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54 

ABSTRACT 55 

In plants, phosphoglycerate kinase (PGK) converts 1,3-bisphosphoglycerate into 3-56 

phosphoglycerate (3-PGA) in glycolysis, but also participates in the reverse reaction in 57 

gluconeogenesis and the Calvin-Benson cycle. In the databases we found three genes 58 

that encode putative PGKs. PGK1 was localized exclusively in the chloroplasts of 59 

photosynthetic tissues, while PGK2 was expressed in the chloroplast/plastid of 60 

photosynthetic and non-photosynthetic cells. PGK3 was ubiquitously expressed in the 61 

cytosol of all studied cell types. Measurements of carbohydrate content and 62 

photosynthetic activities in PGK mutants and silenced lines corroborated that PGK1 63 

was the photosynthetic isoform, while PGK2 and PGK3 were the plastidial and 64 

cytosolic glycolytic isoforms, respectively. The pgk1.1 knock-down mutant displayed 65 

reduced growth, lower photosynthetic capacity and starch content. The pgk3.2 knock-66 

out mutant was characterized by a reduced growth, but a higher starch levels than the 67 

wild-type. The pgk1.1 pgk3.2 double mutant was bigger than pgk3.2, and displayed an 68 

intermediate phenotype between the two single mutants in all measured biochemical 69 

and physiological parameters. Expression studies in PGK mutants showed that PGK1 70 

and PGK3 were down-regulated in pgk3.2 and pgk1.1, respectively. These results 71 

indicate that the down-regulation of photosynthetic activity could be a plant strategy 72 

when glycolysis is impaired to achieve metabolic adjustment and optimize growth. The 73 

double mutants of PGK3 and the triose-phosphate transporter (pgk3.2 tpt3) displayed a 74 

drastic growth phenotype, but were viable. This implies that other enzymes or non-75 

specific chloroplast transporters could provide 3-PGA to the cytosol. Our results 76 

highlight both the complexity and the plasticity of the plant primary metabolic network.  77 

78 

79 
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82 

INTRODUCTION 83 

Glycolysis was the first metabolic pathway to be fully elucidated biochemically in the 84 

1940s (Plaxton, 1996). It is a central pathway in most living organisms, where it 85 

provides energy in the form of ATP and reducing power, pyruvate to fuel the 86 

tricarboxylic acid cycle (TCA), and precursors for secondary metabolism, amino acid, 87 

and fatty acid biosynthesis (Plaxton, 1996). In plants glycolysis is more complex than in 88 

animals, since it occurs independently in two compartments, the plastid and the cytosol. 89 

Besides, according to the genome databases (https://www.arabidopsis.org/), there is 90 

more than one isoform for each glycolytic reaction, and some of them are represented 91 

by more than 40 annotations. In spite of the important advances made in the functional 92 

characterization of both cytosolic and plastidial glycolytic enzymes (Sparla et al., 2005; 93 

Fermani et al., 2007; Muñoz-Bertomeu et al., 2009; Chen and Thelen, 2010; Prabhakar 94 

et al., 2010; Zhao and Assmann, 2011; Guo et al., 2012; Wakao et al., 2014), the 95 

relative contribution and the degree of integration of both pathways in different cell 96 

types are still far from being completely understood. In addition, some of the reactions 97 

of the plastidial glycolytic pathway are shared by the Calvin-Benson cycle although 98 

operating in the opposite direction. Specifically, glyceraldehyde-3-phosphate 99 

dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) could participate in the 100 

same compartment and/or at the same time in photosynthetic and 101 

glycolytic/gluconeogenic reactions (Fig. 1). For this reason, the functional 102 

characterization of both GAPDH and PGK isoforms is of crucial importance. 103 

Plant GAPDH isoforms have been extensively characterized at genetic, biochemical and 104 

molecular levels (Sparla et al., 2005; Hajirezaei et al., 2006; Fermani et al., 2007; 105 

Holtgrefe et al., 2008; Muñoz-Bertomeu et al., 2009, 2010; Guo et al., 2012; Guo et al., 106 

2014; Anoman et al., 2015; Han et al., 2015). However, little attention has been paid to 107 

the functional characterization of PGKs. These enzymes are essential in the metabolism 108 

of most living organisms and their sequence has remained highly conserved throughout 109 

evolution (Longstaff et al., 1989). They catalyze the reversible transfer of a highly 110 

energetic phosphate group at position one of the 1,3-bisphosphoglycerate to ADP to 111 

give rise to 3-phosphoglycerate (3-PGA) and ATP, and vice versa. PGKs from different 112 

species have been isolated in both animals and plants (Krietsch and Bucher, 1970; 113 

McCarrey and Thomas, 1987; Longstaff et al., 1989; Kopke-Secundo et al., 1990; 114 

McMorrow and Bradbeer, 1990; Lobler, 1998). Two PGK isoforms (PGK1 and PGK2) 115 

encoded by two genes have been identified in humans. PGK1 is expressed in all somatic 116 

cells, including red blood cells (Willard et al., 1985; McCarrey and Thomas, 1987; 117 

Chiarelli et al., 2012), while PGK2 is sperm-cell specific (Boer et al., 1987). PGK1 has 118 

been implicated in the metabolism of tumor cells (Lay et al., 2000; Hwang et al., 2006; 119 

Zieker et al., 2008, 2010; Ai et al., 2011), and also in nuclear DNA replication and 120 

repair (Popanda et al., 1998). PGK2 is essential for sperm motility and fertility 121 

(Danshina et al., 2010). 122 

In plants, PGKs are involved in not only glycolysis/gluconeogenesis but also in 123 

photosynthetic carbon metabolism. Two highly conserved PGK isoforms were initially 124 

identified in wheat (Longstaff et al., 1989). One of them being located primarily in the 125 

cytosol, while the other was plastid-localized (Anderson and Advani, 1970). Although 126 

the two PGKs could theoretically catalyze both the forward and reverse reactions, it was 127 

assumed that the cytosolic isoform is involved in glycolysis and gluconeogenesis, while 128 

the plastidial isoform participates, at least in photosynthetic cells, in both the Calvin-129 
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Benson cycle and plastidial glycolysis (Anderson et al., 2004). However, this latter 130 

assumption has not been thoroughly investigated to date. Subsequently, a second 131 

cytosolic PGK isoform from Helianthus annus was cloned (Troncoso-Ponce et al., 132 

2012), and in the Arabidopsis genome an additional putative PGK isoform with a N-133 

terminal plastid/chloroplast localization signal was identified (Ouibrahim et al., 2014). 134 

The presence of two PGKs in the plastid/chloroplast could lead to a specialization so 135 

that one of them could be involved in photosynthesis and the other in glycolysis, which 136 

seems to be the case of GAPDH isoforms (Anoman et al. 2015). Indeed a mutant of one 137 

of the Arabidopsis plastidial isoforms (At1g56190; AtPGK2) has been described as 138 

lethal (Myouga et al., 2010; Ouibrahim et al., 2014), which suggests that the two 139 

plastidial isoforms are not functionally redundant and likely play different roles in plant 140 

metabolism. Moreover, chloroplastic and cytosolic PGKs proteins were localized in the 141 

nucleus by immunocytolocalization experiments in peas (Anderson et al., 2004) which 142 

is in keeping with the presence of functional nuclear localization signals in the cytosolic 143 

PGK (Brice et al., 2004). This fact has led to the hypothesis that PGKs are able to act as 144 

“moonlighting” proteins playing other roles apart from their participation in 145 

metabolism. Accordingly, plastidial PGK2 has been shown to play a role in tolerance to 146 

abiotic (Liu et al., 2015; Joshi et al., 2016) and biotic (Ouibrahim et al., 2014) stresses. 147 

PGK2 has proven to be necessary for watermelon mosaic virus infection (Ouibrahim et 148 

al., 2014). Specifically, PGK2 could mediate the transport of viruses to the chloroplast 149 

(Lin et al., 2007; Cheng et al., 2013). The in vitro regulation of some PGK isoforms has 150 

been studied (Troncoso-Ponce et al., 2012; Morisse et al., 2014). It has been shown that 151 

the chloroplastic isoform of Chlamydomonas reinhardtii could be light-regulated by 152 

thioredoxins (Morisse et al., 2014).  Furthermore, at the biochemical level, glycolytic 153 

PGKs activity has been reported to increase in sunflower developing embryos in 154 

conjunction with the oil content (Troncoso-Ponce et al., 2009). It has also been shown 155 

that PGK and enolase are two of the activities implicated in the differences in oil 156 

content between standard and low oil content sunflower lines (Troncoso-Ponce et al., 157 

