polypropylene filament; B) 200 microns metallic filament; C) 100 microns copper filament. 
Images a, b and c show higher magnification of the correspondent panoramic images. White 
arrow in figure C shows the aligned porosity provoked by gradients of temperature from the 
metallic filament. 

A

B

C
c

b 

a 
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3.3.2.  Structures based in HA-DVS 

HA-DVS structures were prepared both by a porogen leaching technique 

and fiber molding. Furthermore, non degradable structures made of 

acrylates were coated with HA-DVS hydrogel to study their biological 

response afterwards. 

Interconnected spherical porous structures. 

Scanning Electron Microscopy (SEM) images show the inner structure 

observed in interconnected spherical pores HA-based scaffolds (Figure 

3.15). The structure displayed randomly distributed pores within the matrix 

as well as high connectivity between the pores with throats with an average 

of 36 microns in size. The pore’s sizes observed were corresponding with 

the dimensions of the particles employed as porogen in the fabrication of 

scaffolds with sizes ranging between 100 to 150 microns. The thickness of 

the walls separating the pores was estimated to be around 5 microns.  

To improve the biological characteristics of hyaluronan scaffolds, a fibrin 

coating was applied to those structures by polymerizing a solution of 

fibrinogen deposited throughout the matrix and crosslinked with thrombin.   

Fibrin (fb) was randomly deposited on the hyaluronan both covering and 

filling the pores. Nonetheless it was observed to still be an open pore 

structure filled with fb which is thought to improve the biological properties of 

the scaffolds. The scaffold containing a polymerized fibrin matrix can be 

observed in Figure 3.16.  
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Figure 3.15. 3D matrix of HA-DVS with interconnected spherical porous inner structure. the 
matrix was obtained by a porogen leaching technique with pores sizes between 100 and 130 
microns.  
 

 

Figure 3.16.  3D matrix of HA-DVS with interconnected spherical porous inner structure showing 
the fibrin coating. Fibrin coating, obtained by polymerizing a solution of fibrinogen deposited 
throughout the matrix and crosslinked with thrombin, is thought to enhance the biological 
properties of HA-DVS scaffolds.  

 
Porosity 

The total porosity of spherical interconnected porous scaffolds was 

measured by volumetric calculations. The calculated porosity of scaffolds  

gave evidence of a highly porous structure both in swollen and not swollen 

state (higher than 94% in both cases). The highly open structures obtained 

assures enough space for cells to grow and a proper diffusion of nutrients 

and waste to adequate cell supply within the scaffold. 
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Table 3.5. Porosity and standard deviation of scaffolds. The porosity in swollen state was 
measured by equilibrium swelling in water and the non swollen porosity by immersion in 
absolute ethanol were hyaluronan do not swells. 

Sample Porosity (%) ± SD

 swollen 94,4 ± 0,8

no swollen 96,5 ± 0,5

 

Hyaluronan cylindrical channelled scaffolds  

Figure 3.17 shows the structure of a hyaluronan cylindrical channelled 

scaffold obtained by fiber molding. The channels were uniformly distributed 

in a parallel way and separated by a thin wall of hyaluronan. The channels 

(100 microns in diameter) were well defined with smooth walls in the inner 

side of the channel, those surfaces which were in contact with the filament 

during fabrication. A detail of the filament employed as a mold to build the 

scaffold is shown in Figure 3.17-B (white arrow). The filaments were easily 

removed from the structure and did not stick to the inner surface of the walls 

forming the channels. The external surface of the scaffold displayed rough 

micro porous walls (Figure 3.17-a.3). The walls manifested into two different 

structures. The surfaces corresponding to those in contact with the filaments 

presented a wall approximately of 3 microns in thickness without porosity 

(white arrows in Figure 3.17-a.2). Within those solid surfaces separating the 

channels there were observed high porosity bulk with pores ranging 10 

microns in size (white head arrows in Figure 3.17-a.2).  
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Figure 3.17. Tubular channeled scaffold made on HA-DVS. A) Apical panoramic view of the 
scaffold; B) same view showing a remaining filament employed as mold to built the scaffold, the 
white arrow shows a detail of the filament employed to construct the scaffold. a.1) higher 
magnification of the scaffold showing a detail of the inner wall of the channel; a.2) detail of the 
porosity between parallel channels, arrows shows the wall in contact with the filaments and 
arrow heads the porosity within the wall; a.3) detail of the outer surface of the scaffold showing 
high porosity.  
 

Hyaluronan coated acrylic scaffolds  

Non degradable acrylic scaffolds made as 3D mesh of cylindrical 

channels were coated with a thin layer of hyaluronan. The regular pattern of 

the structures and their connection sites between the cylinders may be seen 

in Figure 3.18. The hyaluronan coating was examined first by scanning 

electron microscopy. Alcian blue assay, a test to analyze the presence of 

GAGs, was used to investigate the distribution into the matrix. The thin layer 

of hyaluronan coating was easily distinguishable from the primary acrylic 

structure as can be appreciated by the different texture present in the walls 

of the scaffold when seen in a scanning electron microscope (Figure 3.19). 

In the figure, images B and C show in detail the hyaluronan coating into the 

acrylic scaffold. Images A and a.1 show a panoramic view with more or less 

magnification where the HA-DVS coating  may be appreciated.  

A B 

a.1 a.2 a.3 
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Figure 3.18. Interconnected cylindrical channelled scaffold made on a co-polymer of 
poly(ethylacrylate-co-hydroxyethylacrylate) in a 9 to 1 ratio. A) Panoramic view of the scaffold. 
Scale bar corresponds to 500 microns; a) higher magnification showing the channels and the 
interconnections between them.  

 

 

Figure 3.19. Microphotographs of acrylic co-polymer scaffold coated with hyaluronan DVS 
crosslinked layer. Images A and B show a panoramic view of the hyaluronan coated scaffold 
(scale bar correspond to 1mm and 400µm respectively). Images a.1 and b.1 show detail of the 
hyaluronan coating (scale bar correspond to 8 and 10µm respectively). 

 

A a.1 

B b.1 

a.1 

A a 
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Alcian blue assay 

The presence of hyaluronan within the acrylic scaffold was assessed by 

alcian blue staining. Alcian blue only stained the acrylic scaffold coated with 

hyaluronan which turned to a dark blue colour (assay positive) while the 

acrylic scaffold employed as a control (without hyaluronan coating) did not. 

The distribution of the staining seemed homogeneous in the 3D matrix 

turning the whole sample into blue without an apparent appearance of white 

spots indicating areas without coating. Figure 3.20 shows optic images of a 

non hyaluronan coated acrylic scaffold (left) and hyaluronan coated acrylic 

scaffold (right). 

 

Figure 3.20. Evaluation of hyaluronan content in acrylic scaffolds after HA coating by alcian blue 
assay. Images correspond to the alcian blue staining on acrylic scaffold without HA-DVS 
coating (A) and with HA-DVS coating (B).  

 

Hyaluronan content on acrylic coated matrix 

The amount of hyaluronan coating within the acrylic scaffold was 

evaluated by weight. To calculate the amount of hyaluronan, dry samples 

with and without HA were weighted. The average value obtained for 

hyaluronan content on acrylic matrices was 0,79±0,13 mg. This value 

supposed an average of 30% of the total weight of the acrylic scaffold which 

is thought to be noticeable. The coating was considered to be reproducible 

( 13.0±=s ). The total volume occupied by hyaluronan within the channels 

was estimated in 6,6% of the total free volume which may assure space 

enough for cells to grow within the scaffold.  

 

A B 
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3.4. hCMEC/D3 and U373 monocultures on biomaterials. 

3.4.1. Hyaluronan based biomaterials  

Biomaterials were assayed in terms of their biological interaction using 

different cell lines. In the case of hyaluronan based biomaterials samples 

used for in vitro culture characterization were disc shaped, both for the 2D 

(films) and 3D structures (scaffolds with interconnected spherical pores).  

To favour cell adhesion, biomaterials were subjected to different protein 

coating, either laminin (LN) or fibrin (fb), and the influence of the coating on 

cell behaviour was analyzed.  

An endothelial cell line from the microvasculature, named hCMEC/D3, 

and an astrocytic cell line (U373) were chosen to mimic the conditions of the 

BBB for the in vitro characterization of the biomaterials. To assess the 

phenotype of those cells growing onto the hyaluronan based biomaterials, 

different experiments were performed. On the one hand, viability was 

qualitatively assayed by calcein staining. On the other hand, the 

inflammatory effects elicited by biomaterials were analyzed by E-selectin 

expression in ECs. The phenotype of ECs growing on HA based 

biomaterials were assessed by immunocytochemistry of the expressed 

PECAM-1 and vWF while in the case of astrocytes it was followed by GFAP 

expression. Results permitted to analyze the invasion of the 3D structure by 

cells, their morphology within the pores and surfaces and their specific 

protein expression. In vitro culture was followed up to 21 days in 

physiological environment. For better understanding, Table 3.6 and Table 

3.7 summarize the different experiments performed.  
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Table 3.6. Shape of samples, protein coatings and human cell lines assayed on HA-DVS 
hydrogels.   

Structure LN fb hCMEC U373

2D HA-DVS hydrogels disc √ √ √ √

3D HA-DVS interconnected spherical pores disc √ √ √ √
Note. HA-DVS: hyaluronan hydrogels crosslinked with divinyl sulfone

Sample 

shape

Protein coating Cell culture

 

Table 3.7. Assays performed to biological characterization of both hCMEC/D3 and U373 cell 
lines growing onto 2D and 3D HA-DVS based hydrogels.   

Cell line Viability Inflammatory effects Inmunocytochemistry cytokine release

hCMEC/D3 √ √ √ √

U373 √ - √ √

Assays performed

Note. hCMEC/D3: Human brain microvessel endothelial cell line (Weksler et al., 2005)                                                                                                       
U373: Human glioblastoma-astrocytoma cell line  

3.4.1.1   HA-DVS films. Assays in 2D hydrogels.  

Viability 

Calcein staining was employed to assess the viability of cells growing 

onto HA-based hydrogels. The acetomethoxy derivate of calcein (Calcein-

AM) readily passes through the cell membrane of viable cells because of its 

enhanced hydrophobicity as compared to calcein. The AM masks the part of 

the molecule that chelates calcium and, when it is transported into living 

cells, esterases cut off the AM groups resulting in a strong green 

fluorescence. Due to the lack of sterases on dead cells, only living cells are 

stained. 

