Hindawi

Journal of Sensors

Volume 2019, Article ID 6916251, 12 pages
https://doi.org/10.1155/2019/6916251

Research Article

Hindawi

Prediction of Labor Induction Success from the

Uterine Flectrohysterogram

Carlos Benalcazar-Parra,’ Yiyao Ye-Lin,' Javier Garcia-Casado (), Rogelio Monfort-Ortiz,”
Jose Alberola-Rubio,> Alfredo Perales,”> and Gema Prats-Boluda !

ICentro de Investigacion e Innovacion en Bioingenieria, Universitat Politécnica de Valéncia, Edif. 8B, Camino de Vera SN,

46022 Valencia, Spain

2Servicio de Obstetricia y Ginecologia, Hospital Universitario y Politécnico La Fe de Valencia, Av. Fernando Abril Martorell 106,

Edificio F, 3% Planta, Valencia, Spain

’Departamento de Pediatria, Obstetricia y Ginecologia Universidad Valencia, Av Blasco Ibafiez 15, 46010 Valencia, Spain

Correspondence should be addressed to Gema Prats-Boluda; gprats@ci2b.upv.es

Received 27 March 2019; Revised 19 July 2019; Accepted 8 October 2019; Published 15 November 2019

Guest Editor: Lourdes Martinez-Villasefior

1. Introduction

Copyright © 2019 Carlos Benalcazar-Parra et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Pharmacological agents are often used to induce labor. Failed inductions are associated with unnecessarily long waits and
greater maternal-fetal risks, as well as higher costs. No reliable models are currently able to predict the induction outcome
from common obstetric data (area under the ROC curve (AUC) between 0.6 and 0.7). The aim of this study was to design
an early success-predictor system by extracting temporal, spectral, and complexity parameters from the uterine
electromyogram (electrohysterogram (EHG)). Different types of feature sets were used to design and train artificial neural
networks: Set_1: obstetrical features, Set_2: EHG features, and Set_3: EHG+obstetrical features. Predictor systems were built
to classify three scenarios: (1) induced women who reached active phase of labor (APL) vs. women who did not achieve
APL (non-APL), (2) APL and vaginal delivery vs. APL and cesarean section delivery, and (3) vaginal vs. cesarean delivery.
For Scenario 3, we also proposed 2-step predictor systems consisting of the cascading predictor systems from Scenarios 1
and 2. EHG features outperformed traditional obstetrical features in all the scenarios. Little improvement was obtained by
combining them (Set_3). The results show that the EHG can potentially be used to predict successful labor induction and
outperforms the traditional obstetric features. Clinical use of this prediction system would help to improve maternal-fetal
well-being and optimize hospital resources.

sary waits, greater maternal-fetal exhaustion and suffering,
and the need for additional resources, thus increasing medi-

The induction of labor consists of promoting uterine con-
tractions and cervical ripening before the onset of spontane-
ous labor. This common procedure is indicated when
continuing pregnancy increases maternal and/or fetal risks.
In the United States, 22.8% of all births were induced in
2012 [1]. Pharmacological labor induction is mainly obtained
by prostaglandins [2] but can take up to 20 hours [3] and has
been known to take more than 36 hours, with no guarantee of
success. It has also been associated with maternal and fetal
risks such as abnormal uterine activity, fetal distress, and
higher cesarean rates [4]. Failed inductions lead to unneces-

cal care costs. Predicting successful induction is an important
aspect in improving maternal and fetal well-being, reducing
healthcare costs and improving labor management.
Obstetric variables have been considered for this purpose
and are usually based on cervix assessment by the Bishop
score [5, 6], although cervical length, maternal age, height,
weight, parity, and birth weight [7-9] have also been used.
The predictive capacity values given by the area under the
curve (AUC) of the receiver operating characteristic (ROC)
curves are 0.69 for cervical length [7], 0.72 for cervical dilata-
tion [7], 0.52 for Bishop score [6], and 0.60 for fetal weight
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[8], showing that obstetrical data cannot at present be used to
reliably predict induction of labor.