2010). Yet to date, no genetic or molecular evidence has been found to support the 158 

metabolic function of specific PGKs. In this work, we have followed a loss-of-function 159 

approach to functionally characterize all the glycolytic and photosynthetic isoforms 160 

annotated in the Arabidopsis genome at both molecular and physiological levels. We 161 

unraveled the specific contribution of each isoform to the primary metabolism of aerial 162 

parts (AP) and roots, and concluded that both glycolytic and photosynthetic isoforms 163 

are co-regulated to maintain the equilibrium between catabolic and anabolic processes. 164 

165 

RESULTS 166 

Expression analysis and subcellular localization of the PGK family 167 
In the Arabidopsis Information Resource database (TAIR; http://www.arabidopsis.org) 168 

we found three genes encoding putative PGKs: At3g12780, At1g56190 and At1g79550. 169 

According to the literature we named the proteins coded by these genes PGK1, PGK2 170 

and PGK3, respectively. PGK1 displays 91% and 84% of amino acid identity with 171 

PGK2 and PGK3, respectively, while the amino acid identity between PGK2 and PGK3 172 

is 85%. The three isoforms show 100% identity in all residues that form the putative 173 

catalytic site and the ligand binding domain (Supplemental Fig. S1A). The cladogram 174 

confirmed that PGK1 and PGK2 are more closely related to one another than to PGK3 175 

(Supplemental Fig. S1B). We next assessed the expression patterns of the PGK family 176 

genes by quantitative real-time (RT) PCR and by analysis of promoter-GUS fusions in 177 
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both seedlings and adult plants. PGK1 was expressed mainly in the leaves, and very 178 

poorly in roots at both seedling and adult stages (Fig. 2A and B). PGK2 was also 179 

expressed mainly in leaves especially at the seedling stage, but at the adult stage its 180 

relative expression in roots, siliques and flowers was higher than that of PGK1. By 181 

contrast to PGK1 and PGK2, PGK3 was highly expressed in roots, especially at the 182 

seedling stage. At the adult stage its expression pattern was the most homogeneous of 183 

all three PGKs, being expressed similarly in all organs studied. These data confirm 184 

publically available microarray expression data (http://bar.utoronto.ca/efp/cgi-185 

bin/efpWeb.cgi). The promoter-GUS analysis revealed a generalized expression of 186 

PGK1 in leaves and cotyledons, especially in guard cells and the surroundings of the 187 

vasculature, in petals and sepals, and confirmed the lack of PGK1 expression in 188 

reproductive organs and roots (Fig. 2C and Supplemental Fig. S2). PGK2 was strongly 189 

expressed in leaf veins and margins, in the root vasculature, and in floral organs 190 

(pedicel, petals, sepals and stigma) (Fig. 2C and Supplemental Fig. S3). PGK3 was 191 

homogeneously expressed in all plant tissues with a high expression in veins and distal 192 

zones of leaves, and all over the roots, siliques and flowers (Fig. 2C and Supplemental 193 

Fig. S4). According to the ChloroP prediction server 194 

(http://www.cbs.dtu.dk/services/ChloroP/), both PGK1 and PGK2 harbor a N-terminal 195 

plastid/chloroplast localization signal (Emanuelsson et al., 1999). To investigate the 196 

subcellular localization of the PGK family proteins, we stably expressed PGK-GFP 197 

fusion protein constructs under the control of the PGKs endogenous promoters in 198 

Arabidopsis (ProPGK1:PGK1-GFP, ProPGK2:PGK2-GFP, ProPGK3:PGK3-GFP). 199 

PGK1 was expressed mainly in the cloroplasts of mesophyll cells and no signal was 200 

observed in roots (Fig. 3). PGK2 was expressed in leaf plastids/chloroplasts. In roots, 201 

PGK2 was not homogenously expressed, but displayed a high expression in the 202 

colummela  plastids. PGK3 was similarly expressed in the cytosol of both root and leaf 203 

cells (Fig. 3). PGK3 could also be localized in the nucleus as confirmed by the nuclear 204 

Hoechst marker (Supplemental Fig. S5). 205 

Phenotypic characterization of PGK mutants 206 

In order to shed light on the in vivo function of PGKs, a loss-of-function approach was 207 

followed. T-DNA insertion lines for each PGK gene were identified in the databases. 208 

The genomic location of the T-DNA insertions was verified by PCR with genomic 209 

DNA and sequencing of PCR products (Fig. 4A and Supplemental Table S1). In pgk1.1 210 

(GK_172A12) and pgk1.2 (GK_908E11), the T-DNA insertions were located in the 211 

5’UTR region (Fig. 4A).  In pgk2.1 (SALK_016097), the T-DNA insertion was located 212 

in the first exon. In pgk3.1 (SALK_062377) and pgk3.2 (SALK_066422), the T-DNA 213 

insertion was located in the fourth and fifth exon, respectively (Fig. 4A). Based on PCR 214 

genotyping, the segregation analysis of about 200 seeds from self-fertilized 215 

heterozygous plants for PGK1 or PGK3 mutant alleles pgk1.1, pgk1.2, pgk3.1 and 216 

pgk3.2 displayed a typical Mendelian ratio of 1:2:1 [homozygous mutant: heterozygous: 217 

wild-type (WT)]. RT-PCR analysis indicated that PGK3 mutants were knock-out while 218 

both PGK1 mutants were knock-down (Fig. 4B). The mutant pgk1.1 showed the lowest 219 

PGK1 expression and was chosen for further analysis (Fig. 4B). 220 

The analysis of pgk2.1 seedlings from self-fertilized heterozygous plants identified a 221 

population of albino individuals when grown in plates with sucrose, which were 222 

associated with the mutant homozygous genotype (mutant: WT phenotype ratio of 1:3). 223 

This phenotype could indicate that the homozygous pgk2.1 individuals are lethal, as 224 

formerly observed in two different T-DNA insertion lines (SALK_016097 and 225 

Salk_071724) (Myouga et al., 2010; Ouibrahim et al., 2014). PGK2 expression in 226 
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pgk2.1 was null (Fig. 4B).  However, it was not possible to complement pgk2.1 with 227 

any of the different constructs used herein (a PGK2 cDNA under the control of the 35S 228 

or native PGK2 promoter, a genomic PGK2 sequence) suggesting that there was 229 

probably more than one mutation associated with this line. Attempts to separate the 230 

albino phenotype from the T-DNA insertion by back-crosses with WT individuals were 231 

unsuccessful. As a genotype-phenotype correlation was not found, this mutant allele 232 

was discarded for further experiments. Instead PGK2 down-regulated lines were made 233 

using artificial microRNAs (amiRNA). Fifteen lines overexpressing an amiRNA 234 

directed against the PGK2 in a WT background were obtained, and two lines were 235 

selected on the basis of having the lowest PGK2 transcript level (Supplemental Fig. 236 

S6A). 237 

Growth parameters were quantified in homozygous mutants at different stages of 238 

development in vitro or in greenhouse conditions (Fig. 5). PGK3 mutants presented a 239 

significant reduction in all growth parameters measured as compared to WT controls at 240 

all growth stages analyzed (Figs. 5A, B, C and D). pgk1.1 displayed a trend to a reduced 241 

growth in plates which was significant in greenhouse conditions, where irradiance was 242 

higher (Fig. 5C). To support that the reduction of growth in pgk1.1 was associated with 243 

a lower PGK1 expression, amiRNA silenced lines were obtained (Supplemental Fig. 244 

S6B). The reduced growth of these lines corroborated the relation between PGK1 245 

expression level and growth (Figs. 5A, B and C). The amiRNA-PGK2 lines displayed 246 

milder phenotypes than mutants from other genes, and only one of the two selected lines 247 

with the lowest PGK2 expression level showed a significant reduction of rosette fresh 248 

weight as compared to controls (Fig. 5C). No changes in photosynthetic activities were 249 

observed in these lines (Supplemental Table S2). 250 

Lower photosynthetic capacity was observed in 20- and 30-day-old pgk1.1 plants, as 251 

inferred from the decreased net photosynthetic rate, and effective and maximum 252 

photochemical yield of PSII (Table 1). These results, together with the observed 253 

plastidial localization of PGK1, would suggest a role of this isoform in the Calvin-254 

Benson cycle. Accordingly, lower starch content was measured in pgk1.1 plants (Figure 255 

6A). No differences in photosynthetic parameters were observed in 20-day-old plants of 256 

pgk3.2 in comparison to WT (Table 1). In this mutant, starch levels were higher than in 257 

WT. These results alongside the localization studies, would support the hypothesis that 258 