Both the endothelial and the astrocytic cell lines showed viable cells in 

day 8 of in vitro culture. At this time, hCMEC/D3 showed no appreciable 

differences by the use of distinct protein coatings onto biomaterials 

performed prior to cell seeding. Cells growing on 2D biomaterials displayed 

organized morphologies of cells with oriented extracellular matrices. Cells 

invaded completely the surface of the disc shaped samples with extended 

cytoplasm and establishing contacts with each other (Figure 3.21). 
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The astrocytic cell line, U373, showed different cell morphologies 

depending on the protein coating. In the case of LN coated biomaterials, 

high density of astrocytes spread throughout the material showing fusiform 

morphologies and completely expanded cytoplasms. When fibrin coating 

was used, a lower density of cells was observed and cells displayed an 

aligned parallel-like distribution of their cytoskeleton with not completely 

expanded distribution (Image B in Figure 3.22).  

 

Figure 3.21. 8 days calcein stained hCMEC/D3 growing onto films of HA-DVS hydrogels LN (left 
column, A) or fb (right column, B) coated. The acetometoxy calcein derivate readily passes 
through the cell membrane of living cells where the AM groups are cut off by esterases resulting 
in a strong green fluorescence. Dead cells lack esterases therefore only living cells are marked. 
Scale bars in images A and B correspond to 150 microns. 

LN fb 

A B B 
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Figure 3.22. 8 days calcein stained U373 cells growing onto films of HA-DVS hydrogels LN (left 
column, A) or fb (right column, B) coated. Scale bars in images A and B correspond to 150 
microns. 

 

 Inflammatory markers. E-selectin 

Lipopolysaccharides (LPS) are large molecules consisting of a lipid 

covalently bonded to a polysaccharide. They are found in the outer 

membrane of Gram-negative bacteria and act as endotoxins. LPS elicit 

strong immune responses in many cell types. Endothelial cells transform into 

an activated state evoked by released cytokines and express the specific 

cell adhesion molecule E-selectin which is involved in inflammation. 

To assess the compatibility of HA-based biomaterials and the normal 

phenotype of endothelial cells growing on them, the expression of E-selectin 

in absence and presence of LPS was evaluated. 

Endothelial cells growing onto HA-DVS hydrogels pre-coated either with 

LN or fb before the cell seeding demonstrated no expression of the 

inflammatory marker E-selectin (absence of green fluorescence). Thus, it 

was demonstrated a good cell-biomaterial compatibility in terms of toxicity. 

Besides, ECs expressed the proinflammatory marker after LPS stimulation 

assuring their phenotypic characteristics growing on the hyaluronan 

biomaterials. Figure 3.23 shows the confocal micrographs for E-selectin 

immunostaining including detail of its expression in individual cells.  

LN fb 

A B 
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Figure 3.23. Expression of the endothelial specific cell adhesion molecule, E-selectin, by 
hCMEC/D3 growing on HA-DVS hydrogels without and upon activation by LPS as inflammatory 
response. LPS are endotoxins found in the outer membrane of Gram-negative bacteria. E-
selectin expressed by EC was stained in green fluorescence. ECs were grown in LN or fb 
coated HA-DVS hydrogels during 48h in absence (left) or presence (right) of LPS stimulation. 
Cell nuclei were stained with DAPI. A) hCMEC/D3 cultured in cover slides as control; B) control 
of hCMEC/D3 LPS stimulated; C) hCMEC/D3 cultured on HA-based hydrogels LN coated; D) 
hCMEC/D3 cultured on HA-based hydrogels LN coated LPS stimulated; E) hCMEC/D3 cultured 
on HA-based hydrogels fb coated; F) hCMEC/D3 cultured on HA-based hydrogels fb coated 
LPS stimulated. Scale bar corresponds to 150 microns in images A to F. Scale bar in images b, 
d and f which show a detail of images B, D and F, corresponds to 25 microns. 
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Immunocytochemistry 

To assess the phenotype of ECs growing onto HA-based biomaterials, 

two cell protein markers were employed. On the one hand, the 

platelet/endothelial cell adhesion molecule-1 (PECAM-1), which is 

expressed on the surface of ECs at cell-cell junctions and which is thought to 

play an important role in embryogenesis and development. On the other 

hand, von Willebrand factor (vWF), a large multimeric glycoprotein produced 

in the endothelium, concretely in the Weibel-Palade bodies, which becomes 

available when the endothelium is damaged (for example in inflammation).  

 

CONTROL 

The expression of specific proteins in cells growing on plastic cover slides 

was used as control. Cells demonstrated high expression of vWF in day 14 

of in vitro culture. Green spots can be appreciated within the endothelium 

corresponding to the stained vWF aggregates.  ECs spanned throughout the 

complete surface of the cover slides establishing contacts with one each 

other and reaching confluence. PECAM-1 expression was stained in ECs at 

day 21 of culture. ECs widely expressed this protein at cell-cell junctions, 

thus describing the cell cytoskeleton with a green fluorescence lining as can 

be appreciated in Figure 3.24b. Higher magnification shows a detail of the 

distribution of the specific markers within endothelial cells. 

The astrocytic cell line, U373, was immunoassayed against GFAP 

expression in red fluorescence. Astrocytes highly expressed GFAP in day 14 

of culture displaying bipolar morphologies and long processes. A parallel-like 

distribution of the intermediate filament was observed, indicating a kind of 

cytoskeleton orientation. Taking into account the planned co-cultures, 

astrocytes were grown in the same medium as ECs instead of using the 

specific for astrocytes; despite this, high rate of survival and lack of apoptotic 

cells were observed (Figure 3.25). 
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Figure 3.24. Endothelial cell specific markers expressed by hCMEC/D3 cultured in vitro in cover 
slides as control during 14 days (A) and 21 days (B). Protein expression was immunoassayed in 
green fluorescence. Cell nuclei were stained with DAPI. A) vWF expression; B) PECAM-1 
expression; a and b show a detail of A and B respectively. Scale bar corresponds to 150 
microns in images A and B and to 50 microns in images a and b. 
 

 

Figure 3.25. GFAP, an intermediate filament expressed by astrocytes thought to maintain 
astrocyte mechanical strength and shape in the CNS, was assayed in the U373 cell line. The 
protein was marked in red fluorescence. A: U373 growing onto cover slides as control during  
14 days; B: detail of GFAP expression in controls. Scale bar corresponds to 150 microns in 
image A and to 75 microns in image B. 

A A a a 

b 

b 

B 

B A 



                                                                                                                                       RESULTS                                                                                              

- 113 - 

BIOMATERIALS 

The phenotype of hCMEC/D3 growing onto hyaluronan based hydrogels 

was followed by PECAM-1 and vWF expression up to 21 days in culture. 

The response upon the two different protein employed to favour cell 

adhesion was evaluated.  

vWF expression by hCMEC/D3 growing on HA-DVS hydrogels, either LN 

or fb pre-coated, was evaluated in two time points. Figure 3.26 and Figure 

3.27 collect the confocal photographs results of the vWF and PECAM-1 

staining. In day 14 of culture, ECs spanned throughout the surface of the 

hydrogel and displayed high expression of vWF both in LN and fb coated 

hydrogels. After 21 days of culture, high density of adherent cells were still 

found displaying less vWF expression as can be interpreted from a lower 

rate of green aggregates observed (Figure 3.26). Apparently, the distribution 

of the cell cytoskeleton was different showing a kind of orientation in fb 

coated hydrogels while in LN coated biomaterials cells spread randomly. 

The PECAM-1expression (Figure 3.27) showed the ECs forming cord-like 

organization with some differences apparently which may be effected by 

protein coating. In LN coated hydrogels there were observed wider spaces 

between ECs while in fb coated hydrogels the density of cells was noticeably 

lower and the contacts between cells were weaker in terms of PECAM-1 

expression.  In both cases cells displayed elongated morphologies which 

may be a consequence of migration to form those structures.  

The phenotype of the astrocytic cell line, U373, was followed by GFAP 

expression. Hydrogels precoated with LN displayed a randomly distribution 

of astrocytes throughout surface and high rate of apoptotic cells in day 14 of 

culture while fibrin coated biomaterials showed elongated cytoplasm with 

long extensions of their processes and no appreciable apoptotic cells. In day 

21 of culture LN coated hydrogels displayed higher organization of the 

filaments while cells on fb did the opposite showing less organization than 

the previous time point evaluated (Figure 3.28). 
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Figure 3.26. vWF expression (green fluorescence) by hCMEC/D3 cultured onto HA-DVS 
hydrogels coated either with LN (left) or fb (right). Images A and B correspond to 14 days of 
culture; images C and D to 21 days culture. Nuclei were stained with DAPI. Scale bar 
corresponds to 150 microns. White arrows in images b and c point at sites with vWF expression. 
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Figure 3.27. PECAM expression (green fluorescence) by hCMEC/D3 cultured onto HA-DVS 
hydrogels coated either with LN (left) or fb (right). Images A and B correspond to 14 days of 
culture; images C and D to 21 days culture. Nuclei were stained with DAPI. Scale bar 
corresponds to 150 microns. 

LN fb 
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Figure 3.28. GFAP expression (red fluorescence) by U373 cultured onto HA-DVS hydrogels 
coated either with LN (left) or fb (right). Images A and B correspond to 14 days of culture; 
images C and D to 21 days culture. Nuclei were stained with DAPI. Scale bar corresponds to 
150 microns. 
 

Cytokine release 

Growth factors (cytokines) are substances capable of stimulating cellular 

growth, proliferation and cellular differentiation.  While growth factors imply a 

positive effect on cell division, cytokines may act by promoting or inhibiting it, 

therefore the measurement of some cytokines are used as “death” signals 

(apoptosis). Angiopoietins (Ang-1 and Ang-2) are cytokines involved in 

angiogenesis. They bind the same receptor (Tie-2) on ECs when they 

become activated by present angiogenic signals as the basic fibroblast 

growth factor (bFGF). The balance between both cytokines synergistically 

LN fb 

 A B 

 C D 
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with presence of vascular endothelial growth factor (VEGF) is thought to be 

a good way to evaluate whether ECs are able to reorganize and lead to the 

formation of new sprouts when cultured onto our HA based biomaterials. 

Released cytokines either by hCMEC/D3 or U373 into the supernatants 

growing onto HA-based hydrogels were evaluated. The release by cells 

cultured in plastic cover slides were used as control.  

The two coatings employed did not elicit differences in the concentration 

of Ang-1 released by ECs growing on biomaterials. Similar levels of cytokine 

were registered in controls in which the concentration increased with time in 

culture. The release of Ang-2 displayed clear differences between the 

controls and coated biomaterials supernatants. While the concentration of 

the cytokine started to increase from the beginning of the culture in controls, 

in the case of biomaterials it was delayed to day 14 of culture. Biomaterials 

were changed to new wells after 3 days of culture to assure only the cells 

attached to the scaffold are considered. Thus, it may be expected that lower 

concentration of cytokines in early times or a delay in reaching the same 

concentrations as controls due to the lower density of cells. LN or fb coated 

biomaterials displayed differences in the release of the cytokine, which was 

found in higher concentrations in the case of LN coated hydrogels. In both 

cases the release increased with time displaying a maximum in day 21. 

