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TAILORED ELECTROSPUN NANOFIBROUS 

POLYCAPROLACTONE/GELATIN SCAFFOLDS INTO AN ACID 

HYDROLYTIC SOLVENT SYSTEM 

O. Gil-Castell1, J. D. Badia1,2, A. Ribes-Greus1,* 

Abstract 

Blended nanofibrous scaffolds based on polycaprolactone (PCL) and gelatin (Ge) were 

successfully prepared. A formic/acetic acid (1:1) mixture was used to dissolve PCL/Ge blends 

from 100/0 to 20/80 %wt in steps of 10 %wt. The hydrolysis of the PCL diluted in the 

formic/acetic acid mixture was considered as a method for tailoring the surface morphology and 

physicochemical features of the nanofibrous PCL/Ge scaffolds as a function of the dissolution 

time. The fibre diameter remained in the nanoscale range for all the studied scaffolds, which is 

crucial to mimic the extra-cellular matrix size. The reduction of the intrinsic viscosity, molar mass 

and hydrodynamic radius found for the PCL molecules as a function of the dissolution time, 

consequently diminished the entanglement capability of the polymeric chains. Subsequently, the 

fibre diameter decreased as dissolution time increased, for all the studied compositions. While the 

crystallinity of the scaffolds with high PCL content increased as a function of the dissolution time, 

the scaffolds with high percentage of Ge showed the lowest crystallinity degree, which was 

ascribed to the hindering effect of the Ge diffused among the PCL segments. The wettability 

increased as a function of the Ge content due to the high hydrophilic behaviour of these molecules. 

It also increased as a function of the dissolution time, due to the more hydroxyl groups available 

in PCL segments to interact with water molecules. As a whole, the physicochemical assessment 

of the electrospun scaffolds revealed an effective tailoring procedure to obtain functionalised 

PCL/Ge scaffolds with specific properties as a function of the dissolution time before 

electrospinning. 
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1. Introduction

Tissue engineering involves the combination of engineering, materials and cells to improve or 

replace biological tissues. One of the fundamental approaches of this field is the fabrication of 

biocompatible scaffolds that provide the optimum conditions for cell adhesion and proliferation 

along with tailored durability and performance. The development of synthetic nanoscaled fibrous 

scaffolds that structurally mimic extra-cellular matrix (ECM) in size and porosity has brought 

new possibilities in the field of tissue regeneration [1]. 

The processing techniques to obtain artificial tissues are in continuous development [2]. 

Electrospinning stands out as one of the most promising techniques for the preparation of 

polymeric nanofibrous devices [3]–[5]. This method offers non-woven nanofibrous scaffolds with 

large area-to-surface ratio and high porosity that have fulfilled novel biomedical requirements [6], 

[7]. 

A variety of natural and synthetic polymers have been used for nanofibrous scaffold fabrication, 

including polycaprolactone, poly(lactic acid), poly(glycolic acid) and their copolymers [8]–[11]. 

Among them, polycaprolactone (PCL) is a semicrystalline linear aliphatic polyester, widely 

applied in biomedicine due to its good mechanical properties, biocompatibility and slow 

biodegradability, being suitable for applications which require certain structural durability [12]–

[17]. However, the lack of hydrophilic functional groups in the chemical structure of the PCL 

macromolecules have prevented this material from an extended application as an individual 

component. Several strategies such as coating, grafting or blending with other components have 

been suggested in order to improve the cell affinity of the scaffolds [18]. Actually, several 

hydrophilic biopolymers including collagen, gelatin, fibrinogen or elastin have been considered 

to improve the scaffold hydrophilicity and biocompatibility [19]. Gelatin (Ge) is a natural 

biopolymer of excellent biocompatibility, biodegradability and low cost in comparison to 

collagen. It contains Arginyl-Glycyl-Aspartic amino acid sequence, which offers biochemical 

signals to promote cell adhesion, migration, proliferation and differentiation [20]. Thus, the 

combination of PCL and Ge into a nanofibrous scaffold would retain the mechanical properties 

of PCL with an improved cell affinity brought by the Ge. Actually, PCL/Ge nanofibrous scaffolds 

have been proposed as a versatile substrate for cell seeding of different tissues, including skin 

[21]–[26], muscle [27], cardiovascular [28], [29], nerve [30]–[32], bone [33]–[36] and cartilage 

[37], [38]. 