PGK3 is involved in the cytosolic glycolysis. However, in 30-day-old plants, the 259 

photosynthetic activity decreased in pgk3.2, which suggest that low cytosolic glycolytic 260 

activity affects photosynthesis in the long term (Table 1). 261 

To further corroborate the genotype-phenotype correlation of pgk1.1 and pgk3.2, we 262 

transformed the mutants with a construct carrying the native PGK1 or PGK3 cDNA 263 

under the control of the endogenous or the 35S promoter, respectively. We were able to 264 

complement the growth phenotypes associated with both the pgk1.1 and pgk3.2 265 

mutations (Fig. 5E). Accordingly, the photosynthetic parameters were completely or 266 

partially recovered in pgk1.1 and pgk3.2 complemented lines (Table 1).  267 

268 

Metabolomics profile of down-regulated PGK lines 269 

To understand the contribution of the PGKs to the primary metabolism, we studied the 270 

metabolomics profile of the PGK mutants. A clearly altered metabolite content in the 271 

AP and roots of mutants was observed (Fig. 7 and Supplemental Table S3). 272 
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In the pgk1.1 AP, the most important changes were found in the amino acid pool. Many 273 

amino acids (threonic acid, alanine, aspartate, proline) increased by more than 40% as 274 

compared to the WT (Fig. 7 and Supplemental Table S3). Sugars were not so strongly 275 

affected and none of them varied by more than 40% as compared to the WT, although 276 

glucose and sucrose increased by 29% and 24%, respectively. In roots, the pattern of 277 

metabolite modifications differed from that obtained in the AP and the sugar levels were 278 

especially affected (Fig. 7 and Supplemental Table S4), with all the quantified sugars 279 

and sugar derivatives, with the exception of glyceraldehyde-3-phosphate, being 280 

significantly increased. Quantitatively, the most striking changes were those in the 281 

levels of fructose (103% increase) and glucose (71% increase). 282 

The pgk3.2 AP showed a general increase in amino acids and sugar levels (Fig. 7 and 283 

Supplemental Table S3). Of the 21 amino acids detected, the increases were significant 284 

in seven, while the decreases were significant only in three. Some, e.g., glutamine and 285 

O-acetyl serine, increased by more than 40%. In addition, increases were observed in 286 

more than half of the quantified sugars, and the increases in fructose (up to 164%) and 287 

glucose (113%) levels were particularly noteworthy. In the pgk3.2 roots the most 288 

prominent changes were observed in certain organic acids, e.g, succinic and citric, 289 

which increased 52% and 108%, respectively (Fig. 7 and Supplemental Table S4). As 290 

for soluble sugars, the increase was higher than that observed in the AP, especially the 291 

increases in glucose (167%) and fructose (287%). Similar changes in the pgk3.2 AP and 292 

roots were also found in the glyceric and phosphoric acid contents, which decreased in 293 

both organs.  294 

Significant changes were found in the amiRNA-PGK2 lines, but they were generally less 295 

dramatic than in the other studied mutants (Fig. 7 and Supplemental Tables S3 and S4). 296 

In the amiRNA-PGK2 AP, there was a general trend towards a decrease in the 297 

metabolite content, but only raffinose reduced by more than 40%. In roots, an 298 

increasing trend was noted in metabolite content but, once again, changes were not as 299 

drastic as in the other mutant lines (approximately 10% different from WT levels). 300 

301 

The PGK1 and PGK3 double mutation compensates the growth defects and 302 

metabolic disorders of single mutants 303 

Transcriptomics data provided in the databases (http://bar.utoronto.ca/efp/cgi-304 

bin/efpWeb.cgi) and our own RNA-seq data indicate that PGK1 is the most abundant 305 

PGK transcript in Arabidopsis leaves (PGK1:945, PGK2:118, PGK3:102 counts in the 306 

AP). PGK cytosolic activity accounts for 5-10% of total PGK activity in barley and 307 

spinach, while chloroplastic activities account for 90-95% (Kopke-Secundo et al., 1990; 308 

McMorrow and Bradbeer, 1990). These activity data well agree with the transcript 309 

abundance of PGK isoforms in the Arabidopsis AP.  310 

We observed a significant reduction in PGK total activity in the AP of 20-day-old 311 

pgk1.1 seedlings and a non-significant trend to a reduction in pgk3.2 (Figure 6B). Since 312 

PGK1 is the most abundant transcript in the AP, changes in the activity of other 313 

isoforms could be masked or be difficult to detect in this organ. However in roots, 314 

where PGK3 transcripts are the most abundant (PGK1:46, PGK2:62, PGK3:262 counts 315 

in the roots), a reduction of about 75% of total PGK activity was observed in pgk3.2, 316 

while no activity changes were observed in pgk1.1 as compared to WT. Since pkg3.2 is 317 

knock-out, the remaining 25% of PGK activity measured in the mutant roots could be to 318 

both PGK1 and PGK2 isoforms.  There were no differences in amiPGK2 PGK activity 319 
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in either AP or roots, which may imply that the silencing is not absolute and/or that it is 320 

a global minoritary isoform in both organs, as evidenced by the transcriptomics data. 321 

In 30-day-old plants, a significant reduction in the AP PGK activity was observed in 322 

both pgk1.1 and pgk3.2. Besides, this reduction was more marked in 30-day-old than in 323 

20-day-old pgk1.1 plants as compared to controls. Differences in total PGK activity in 324 

the mutant at seedling (20 day-old) and adult (30-day-old) stage could be related to 325 

changes in PGK gene expression. For this reason, we studied the PGK family gene 326 

expression in the different mutant backgrounds at different developmental stages (Fig. 327 

6C). At the seedling stage only PGK1 expression was slightly reduced in pgk3.2. 328 

However, in adult plants PGK1 and PGK3 expressions were dramatically down-329 

regulated in pgk3.2 and pgk1.1, respectively. The reduction in photosynthetic activity 330 

observed in 30-day-old pgk3.2 (Table 1) could be associated with the repression of 331 

PGK1 in the mutant at this developmental stage. 332 

All these results could indicate that PGKs expression is regulated at the transcriptional 333 

level to adjust metabolism. To corroborate this hypothesis, a double mutant of pgk1.1 334 

and pgk3.2 was generated and subsequently studied. pgk1.1 pgk3.2 did not show  more 335 

dramatic phenotypes as compared to single mutants. On the contrary, the pgk1.1 pgk3.2 336 

growth phenotype was less severe than that of pgk3.2 (Figs. 5C and D), and the starch 337 

levels and photosynthetic activities were less affected as compared to pgk1.1 (Fig. 6A 338 

and Table 1). Double mutants improved their growth and photosynthetic activities as 339 

compared to single mutants as plants were getting older, suggesting a long term 340 

compensatory effect of the double mutation (Figs. 5A, B, C and D, Table 1). 341 

The metabolite analysis confirmed a compensatory effect of the double mutation (Fig. 7 342 

and Supplemental Tables S3 and S4). For instance, some metabolites such as alanine 343 

and proline, increased in the pgk1.1 AP by more than 40% compared to WT, but did not 344 

differ significantly in the pgk3.2 AP. In pgk1.1 pgk3.2, the AP contents of such 345 

metabolites did not significantly differ from those in the WT either (Fig. 7 and 346 

Supplemental Table S3).  In the pgk3.2 AP, the metabolites that varied more than 40% 347 

but whose content did not differ with respect to WT in pgk1.1, were glutamine (80%) 348 

and fructose (164%) (Fig. 7 and Supplemental Table S3). In pgk1.1 pgk3.2, the 349 

glutamine content was significantly higher than in the control, but decreased to 30%, 350 

whereas the fructose content did not show significant differences. Finally, the contents 351 

of those metabolites that changed in the same direction in both single mutants (succinic 352 

acid, aspartate, O-acetyl-serine, citric acid and glucose) were not superior in the double 353 

mutant to those of the single mutants, but were rather intermediate or more similar to 354 

WT. The trend described above for the AP was additionally observed in roots (Fig. 7 355 

and Supplemental Table S4). 356 

357 

Blocking the flux of 3-PGA between the plastid and the cytosol accentuates the 358 

pgk3.1 phenotypes 359 

PGK3 should provide the 3-PGA needed for the essential reactions of the glycolytic 360 

cytosolic pathway. In spite of PGK3 being the sole cytosolic PGK isoform, the knock-361 

out pgk3.2 was viable. The relative 3-PGA level was not reduced but increased in 362 

pgk3.2 plants compared to WT (Fig. 8A). We postulate that some of the 3-PGA needed 363 

for respiration could be provided by plastidial glycolysis and be transported to the 364 

cytosol by the triose phosphate transporter (TPT), the main carbon transporter in the 365 