The electrohysterogram (EHG), i.e., uterine myoelectri-
cal activity recorded on the abdominal surface, is an alterna-
tive method of monitoring uterine dynamics and consists of
intermittent bursts of action potentials derived from the
simultaneous activation of multiple uterine muscle cells.
Uterine myoelectric activity evolves throughout gestation,
being scarce and uncoordinated in the early stages, and
becomes intense and synchronized as delivery approaches
[10]. Previous studies have shown that EHG signals can
discriminate effective contractions associated with immi-
nence of labor [11] or whether delivery will be term or pre-
term [12]. EHG records have also been used to characterize
the uterine myoelectrical response to labor induction drugs
[13-16]. Aviram et al. found that uterine electrical activity
significantly increases 2 hours after prostaglandin E2
(PGE2) vaginal application and up to 8 hours after PGE2
application [13]. However, their aim was not to predict labor
induction success or to compare the responses between suc-
cessful and failed groups. Toth studied the possibility of pre-
dicting induction success using local prostaglandin [14].
They assessed uterine activity by means of an index that takes
the intrinsic characteristics of EHG bursts into account
(number of impulses, amplitudes, series, and shape) and
found a statistically significant difference in the uterine activ-
ity index between successful (vaginally completed) and
unsuccessful inductions between the 210th and 270th
minutes. Benalcazar-Parra et al. also studied the differences
between failed and successful (reaching the active phase of
labor (APL)) inductions by comparing the evolution of dif-
ferent EHG parameters. They found different responses,
mainly in amplitude and spectral parameters after 60'-120’
from labor induction onset [15, 16]. However, to date, no
work has been done on predicting successful induction from
EHG records, while EHG-based neural networks have been
applied to the prediction of term and preterm labor [12,
17-19]. In this context, the aim of the present study was to
design a system capable of reliably predicting successful labor
induction, based on EHG features and obstetrical data in the
first 4 hours after labor induction onset.

Vaginal delivery can be considered a 2-step process. First,
the woman has to reach the APL, ie., regular uterine
dynamic with 3-5 contractions every 10 minutes, 4 cm of cer-
vical dilatation, and cervical effacement [20]. This is a neces-
sary condition to be able to expel the fetus outside the uterus
via the vaginal route (Step 2). It should be noted that
although there is some controversy as regards establishing
the value of the cervical dilatation and cervical effacement
associated with APL, in the present work, we considered
4cm, being the most widely extended definition [21]. A
cesarean is needed if the APL cannot be reached. However,
even if APL has been reached, various conditions may pre-
vent vaginal delivery, such as labor arrest, pelvic-fetal dispro-
portion, or loss of maternal-fetal well-being [22]. In the labor
induction context and from the pharmacologic point of view,
induction can be considered successful if drug action helps
the patients achieve APL [15, 16, 23]. From the medical point
of view, only vaginal deliveries are commonly considered

Journal of Sensors

successful [24, 25]. Taking this into account, we considered
three different scenarios in designing and validating predic-
tion systems for labor induction success (see Figure 1).

2. Materials and Methods

2.1. Signal Acquisition. The study was conducted on 115
healthy pregnant women with gestational ages of between
40 and 41 weeks and singleton pregnancies who were deter-
mined to undergo labor induction by medical prescription.
The distribution of the labor outcome population is shown
in Figure 1 according to the different scenarios:

(i) Scenario 1: women achieving active phase of labor
(successful group; N = 98) vs. women nonachieving
active phase of labor (failed group; N =17)

(ii) Scenario 2: from women who achieved active phase
of labor, those achieving vaginal delivery (successful
group; N =82) vs. cesarean section (failed group;
N =16)

(ili) Scenario 3: women achieving vaginal delivery
(successful group; N =82) vs. cesarean deliveries
(failed group; N =33)