The suitability of the electrospinning process is known to depend on the synergistic effect of the 

solution and processing conditions [39]–[41]. Traditionally, highly toxic halogenated solvents 

such as chloroform, hexafluoroisopropanol, trifluoroethylene, dimethylformamide, methylene 

chloride or dichloroethane have been required for the effective electrospinning of PCL and Ge 
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[40], [42], [43]. In the last years, some alternative solvents such as acetone [44], acetic acid [45], 

acetic acid/ethyl acetate [46], tetrahydrofuran/methanol [47], tetrahydrofuran [40] or 

formic/acetic acid mixture [48]–[50] have been proposed for the electrospinning of the PCL. 

These solvents allow minimizing the risk to health during manipulation [51] and reduce the 

toxicity of the scaffolds due to retained residual solvent [52]. For the electrospinning of Ge, low-

toxic alternative solvents have also been considered, including acetic acid [53], [54] or ethyl-

acetate/acetic acid  in water [55]. Specifically, the formic/acetic mixture has been considered as 

a suitable candidate for the electrospinning of PCL/Ge scaffolds [56]–[59].  

Some studies in the bibliography correlate the influence of several features of the scaffolds on 

their subsequent performance such as the composition, the fibre diameter, the scaffold porosity, 

the molar mass, the glass transition temperature or the crystallinity degree, among others [60]–

[65]. The hydrolytic degradation of the PCL molecules in the formic/acetic mixture and results in 

the reduction of the polymer molar mass, and thus some of the physicochemical properties of the 

electrospun scaffolds could be expected to be altered as a function of the dissolution time [49]. 

Indeed, the physicochemical behaviour of PCL/Ge scaffolds has not been correlated to the 

dissolution time of the polymer in the formic/acetic acid solution before electrospinning, and 

therefore represents an interesting line of research for the tailoring of biomedical scaffolds. 

The aim of this study was therefore to obtain tailored nanofibrous PCL/Ge scaffolds in terms of 

the blend composition and the dissolution time into a hydrolytic formic/acetic acid (1:1) solvent, 

and correlate them with the impact on the structure, morphology and performance of these 

scaffolds. 

2. Materials and methods

2.1. Materials 

Polycaprolactone (PCL) was supplied by Perstorp as 3 mm diameter pellets under the grade 

CAPA™ 6800 (Mn = 85000 g·mol-1 and Tm 58-60 ºC). Gelatin (Ge) from porcine skin Type A, 

gel strength 300, was supplied by Sigma-Aldrich. Formic acid and acetic acid (≥99%) were used 

as solvents for electrospinning. Tetrahydrofuran (≥99.8%) was used for SEC sample preparation 

and analysis. All solvents were supplied by Sigma-Aldrich and were used without further 

purification. 

2.2. Polymer solution and electrospinning 

Nine blended compositions of PCL/Ge were prepared, ranging from 100/0 to 20/80 by weight 

proportion, by steps of 10 %wt. The solutions for electrospinning were prepared in a 1:1 

formic/acetic acid mixture, with a total solid concentration of 15 %wt and were electrospun after 
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being subjected to 30 ºC and magnetic stirring for 24, 48, 72, 96 and 120 h. The dissolution time 

ranged between the minimum time to reach complete dissolution (24 h) and the time in which the 

viscosity of the solution still ensured stable electrospinning (120 h). 

Nanofibrous scaffolds were obtained by means of a Bioinicia FLUIDNATEK® LE-10 

electrospinning equipment, which contents a high voltage source, a programmable syringe pump, 

a HSW NORM-JECT 20 mL Luer Lock syringe, a Teflon® tubing, a gauge 21 metallic needle 

and a grounded flat collector. The tip-to-collector distance was maintained constant at 15 cm. The 

feeding rate and voltage varied as dissolution time increased between 1 to 0.2 mL·h-1 and 25 to 

19 kV, respectively. The working time was adjusted for each case as a function of the feeding rate 

in order to obtain nanofibrous structures with comparable surface density. The temperature and 

relative humidity (RH) were kept constant along electrospinning at 22 ºC and 35% RH, 

respectively. The nanofibrous scaffolds were collected on waxed paper, dried and stored for 

further analyses. 