AP. To investigate this hypothesis, we interrupted the metabolite communication 366 
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between the cytosol and the plastids by generating a double knock-out mutant of pgk3.2 367 

and TPT (tpt3), (Fig. 4A).  368 

The pgk3.2 tpt3 showed a more dramatic growth phenotype than the single mutants, 369 

indicating an additive effect of the mutations (Fig. 8B). Accordingly, the starch level in 370 

the AP of pgk3.2 tpt3 was even higher than in tpt3 (Fig. 8C). The metabolomics 371 

analysis of the pgk3.2 tpt3 AP indicated that there was a general increase in amino acid 372 

content as observed in pgk3.2 (Fig. 8D and Supplemental Table S5). It is worth 373 

mentioning that serine and its derivatives (methionine and O-acetyl-serine) also 374 

increased, which could indicate an activation of the plastidial phosphorylated pathway 375 

of serine biosynthesis. When amino acids increased in both single mutants, an additive 376 

effect was always observed in the double mutants. Interestingly, the glyceric and 377 

phosphoric acid contents, which decreased dramatically in pgk3.2, increased in tpt3. In 378 

pgk3.2 tpt3, these metabolites displayed an intermediate phenotype. Sugar levels 379 

(glucose, mannose and fructose) increased in pgk3.2 but were decrease in tpt3, 380 

displaying intermediate values in pgk3.2 tpt3. Once again when sugar trends were 381 

similar in both single mutants, the change became more marked in pgk3.2 tpt3. For 382 

example, galactinol, myo-inositol, xylose and trehalose, which increased in both single 383 

mutants were further increased in pgk3.2 tpt3. Thus the metabolomics analysis fully 384 

corroborated the additive effect of the double mutation.  385 

386 

DISCUSSION 387 

Functions of the PGK isoforms and impact in plant development 388 

The study of the expression patterns of PGK family genes, as well as their intracellular 389 

localization provided important information concerning their function in Arabidopsis. 390 

Both PGK1 and PGK2 are plastid-localized, while PGK3 is localized in both the cytosol 391 

and the nucleus. The nuclear localization of PGK3 corroborates previous findings in 392 

peas (Anderson et al., 2004), which could indicate that this enzyme not only participates 393 

in metabolism, but also performs additional functions, as previously demonstrated in 394 

mammals. PGK1 is almost exclusively expressed in photosynthetic tissues and PGK3 is 395 

quite uniformly expressed in all organs. The expression studies, along with the results 396 

obtained in the metabolomics and photosynthetic analyses of the different lines (i.e. 397 

lower levels of starch and photosynthetic activities in pgk1.1), clearly indicate that 398 

PGK1 is a photosynthetic isoform, whereas PGK3 is the cytosolic glycolytic isoform. 399 

The low values of the maximum quantum efficiency of PSII (Fv/Fm) in pgk1.1 suggests 400 

the existence of a photoinhibition or photosynthetic damage phenomenon. This negative 401 

effect could be related to a reduced PGK1 activity in this mutant. PGK consumes most 402 

of the ATP required in the Calvin-Benson cycle, so its low activity would limit the 403 

regeneration of electron acceptors required for the operation of the photosynthetic 404 

electron transport chain. The smaller pgk1.1 size may be related to their lower 405 

photosynthetic capacity and/or damage caused by photoinhibition. The negative effect 406 

on mutant growth was observed more clearly under greenhouse conditions, where the 407 

light intensity is higher than in growth chambers. In the greenhouse, the greater 408 

photosynthetic capacity of the WT and/or its lesser photoinhibition could accentuate the 409 

growth differences between the two lines. 410 

pgk3.2 showed the more dramatic reduction in growth of all the single mutants 411 

characterized here. This may be related to the mutant incapacity to metabolize 412 
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carbohydrates for growth, since the starch and sugar levels in this mutant were higher 413 

than in the WT. Thirty-day-old pgk3.2 displayed symptoms of photoinhibition and a 414 

dramatic reduction of PGK1 expression along with a reduction in the photosynthetic 415 

activity. The high levels of carbohydrates could have a negative feed-back effect on the 416 

expression of photosynthetic genes (Paul and Pellny, 2003; Smith and Stitt, 2007; Stitt 417 

et al., 2010; McCormick and Kruger, 2015) and thus a general inhibition of 418 

photosynthesis.  419 

PGK2 was plastid-localized, and is most probably a glycolytic isoform. Yet the high 420 

PGK2 expression in leaves raises the question of additional functions in photosynthetic 421 

tissues, especially when compared with the low expression of the plastidial glycolytic 422 

isoforms of GAPDH in this organ (Muñoz-Bertomeu et al., 2009). Phylogenetic studies 423 

of plant PGKs indicate that photosynthetic and glycolytic isoenzymes have a common 424 

origin and come from an ancestral eubacteria gene that duplicated and replaced the pre-425 

existing eukaryotic gene (Brinkmann and Martin, 1996; Archibald and Keeling, 2003). 426 

This situation contrasts with that of the GAPDHs, where the glycolytic isoforms have 427 

an eukaryotic origin (Petersen et al., 2003) whilst the photosynthetic enzymes are 428 

prokaryotic in nature (Shih et al., 1986). The bacterial origin of both glycolytic and 429 

photosynthetic PGKs could be relevant to both the enzyme activity and regulation, and 430 

could be related with a greater versatility of these enzyme isoforms. While the 431 

Arabidopsis genome has five plastidial and two cytoplasmic GAPDH isoforms, the 432 

PGK only have one cytosolic and two plastidial isoforms, which indicates a greater 433 

degree of specialization in the GAPDH than in the PGK family. A partially redundant 434 

function of PGK2 in photosynthesis could explain the high level of gene expression in 435 

leaves. However, the amiRNA-PGK2 lines did not have any effect either on the 436 

photosynthetic activity or on the starch content, which renders this hypothesis difficult 437 

to prove.  438 

In spite of the possible lethal phenotype of pgk2.1 (this study, Myouga et al., 2010; 439 

Ouibrahim et al., 2014), the amiRNA-PGK2 lines displayed weaker metabolite changes 440 

than the other mutants (Fig. 6). This suggests that either pgk2.1 is not lethal or that 441 

silenced lines have residual levels of PGK2 activity which are sufficient to maintain 442 

them. There are other examples of enzymes whose insertional mutants are lethal and 443 

whose silenced lines are viable (Cascales-Miñana et al., 2013). This fact reinforces the 444 

idea that low transcription levels in amiRNA lines may mask the more dramatic 445 

phenotypes observed in knock-out mutants, and, thus, other levels of enzyme 446 

posttranscriptional and/or post-translational regulation (regulation by substrates and 447 

other interacting proteins, enzyme biosynthesis turnover) may compensate for the low 448 

transcription level. Hence, a silencing strategy may be of limited use for metabolic 449 

enzymes. In any case, due to the lack of phenotypic complementation of pgk2.1, we 450 

cannot rule out that other closely linked mutations may be partly responsible for the 451 

observed lethal phenotype of this mutant. 452 

453 

PGK1 and PGK3 are transcriptionally co-regulated to adjust metabolism 454 

We found a correlation between PGK gene expression and enzyme activities, which 455 

indicates that transcription is an important mechanism of PGK regulation. The 456 

importance of transcriptional regulation for PGKs may be related to their bacterial 457 

origin and could be different from other metabolic enzymes of eukaryotic origin.  458 
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 Since pgk1.1 and pgk3.2 single mutants displayed reduced growth, we expected this 459 

reduction to be even more drastic in the double mutant as both photosynthetic and 460 

glycolytic activities were affected. However, contrary to our expectations, pgk1.1 461 

pgk3.2 was bigger than pgk3.2, and displayed an intermediate phenotype between the 462 

two single mutants in all measured biochemical and physiological parameters 463 

(metabolite contents and photosynthetic activity). These results rule out an additive 464 

effect of the double mutation and point rather towards a compensatory effect which 465 

could be related to the co-regulated PGK expression in the single mutants. Thus, PGK3 466 

expression is repressed in pgk1.1 in late development stages. The reduced PGK activity 467 

in this mutant compared to earlier stages might therefore be related to PGK3 repression, 468 

at least in part. The repression of genes involved in sugar catabolism has also been 469 

observed in mutants with a low starch content, and has been associated with an adaptive 470 

response to avoid  reserve depletion (Blasing et al., 2005; Smith and Stitt, 2007).  471 

Furthermore, the reduced PGK activity found in the AP of pgk3.2 adult plants could be 472 

due in part to PGK1 repression. This repression would avoid the accumulation of 473 

carbohydrates in pgk3.2, which could have an inhibitory effect on the photosynthetic 474 

activity, and thus ultimately on growth. Our results indicate that when the glycolysis is 475 

limited, the plant tends to readjust the rate of photosynthesis to compensate for the 476 

effects caused by accumulation of carbohydrates, and vice versa. Therefore, reduced 477 

photosynthetic activity in the double mutant in early stages would avoid the 478 

accumulation of excess sugars as a result of a diminished glycolytic activity, which has 479 

a beneficial effect on the long-term growth of the double mutant as compared to the 480 

single mutants.  481 

PGK3 activity is by-passed in pgk3 metabolism 482 

Since metabolism is a complex and dynamic process, it is difficult to predict the 483 

metabolite changes associated with the lack of a certain enzyme activity, especially if 484 

the same activity is displayed by different isoforms and in distinct compartments. PGK3 485 

should be the main provider of cytosolic 3-PGA for the downstream reactions of 486 

glycolysis, and thus for respiratory activity. Lack of PGK3 activity was associated to an 487 

increase in soluble sugar (mainly glucose and fructose) and starch. These increases 488 

could be caused by a reduced glycolytic activity which, in turn, slows down plant 489 

growth. However, total 3-PGA content, the product of the PGK3 activity, increased in 490 

pgk3.2. This could indicate that more 3-PGA is generated in pgk3.2 by other reactions, 491 

e,g., through a higher photosynthetic activity. However, this was not always the case, 492 

since both photosynthetic activity and PGK1 expression were reduced in the adult 493 

pgk3.2 plants, in which 3-PGA was measured. Another possible route to increase 3-494 