VEGF was almost undetectable during the period of culture evaluated for 

controls and the same behaviour was found in the supernatants of 

biomaterials.  

The release of Ang-1 by U373 was similar for both coated biomaterials. 

The concentration was lower than controls in early times but it became 

similar in longer times even slightly higher in day 21 of culture. 

No detection of Ang-2 was found in biomaterials while control did in low 

concentrations. VEGF was released in high concentrations in the 

supernatants of both control and biomaterials although the latter displayed a 

delay. The cytokine increased its concentration in day 14 in biomaterials 

while in controls did from day 8. Figure 3.29 summarizes the results for 
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growth factors (VEGF) and cytokines (Ang-1 and Ang-2) secreted by 

hCMEC/D3 or U373 in the supernatants of in vitro cultures (left and right 

column respectively).  

 

 

Figure 3.29. Vascular Endothelial Growth Factor (VEGF) and Angiopoietins (Ang-1 and Ang-2) 
released by hCMEC/D3 (left column) and U373 (right column) into the supernatants growing in 
monoculture onto 2D hyaluronan crosslinked hydrogels. The release was evaluated during 21 
days of culture and detected by enzyme-linked inmunosorbent assay (ELISA). Control ( ), LN 
coated hyaluronan scaffolds ( ) and fb coated hyaluronan scaffolds  ( ). 
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3.4.1.2   HA-DVS  spherical interconnected porous scaffolds. 

Assays in 3D structures. 

Viability 

The viability of endothelial and astrocytic cell lines was assessed in 3D 

hyaluronan scaffolds to evaluate whether the inner structure or the chemical 

processes employed may affect the survival of cells growing within them.  

Viability assays performed on day 8 of culture showed viable cells in both 

cases, displaying higher cell density in fb coated biomaterials (Figure 3.30) 

ECs exhibited rounded-like shaped morphology in LN coated scaffolds while 

in fb coated hydrogels exhibited a more spread morphology.  In both cases 

cells established contacts to each other and formed a 3D network. U373 

spanned throughout the porous structure, showing high density of viable 

cells. In the LN coated biomaterials, astrocytes were found in longer fusiform 

disposition of their cytoskeleton, rather than the more rounded shapes found 

in HA hydrogels fb coated. The formation of bundles of astrocytes were 

apparent in LN coated biomaterials while in fb coated ones, astrocytes 

formed aggregates.  Figure 3.30 and Figure 3.31 collects the confocal 

images for calcein stained endothelial and astrocytic cell lines respectively. 
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Figure 3.30. 8 days calcein stained hCMEC/D3 growing onto HA-DVS spherical interconnected 
porous scaffolds LN (left column) or fb (right column) coated. The acetomethoxy calcein 
derivate readily passes through the cell membrane of living cells where the AM groups are cut 
off by esterases resulting in a strong green fluorescence. Dead cells lack esterases therefore 
only living cells are marked. A) HA-DVS spherical interconnected porous scaffolds LN coated; 
B) HA-DVS spherical interconnected porous scaffolds fb coated. Images a and b show detail of 
A and B respectivelyl. Scale bar corresponds to 150 microns in images A and B and to 75 
microns in images a and b.  
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Figure 3.31. 8 days calcein stained U373 cells growing onto HA-DVS spherical interconnected 
porous scaffolds LN (left column) or fb (right column) coated. A) HA-DVS interconnected porous 
scaffolds LN coated; B) HA-DVS interconnected porous scaffolds fb coated. Images a and b 
show detail of A and B respectively. Scale bar in images A and B corresponds to 150 microns 
and in images a and b to 75 microns.  
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Immunocytochemistry 

Specific endothelial and astrocytic markers were immunoassayed in cells 

growing onto HA-DVS scaffolds. To assess the phenotype of the endothelial 

cell line, the expression of vWF and PECAM-1 was examined. The 

endothelium-specific vWF protein was observed distributed on cells growing 

within the scaffold and displayed a high rate of expression both in early and 

longer times of culture (Figure 3.32).  Higher magnification shows detail of 

the vWF expression where the autofluorescence of the hyaluronan scaffold 

is less evident seeing more clearly the green staining of the protein. 

PECAM-1 expression elicited some more information about the distribution 

of cells within the scaffold (Figure 3.33). Cells were observed to be 

reorganized following a different pattern to the one defined by the scaffold 

itself. Cells assembled to form what seem to be capillary-like distributions, 

although this can only be confirmed by further characterization (for example, 

with transmision electronic microscopy techniques). Figure 3.33 contains the 

transmitted photographs of the scaffold which has been merged with the 

confocal images of the nuclei (blue fluorescence) for better visualization. In 

both LN and fb precoated scaffolds cells assemble in cord-like shapes which 

did not correspond with the structure defined by the scaffold. These images 

demonstrate that ECs are not following any pattern dictated by the scaffold 

and reorganize themselves establishing contacts with each other, leaving 

spaces where other cells may accommodate. Results did not demonstrate 

clear differences between the two coatings used. Nonetheless, higher rate of 

cord-like assembling was found in the fibrin coated hyaluronan scaffolds. 

The phenotype of astrocytes was assessed by their GFAP expression on 

HA-DVS protein coated scaffolds. Cells grew and spread in high densities 

throughout the inner structure in both LN and fb coated scaffolds. The 

expression of GFAP was lower in both cases for longer times of culture. 

Furthermore, while in short times the GFAP filaments were thick and 

randomly distributed in both cases, in longer times there were differences. 

LN coated biomaterials displayed a high rate of organization forming bundles 
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of thick filaments (see Figure 3.35c) while wider filaments with no bundles 

assembling was observed for fb coated hydrogels. 

 

 

Figure 3.32. vWF expression (green fluorescence) by hCMEC/D3 cultured onto HA-DVS 
scaffolds coated either with LN (left) or fb (right). Images A and B correspond to 14 days of 
culture; images C and D to 21 days culture. a to d images correspond to detail of images A to D 
respectively. Nuclei were stained with DAPI (blue fluorescence). Images a, b c and d show 
detail of the corresponding capital letters. Scale bar corresponds to 150 microns in images A to 
D and to 75 microns in a to d. 
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Figure 3.33. PECAM-1 expression (green fluorescence) by hCMEC/D3 cultured onto HA-DVS 
spherical interconnected scaffolds coated either with LN (left) or fb (right). Images A and B 
correspond to 14 days of culture; images C and D correspond to transmitted photographs of 
scaffolds with cells. Nuclei were stained with DAPI (blue fluorescence).   Bar corresponds to 
150 microns. 
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Figure 3.34. PECAM-1 expression (green fluorescence) by hCMEC/D3 cultured onto HA-DVS 
spherical interconnected scaffolds coated either with LN (left) or fb (right). Images A and B 
correspond to 21 days of culture; images C and D correspond to transmitted photographs of 
scaffolds with cells. Nuclei were stained with DAPI (blue fluorescence).   Bar corresponds to 
150 microns. 
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Figure 3.35. GFAP expression (red fluorescence) by U373 cultured onto hyaluronan DVS 
crosslinked hydrogels coated either with LN (left) or fb (right). Images A and B correspond to 14 
days of culture; images C and D to 21 days culture. Image c show the formation of bundles of 
GFAP filaments in better detail. Nuclei were stained with DAPI (blue fluorescence). Scale bar 
corresponds to 150 microns in images A to D and 25 microns in image c.   
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Cytokine release 

Angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2) and vascular endothelial 

growth factor (VEGF) released by Hcmec/D3 or U373 into the supernatants 

of HA-DVS scaffolds were examined up to 21 days in culture.  

Ang-1 release by ECs was considerably higher in biomaterials compared 

with control release, both in LN and fb coated scaffolds. The concentration of 

cytokine released increased with days in culture displaying a maximum in 

day 21. No relevant differences were found for LN or fb coated biomaterials. 

The release of Ang-2 was low in almost every time evaluated compared with 

the release in control. LN and fb coated materials presented slight 

differences in their release presenting the latter the lower values. The 

concentration of VEGF was almost undetectable during the period evaluated 

although low rates were found in long times of culture.  

In the case of astrocyte monoculture, the release of Ang-1 was slightly 

higher in fb than in LN coated biomaterials and in turn both presented higher 

release when compared with controls. Ang-2 concentration was quite similar 

in biomaterials and controls, and it was released in low concentrations taking 

into account the release of this cytokine by endothelial cells. VEGF was 

highly expressed during the period evaluated again in higher concentrations 

than controls did. Both coated biomaterials presented similar release.  
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Figure 3.36. Angiogenic cytokines (Ang-1, Ang-2 and VEGF) released by hCMEC/D3 (left 
column) and U373 (right column) into the supernatants growing in monoculture onto 3D 
hyaluronan spherical interconnected porous scaffolds. The release was evaluated during 21 
days of culture and detected by enzyme-linked inmunosorbent assay (ELISA). Control ( ), LN 
coated hyaluronan scaffolds ( ) and fb coated hyaluronan scaffolds  ( ). 
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3.4.2.  Acrylic based biomaterials.  

The influence of hyaluronan in the integration of cells in acrylic scaffolds 

was assessed with endothelial and astrocytic cells. (hCMEC/D3 and U373 

respectively) 

Viability 

The viability of both the endothelial and the astrocytic cell lines was 

examined in acrylic cylindrical interconnected channelled scaffolds 

containing or lacking hyaluronan. ECs were viable in acrylic scaffolds both 

with and without hyaluronan in the time evaluated. Higher density of cells 

was found in hyaluronan coated biomaterials and cells showed higher affinity 

with the biomaterial displaying more expanded morphologies. However, 

U373 exhibited apparently similar viability at the same time point (8d) in both 

structures which were invaded by cells in a higher rate. In the next figures, 

(Figure 3.37 and Figure 3.38 for hCMEC/D3 and U373 respectively) there 

are photograps in which a detail of calcein staining may be observed.  