2.3. Scaffold characterization 

2.3.1. Field-emission scanning electron microscopy (FE-SEM) 

The surface topology of the specimens was analysed by means of a Zeiss Ultra 55 field emission 

scanning electron microscope (FE-SEM). The samples were cut into small pieces and dried at 50 

ºC in a vacuum oven for 24 h and then kept in a desiccator during 48 h. Afterwards, the specimens 

were mounted on metal studs and sputter-coated with a platinum layer during 10 s using a Leica 

EM MED020 sputter coater. FE-SEM images were taken at 22 ºC with a 2 kV voltage. The fibre 

diameters were measured from the scanning electronic microscope images (10 000×) at random 

locations (n = 100) with the aid of the Image J® software. 

2.3.2. Thermogravimetric analysis (TGA) 

The thermo-oxidative decomposition profiles were obtained by means of a Mettler-Toledo TGA 

851 thermogravimetric analyser. The samples, with a mass of about 4 mg were introduced in TGA 

Mettler-Toledo perforated alumina crucibles, with capacity of 70 μl. The samples were analysed 

in the temperature range of 25 to 800 °C with a heating rate of 10 °C·min-1, under atmosphere of 

oxygen at a flow rate of 50 ml·min-1. The experiments were performed in triplicates to ensure 

reproducibility. 

2.3.3. Size exclusion chromatography (SEC) 

Size exclusion chromatography (SEC) was carried out by means of a Malvern Instruments 

OMNISEC RESOLVE chromatograph. It combined an integrated pump, a degasser, an 

autosampler and a column oven, along with a Malvern Instruments OMNISEC REVEAL multi-
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detector ‒Ultraviolet (UV), Refractive Index (RI), Low and Right Angle Light Scattering (LALS 

and RALS) and Viscosity (VISC)‒. A monodisperse polystyrene standard with dn/dc value of 

0.185 was used for universal calibration. Two columns from Malvern Instruments (T2000 and 

T4000) were used (300×8 mm). Tetrahydrofuran (THF) was used as mobile phase at a flow rate 

of 1 mL·min-1 and a column temperature of 35 ºC. The samples were dissolved in THF with 

concentrations of around 2.0 mg·ml-1 and filtered through 0.45 µm PTFE filters. Two specimens 

per sample were analysed and the obtained data were assessed in triplicates with the aid of the 

OMNISEC V10™ software, and the averages were taken as representative values. 

2.3.4. Differential scanning calorimetry (DSC) 

The calorimetric data were obtained by means of a Mettler-Toledo DSC 820e differential scanning 

calorimeter, previously calibrated following the procedure of In and Zn standards. The samples, 

with a mass of about 4 mg, were analysed between 0 and 80 ºC with a heating/cooling/heating 

rate of 10 °C·min-1. All the experiments were run under nitrogen atmosphere at 50 mL·min-1. The 

specimens were characterised at least by triplicate and the averages of temperatures and enthalpies 

were taken as representative values. 

The crystallinity degree (Xc) was evaluated from the melting enthalpy results, by means of the 

Equation 1, 

𝑋𝑐  (%) =
∆ℎ𝑚

𝑤𝑃𝐶𝐿·∆ℎ𝑚
0 · 100 (Equation 1) 

where ∆hm is the melting enthalpy of the PCL melting, wPCL is the weight fraction of the PCL in 

the sample and ∆hm
0 is the melting enthalpy of a perfect crystal of PCL (148 J·g-1) [66]. 

2.3.5. Water contact angle 

The wettability of the scaffolds was characterized according to its water contact angle at 22 ºC. 

The static contact angle was evaluated by means of a Theta Optical Tensiometer (KSV 

Instruments, Ltd) and a CCD (charge-coupled device) camera connected to a computer. 2 μL of 

distilled water were dropped on the sample surface and, after 2 s, the contact angle was measured. 

The assays were repeated at three different sites of a given sample to ensure reproducibility. 

3. Results and discussion

3.1. Validation of the electrospinning strategy 

In order to validate the scaffold composition, the study of the thermo-oxidative decomposition 

behaviour was considered as an appropriate methodology, as proposed by Gautam et al. [67]. The 
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thermo-oxidative decomposition profiles as a function of the scaffold composition are plotted in 

Figure 1. 

Figure 1. Thermo-oxidative decomposition profiles of electrospun scaffolds as a function of the scaffold composition 

(PCL/Ge) for a dissolution time of 24 h. 