PGA availability is via the plastidial glycolytic pathway which, as the increased PGK2 495 

expression suggests, could have been more active in the pgk3.2. In the WT AP, the 496 

triose-phosphates are transported from the plastid to the cytosol through the TPT (Fig. 497 

1). We hypothesized that in pgk3.2, PGK2 activity is increased to produce more 3-PGA 498 

in the plastid to by-pass the PGK3 reaction, which is then transported to the cytosol 499 

through the TPT (Fig. 1). Once in the cytosol, 3-PGA could complete with glycolysis in 500 

order to fuel the TCA cycle when necessary. The increased plastidial glycolytic activity 501 

hypothesis could also be applicable to heterotrophic plastids. In root plastids, where 502 

TPT activity is absent, 3-PGA can be potentially converted into phospho-enol-pyruvate 503 

(PEP) by phosphoglycerate mutase and enolase (Prabhakar et al., 2010; Flores-Tornero 504 

et al., 2017). PEP could be the metabolite transported from the plastid to complete 505 

glycolysis in the cytosol. Indeed, it has been postulated that the PEP/Pi translocator acts 506 

as a net importer of PEP into the chloroplast, but as a net exporter in root plastids 507 
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(Staehr et al., 2014) and probably in plastids from other non-photosynthetic tissues such 508 

as embryos (Flores-Tornero et al., 2017). 509 

The drastic phenotype of pgk3.2 tpt3 would suggest that the TPT activity could, at least 510 

in part, alleviate the PGK3 deficiency. In this double mutant, the 3-PGA formed by 511 

photosynthesis or plastidial glycolysis in the AP could not be exported to the cytosol 512 

and would mainly accumulate as starch as it does in the tpt3 single mutant. Besides, the 513 

measured increases in serine and derivatives (methionine and O-acetyl-serine), which 514 

were already apparent in tpt3, could indicate an activation of the plastidial 515 

phosphorylated pathway of serine biosynthesis to divert part of the 3-PGA flux towards 516 

serine synthesis. 517 

Since pgk3.2 tpt3 is a double knock-out mutant that is still viable, there must be other 518 

mechanisms able to supply the essential 3-PGA to the cytosol in the mutant AP. These 519 

other possible mechanisms could include the inefficient 3-PGA transport through other 520 

chloroplast membrane transporters of the phosphate translocator family, such as glucose 521 

or xylulose-5-phosphate translocators (Fischer and Weber, 2002) or the involvement of 522 

the non-phosphorylating cytosolic GAPDH, which produces 3-PGA from 523 

glyceraldehyde-3-phosphate bypassing the PGK3 reaction (Rius et al., 2006). These 524 

mechanisms whilst inefficient may be sufficient to maintain the mutants viability. 525 

Evaluation of the metabolomics data from different lines can help to find those changes 526 

in metabolite levels which can corroborate the above-postulated hypotheses and 527 

establish the connections between different metabolic pathways. Several metabolites 528 

changed in the opposite direction in the pgk3.2 and tpt3 single mutants, including 529 

glucose, fructose and glycerate. As previous mentioned, the accumulation of glucose, 530 

fructose and starch in pgk3.2 may be caused by the impairment of their metabolism via 531 

glycolysis. In tpt3, the low levels of soluble sugars most likely reflect the inhibition of 532 

triose-phosphate transport to the cytosol, and as such a restricted substrate supply in 533 

support of their formation. Carbohydrates thus instead accumulate in the form of starch, 534 

a phenomenon that was also observed in pgk3.2 tpt3. Moreover, glyceric acid decreased 535 

in pgk3.2, increased in tpt3 and presented an intermediate value in the double mutant. 536 

These reverse changes between pgk3.2 and tpt3 could be related to the strategy in 537 

pgk3.2 to redirect the glycolytic flux towards the plastid.  Low glyceric acid levels in 538 

the AP, could be the result of the conversion of this metabolite into 3-PGA by the 539 

plastidial glycerate kinase to be transported to the cytosol through TPT (Fig. 1). 540 

Interestingly, the phosphoric acid content also dramatically decreased in the pgk3.2 AP, 541 

but increased in tpt3. Given that it correlated with the inorganic phosphate levels, the 542 

low phosphoric acid levels in the pgk3.2 AP may be indicative of the high 3-PGA:Pi 543 

exchange rate, which is, by contrast, disrupted in tpt3.  544 

545 

CONCLUSIONS 546 

Our results provide new insights into the functions of PGK isoforms and how they are 547 

regulated. The expression studies, along with the biochemical and physiological 548 

characterization, demonstrate that PGK1 is the photosynthetic isoform, while PGK2 is 549 

most probably involved in plastid glycolysis. PGK3 would be the cytosolic glycolytic 550 

isoform. 551 

The study of the double mutant supports both the complexity and the plasticity of the 552 

primary metabolic network. Here it is emphasized that imbalances of photosynthetic 553 
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metabolism tend to be corrected by the regulation of the glycolytic routes and vice 554 

versa. Therefore, results obtained in this work support that plastidial and cytosolic 555 

metabolism are intimately connected, and that regulatory mechanisms exists which tend 556 

to maintain the balance between catabolic and anabolic reactions in the central carbon 557 

metabolism of plants. 558 

559 

560 

MATERIALS AND METHODS 561 

Plant Material and Growth Conditions 562 

Arabidopsis thaliana seeds  (ecotype Columbia-0) were supplied by the European 563 

Arabidopsis Stock Center (Scholl et al., 2000). Seeds were sterilized and sown on 0.8% 564 

agar plates containing one-fifth-strength Murashige and Skoog (1/5 MS) medium with 565 

Gamborg vitamins buffered with 0.9 g/l MES (adjusted to pH 5.7 with Tris). After a 4-566 

day treatment at 4ºC, plates were vertically placed in a growth chamber (IBERCEX, 567 

V350, Spain) at 22ºC under a 16 h day/8 h night photoperiod, 100 μmol m
−2

 s
−1

. To568 

select the transgenic plants, half-strength MS plates supplemented with 0.5% sucrose 569 

and appropriate selection markers were used. Some seeds were also grown under 570 

greenhouse conditions in pots filled with a (1:1, v/v) mixture of vermiculite and 571 

fertilized peat (KEKILA 50/50; kekkilä Iberia, S.L.) irrigated with demineralized water 572 

as required. Trays were placed in a cold chamber (4ºC) and were placed under the 573 

greenhouse staging after 4 days. Growth conditions consisted of 16h light, 50-70% 574 

relative humidity and an average temperature of 24ºC during the daytime and 17ºC 575 

during the night. Whenever necessary, these conditions were supplied with artificial 576 

light from sodium and mercury vapor lamps. For analyses, 18-30 day-old pre-bolting 577 

material from plates or pots was harvested and separated into AP (including leaves and 578 

cotyledons) and roots. Unless otherwise stated, the material was sampled at the middle 579 

of the light period. 580 

581 

Primers 582 

All primers used in this work are listed in Supplemental Table S6. 583 

Mutant Isolation and Characterization 584 

The mutant alleles of PGK1 (At3g12780), PGK2 (At1g56190), PGK3 (At1g79550) and 585 

TPT (At5g46110) were identified in the SIGnAL Collection database at the Salk 586 

Institute (Alonso et al., 2003); GK_172A12 and GK_908E11 for PGK1, SALK_016097 587 

for PGK2, SALK_062377 and SALK_066422 for PGK3 and SALK_09334 for TPT. 588 

Mutants were identified by PCR genotyping using gene-specific primers and left border 589 

primers of the T-DNA insertion (Supplemental Table S6). The T-DNA insertions were 590 

confirmed by sequencing the fragment amplified by the T-DNA internal primers and 591 

gene specific primers (Supplemental Table S6). 592 

Cloning and Plant Transformation 593 

Standard methods were used to make the gene constructs (Sambrook and Russell, 594 