                                                                                                                                       RESULTS                                                      

- 130 - 

 

Figure 3.37. 8 days calcein stained hCMEC/D3 growing onto acrylic based biomaterials both 
without (left) and with (right) HA-DVS coating. The acetometoxy calcein derivate readily passes 
through the cell membrane of living cells where the AM groups are cut off by esterases resulting 
in a strong green fluorescence. Dead cells lack esterases therefore only living cells are marked. 
a and b correspond to detail of images A and B respectively. Scale bar corresponds to 150 
microns in A and B, to 75 in b and to 30 in a. 
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Figure 3.38. 8 days calcein stained U373 growing onto acrylic based biomaterials both without 
(left) and with HA-DVS (right) coating. The bar in images A and B corresponds to 150 microns; 
in a and b corresponds to 75 microns 
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Inflammatory effects 

The E-selectin endothelial-specific expression by ECs was examined on 

acrylic scaffolds containing or lacking hyaluronan coating. ECs did not 

express their specific inflammation marker in culture with biomaterials while 

cells maintained their phenotypic characteristics growing on acrylic scaffolds 

either with or without hyaluronan coating expressing the protein upon LPS 

stimulation. The images corresponding to the inmunostaining of this protein 

are shown in Figure 3.39 

 

Figure 3.39. E-selectin was stained in green fluorescence in hCMEC growing on acrylic based 
scaffolds biomaterials without (left) or with (right) hyaluronan coating. Cells were cultured in 
presence (top) or absence (bottom) of LPS. Cell nuclei were stained with DAPI (blue 
fluorescence). Scale bar corresponds to 75 microns in A and C and to 150 microns in B and D. 
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Immunocytochemistry 

The phenotype of hCMEC/D3 or U373 on acrylic scaffolds HA-DVS 

coated was observed by immunochemistry. PECAM-1 and vWF expression 

were assessed up to 21 days in culture. Cells were found in high densities 

both in non-coated and in hyaluronan coated biomaterials. Cells attached to 

the walls of the scaffold filling also the channels as can be appreciated with 

the transmitted photographs which have been merged with nuclei staining in 

Figure 3.40.  In images A and B the background of the scaffold was 

highlighted to distinguish better the structure defined by the scaffold and the 

paths were cells spanned. 

U373 were found in high density throughout the scaffolds displaying 

GFAP positive expression. In short times of culture (14 days) acrylic 

scaffolds lacking hyaluronan demonstrated higher expression of GFAP while 

those containing hyaluronan coating displayed a moderate expression. At 

longer times (21 days), considerably higher rate of reactive astrocytes (high 

expression of GFAP) were found in the case of acrylic scaffold which did not 

contain hyaluronan while the ones who contained HA displayed moderate 

expression. Figure 3.42 contains the confocal photographs obtained from 

the GFAP immunostaining on acrylic biomaterials.  
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Figure 3.40. Immunofluorescent images of PECAM-1 expression (green fluorescence) by 
hCMEC/D3 growing during 21 days onto acrylic based scaffolds with cylindrical interconnected 
inner structure both without (left) and with HA-DVS (right) coating. Scaffolds were LN coated 
prior to cell seeding. Cell nuclei were stained with DAPI (blue fluorescence). The bar 
corresponds to 150 microns. 
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Figure 3.41. Immunofluorescent images of vWF expression (green fluorescence) by hCMEC/D3 
growing on acrylic based scaffolds with cylindrical interconnected inner structure both without 
(left) and with (right) HA-DVS coating. Scaffolds were LN coated prior to cell seeding. Cell 
nuclei were stained with DAPI (blue fluorescence). Bar corresponds to 150 microns 
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Figure 3.42. Immunofluorescent images of GFAP expression (red fluorescence) by U373 
growing on acrylic based scaffolds with cylindrical interconnected inner structure both without 
(left) and with (right) HA-DVS coating. Scaffolds were LN coated prior to cell seeding. Cell 
nuclei were stained with DAPI (blue fluorescence). A and B correspond to 14 days of culture; C 
and D correspond to 21 days of culture. 
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Cytokine release 

Angiopoietin-1 (Ang-1), Angiopoietin-2 (Ang-2) and vascular endothelial 

growth factor (VEGF) released by hCMEC/D3 or U373 into the supernatants 

of acrylic scaffolds were examined up to 21 days in culture.  

The concentration of Ang-1 found into the supenatants was low in every 

case of controls while higher concentration was registered in the 

biomaterials supernatants. Slightly higher concentration of Ang-1 was found 

in the supernatants of biomaterials which contained hyaluronan. The 

concentration increased with time in culture.  

The values resgistered for Ang-2 were lower in biomaterials compared 

with controls, which had high concentrations of the cytokine during the 

period evaluated. Biomaterials which did not contain hyaluronan displayed 

higher concentration of the cytokine compared with the ones with an HA 

coating. The release of VEGF by ECs was nil or very low in day 17 and 21 

and both biomaterials nd controls displayed the same pattern. 

In the case of the cytokines released by astrocytes, Ang-1 was secreted 

in higher concentrations compared with controls and HA-coated acrylates 

displayed higher concentrations compared with the ones lacking HA. Ang-2 

was found in low concentrations in general and similar values were recorded 

in both biomaterials and controls. VEGF expression was high during the 

period of culture increasing the concentration with time. The concentrations 

of cytokines measured are graphed in Figure 3.43. 
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Figure 3.43. Angiogenic growth factors (Ang-1, Ang-2 and VEGF) released by  hCMEC/D3 (left 
column) and U373 (right column) into the supernatants growing in monoculture onto acrylic 
based scaffolds . The release was evaluated during 21 days of culture and detected by enzyme-
linked inmunosorbent assay (ELISA). Control ( ), LN coated hyaluronan scaffolds ( ) and fb 
coated hyaluronan scaffolds  ( ). 
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3.5. hCMEC/D3 and U373 co-cultures on biomaterials 

 

Microvascular endothelial cells have been described to reorganize 

themselves into microcapillary-like structures when cultured in angiogenic-

stimulating conditions in vitro (Montesano et al., 1983). In a propitious 

environment, as response to ECs activation by cytokines or growth factors 

secreted in the medium, the formation of those structures have been 

reported as a sign of their angiogenic potential.  

The co-culture of hCMEC/D3 and U373 is thought to be a good model to 

mimic de BBB in vitro and this system together with biomaterials may 

provide a viable and permissive environment to recapitulate some aspects of 

the physiological conditions. The study of the co-culture of both cell lines in 

our biomaterials will provide us with more information about the interaction 

between those cells with the substrate when growing together. The medium 

of culture was provided with a promoter of angiogenesis, the basic fibroblast 

growth factor (bFGF) which activates the angiogenic cascade. The 

immunocytochemistry of specific proteins of the selected cell lines as well as 

released cytokines and growth factors by cells were evaluated and 

compared with the results obtained in controls. 

The cell seeding was performed by two different mechanisms. On one 

hand, to favour adhesion of the the endothelial cell line both cell lines were 

seeded in different time points, first the hCMEC/D3 followed by the U373 

after 24h of culture (successive seeding). Considering their different division 

rate ECs were seeded in a ten fold ratio respecting the astrocytic cell line. 

On the other hand, both cell lines were seeded together and in same ratio 

(simultaneous seeding). The successive cell seeding was studied following 

PECAM-1 expression by ECs and the simultaneous cell seeding both by 

vWF and GFAP expression by ECs and astrocytes respectively.  
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Control  

To establish the interaction of both cell lines and the organization of ECs 

in culture, controls were performed in cover slides following the same 

conditions as performed with biomaterials.  

The immunostaining results showed the distribution of both cell lines 

throughout the surface with periferic distribution of ECs with respect the 

astrocytes populations. Cells were viable and the conditions of co-culture 

were permissive for both cell lines.  

Astrocytes were stained against GFAP expression in red fluorescence 

and endothelial cells were stained against PECAM-1 expression in green 

fluorescence or vWF expression for the successive or simultaneous seeding 

respectively.  

Both protocols displayed random distribution of circular shaped structures 

delimited by ECs. As result of the successive cell seeding protocol, the size 

of the microcapillary-like structures formed by the ECs were smaller than in 

the case of simultaneous seeding displaying the latter a wide range of sizes 

from around 150 microns the smaller one. In the case of successive seeding 

those structures displayed sizes around 75 microns. In both cases 

astrocytes filled the areas delimited by the ECs thus demonstrating a 

propitious environment for cells to grow.  

The expression of vWF was randomly distributed within ECs (Figure 

3.45) and they were surrounded by astrocytes, stained in red fluorescence 

by their GFAP expression.  
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Figure 3.44. Immunofluorescent analysis of co-culture control of hCMEC/D3 and U373 by 
successive cell seeding. Samples were fixed after 14 days of co-culture. Green fluorescence 
corresponded to PECAM-1 expression by ECs. Red fluorescence corresponds to GFAP 
expression by astrocytes. Nuclei were stained in blue fluorescence with DAPI. A: scale bar 
corresponds to 150 microns; a and b: scale bar corresponds to 25 microns.  

 

 

Figure 3.45. Expression of vWF and GFAP in co-cultured hCMEC/D3 by simultaneous cell 
seeding.  Samples were fixed after 14 days of co-culture. Green fluorescence corresponds to 
vWF expression by ECs. Red fluorescence corresponded to GFAP expression by astrocytes. 
Nuclei were stained in blue with DAPI. Scale bar corresponds to 300 microns in A and to 75 
microns in a and b.   
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3.5.1. HA based biomaterials 

Endothelial and astrocytic cell lines were co-cultured onto either LN or fb 

coated hyaluronan based scaffolds. Because of the apical view of cells 

grown into biomaterials in which confocal micrographs were taken, and the 

spatial distribution of cells within the scaffold, it was not expected to find on 

the latter the same clear circular shapes that those found in 2D controls.  

On the one hand, the results from the sucessive cell seeding 

demonstrated that ECs reorganized into cord-like structures and stablized 

contacts with each other. In day 14 of co-culture, the distribution of cells 

within the scaffold and the PECAM-1 expression by ECs made their 

junctions noticeable as well as their different reorganization in the 3D 

structure. The irregular pattern of the porous structure makes it difficult to 

determine whether the cells are following the scaffold pattern or if they 

reassemble into different shapes. Higher magnification gives a bit more 

information about the ECs distribution showing what seemed microcapillary-

like structures both in LN or fb coated scaffolds (see details a and b in Figure 

3.46). In this case, fibrin coated displayed similar shapes to the ones found 

in controls. In day 21 of culture, scaffolds precoated with fb showed higher 

organization of ECs into microcapillary-like structures followed by their 

PECAM-1 expression. Besides, LN coated biomaterials presented similar 

results to the ones found in 14 days. Confocal photographs collected for 

hyaluronan biomaterials are showed in Figure 3.46 in which detail of 

different areas are included.  

On the other hand, the simultaneous cell seeding protocol was followed 

by vWF and GFAP expression by endothelial cells and astrocytes 

respectively. Both endothelial and astrocytes survived in co-culture during 

the period evaluated and expressed specific phenotypic proteins at the times 

evaluated. In day 14, those scaffolds pre-coated with fibrin showed higher 

rate of vWF positive cells compared with LN coated ones. In both cases 

astrocytes were found all around the structure (recognized by their GFAP 

expression) while the endothelial cells showed random aggregations as was 
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followed by their expression of vWF. In 21 days of culture the density of cells 

within the scaffolds was high in both cases. The distribution of cells were 

different and while rounded shaped endothelial cells were described in LN 

coated scaffolds, in fb coated ones there were clear and wider aggregations 

of cells describing shapes different to the pattern of the scaffold. In the latter, 

higher rate of apoptotic astrocytes (as suggest the rounded red shapes of 

several cells in image D in Figure 3.48) were found in contrast with none or 

very low rates in LN coated ones. 