Pure PCL (100/0) showed a multiple stage decomposition performance. Humidity loss was 

observed in stage A, and primarily decomposition was found in stage B, followed by a secondary 

decomposition in stage C, reaching complete decomposition between 350 °C and 520 °C, as 

corroborated by literature [67], [68]. The decomposition profile of pure Ge (0/100) consisted of 

multiple stages. The vaporization of moisture took place between 50 and 230 ºC in the stage A, 

while the main decomposition stage occurred between 250 ºC and 400 ºC in the stage B. Then the 

thermo-oxidative decomposition continued until 600 ºC in the stages C and D. This multiple stage 

behaviour was ascribed to a complex thermo-oxidative decomposition process that involves 

protein rupture and breakage of the peptide bond, in line with previous research [34], [69].The 

scaffolds showed an intermediate behaviour combining the thermo-oxidative decomposition 

stages of both pure components. The increase of the Ge content progressively displaced the onset 

of the decomposition towards lower temperatures as well as promoted the decomposition in stages 

A and D [26]. Although the main degradation stages of the PCL and Ge in the scaffolds were 

overlapped, the study of the horizontal step for each stage, especially for stages B and D, revealed 

a progressive behaviour as a function of the scaffold composition, as gathered in Table 1. 

According to bibliography, this phenomenon suggested a blending interaction between both 

components through hydrogen bonding between the ester group of the PCL and the amine group 

of Ge molecules within the scaffold [26], [67], [70].  



8 

Table 1. Mass loss (%) in the different stages during thermo-oxidative decomposition of electrospun scaffolds for a 

dissolution time of 24 h. Standard deviation between 3 and 5% omitted for the sake of clarity. 

(PCL/Ge) Mass loss (%) 

(%wt) Stage A Stage B Stage C Stage D 

100/0 - 88.04 10.91 - 

80/20 - 75.60 10.59 8.79 

60/40 1.00 73.55 11.49 10.62 

40/60 4.05 68.28 11.26 13.92 

20/80 7.02 46.65 10.80 31.27 

0/100 8.15 40.77 9.38 38.28 

The scanning electron microscope images of the electrospun scaffolds as a function of the PCL/Ge 

composition and dissolution time are shown in Figure 2. Practicable scaffolds (), i.e, scaffolds 

which were adequately handled without mechanical disaggregation of fibres, were found after 24 

h and 48 h of dissolution for all the studied compositions. However, as dissolution time increased, 

the scaffold usability was altered as perceived by the formation of ultra-thin fibres and micro-

scaled beads. Nevertheless, the increase of the Ge content improved the electrospinning viability 

after high dissolution times, giving rise to more stable and practicable scaffolds. 

Figure 2. FE-SEM images (10 000×) of electrospun scaffolds as a function of the scaffold composition and the 

dissolution time. () Refer to the practicable scaffolds. 
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3.2. Hydrolytic degradation of the PCL fraction 

It is well known that suitable electrospinning depends on the confluence of several conditions and 

requirements [39]. Among them, one of the main factors is the solution viscosity, which is in turn 

affected by several elements such as the solution concentration, the polymer molar mass or the 

temperature [5]. Since the solid concentration (15 %wt) and the temperature remained constant, 

the hypothetic molar mass reduction due to the PCL chain scission may have resulted in 

excessively low viscosity for suitable electrospinning after high dissolution time. Although the 

hydrolysis and subsequent viscosity reduction of the Ge as a function of time when diluted in 

formic acid has been reported by Ki et al. [71], the addition of Ge to the blend may have 

contributed to retain enough viscosity for suitable electrospinning, particularly for high 

dissolution times, when the PCL molecules were severely hydrolytically degraded. 

In order to evaluate the change in the molar mass of the PCL fraction of the scaffolds when diluted 

into the formic/acetic mixture, size exclusion chromatography (SEC) measurements were 

conducted regardless the formation of practicable electrospun scaffolds. The molar mass 

distributions are plotted in Figure 3a as a function of the dissolution time for all PCL/Ge 

compositions. When the dissolution time increased, a displacement of the molar mass 

distributions towards lower values was observed, due to hydrolytic degradation of the ester bond 

and subsequent chain scission [49], as visually suggested during the electrospinning solution 

preparation. The chain scission is frequently terminated by carboxylic acid end groups and 

hydroxyl end groups [72]. The hydrolytic reaction may occur as a depolymerisation process and 

random chain scission mechanism, highly catalysed by the formic/acetic acid solution. 