2001). For gene promoter-GUS fusions, genomic DNA was PCR-amplified using 595 

primers At3g12780PromHind3F and At3g12780PromSpeR for the PGK1 promoter 596 

(1508 bp), At1g56190PromNcoIR and At1g56190PromXbaIF for the PGK2 promoter 597 
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(1466 bp), and At1g79550PromSpeIR and At1g79550PromHind3F for the PGK3 598 

promoter (1284 bp).  Plasmid pCAMBIA1303 was used to fuse the promoter fragments 599 

to the β-Glucuronidase gene using the sites indicated in the respective primer names.  600 

For promoter-PGK-GFP fusions, PGK cDNAs were PCR-amplified with the following 601 

primers: At3g12780GFP-F and At3g12780GFP-R for PGK1; At1g56190GFP-F and 602 

At1g56190GFP-R for PGK2; and At1g79550GFP-F and At1g79550GFP-R for PGK3. 603 

PCR products were cloned in the pCR8/GW/TOPO plasmid (Invitrogen). These cDNAs 604 

were subcloned in the plasmid pMDC83 under the control of the 35S promoter (Curtis 605 

and Grossniklaus, 2003) using the Gateway technology with clonase II (Invitrogen). 606 

The pMDC83 plasmids allowed us to clone PGK cDNAs in frame with a green 607 

fluorescent protein (GFP) cDNA at the C-term position (PGK1-GFP, PGK2-GFP, 608 

PGK3-GFP). Promoter regions of PGKs previously cloned in pCAMBIA1303 were 609 

PCR-amplified to introduce restriction sites (primers At3g12780PmeIProF and 610 

At3g12780PromSpeR introduced PmeI and SpeI restriction sites into the PGK1 611 

promoter; primers At1g56190FProPmeI and At1g56190RevProPacI introduced PmeI 612 

and PacI restriction sites into the PGK2 promoter; primers At1g79550ProPmeIFo and 613 

At1g79550PromSpeIR introduced PmeI and SpeI restriction sites into the PGK3 614 

promoter). Subsequently, the 35S promoters of constructs in pMDC83 were exchanged 615 

with the native promoters of PGKs, PCR-amplified from pCAMBIA1303 and digested 616 

with the appropriate restriction enzymes. These vectors, called ProPGK:PGKs, were 617 

used for PGKs expression and localization studies, and for the complementation of 618 

PGK1 and PGK2 mutants. For pgk3.2 complementation studies, the Pro35S:PGK3-619 

GFP construct in pMDC83 was used. Besides, pgk2.1 was also transformed with a 620 

construct carrying a 3718 bp genomic fragment which was PCR-amplified from BAC 621 

F14G9 using primers At1g56190ForGENO and At1g56190RevGENO. This fragment, 622 

including 1466 nucleotides upstream of the ATG, was cloned in the pCR8/GW/TOPO 623 

plasmid (Invitrogen), and was subsequently subcloned in the plasmid pMDC99 (Curtis 624 

and Grossniklaus, 2003) using the Gateway technology with clonase II (Invitrogen). 625 

Artificial microRNA (amiRNAs) were produced to target PGK1 and PGK2 using the 626 

web microRNA designer (http://wmd2.weigelworld.org/cgi-bin/mirnatools.pl). The 627 

amiRNAs were cloned according to the protocol by Rebecca Schwab in Prof. Weigel’s 628 

laboratory 629 

(http://wmd2.weigelworld.org/themes/amiRNA/pics/Cloning_of_artificial_microRNAs.630 

pdf) using primers listed in Supplemental Table S6;  then placed in the 631 

pCR8/GW/TOPO plasmid (Invitrogen) and finally subcloned in the plasmid pMDC83  632 

behind the 35S promoter (Curtis and Grossniklaus, 2003). All PCR-derived constructs 633 

were verified by DNA sequencing. 634 

Various Arabidopsis WT and mutant lines were transformed with the different 635 

constructs by the floral dipping method (Clough and Bent, 1998) with Agrobacterium 636 

tumefaciens carrying pSOUP. For the amiRNA and GUS lines, WT were used. 637 

Transformants were selected by antibiotic selection, while homozygous individuals in 638 

complementation studies were identified by PCR genotyping using gene-specific 639 

primers and left border primers of the T-DNA insertions listed in Supplemental Table 640 

S6. At least four independent single insertion homozygous T3 lines were obtained for 641 

all different constructs.  After characterization by RT-PCR, two different lines were 642 

selected for further analyses according to their expression level. We used both syngenic 643 

WT lines, as well as WT Columbia 0, as controls for our studies. For amiRNAs, we 644 

used the WT used for transformation with the amiRNAs as controls. 645 
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646 

RT-PCR and RNA-seq data 647 

RT-PCR was performed as previously described (Cascales-Miñana et al. 2013). Each 648 

reaction was performed in triplicate with 1 µL of the first-strand cDNA in a total 649 

volume of 25 µL. Data are the mean of three biological samples. The specificity of the 650 

PCR amplification was confirmed with a heat dissociation curve (from 60ºC to 95ºC). 651 

Efficiency of the PCR reaction was calculated and different internal standards were 652 

selected (Czechowski et al., 2005) depending on the efficiency of the primers. Primers 653 

used are listed in Supplemental Table S6.  654 

For the gene expression analysis by RNA-seq, 21-day-old WT plants vertically grown 655 

on 1/5 MS plates were used. Three independent biological replicates of WT AP and 656 

roots were used for the analysis. Total RNA was extracted using NucleoSpin RNA II kit 657 

(Macherey-Nagel). Using as starting material 3-15 µg of RNA, a mRNA enrichment 658 

was performed with the MicroPoly(A) Purist kit (AMBION). To prepare the RNA-Seq 659 

library, the SOLID Total RNA-seq kit (Life Technologies) was used. After obtaining the 660 

library, an equimolar mixture of it was used to perform an emulsion PCR using the 661 

automatic system of EZ Beads (Life Technologies). Then, the bead enrichment was 662 

performed followed by its deposition in the sequencing wells. The sequencing step was 663 

done by SOLID 5500XL equipment of 75 nucleotides using the Exact Call Chemistry. 664 

To filtrate the readings depending on their adaptor the Cutadapt v1.8 program was used. 665 

FastqQC was employed to evaluate the quality of the reads. Afterward, Tophat2 was 666 

employed to perform the mapping against a reference. To visualize and obtain the raw 667 

counts, Seqmonk v0.29 was used. 668 

GUS activity assays and GFP microscopy 669 

GUS activity assays were performed as described in Muñoz-Bertomeu et al. (2009). 670 

GFP fluorescence was observed under a confocal microscope (Leica TCS-SP). To 671 

confirm the nuclear localization of PGK3, root cells were stained with 10 μg/mL 672 

Hoechst dye. 673 

Photosynthetic activity measurements 674 

Simultaneous gas exchange and chlorophyll fluorescence measurements were 675 

performed as described by Faus et al. (2015). Measurements were taken 2 h after the 676 

beginning of the light period to allow full photosynthesis activation. 677 

Metabolite determination and PGK activity assay 678 

The AP and roots of WT, single and double mutants, and silenced lines (two different 679 

lines per silenced gene) grown on 1/5 MS plates, were used to determine metabolite 680 

content in derivatized methanol extracts by GC-MS using the protocol defined in Lisec 681 

et al. (2006).  Metabolites were identified in comparison to database entries of authentic 682 

standards (Kopka et al., 2005). Chromatograms and mass spectra were evaluated using 683 

Chroma TOF 1.0 (LECO) and TagFinder 4.0 software (Luedemann et al., 2008). 684 

Material was sampled for metabolite analysis after 4-6 h in the light. 3-PGA was 685 

measured as previously described (Flores-Tornero et al., 2017).  PGK activity was 686 

measured by an enzymatic assay following NADH oxidation associated with the 687 

coupled reaction of phosphoglycerate kinase and GAPDH. Frozen AP were ground in 688 

liquid nitrogen and resuspended in extraction buffer (50 mM HEPES-KOH, pH 7.4, 1 689 

mM EDTA, 1 mM EGTA, 2 mM Benzamidine, 2 mM E-aminocaproic acid, 0.5 mM 690 

phenylmethylsulfonyl fluoride (PMSF), 10% glycerol, 0.1% Triton x-100). The 691 
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supernatant was obtained after centrifugation at 15000g for 20 min at 4ºC. Reactions 692 

were carried out in a medium containing 100 mM HEPES-KOH, 1 mM EDTA, 2 mM 693 

MgSO4, 0.3 mM NADH, 6.5 mM 3-PGA, 1 mM ATP and 3.3 Units of GAPDH. Starch 694 

was determined by the ENZYTEC starch kit (ATOM) at the end of the light period. 695 

Bioinformatics and Statistics 696 

PGK and TPT genes were initially identified in the Arabidopsis Information resource. 697 