 

Figure 3.46. Immunofluorescent analysis of co-culture of hCMEC/D3 and U373 by successive 
cell seeding. A: HA-DVS scaffolds LN coated; B: HA-DVS scaffolds fb coated. Cells were fixed 
after 14 days of co-culture.  Endothelial cells were stained against PECAM-1 expression in 
green fluorescence. Cell nuclei were stained with DAPI (blue). Scale bar corresponds to 150 
microns in A and B, to 25 microns in a and to 75 microns in b. 
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Figure 3.47. Immunofluorescent analysis of co-culture of hCMEC/D3 and U373 by successive 
cell seeding. A: HA-DVS scaffolds LN coated; B: HA-DVS scaffolds fb coated. Cells were fixed 
after 21 days of co-culture.  Endothelial cells were stained against PECAM-1 expression in 
green fluorescence. Cell nuclei were stained with DAPI (blue). Scale bar corresponds to 150 
microns in A and B, to 75 microns in a and to 30 microns in b. 
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Figure 3.48. Immunofluorescent analysis of co-culture of hCMEC/D3 and U373 by simultaneous 
cell seeding. A: HA-DVS scaffolds LN coated; B: HA-DVS scaffolds fb coated. Cells were fixed 
after 14 days (top) and 21 days (bottom) of co-culture.  Endothelial cells were stained against 
vWF expression in green fluorescence. Astrocytes were stained in red fluoresce against GFAP 
expression. Cell nuclei were stained with DAPI (blue). Scale bar corresponds to 150 microns. 
 

In order to evaluate the structure of the scaffold after the culture periods 

and to have a little description of the morphology of cells adhered to the 

scaffold, scanning electron microscopy was performed in fibrin coated 

biomaterials. The structure of the scaffold was well defined after 21 days of 

culture showing the pores and their interconnections clearly defined. The 

porous structure maintained its integrity in the period evaluated displaying 

the pores similar diameter after the cell culture. Furthermore, it was possible 

to appreciate the invasion of cells within the pores and cells irregularly 

distributed filling the pores in a non aggregated disposition and establishing 
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contacts cell-biomaterial through cell filopodia. In samples fixed at day 14, 

layers of endothelial cells were found in the outer surface of the scaffold and 

high density of cells sourronding them. There were found throughout the 

porous structure areas filled with matrices which are similar to those 

observed for fibrin matrix, both in 14 and 21 days of culture. The formation of 

new extracellular matrix was appreciated. Figure 3.49 shows the SEM 

photographs of those biomaterials. 

 

Figure 3.49. SEM images of co-culture of hCMEC/D3 and U373 growing on hyaluronan based 
scaffolds. Cell seeding was performed successively. Images correspond to interconnected 
spherical porous HA-DVS scaffolds coated with fibrin prior to cell co-culture and fixed at day 14 
(A) and 21 (B) of culture. Scale bar corresponds to 200 microns in A and B and to 20 microns in 
a and b.  
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Cytokine release 

Cytokines and growth factors released by cells in co-culture were 

analized by enzyme-linked inmunosorbent assay (ELISA). Supernatants of 

biomaterials co-cultured with ECs and astrocytes presented different 

releases depending on the coating employed. LN coated biomaterials had 

lower concentrations of Ang-1 compared with fibrin coated biomaterials 

which displayed similar or even higher concentrations than controls did. The 

release increased in time with culture.  

Ang-2 was found in very low concentrations in both LN and fb coated 

biomaterials while high concentrations were observed in control release. The 

release of VEGF was high in every case and it increased in time with culture. 

LN coated biomaterials displayed concentrations similar to those recorded in 

controls while in fb coated ones  the concentration was still higher.  
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Figure 3.50. Angiogenic growth factors (Ang-1, Ang-2 and VEGF) released into the 
supernatants of co-cultured hCMEC/D3 and U373 growing in hyaluronan based scaffolds. The 
release was evaluated during 21 days of culture and detected by enzyme-linked inmunosorbent 
assay (ELISA). Control ( ), LN coated hyaluronan scaffolds ( ) and fb coated hyaluronan 
scaffolds  ( ). 
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3.5.2. Acrylic based biomaterials.   

Immunocytochemistry 

Co-culture of endothelial cells and astrocytes was performed in acrylic 

based scaffolds as well. Different results were obtained by the successive 

and the simultaneous cell seeding. Acrylate based scaffolds which were 

seeded by the successive cell seeding demonstrated a high density of cells 

attached to the scaffold. Hyaluronan coated acrylic scaffolds showed 

noticeable differences in the distribution of the endothelial cells with respect 

to the non-coated ones. Non-coated scaffolds displayed very low expression 

of PECAM-1 by ECs while the coated ones showed not only higher 

expression but different organization of the cells. In this case, cells were 

organized into cord-like structures following different paths to the one 

dictated by the scaffold architecture. This can be better appreciated by 

photos in Figure 3.51 where the nuclei have been merged with the 

transmitted photographs of the scaffold. In the case of hyaluronan coated 

acrylic scaffolds there was an aligned disposition of endothelial cells out of 

the walls of the channels while in non-coated ones, cells were clearly 

attached to the walls. Detail of the organization of ECs with higher 

magnification can be seen by images in Figure 3.52. Although it was not 

possible to perform a double immunostaining to differentiate both cell lines 

due to biomaterial-antibody crossreactions, it can be appreciated that 

different areas whith high PECAM-1 expression drawing different shapes 

and areas with no expression of the protein which can be interpreted as the 

presence of astrocytes in the surroundings. The PECAM-1 expression of the 

cell to cell junctions and the organization of the ECs can be appreciated in 

detail in Figure 3.52-a.1 (white arrows). 

Simultaneous cell seeding gave completely different results. This 

procedure favored the growth of astrocytes in the scaffolds in detriment of 

the endothelial cell line. Results were similar for acrylic scaffolds containing 

or not containing hyaluronan. Generally, scaffolds were invaded 
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predominantly by astrocytes and the presence of vWF positive endothelial 

cells was limited to some areas (white arrows in Figure 3.53). Furthermore, 

samples displayed zones that were not populated by cells.  

 

 

Figure 3.51. Immunofluorescent analysis of co-culture of hCMEC/D3 and U373 by successive 
cell seeding. A) acrylic based scaffolds with interconnected cylindrical channels; B) acrylic 
based scaffolds with interconnected cylindrical channels coated with HA-DVS. Images C and D 
show transmitted photographs containing the nuclei (A and B respectively). Cells were fixed 
after 21 days of co-culture.  Samples were LN coated prior to cell culture. Endothelial cells were 
stained against PECAM-1 expression in green fluorescence. Cell nuclei were stained with DAPI 
(blue). Scale bar corresponds to 150 microns. 
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Figure 3.52. Immunofluorescent analysis of co-culture of hCMEC/D3 and U373 by successive 
cell seeding. A) Different areas found on acrylic based scaffolds with interconnected cylindrical 
channels coated with HA-DVS; a.1) Detail of A. Cells were fixed after 21 days of co-culture.  
Samples were LN coated prior to cell culture. Endothelial cells were stained against PECAM-1 
expression in green fluorescence. Cell nuclei were stained with DAPI (blue). Scale bar 
corresponds to 150 microns. 
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Figure 3.53. Immunofluorescent analysis of co-culture of hCMEC/D3 and U373 by simultaneous 
cell seeding. A) and C): Acrylic based scaffolds with interconnected cylindrical channels; B) and 
D): Acrylic based scaffolds with interconnected cylindrical channels coated with HA-DVS. Cells 
were fixed after 14 (images A and B) and 21 (images C and D) days of co-culture.  Samples 
were LN coated prior to cell culture. Endothelial cells were stained against vWF expression in 
green fluorescence. Cell nuclei were stained with DAPI (blue). Scale bar corresponds to 150 
microns. White arrows point to the areas with vWF expression.  
 

SEM photographs of acrylic based scaffolds co-cultured with endothelial 

and astrocityc cells during 14 and 21 days yield some more information 

about the interaction of both cell lines and the invasion of the scaffold. Cells 

were completely covering the surface of the structure and filled their 

channels as can be appreciated in Figure 3.55.  

Acrylic based scaffolds, with or without hyaluronan coating, were 

completely covered by cells since the early times of culture. Cells attached 

and expanded through the surface walls of the channels within the scaffold. 
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Extended morphologies with cell-cell and cell-biomaterial connections are 

noticeable. The observation of the inner structure of the scaffold showed that 

cells reached inner space of the scaffold.   

 

Figure 3.54. SEM micrographs of hCMEC/D3 and U373 growing in co-culture on acrylic based 
scaffolds with interconnected cylindrical channels during 14 days. A: without HA coating; B: with 
HA coating. a and b are details of A and B respectively. Samples were LN coated prior to cell 
seeding. Scale bar in images A and B correspond to 200 microns and to 20 microns in a and b.  
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Figure 3.55. SEM micrographs of hCMEC/D3 and U373 growing in co-culture on acrylic based 
scaffolds with interconnected cylindrical channels during 21 days. A: without HA coating; B: with 
HA coating. a and b show detail of A and B respectively. Samples were LN coated prior to cell 
seeding. Scale bar in images A and B correspond to 200 microns, 20 microns in a and to 50 in 
b. 
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Cytokine release 

The release of Ang-1, Ang-2 and VEGF by cells in co-culture was 

assessed. Ang-1 was found in biomaterials supernatants in higher 

concentration than controls did. Within the acrylic scaffolds, those containing 

hyaluronan had higher concentrations of the cytokine. Ang-2 was secreted 

moderately by cells growing into acrylic scaffolds with similar concentrations 

in the case of scaffolds with and without hyaluronan. The cytokine was found 

in higher concentrations in controls. The release of VEGF was very high 

since day 14 both in biomaterials and in controls.  

 

Figure 3.56. Angiogenic growth factors (Ang-1, Ang-2 and VEGF) released into the 
supernatants of co-cultured hCMEC/D3 and U373 growing in acrylic based scaffolds. The 
release was evaluated during 21 days of culture and detected by enzyme-linked inmunosorbent 
assay (ELISA). Control ( ), acrylic scaffold ( ) Hyaluronan coated acrylic scaffold ( ).
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Development of hyaluronan insoluble materials for tissue engineering 

applications.  

 

Hyaluronan insoluble structures have been widely synthesized by 

different crosslinking strategies, obtaining hydrogels with tuneable swelling 

properties (Collins & Birkinshaw, 2007). In this work, HA was crosslinked 

with either DEO or DVS obtaining hydrogels with different properties in terms 

of EWC, elasticity (Young modulus) and degradation rate. Each crosslinker 

is thought to react through different functional groups on the molecule, the 

carboxylic or hydroxyl group respectively. A discussion of the crosslinking 

chemistry will be outlined below.  