Two different behaviours could be distinguished, depending on the prevalence of one component 

or the other in the scaffold. For scaffolds with high PCL content, a low molar mass peak (around 

10 000 g·mol-1) appeared and increased for high dissolution times, turning the original unimodal 

distribution into a bi-modal pattern. In contrast, for scaffolds with high Ge content, a complex 

multi-modal behaviour was found, attributed to the emulsion of PCL into the Ge matrix diluted 

in the formic/acetic acid mixture [57]. The dissimilar hydrolytic degradation of the PCL during 

dissolution in the acidic mixture may be ascribed to the formation of a disperse phase (PCL) into 

a continuous matrix (Ge), as reported by Kolbuk et al. [59]. 

The evolution of the average molar mass in number (Mn), the intrinsic viscosity (IV) and the 

hydrodynamic radius (Rh), respectively, are shown in Figure 3b, 3c and 3d through 3D plots as 

a function of the blend composition and dissolution time. 
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Figure 3. (a) Molar mass distributions as a function of the dissolution time for the different PCL:Ge compositions. 

Dash lines stand for non-practicable scaffolds; (b) Average molar mass; (c) Intrinsic viscosity; and (d) Hydrodynamic 

radius as a function of the scaffold composition and dissolution time. 
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The analysis of the intrinsic viscosity (IV) and the hydrodynamic radius (Rh) of the PCL in the 

solvent used for the chromatographic analyses (THF) corroborated the hydrolytic degradation of 

the polymer. A reduction of the polymer chain length promoted lower number of macromolecular 

entanglements, which is closely related to the IV, and lower apparent size, associated to the Rh. 

Shorter and smaller macromolecules exhibited lower equivalent radius as dissolution time 

increased. 

The average molar mass in number (Mn) values for the practicable and non-practicable conditions 

are gathered in Table 2. An estimation of the critical PCL molar mass to get suitable scaffolds 

for a given solution concentration can be thus established for the different scaffold compositions 

and dissolution times. The Mn significantly decreased as a function of the dissolution time, 

especially after 24 h of dissolution. The lowest Mn values were found for the scaffolds with high 

Ge percentage, electrospun after 120 h of dissolution. 

Table 2. The average molar mass in number (Mn, g·mol-1) of the PCL fraction for the practicable and non-practicable 

(italics) conditions. Standard deviation between 2 and 5% omitted in the table for the sake of clarity. D.T. stands for 

dissolution time. 

D.T. 

(h) 

Scaffold composition (PCL/Ge) (%wt) 

100/0 90/10 80/20 70/30 60/40 50/50 40/60 30/70 20/80 

24 36000 33000 34000 35500 36900 31200 29400 28900 31900 

48 22900 23100 27500 21600 25000 18500 17000 16000 20500 

72 17700 19600 17300 19200 18500 16800 12100 11200 11500 

96 14800 15600 15100 13000 12300 12900 12800 9900 10500 

120 12900 11400 13400 9900 9100 8300 6900 6100 6600 

3.3. Scaffold characterisation 

3.3.1. Surface morphology 

The analysis of the morphology of the practicable electrospun scaffolds was performed in terms 

of the fibre diameter, from scanning electron microscope images. The fibre diameter distributions 

are represented in Box-Whisker plots in Figure 4 as a function of the scaffold composition and 

the dissolution time. 

The fibre diameter remained in the nanoscale range for all the studied scaffolds, which is crucial 

to mimic the extra-cellular matrix size, an essential requirement for satisfactory cell attachment 

and proliferation [6]. Moreover, the fibre diameter obtained from the electrospinning of the 

formic/acetic acid solution was lower to that found by other authors that used traditional 

halogenated solvents [25], [26], [34], [36], [67], [73], [74]. Unimodal distributions were found 

regardless the composition with average values between 100 and 200 nm for scaffolds prepared 

after 24 h of dissolution. For a given composition, thinner fibres were observed with mean 
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diameter with lower standard deviation as a function of the dissolution time. It is interesting to 

note that the fibre diameter of the scaffolds obtained after the longest practicable dissolution time 

decreased to about half of the initial value (75-100 nm). Although several factors such as 

temperature, feeding rate or voltage may influence the fibre diameter during electrospinning, the 

reduction in the solution viscosity can be ascribed as the main cause of the fibre diameter decrease. 

This fact revealed lower molar masses and smaller hydrodynamic radiuses, which produced the 

subsequent lower entanglement capability and resulted in nanostructured scaffolds with lower 

fibre diameter. 

Figure 4. Fibre diameter distributions of the practicable electrospun scaffolds as a function of the scaffold 

composition and the dissolution time. 