The percentage of identity between different PGKs was obtained by aligning pair 698 

sequences using bl2seq at NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Amino acid 699 

sequences were aligned using the ClustalOmega program 700 

[http://www.ebi.ac.uk/Tools/msa/clustalo/; (McWilliam et al., 2013)]. Phylogenetic 701 

analyses were performed according to the neighbor-joining method (Saitou and Nei, 702 

1987). Units represent the number of amino acid substitutions per site for one unit. The 703 

analysis was performed using the Mega6 tool (Tamura et al., 2013). 704 

Experimental values represent mean values and standard error, n represents the number 705 

of independent samples. Significant differences as compared to WT were analyzed by 706 

Student’s t-tests algorithms (two-tailed) using Microsoft Excel. Statistical differences 707 

between groups were analyzed with a one-way ANOVA and further post hoc Tukey b 708 

(WSD) test with the IBM SPSS Statistics software. The level of significance was fixed 709 

at 5% (0.05).   710 

Accession numbers: 711 

Arabidopsis Genome Initiative locus identifiers of Arabidopsis genes used in this article 712 

are as follows: At3g12780 (PGK1), At1g56190 (PGK2), At1g79550 (PGK3) and 713 

At5g46110 (TPT). 714 
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720 

721 

Table 1. Photosynthetic parameters in PGK single and double mutants, and in 

complemented lines. Photosynthetic rate (AN), effective (PhiPS2) and maximum 

photochemical yield of Photosystem II (Fv/Fm) in 20- and 30-day-old plants are shown. 

Each value is the mean (± SE) of 10 independent determinations. For each growth stage 

different letters indicate significant differences between groups (P < 0.05). 

AN (µmol m-2s-1) PhiPS2 Fv/Fm 

M
u
ta

n
ts

 2
0
 d

ay
-o

ld
 WT 7.0 ± 0.348 a 0.139 ± 0.004 ab 0.769 ± 0.003 a 

pgk1.1 4.7 ± 0.332 b 0.112 ± 0.004 c 0.745 ± 0.008 b 

pgk3.2 7.5 ± 0.408 a 0.151 ± 0.007 a 0.766 ± 0.006 a 

pgk1.1 pgk3.2 5.0 ± 0.365 b 0.128 ± 0.006 b 0.768 ± 0.007 a 

3
0
 d

ay
-o

ld
 WT 9.1 ± 0.295 a 0.174 ± 0.004 a 0.769 ± 0.002 a 

pgk1.1 6.2 ± 0.115 c 0.130 ± 0.004 c 0.758 ± 0.004 b 

pgk3.2 7.5 ± 0.276 b 0.160 ± 0.004 b 0.752 ± 0.004 b 

pgk1.1 pgk3.2 7.0 ± 0.222 b 0.140 ± 0.004 c 0.777 ± 0.001 a 

C
o
m

p
le

m
en

te
d
 l

in
es

 

2
0
 d

ay
-o

ld
 WT 9.0 ± 0.606 a 0.115 ± 0.005 a 0.778 ± 0.003 a 

pgk1.1 5.1 ± 0.502 c 0.077 ± 0.006 c 0.748 ± 0.005 b 

pgk1.1 ProPGK1:PGK1GFP-L3 7.0 ± 0.257 b 0.089 ± 0.004 bc 0.753 ± 0.005 b 

pgk1.1 ProPGK1:PGK1GFP-L15 7.7 ± 0.494 ab 0.101 ± 0.006 ab 0.760 ± 0.003 b 

3
0
 d

ay
-o

ld
 WT 8.6 ± 0.128 a 0.140 ± 0.004 a 0.759 ± 0.007 a 

pgk3.2 4.8 ± 0.590 c 0.122 ± 0.006 b 0.754 ± 0.008 a 

pgk3.2 Pro35S:PGK3-GFP-L1 7.2 ± 0.099 b 0.141 ± 0.003 a 0.761 ± 0.006 a 

pgk3.2 Pro35S:PGK3-GFP-L11 7.0 ± 0.236 b 0.151 ± 0.080 a 0.743 ± 0.152 a 

722 

723 
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FIGURE LEGENDS. 724 

Figure 1. Schematic representation of the contribution of PGKs in the primary carbon 725 

metabolic pathways in photosynthetic cells. Abbreviations: 1,3-BPGA, 1,3-bis-726 

phosphoglycerate; 2-OG, 2-oxoglutarate; 2-PG, 2-phosphoglycolate; 3-PGA, 3-727 

phosphoglycerate; 3-PHP, 3-phosphohydroxypyruvate; 3-PS, 3-phosphoserine; 728 

ADPGlu, ADP-glucose; AGPase, ADP-glucose pyrophosphorylase; ALD, aldolase; 729 

DHAP- dihydroxyacetone phosphate; ENO, enolase; FBP, fructose 1,6-bisphosphatase; 730 

Fru, fructose; Fru-1,6BP, fructose 1,6- bisphosphate; Fru-6P, fructose 6-phosphate; 731 

GAP, glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 3-phosphate 732 

dehydrogenase; Glu-1P, glucose 1-phosphate; Glu-6P, glucose 6-phosphate; GLYK, 733 

glycerate kinase; HP, hydroxypyruvate; INV, vacuolar invertase; MEX1, maltose 734 

translocator; PEP, phosphoenolpyruvate; PFK, phosphofructokinase; PGDH, 3-735 

phosphoglycerate dehydrogenase; PGI, phosphoglucoisomerase; PGK, 736 

phosphoglycerate kinase; PGLm, phosphoglycerate mutase; pGluT, glucose 737 

translocator; PGM, phosphoglucoisomerase; PGP, 2-phosphoglycolate phosphatase; 738 

PPT, phosphoenolpyruvate translocator; PK, pyruvate kinase; PSAT, 3-phosphoserine 739 

aminotransferase; PSP, 3-phosphoserine phosphatase; Ru-5P, ribulose 5-phosphate; 740 

RuBP, ribulose 1,5-bisphosphate; SPP, sucrose 6-phosphate phosphatase; SPS, sucrose 741 

phosphate synthase; Suc-6P, sucrose 6-phosphate; TCA, tricarboxylic acid cycle; TPI, 742 

triose phosphate isomerase; TPT, triose phosphate translocator; UDPGlu, UDP-glucose; 743 

UGPase, UDPGlu pyrophosphorylase;.  “p” or “c” after the enzyme name denotes 744 

plastidial or cytosolic isoform, respectively. Discontinuous arrows represent fluxes 745 

between compartments. Hypothetical 3-PGA flux in pgk3.2 is highlighted in red. 746 

747 

Figure 2. Expression analysis of PGK family genes. A and B, RT-PCR analysis of 748 

PGKs in 18-day-old seedlings grown in a MS 1/5 medium (A) and in adult plants grown 749 

under greenhouse conditions (B). C, GUS expression under the control of PGK1, PGK2 750 

and the PGK3 promoter in different plant organs. Scale Bars = 1 mm (cotyledons, 751 

leaves and flowers), 0.1 mm (roots). Values in A and B (mean ± SE; n = 3 independent 752 

biological replicates) are normalized to the expression in the Aerial parts (A) or stems 753 

(B). 754 

755 

Figure 3. Subcellular localization of PGK isoforms by stable expression of PGK-GFP 756 

fusion proteins under the control of PGK native promoters. Bars = 100 µm. 757 

Figure 4. Genomic organization and expression analysis of the PGK and TPT T-DNA 758 

mutant lines. A, Black boxes represent exons and grey lines introns. The T-DNA 759 

insertion point in each mutant is shown. B, Detection of the PGK and TPT transcripts in 760 

the aerial parts of 18-day-old seedlings of single and double mutants by RT-PCR 761 

analysis. Values (mean ± SE; n = 3 independent biological replicates) are normalized to 762 

the expression in the wild-type (WT). 763 

764 

Figure 5. Phenotypical analysis of PGK T-DNA mutants and silenced lines grown in 765 

MS 1/5 (18-day-old seedlings) or greenhouse conditions (30-day-old plants) as 766 

compared to wild-type plants (WT). Seedling aerial part (AP) and root fresh weight 767 

(FW) of different lines grown in vertical plates are shown in A and B, respectively. 768 

Rosette FW is shown in C.  D, picture of a representative individual of each line grown 769 

in greenhouse.  E, FW of the AP of mutant and the complemented lines grown in 770 
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greenhouse. Values are the mean ± SE (n ≥ 36 plants). In (E) data are the mean of two 771 

independent transgenic lines. * Significantly different as compared to WT; different 772 

letters indicate significant differences between WT, single and double mutants (P < 773 

0.05).774 

775 

Figure 6. Biochemical and molecular analyses of PGK mutant and silenced lines 776 

(amiRNA lines) as compared to wild-type plants (WT). A, B, and C, starch content, 777 