 

Crosslinking with 1,2,7,8-diepoxioctane 

 

Due to its high reactivity, epoxides are commonly used crosslinkers for 

biopolymers. In the hyaluronan molecule, carboxyl and hydroxyl groups are 

the functional groups available to react with the epoxide. When the reaction 

takes place in acidic conditions or very slightly basic conditions (pH lower 

than 8) it will react through available carboxyl groups, forming an ester bond 

(Collins & Birkinshaw, 2007; Zhao, 2006). The HA-DEO infrared spectra did 

not give much information about the crosslinking because the new formed 

bond, an ester bond, is already present in the molecule.  

The pK of the carboxyl groups on the glucuronic acid residues is 3-4, 

depending on ion conditions (Hascall & T. C. Laurent, n d). In the pH in 

which reaction is taking place, the crosslinking is thought to occur via the 

carboxylic group of the hyaluronan. This acidic medium is catalyzing the 

opening of the epoxide leading to the formation of a diol in each end of the 

molecule. Then, the reaction between the carboxyl groups of hyaluronan and 

the hydroxyl groups from the diepoxi is giving the crosslinked hyaluronan 

polymer.  Figure 4.1 shows a proposed scheme of reaction between 

hyaluronan and crosslinker to obtain the final product.   
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The new bond formed, an ester, is easily hydrolyzed in slightly basic pH 

resulting in the formation of carboxylic acid and hydroxyl groups newly. 

Thus, the obtained crosslinked material dissolves in pH values higher than 

7.5. Cellular activity growing in culture may provoke changes in the pH of the 

medium. Thought to be used in biological applications, the solubility of HA-

DEO hydrogels was assessed by immersing samples in cellular medium with 

different pH tuned adding either 0.1M HCl or 0.1M NaOH to acidify or basify 

respectively. There were prepared 5 different pH media: 7, 7.6, 8, 8.5 and 9. 

After 72h at 37ºC, hydrogels were found to dissolve completely at pH higher 

than 8 and were highly swollen at pH=7.6. Hydrogels immersed in pH=7 

medium kept their initial shapes. Figure 4.1 details the hydrolysis of the ester 

bond under such conditions 

The crosslinking reaction is really sensitive to the medium conditions and 

it is a complex function of several factors. The water present in the reaction 

medium (provided on the one hand by the ratio of acetone-hydrochloride 

aqueous solution and on the other hand by the amount of solvent employed 

to carry out the reaction) was not as relevant at long reaction times as for 

shorter. Thus, R_70 and R_100 conditions displayed almost similar EWC 

when reacted for 72h. At shorter times, the effect of the amount of water was 

higher and differences were found when comparing R_50 condition 

compared with R_70 and R_100 conditions (Figure 3.7). 
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Figure 4.1. Reactions of hyaluronan. Scheme 1: reaction of hyaluronan crosslinking with 
1,2,7,8-diepoxioctane;  Scheme 2: reaction of ester bond hydrolysis in the HA macromolecule. 
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Crosslinking with divinyl sulfone 

In contrast with the infrared spectra of HA-DEO, HA-DVS crosslinked 

hydrogels give some more information about the crosslinking showing a 

characteristic band in 1466 cm-1. This band, which corresponds to the 

asymmetric stretching of the sulphur and oxygen bond (S=O), demonstrates 

the incorporation of the bisulphide to the hyaluronan polymer chains. 

The DVS crosslinking was carried out in basic medium.  Under alkaline 

conditions, the crosslink takes place through the secondary hydroxyl groups 

on the hyaluronan molecule [3] reacting with the vinyl groups of the DVS to 

bind through sulfonyl bisethyl crosslinks two chains of the macromolecule. A 

proposed structure and scheme of reaction for DVS crosslinked hyaluronan 

is showed in Figure 4.2. 
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Figure 4.2. Scheme for hyaluronan divinylsulfone crosslinking reaction. 
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Washing solvent used at the end of the crosslinking reaction was 

demonstrated to influence the final product. Samples crosslinked in equal 

conditions showed lower rates of EWC when washed with solvent containing 

high concentrations of acetone, or only acetone. Besides, samples rinsed 

with solvents containing 20% or more water showed similar behaviour in 

terms of swelling. It is proposed that the high capacity of dehydration of the 

acetone may produce irreversible additional physical crosslinkings in the 

matrix thus affecting the final EWC. The acetone may dehydrate suddenly 

the hydrogel faster than the structure needs to shrink du to loss of the 

absorbed water so that structure collapses.  It is also possible that the 

dehydration of the hydrogel itself exposes non reacted hydroxyl groups still 

available for crosslinking and non-reacted DVS molecules trapped in the 

bulk of the hydrogel. This fact may produce an enhancement in the number 

of chemical crosslinkings within the molecule due to the higher proximity of 

the groups to react. Samples washed in solvent containing high ratios of 

water, did not display such swelling response. In this case, the structure is 

allowed to contract its chains in equilibrium rates, while water and non-

reacted DVS is washed out from the matrix. The matrix is no longer 

collapsed neither “overcrosslinked” by the solvent employed due to the 

content in water is so much higher, so the hydrogel does not deflate in 

response of the medium but swells during the washing, what maintains the 

properties of the matrix.  

To better understand the suggested mechanisms underlying the collapse 

of the hydrogel crosslinked matrix two pieces, two pieces of the same 

hydrogel were submitted to different and contrary treatments (complete 

hydration and complete dehydration, Figure 4.3). Directly after crosslinking, 

one sample was immersed in 100% acetone (A) while another was 

immersed in 100% distilled water (W). Samples were kept immersed during 

30 minutes. In the first case, the sample became completely white while 

reducing its size considerably. In the second case, the sample swelled and 

displayed complete transparency. The latter same sample was then 
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immersed in acetone to dehydrate its matrix and the sample became white 

and opaque.  Afterwards, both samples (A and W) were rehydrated in water 

re-swelling in a different way. Sample “A” swelled displaying some 

translucent behaviour and did not recover its initial size. Besides, sample 

“W” swelled until it recovered its initial size and resulted in a colourless and 

transparent hydrogel.  

 

Figure 4.3.  Schematic procedure to assess the influence of the solution employed for rinsing 
the HA-DVS hydrogels after crosslinking.  

 

The effect of the solvent employed to work out the reaction made it 

possible to tune the swelling of the crosslinked matrix obtaining different 

behaviour with apparently same chemical degree of crosslinking within the 

structure.  

Hyaluronan hydrogels crosslinked with either with epoxides or 

divinylsulfone have been reported to display EWC values in the range of 

170-250% (Collins & Birkinshaw, 2007). Taking into account the final 

application of the synthesized hydrogels, results will be analyzed from the 

point of view of neural tissue. Brain is a soft and high water content tissue. It 

is known to be strongly inhomogeneous and anisotropic, with mechanical 

properties differing significantly from one region to another (Franze, 

Trasnpartent 
Bigger size 

HA-DVS film 
Opaque 
Smaller size 

Opaque 
Smaller size 

A 
W

W

A 
A 

W 
W 

W 

A 

Water 
immersion 

Acetone 
immersion 

Colourless  & 
Trasnparent 
Initial size  

Translucent                        
No initial size 



                                                                                                                                  DISCUSSION 

- 164 - 

Reichenbach, & Käs, 2009). The water content in brain tissue of adult rats is 

in the range of 80% (Shulyakov, Cenkowski, Buist, & Del Bigio, 2011).  

Besides, it has been reported that different cell types prefer diverse 

substrate elasticities, behaving in a different way in soft and stiff 

environments (Franze et al., 2009). Synthesized hydrogels, HA-DVS and 

HA-DEO, had different swelling capacities as well as Young moduli. In terms 

of water absorption, both hydrogels had higher rates of water compared with 

adult rat brains (140% of EWC for HA-DEO and 600% for HA-DVS) while 

displaying different mechanical properties. The Young modulus of the native 

brain tissue is one of the softest tissues in the body (E=0.5-1 kPa) (Gefen & 

Margulies, 2004; Taylor & K. Miller, 2004). The value of the modulus 

measured for the different hyaluronan matrices was 1.5 and 3 times higher 

(EHA-DEO and EHA-DVS respectively) than the maximum E for native brain 

tissue. According to Georges and co-workers  the distribution and population 

sorting of CNS cells occurs based on the mechanical properties of the 

substrate (Georges, W. J. Miller, Meaney, Sawyer, & Janmey, 2006). This 

makes interesting to have a wide range of biomaterials with different elastic 

modulus and EWC. The substrate deformability is strongly affecting the 

behaviour of the different cell types. Georges and co-workers (Georges et 

al., 2006) report that the branching frequency of neurons on gels of 550 Pa 

is similar to those cultured on glass (whose elastic modulus is in the order of 

tens of GPa). Then, it can be assumed that for neurons composing the brain 

tissue, both of our synthetized hydrogels, HA-DEO and HA-DVS, will be the 

same substrate in terms of its stiffness. Furthermore, the response of neural 

support cells (astrocytes) to the stiff of the substrate is different to neurons 

preferring the first stiff substrates (Leipzig & Shoichet, 2009).  

The degradation rates of hydrogels depend mainly on the matrix 

composition and hyaluronidase (Hase) concentration which makes very 

difficult to compare different composition in the reported data. Additionally, 

enzymatic in vitro degradability only represents an approximate view 

because in the end, the concentration of the enzyme in vivo depends on the 
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tissue and the availability in the area. Generally, hyaluronan crosslinked 

hydrogels have been described to degrade almost completely in short times 

within hours (Bulpitt & Aeschlimann, 1999; Ibrahim, Q. K. Kang, & 

Ramamurthi, 2010) until few days (Hahn, J. K. Park, Tomimatsu, & 

Shimoboji, 2007; Y. Liu, Shu, & Prestwich, 2005). This highlights the long 

degradation rates found for the hydrogels synthesized in this work. HA-DVS 

hydrogels were found to degrade 60% in 8 days and almost completely at 

day 21 while HA-DEO degraded at slower rates.  

Different chain lengths obtained as a result of in vivo degradation trigger 

the activation of different processes related to angiogenic cascade. 