3.3.2. Thermal properties 

Calorimetric analyses were conducted on the nanofibrous PCL/Ge scaffolds in order to study the 

fibre microstructure by the characterisation of the crystalline population, which is known to play 

a key role during the nanofibrous scaffold application [75]. The use of the differential scanning 

calorimetry (DSC) is essential to understand the thermal properties of the biopolymers subjected 

to different degrading conditions [76]–[80]. Indicators of the degradation such as the partial 

melting areas [77], the crystallinity degree [81], the relative partial crystallinity [82] or the balance 

among amorphous and rigid amorphous fractions [83] have been previously proposed for 

monitoring the degradation of some biopolymers. In this study, the balance between the evolution 

of the crystallinity degree and the lamellar thickness offers interesting discussion, as shown 

hereinafter. The calorimetric traces of the first heating scan for the different compositions and 

dissolution times are shown in Figure 5. 
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Figure 5. DSC first-heating traces of electrospun scaffolds as a function of the scaffold composition and the 

dissolution time. Dash lines are used for the non-practicable scaffolds. 

A general overview of the DSC thermograms showed different melting behaviours depending on 

the composition of the scaffolds, in line with the observation of Kolbuk et al. through polarized 

optical microscopy [59]. For the PCL/Ge scaffolds with compositions ranging from 100/0 to 

50/50, a typical semicrystalline behaviour was perceived. They showed a melting transition 

associated to PCL (~62 ºC) that moved towards lower values as the PCL content decreased [57]. 

Then, an almost negligible wide endotherm from 20 to 120 ºC associated to the water release from 

Ge molecules was observed [57]. For the 40/60, 30/70 and 20/80 scaffolds, the melting behaviour 

associated to the PCL crystalline population moved towards lower temperatures until 

disappearance, while the wide endotherm from 20 to 120 ºC gained importance. The melting 

temperatures (Tm) for all compositions are gathered in Table 3. Since the characteristic peak of 

the helix to random coil transition of the Ge (225 ºC) was not observed for these scaffolds, a 

random coil conformation of the Ge was expected [34]. Therefore, the formic/acetic acid mixture 

used as solvent for electrospinning may have denaturalised the helix conformation to random coil 

[45], [71]. 

As the dissolution time increased, the melting temperature of the PCL decreased for all 

compositions. The melting events were revealed sharper and displaced towards lower 

temperatures. Shorter PCL molecules caused by the advance of the hydrolytic degradation 

resulted in the formation of crystalline domains that melted at lower temperatures. This 

observation suggested that the hydrolytic degradation of the PCL molecules resulted in lower 

lamellar thickness and more concise crystalline populations, according to our previous results 

[49]. 
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Table 3. PCL melting temperatures (Tm, ºC) as a function of the scaffold composition and the dissolution time. D.T. 

stands for dissolution time. 

D.T. Scaffold composition (PCL/Ge) (%) 

(h) 100/0 90/10 80/20 70/30 60/40 50/50 40/60 30/70 20/80 

24 61.6 ±0.4 61.7 ±1.1 60.5 ±1.2 61.0 ±0.8 60.8 ±0.4 59.0 ±0.6 59.6 ±0.1 58.9 ±0.4 59.7 ±0.1 

48 63.2 ±0.2 61.5 ±0.1 60.4 ±0.1 60.3 ±0.1 62.8 ±0.1 58.7 ±0.0 58.1 ±0.2 58.5±0.1 58.1 ±0.5 

72 58.4 ±0.1 58.6 ±0.4 62.0 ±0.1 61.1 ±0.5 61.3 ±0.1 62.1 ±0.1 57.3 ±0.4 59.2 ±0.2 - 

96 59.1 ±0.1 58.3 ±0.3 60.8 ±0.5 58.5 ±0.3 58.8 ±0.1 58.0 ±0.1 57.6 ±0.2 58.6 ±0.1 - 

120 58.8 ±0.1 58.5 ±0.1 60.3 ±0.2 57.7 ±0.1 58.3 ±0.1 58.2 ±0.2 57.3 ±0.0 55.1 ±0.5 - 

The evolution of the crystallinity degree (Xc) for practicable scaffolds is plotted in Figure 6. 