PGK activity and RT-PCR analysis of PGKs in the aerial parts (AP) of 20- and 30-day-778 

old plants grown in greenhouse. In B, PGK activity was also measured in 20-day-old 779 

roots grown in plates. Values are the mean ± SE (n ≥ 30 plants). In A and B, data from 780 

the silenced lines are the mean of individuals from two independent transgenic lines. * 781 

Significantly different as compared to the WT; different letters indicate significant 782 

differences between groups (P < 0.05).  783 

Figure 7.  Most relevant changes in the metabolite content of aerial parts (AP) and roots  784 

of 21-day-old pgk mutants and silenced lines grown in vertical plates as compared to 785 

wild-type (WT). Log
2 

values of the relative metabolic contents are presented as a heat-786 

map. *Significant differences between the mutant and the wild type (WT) (P < 0.05). 787 

Detailed results of the assay are presented in Supplemental Tables S3 and S4.  788 

Figure 8. Phenotypical, biochemical and molecular analyses of pgk3.2 tpt3 mutant as 789 

compared to single mutants (pgk3.2, tpt3) and wild-type (WT). A, relative 3-PGA 790 

content in the aerial parts (AP) of 25-day-old plants grown in greenhouse normalized to 791 

the mean content of the WT (34 ± 1 µg g
-1

 fresh weight). B and C, Rosette fresh weight792 

(FW) and starch content of the AP of 25-day-old plants grown in greenhouse. D, most 793 

relevant changes in the metabolite content of AP of 19-day-old pgk3.2 tpt3 lines grown 794 

in vertical plates as compared to single mutants and wild-type (WT). Log
2 

values of the795 

relative metabolic contents are presented as a heat-map. Detailed results of the assay are 796 

presented in Supplemental Table S5. * Significantly different as compared to WT; 797 

different letters indicate significant differences between groups (P < 0.05). 798 

799 
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SUPPLEMENTAL MATERIAL 801 

Supplemental Figure S1. Amino acid alignment and cladogram of the Arabidopsis 802 

PGK proteins. 803 

Supplemental Figure S2. Expression of GUS under the control of PGK1 promoter in 804 

seedlings and adult plants. 805 

Supplemental Figure S3. Expression of GUS under the control of PGK2  promoter in 806 

seedlings and adult plants. 807 

Supplemental Figure S4. GUS Expression under the control of PGK3 promoter in 808 

seedlings and adult plants. 809 

Supplemental Figure S5.  Subcellular localization of PGK3 by stable expression of 810 

PGK-GFP fusion proteins under the control of 35S promoter. 811 

Supplemental Figure S6. RT-PCR analysis of the aerial parts of 20-day-old seedlings 812 

of PGK2 (A) and PGK1 (B) silenced lines grown on vertical plates. 813 

Supplemental Table S1.  Genomic localization of PGK family T-DNA mutant lines 814 

confirmed by sequencing. 815 

Supplemental Table S2. Photosynthetic parameters in wild-type (WT) and two 816 

independent amiPGK2 silenced lines (amiPGK2-H35, amiPGK2-H49). 817 

Supplemental Table S3.  Metabolite levels in the aerial parts of 21-day-old PGK single 818 

(pgk1.1, pgk3.2) and double (pgk1.1 pgk3.2) mutants, silenced (amiPGK2) lines, and 819 

wild-type (WT). 820 

Supplemental Table S4.  Metabolite levels in the roots of 21-day-old PGK single 821 

(pgk1.1, pgk3.2) and double (pgk1.1 pgk3.2) mutants, silenced (amiPGK2) lines, and 822 

wild-type (WT). 823 

Supplemental Table S5.  Metabolite levels in the aerial parts of 19-day-old PGK3 and 824 

TPT single (pgk3.2, tpt3) and double (pgk3.2 tpt3) mutants, and wild-type (WT) plants. 825 

Supplemental Table S6.  List of primers used in this work. 826 

827 

828 

829 

Supplemental Figure S1. Amino acid alignment and cladogram of the Arabidopsis 830 

PGK proteins. A, Amino acid alignment of Arabidopsis PGK family proteins using the 831 

ClustalOmega program. Asterisks denote the same amino acid between sequences, a 832 

colon indicates conserved amino acids.  Amino acids that form the ligand binding 833 

domain are marked with empty triangles, the ADP binding domain with black triangles, 834 

and the catalytic site is marked with grey triangles. B, The phylogenetic tree was 835 

constructed from an alignment of the deduced amino acid sequences, as described in 836 

Materials and Methods (M&M). Branch length is given under each segment according 837 

to the algorism specified in M&M. 838 
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Supplemental Figure S2. Expression of GUS under the control of PGK1 promoter in 839 

seedlings and adult plants. Cotyledon (A), Leaves (B), Stomata (C), Hypocotyl (D), 840 

Roots (E, F), Caulin leaves (G, H), Rosette leaves (I), Flowers (J), Siliques (K), Roots 841 

(L). Bars = 1 mm (A, B, D, G, J, K), 0.5 mm (F, L), 0.2 mm (H,J) and 0.1 mm (C, E). 842 

843 

Supplemental Figure S3. Expression of GUS under the control of PGK2  promoter in 844 

seedlings and adult plants. Cotyledon (A), Leaves (B), Stomata (C), Roots (D), Rosette 845 

leaves (E), Flowers (F), Stigma (G), Anthers and stigma (H), Siliques (I) and Roots (J).  846 

Bars = 1 mm (A, B, E, F, H, I), 0.5 mm (G), 0.2 mm (D) and 0.1 mm (C, J). 847 

848 

Supplemental Figure S4. GUS Expression under the control of PGK3 promoter in 849 

seedlings and adult plants. Cotyledon (A), Leaves (B), Roots (C), Rosette leaves (D, E), 850 

Siliques (F), Flowers (G), Anther (H) and Roots (I). Bars = 1 mm (A, B, D, E, F, G), 0.5 851 

mm (H, I) and 0.1 mm (C). 852 

853 

Supplemental Figure S5.  Subcellular localization of PGK3 by stable expression of 854 

PGK-GFP fusion proteins under the control of 35S promoter. The nuclear localization 855 

of PGK3 was visualized by staining root cells with the Hoechst marker. Bar = 10 µm. 856 

857 

858 

Supplemental Figure S6. RT-PCR analysis of the aerial parts of 20-day-old seedlings 859 

of PGK2 (A) and PGK1 (B) silenced lines grown on vertical plates.  860 

Supplemental Table S1.  Genomic localization of PGK family T-DNA mutant lines 861 

confirmed by sequencing. Nucleotide numbering is relative to the gene translation start 862 

codon. 863 

Supplemental Table S2. Photosynthetic parameters in wild-type (WT) and two 864 

independent amiPGK2 silenced lines (amiPGK2-H35, amiPGK2-H49). Photosynthetic 865 

rate (AN), effective (PhiPS2) and maximum photochemical yield of Photosystem II 866 

(Fv/Fm) were determined in 20-day-old plants. Each value is the mean (± SE) of 10 867 

independent determinations. ns, indicates non-significant differences between groups (P 868 

< 0.05). 869 

870 

Supplemental Table S3.  Metabolite levels in the aerial parts of 21-day-old PGK single 871 

(pgk1.1, pgk3.2) and double (pgk1.1 pgk3.2) mutants, silenced (amiPGK2) lines, and 872 

wild-type (WT). Data are relative values normalized to the mean response calculated for 873 

each WT. Values represent the mean ± SE of six independent determinations for WT 874 

and PGK mutants, and 12 determinations for amiPGK2 (corresponding to samples of 875 

two independent transgenic plants). Those values that were significantly different to WT 876 

are set in bold type, P < 0.05. ND, Non detected. 877 

Supplemental Table S4.  Metabolite levels in the roots of 21-day-old PGK single 878 

(pgk1.1, pgk3.2) and double (pgk1.1 pgk3.2) mutants, silenced (amiPGK2) lines, and 879 

wild-type (WT). Data are relative values normalized to the mean response calculated for 880 

each WT. Values represent the mean ± SE of six independent determinations for WT 881 

and PGK mutants, and 12 determinations for amiPGK2 (corresponding to samples of 882 

two independent transgenic plants). Those values that were significantly different to WT 883 

are set in bold type, P < 0.05. ND, Non detected. 884 
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Supplemental Table S5.  Metabolite levels in the aerial parts of 19-day-old PGK3 and 885 

TPT single (pgk3.2, tpt3) and double (pgk3.2 tpt3) mutants, and wild-type (WT) plants. 886 

Data are relative values normalized to the mean response calculated for each WT. 887 

Values represent the mean ± SE of six independent determinations. Those values that 888 

are significantly different to WT are set in bold type, P < 0.05. 889 

890 

Supplemental Table S6.  List of primers used in this work. 891 

892 
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