Hyaluronan polymers chains found in the ECM of most mature tissues have 

high molecular weight hyaluronan (HMW-HA) (Garg & Hales, 2004). The 

biodegradation of natural hyaluronan is reported to be a step-wise process 

(Rodén et al., 1989). Hyaluronidases are considered responsible for most of 

the HA catabolism taking place in the organisms. Hyaluronidases have 

different mechanisms of action and cleave the hyaluronan chains at different 

sites, yielding diverse molecules of lower molecular weight. The type of 

hyaluronidase employed (testis type, E.C. 3.2.1.35) is reported to cleave HA 

yielding tetra and hexa oligosaccharides as the major end products (Girish & 

Kemparaju, 2007). In any case, it can be predicted that chains with higher 

molecular weights will be released during in vitro degradation due to 

crosslink of the polymer chains of HA by covalent bonds. In fact, diverses 

MWs were recorded in the degradation supernatants. Higher MWs were 

found in HA-DVS than in HA-DEO hydrogels as can be expected from a less 

crosslinked matrix.  
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DEVELOPMENT OF 3D STRUCTURES 

 

Scaffolds designed to be used in brain implantation should promote 

neural cells survival while reducing the inflammatory response to prevent 

glial scarring. The architecture of the tissue must be taken in account in 

order to adequate the scaffold to the tissue to be regenerated. Scaffolds 

should be designed considering the permeability of nutrients, thus, 

containing inner microporosity allowing the access of oxygen and nutrients 

as well as permitting the removal of debris from cell activity. Additionally, the 

scaffold should provide enough space to allow cell growth and colonization 

of the porous structure.  

Different architectures are required depending on the final application. 

One possible application of the designed scaffolds is their use as cell 

carriers  to provide cell supply in cell lacking areas. Mesenchymal cells or 

dopaminergic neurons can be seeded into soft highly porous scaffolds and 

implanted in damaged tissue with cells capable to proliferte into a damage 

area differentiate into the cells can then proliferate and mature reaching 

connectivity with the host tissue. To this end, highly porous structures were 

manufactured. Those structures were fabricated with porogen leaching 

techniques resulting in scaffolds with high pore size. The sizes of the pores 

correlated with the sizes of porogen examined by SEM, ranging from 50 

microns (or even smaller) to 150 microns (Figure 3.19-A, black arrows). 

Lower ratios of porogen to HA were tested giving structures with less or lack 

of interconnectivity as can be seen in Figure 4.4. 
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Figure 4.4. SEM photographs of hyaluronan scaffold. A) Porogen beads of 
polymethylmethacrylate showing dispersion in bead size. B and C) inner structure of the 
scaffolds prior to removal the porogen; D) Lyophilized hyaluronan scaffold once the porogen 
was removed from the structure. E and F show details of the porosity and their walls.  

 

 Another interesting application is the use of scaffolds as a guiding 

support for repopulation of damaged areas. After injury, NSC can 

theoretically migrate from the SVZ to the damage area to repopulate the 

area although they usually fail in their duty because in absence of 

mechanical support in the damage tissue they are likely to die. Scaffolds 

both with regular interconnected porous inner structures or with randomly 

disposition of the pores with high interconnection between them are thought 

to provide a good environment for those cells to grow and differenciate. In 

this sense, acrylic scaffolds with a regular pattern of interconnected 

channels were developed. Those non-biodegradable structures were coated  

with hyaluronan to provide the scaffold with different environment in which 

cells may better attach and proliferate due to its biological properties. The 

regular channels may give support to accommodate those cells successfully 

and guide the growing of axons.   

Another application of scaffolds for neural tissue regeneration may lie in 

the reconstruction of axonal pathways within the nervous system. Hollow 

tubes are of interest for applications in nerve guides or vascular grafts 

(Dalton & Shoichet, 2001) (Freier et al., 2005). Hyaluronan crosslinked 

  A   B 

  D   E 

  C 

  F 
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porous bulk cylinders and tubes of highly porosity were fabricated. The 

employed technique allowed preparing small samples with highly porous 

walls. The design permitted to obtain samples in the order of 1mm and 2mm 

outer diameter. The microporosity (with an average size of 30 microns) was 

obtained by freeze drying; channels were achieved by fiber moulding being 

possible to tune the diameter of the channel. Channelled scaffolds may help 

axons to grow and reconnect with their specific sites thus helping to recover 

lost functionalities. The necessity of axon guidance for successful axon 

regrowth is widely reported (Francisco, Yellenb, Halversonc, Friedmanc, & 

Gallo, 2007; SMEAL, RABBITT, BIRAN, & TRESCO, 2005; Stokols et al., 

2006). Hyaluronan channelled scaffolds with different inner porosity and wall 

sizes were fabricated with both crosslinkers employed in this work. HA-DEO 

multichanneled scaffolds were fabricated with channels of 100 or 200 

microns in diameter. The channels, obtained by employing different 

filaments (heat conductive or non-conductive) resulted in different structures. 

Conductive filaments (Copper, 100 microns) lead to characteristic lamellar 

structures in samples due to the appearance of temperature gradients. 

Those structures were not visible in structures fabricated with non-

conductive filaments (polymeric filament, 100 microns) or with lower 

conductivity (stainless steal, 200 microns). HA-DVS multichanneled scaffolds 

were fabricated with polymeric filaments of 100 microns in diameter. After 

the process of crosslinking samples were swollen in water and then 

lyophilized. The channels displayed smooth walls in those surfaces which 

were in contact with the filaments. Besides, the bulk hyaluronan within the 

walls displayed two different structures. In contact with the filaments there 

were between 3 to 4 microns thick of polymer within any visible porosity 

defining perfectly the channels followed by a microporous structure 

displaying pores in the range between 8 to 25 microns. The microporosity is 

forced by the process of freeze-drying which evidences the structure of the 

swollen scaffold.  
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The nigrostrialtal pathway, which connects the substantia nigra and the 

striatum is known to be degenerated in neural diseases as Parkinson’s 

disease. Those channelled natural scaffolds with mechanical properties 

close to brain tissue and high permeability may be used for the 

reestablishment of dopaminergic pathways with the recovering of lost 

functionailities.  

Furthermore, acrylic based non-degradable scaffolds, with inner 

structures mimicking the region of cortex in the brain, were coated with a thin 

layer of HA though to take advantage of the hyaluronan properties. 

Hyaluronan content referred to the total volume of the scaffold was 

estimated to be around 7% in weight which was sufficient to be noticed by 

cells while leaving enough remaining space within the channels for cells to 

grow. The Alcian Blue assay which stains GAGs was employed to confirm 

complete distribution of the coating throughout the porous structure giving 

regular staining (figure 3.20).  

 

Biological in vitro characterization of biomaterials 

 

Hyaluronan-based materials 

 

Only HA-DVS hydrogels were selected for further biological 

characterization due to their longer stability in culture media.  

It is established that the first mechanism of adhesion between cell-cell 

and cell-surfaces is integrin mediated. Intengrins are a family of 

transmembrane receptors that recognize proteins from the extracellular 

matrix such as fibronectin (FN), laminin (LN) and type I collagen (COL-I) 

(García, 2006). Therefore, to improve cell-biomaterial interactions, such 

proteins have been employed for improving cell adhesion on biomaterials 

with proper signals for cell adhesion. Different ways to incorporate such 

proteins in biomaterials have been employed such as absorption from 

protein solutions or surface engineered by grafting of bioadhesive motifs. 
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Hyaluronan hydrogels have been modified with laminin (Shaoping Hou et 

al., 2005), poly-D-lysine (Wm Tian et al., 2005) or grafted with protein 

sequences of known relevancy in cell adhesion (I.S.Lee, 2006; Y. T. Wei et 

al., 2007). In all cases authors reported that hyaluronan modified with those 

adhesion sequences provide the HA hydrogel with an environment 

conductive to CNS regeneration. Modified surfaces with fibrin-HA coating 

have been as well developed for use in bone regeneration and improved cell 

adhesion and tissue regeneration were reported (S.-woong Kang et al., 

2011). Hyaluronan hydrogels have been shown to support viable neural 

precursors cells (NPCs) and their differentiation into neurons and glial cells 

(Pan et al., 2009). Human astrocytes have been cultured in sulphated 

hyaluronan and results suggested that sulphate hyaluronan may be involved 

in the astrocyte activity (Yamada, Sawada, & Tsuchiya, 2008). 

In this work, we prepared DVS crosslinked hyaluronan based 

biomaterials which were coated with two different proteins prior to cell 

seeding: Laminin (LN) and fibrin (fb).  Laminin is widely used as a coating to 

improve nerve cell adhesion and growth (Liesi, Dahl, & Vaheri, 1984) since it 

has been reported to play an important role in neural cell migration, 

differentiation and neurite growth (W. He & Bellamkonda, 2005; Heiduschka, 

2001). Fb has been demonstrated to be involved in repair associated 

angiogenesis providing cells with a temporary matrix which may act as 

scaffold for invading ECs (van Hinsbergh, Collen, & Koolwijk, 2001). In our 

biomaterials, the coating was not covalently bonded to the matrix but 

deposited by protein adsorption on the surface.  

An endothelial and an astrocytic cell line were cultured individually onto 

HA-DVS hydrogels. Cells were viable in both LN or fb coated hyaluronan. 

ECs seeded onto fibrin coated 2D HA-DVS hydrogels demonstrate poor 

adhesion to the surface at early times while similar viability was found in 

longer times of culture (8 days). LN seemed to promote cell adhesion also at 

early times, being the cells homogeneously distributed on the surface of the 

hydrogel. This observation evidenced different behaviour of ECs depending 
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on the protein coating employed prior to cell seeding. A non-homogeneous 

distribution of the protein coating on the biomaterial surface may explain 

those differences. The areas where the protein has deposited properly would 

induce the adhesion of cells in clusters. Those cells can start secreting 

afterwards their own extracellular matrix providing signals to other cells to 

adhere and proliferate throughout the whole surface. Astrocytes showed 

better viability on LN coated biomaterials although fibrin coated ones 

displayed high density of viable cells as well. In any case, both cell lines 

demonstrated good viability growing onto HA-DVS hydrogels in monoculture.  

Hydrogels, in general, are known to have good biocompatibility and to 

cause minimal inflammatory responses. Nevertheless, the chemicals 

employed to obtain insoluble structures from hydrogels by i.e. crosslinking 

hyaluronan hydrogels, may elicit toxic reactions in the body. To assure the 

biocompatibility of synthesized biomaterials with cells in vitro, the expression 

of E-selectin by ECs was evaluated. This cell adhesion molecule is 

expressed by endothelial cells after their activation by cytokines in response 

of inflammation. Because different procedures were followed to obtain the 

2D and 3D structures, both hydrogels were assessed. None of the 

biomaterials elicited any expression of E-selectin in ECs; whereas in positive 

inflammation controls using LPS activation cells grown onto HA-DVS 

hydrogels expressed their inflammatory phenotype. The phenotype of cells 

growing on hyaluronan hydrogels was followed by expression of specific 

proteins for each cell line. ECs were immunoassayed against von Willebrand 

factor (vWF) and the platelet/endothelial cell adhesion molecule-1 (PECAM) 

while astrocytes were followed by their glial fibrillary acidic protein (GFAP) 

expression. 