There, the influence of the PCL and Ge concentration was perceived. For the scaffolds with 

PCL/Ge compositions ranging from 100/0 to 50/50, an increasing tendency of the Xc was 

perceived, reaching the maximum for the 50/50 composition. Then, the increase in the Ge content 

lowered the Xc. According to bibliography, the high content of Ge allowed the diffusion of PCL 

molecules which hindered its crystallisation [59]. Therefore, a predominantly amorphous 

structure was expected for scaffolds with high Ge content. 

Figure 6. Crystallinity degree (Xc) of the practicable electrospun scaffolds as a function of the scaffold composition 

and the dissolution time (D.T.). 

The scaffolds with high PCL content, from 100/0 to 60/40, showed an increasing tendency of the 

Xc as a function of the dissolution time, as a consequence of the hydrolytic degradation of the 

PCL chains. Shorter macromolecular segments with enhanced mobility were more capable of 

forming crystalline domains than longer segments. Shorter segments promoted enhanced 

crystallisation and orientation along the fibre axis [15]. However, scaffolds with high 

concentration of Ge, from 50/50 to 20/80, showed lower crystallinity degree as dissolution time 

increased. As observed in the previous section by the SEC analysis, the higher hydrolytic 

degradation of the PCL segments for these compositions seemed to result in too short PCL 

segments to develop substantial crystallisation. In addition, the lower molar mass and lower 
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hydrodynamic radius found in previous sections corroborates the presumable diffusion of the PCL 

macromolecules into the Ge matrix, thus hindering the PCL crystallisation. 

3.3.3. Wettability 

Due to the biomedical purpose of these PCL/Ge scaffolds, an adequate wettability is of crucial 

importance, since it is related to the attachment, proliferation, migration and viability of cells [84], 

[85]. Therefore, the water contact angle of the practicable scaffolds is shown in Figure 7 as a 

function of the composition and the dissolution time. 

Figure 7. Water contact angle values (left) and selected drop pictures (right) of the practicable electrospun scaffolds 

as a function of the scaffold composition and the dissolution time (D.T.). 

The pure PCL scaffold showed a contact angle of 134º, corroborating its hydrophobic behaviour 

[45]. A crystallised structure, along with the absence of available functional groups to interact 

with water molecules, reduced water affinity and resulted in high contact angles. On the one hand, 

PCL/Ge scaffolds with compositions ranging from 80/20 to 60/40 showed similar values than that 

of pure PCL. Although the Ge content increased, the PCL crystalline structure reduced the 

hydrophilic effect of the Ge. On the other hand, for PCL/Ge scaffolds with compositions between 

40/60 and 20/80, the water contact angle decreased, suggesting higher wettability. This fact can 

be correlated with the highly hydrophilic nature of the Ge macromolecules containing amide, 

amine and carboxyl groups available to interact with water molecules [86]. 

Concerning the effect of the dissolution time, it promoted an increase of the wettability of 

scaffolds, especially for the PCL/Ge scaffolds with compositions between 40/60 and 20/80. The 

highly hydrolytically degraded PCL segments with new carboxyl groups available to interact with 

water molecules favoured the wettability of the scaffolds [32]. Indeed, the scaffolds with high 

content of Ge after long dissolution time showed complete water impregnation (0º). 
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4. Conclusions

Ultrathin nanofibrous scaffolds were successfully obtained by electrospinning of 

polycaprolactone (PCL) and gelatin (Ge) in a 1:1 formic/acetic acid solvent at PCL/Ge 

compositions ranging from 100/0 to 20/80 %wt in steps of 10 %wt. The influence of the 

dissolution time in the hydrolytic acid solvent was found to play a key role in the resultant molar 

mass, fibre morphology, crystallinity and wettability of the electrospun scaffolds.  

The hydrolytic degradation of the ester bond of PCL segments was corroborated by the reduction 

of the intrinsic viscosity, molar mass and hydrodynamic radius as a function of the dissolution 

time. It reduced the number of effective entanglements between PCL segments. Accordingly, the 

fibre diameter of the electrospun scaffolds decreased as a function of the dissolution time for all 

the studied compositions. The fibre diameter remained in the nanoscale range for all the studied 

scaffolds, which is crucial to mimic the extra-cellular matrix size. 

An effective tailoring of the PCL/Ge scaffolds was achieved through the defined acidic solvent 

system. These tailored scaffolds will show dissimilar performance at service conditions, affecting 

to factors such as the scaffold degradability or cell culture viability, among others. Future 

investigations will open up the possibility of studying the differentiation ability of cells onto these 

devices and study their biodegradation behaviour when implanted in vivo. 
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