ECs cultured alone onto HA-DVS hydrogels demonstrated typical 

phenotypic characteristics expressing PECAM-1 at cell-cell junctions or 

aggregates of vWF. Astrocytes expressed highly the intermediate filament 

GFAP; higher expression was observed in the cells cultured onto HA-DVS 

hydrogels LN coated. Cells grown onto fibrin coated hydrogels showed less 
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GFAP positive cells at long times of culture. GFAP is a marker of mature 

astrocytes. The lower GFAP expression on fibrin coated biomaterials may 

demonstrate either a lower gliotic response or permanence of astrocytes 

proliferative phase, as it is known that proliferative immature astrocytes do 

not secrete GFAP. 

A proper integration of the biomaterial requires a good connectivity with 

the host tissue to supply cells with nutrients and oxygen and to allow the 

removal of cell waste. To this end, a good vascularisation of the scaffold is 

needed. The formation of new vascular sprouts requires the interaction 

between several factors and cell types. Released cytokines and growth 

factors activate endothelial cells to start the angiogenesis process.  

Studies focused on the interaction of angiopoietins and VEGF have 

elicited information about the interaction of cytokines and ECs. Risau and 

co-workers described the angiopoietin-1 (Ang-1) as a potent inducer of 

sprouting angiogenesis and found that its depletion inhibited completely 

sprout formation (Koblizek, C. Weiss, Yancopoulos, Deutsch, & W Risau, 

1998).  Hyaluronan has been found either to inhibit cell adhesion (M. K. Cho, 

G. H. Lee, E. Y. Park, & S. G. Kim, 2004)  or to promote proliferation and 

production of Col II [28].  The molecular weight of hyaluronan was 

determined to be the ultimate responsible in being pro- or antiangiogenic 

(Struve et al., 2005).  Riley and co-workers (Rilley et al., 2006) tried to better 

understand the molecular mechanisms by which HA induce angiogenesis 

and the mechanisms of interaction between HA, VEGF and Ang-1. To do 

that, they prepared HA crosslinked hydrogels containing delivering VEGF, 

Ang-1 or co-delivering of both of them. They found that in vivo, HA hydrogels 

combined with those three factors together produced the greatest 

angiogenic response compared with hydrogels with single delivery or lacking 

both of them. Besides, Hsu Ma and co-workers (Perng, Y.-J. Wang, Tsi, & H. 

Ma, 2009), studied the effect of the molecular weight of HA in angiogenesis 

with collagen/HA scaffolds. They reported that the potential of hyaluronan to 

induce angiogenesis processes depended on the molecular weight of the 



                                                                                                                                  DISCUSSION 

- 173 - 

hyaluronan getting faster revascularization those with lower molecular 

weights (Rilley et al., 2006).  

The study of cells in co-culture has been employed widely in literature 

with different purposes, one of them for vascularization studies where 

endothelial cells are the main focus. ECs have been cultured with 

osteoblasts (M. I. Santos, Ronald E Unger, Sousa, Rui L Reis, & C James 

Kirkpatrick, 2009; Ronald E Unger et al., 2007), mesenchymal stem cells 

(Kolbe, Xiang, Dohle, Tonak, & Fuchs, 2011) or nervous cells (Lefranc et al., 

2004) among others.  Studies intended to mimic the BBB in vitro are focused 

on the culture of cerebral endothelial cells and it is desirable to grow them in 

co-culture with astrocytes and/or pericytes (Garberg et al., 2005) .  

To achieve better knowledge about the response of cells growing on our 

HA-DVS scaffolds, as first approaching to physiological conditions we co-

cultured a microvascular endothelial cell line (hCMEC/D3) and a glioma cell 

line (U373). To induce angiogenesis in vitro, basic fibroblast growth factor 

(bFGF) was employed as it was identified as the first EC mitogen and 

chemotactic factor for EC and it is described as highly angiogenic (J. 

Abraham et al., 1986). 

Due to the different division rate of both cell lines, we followed two 

different protocols for cell seeding. On the one hand, in order to favour the 

endothelial cell line they were seeded first and in a ten fold ratio to U373. 

24h later, astrocytes were seeded (successive cell seeding). In another 

experiment cells were seeded simultaneously and at a 1:1 ratio.  

Controls of both methods showed differences in the organization of the 

cells in culture. Simultaneous cell seeding gave a clear organization of the 

endothelial cells into ring-like fashion and forming a network throughout the 

surface of the 2D cultures in which the space between such string-like 

formations were completely occupied by astrocytes. However, the 

successive cell seeding did not result in that clear organization of the 

endothelial cells, which appeared mixed with astrocytes in the co-culture and 

as spontaneous ring-like distributions along the surface of culture. 
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Nonetheless, controls demonstrated that both the simultaneous and the 

successive cell seeding conducted to the formation of in vitro capillary-like 

structures. 
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Hyaluronan based scaffolds 

It is thought that the biomaterial itself, which composes the primary 

scaffold structure, may favour the preferential adhesion and survival of one 

cell line over the other one.  

The co-culture of hCMEC/D3 and U373 onto hyaluronan scaffolds gave 

different responses depending o the method employed for cell-seeding. The 

successive cell seeding, in which the endothelial cell line attachment to the 

biomaterial was favoured by being seeded first, ECs reorganized into 

capillary-like in fb coated scaffolds while in the LN coated did not. Results 

from the simultaneous cell seeding showed organization of ECs in both 

cases with different geometries. In this case, the structures on LN coated 

biomaterials seemed to be a better system for the co-culture as can be 

analyzed both by the vWF expression and GFAP.  

The study of the cytokines released to the medium during the co-culture 

within hyaluronan scaffolds did not give further insights about the formation 

of the capillary-like structures. Ang-2 and Ang-1 are competitive ligands for 

the Tie-2 receptor of ECs. Ang-1 has been determined to be necessary for 

endothelial sprout formation in in vitro studies (Ronald E Unger et al., 2007).  

Furthermore, the presence of VEGF, the unique cytokine with mitogenic 

effect on endothelial cells, is required for sprouting angiogenesis. Only Ang-

1 can activate the Tie-2 receptor to signal the recruitment of support cells in 

order to stabilize effect ECs in the new vascular sprout formed. It is 

proposed that Ang-2 function is binding Tie-2 to block Ang-1 effect thus, 

facilitating the migration of EC from the vessel to form a new capillary (Nomi 

et al., 2002). Studies of the biological activity of Ang-1 in vitro demonstrated 

that Ang-1 containing supernatants induced the formation of capillary 

sprouts, whereas they were not found in the control supernatants (Koblizek, 

C. Weiss, Yancopoulos, Deutsch, & W Risau, 1998). Ang-2 is expressed 

only at the sites of vascular remodeling and in the presence of VEGF, Ang-2 

promotes vascular sprouting. The supernatants evaluated contained high 

concentrations of Ang-1 and VEGF while low concentration of Ang-2 in 
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contrast to control supernatants in which high concentrations of the latter 

were found. The study of these cytokines does not provide enough extra 

information to support the results of the immunohistochemistry assays were 

organization of ECs into different geometries reminding the capillary-like 

structures was observed in in vitro assays.  

 

Acrylic based scaffolds 

Hyaluronan has been recently reported to improve the therapeutic effect 

of injected human umbilical vein ECs (HUVECs) into mouse ischemic 

hindlimbs by promoting angiogenesis (Z. C. W. Tang, Liao, A. C. L. Tang, 

Tsai, & P. C. H. Hsieh, 2011). Evidences of high organization of ECs were 

found in acrylic scaffolds containing hyaluronan coating (Figure 3.51). Cord-

like distribution of ECs that was clearly not governed by the geometry of the 

scaffold were appreciated in hyaluronan coated acrylic scaffolds. Those 

structures were not found in acrylic scaffolds alone. Detail in Figure 3.52 

shows the PECAM-1 expression at cell-cell junctions. However, the 

simultaneous cell seeding did not seem to be favourable in acrylic scaffolds 

in which low populations were found both of endothelial and astrocytic cell 

lines.  

The cytokines analyzed in the supernatants did not contribute to 

elucidate the promotion or not of angiogenesis within those biomaterials.   

In general, both mechanisms of cell seeding resulted in different 

structures in both kinds of scaffolds. Not only the method of cell seeding may 

influence in the results but elements such as scaffold pore size and density 

play a key role.  The succesive cell seeding gave best results for hyaluronan 

scaffolds and in acrylates scaffolds that seemed to be better invaded by cells 

through the successive cell seeding with the subsequent formation of string-

like structures by ECs.   
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1. Two different crosslinkers have been employed to obtain insoluble 
hyaluronan hydrogels. With this aim, 1,2,7,8-diepoxyoctane and 
divinylsulfone were employed crosslinking the hyaluronan polymer 
through different functional groups in the sugar. Both crosslinkers gave 
hydrogels with different mechanical properties, degradation rates and 
swelling in water.  

 
2. The two methods to crosslink hyaluronan permitted the obtaining of 

tridimensional structures with different geometries and porosities. It was 
possible to fabricate cylinders, channelled scaffolds and interconnected 
spherical porosus structures all of them thought to be useful for different 
applications of neural tissue regeneration.  

 
3. It was possible to obtain hybrid samples by performing a coating of 

hyaluronan hydrogel into acrylic samples, thus combining the 
advantages of non-degradable structures giving mechanical support and 
biodegradable polymer as hyaluronan which is expected to improve the 
biological interaction of the construct in physiologic conditions.   

 
4. The synthetized hyaluronan DVS crosslinked hydrogels demonstrated to 

permit optimal viabilities of the cells evaluated, a human microvascular 
endothelial cell line (hCMEC/D3) and a human gliobastoma cell line 
(U373). Those cells expressed their phenotypic markers during the 
period evaluated in monoculture with the biomaterials.  

 
5. The HA-DVS scaffolds fabricated did not provoke any toxic response in 

the endothelial cells as evaluated by their E-selectin expression. 
Furthermore, cells expressed their inflammatory marker upon activation 
with LPS, thus showing a normal phenotype when growing on the 
designed scaffolds.  

 
6. The use of different protein coating, LN or fb, prior to cell seeding did not 

influence the expression cell phenotypic markers when growing on 
biomaterials. However, the viability assays of cells growing on 2D 
hydrogels showed a preference of LN for astrocytes and fb for ECs.  

 
7. Cells cultured on LN and fb coated biomaterials showed a distinct 

release of cytokines to the culture medium. 
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8. The co-culture ECs and astrocytes gave different results depending on 
the protocol used for cell seeding. The co-culture by simultaneous cell 
seeding on hyaluronan based biomaterials led to the formation of cord-
like structures thus demonstrating a kind of organization of the ECs 
within the scaffolds. However, the cell seeding by this protocol in acrylic 
samples resulted in a low survival of ECs in the co-culture. The 
successive cell seeding led to the organization of ECs in acrylic 
samples.  

 
9. The cytokine analysis was not consistent with the formation of capillary-

like structures in vitro by controls and biomaterials.  
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