The recordings were performed at the Hospital Univer-
sitario y Politécnico La Fe de Valencia (Spain), and the
study was approved by the Hospital Ethics Committee
(2015/0455, 12/01/2016). The women were previously
informed of the nature of the study and gave their written
consent. Labor induction was by vaginal administration of
two different types of drugs commonly used in obstetrics:
either a vaginal insert of 25 ug of misoprostol tablets (Mis-
ofar, Bial S.A., Portugal) with repeated doses every 4 hours
up to a maximum of 3 doses or 10mg of vaginal dino-
prostone insert (Propess, Ferring, Germany). The women
were kept under constant observation until the end of
labor. The women’s obstetrical characteristics and labor
induction outcomes are shown in Table 1.

TOCO and EHG signals were simultaneously acquired by
tocodynamometer and four monopolar disposable Ag/AgCl
electrodes (3 M red dot 2560), respectively, in the recording
sessions, which comprised 30 minutes of basal activity
(before drug administration) and 4 hours of recording after
drug administration. The abdominal surface was first exfoli-
ated (Nuprep, Weaver and Company, USA) to reduce skin-
electrode impedance. The monopolar electrodes (M1 and
M2) were placed over the navel at each side of the median
axis at a distance of 8 cm from each other, which has been
found to be the optimal electrode placement in the literature
[26]. A reference electrode was placed on the right hip and a
ground electrode on the left hip (Figure 2). Monopolar EHG
signals were amplified and filtered between 0.1 and 30 Hz by
a commercial biosignal amplifier (Grass 15LT+4 Grass
15A94; Grass Instruments, West Warwick, RI) and digita-
lized at a sampling frequency of 1000 Hz. Since EHG signal
energy principally ranges from 0.1 to 4 Hz, the signal was dig-
itally filtered between 0.2 and 4Hz to eliminate undesired
components and then downsampled at 20 Hz to reduce the
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FIGURE 1: Study population and group distribution in each scenario.

TaBLE 1: Women’s obstetrical parameters and labor induction
outcome; mean + std.

Obstetric variables Mean =+ std
Maternal age 32.5+4.7
BMI (kg/m?) 26.0+9.4
Gestations 1.4+£0.6
Parity

0 106/115 (92%)

1 8/115 (7%)

2 1/115 (1%)
Abortions

0 94/115 (82%)

1 18/115 (16%)

2 3/115 (2%)
Bishop 20£1.2

3411.9 +381.2
98/115 (85%)
82/115 (71%)
33/115 (29%)

Fetal weight (g)
Active phase of labor
Vaginal delivery

Cesareans

FIGURE 2: Photograph that illustrates TOCO probe and the surface
electrode arrangement.

amount of data and the computational cost, obtaining the
preprocessed M1P and M2P signals. One bipolar EHG signal
was then obtained (M1P-M2P) to further reduce common-
mode interference. The TOCO signal was recorded by a
Corometrics 250cx (General Electric Healthcare, US) com-
mercial maternal monitor at a sampling rate of 4 Hz. All
EHG bursts associated with uterine contractions were identi-
fied by visual inspection of the bipolar EHG signal using the
same criteria as in Benalcazar-Parra et al. [15].

2.2. EHG Signal Characterization. Several studies have shown
that the temporal and spectral parameters obtained from
EHG recordings change between pregnancy and labor onset
[11]. It has been reported that temporal parameters such as
amplitude, duration, and number of contractions (EHG
bursts) change during pregnancy [27, 28]. As with spectral
features, parameters such as peak frequency, mean fre-
quency, and deciles, among others, have been extracted from
the power spectral density to characterize EHG burst fre-
quency components [27, 29-31]. In this regard, it is worth
mentioning that EHG bursts are mainly composed of two
distinct frequency components: fast wave low (FWL), a low
frequency component associated with EHG propagation,
and fast wave high (FWH), a high frequency component
related to uterine cell excitability [32]. It is well known that
both components are mainly distributed between 0.2 and
1 Hz [32], although some authors consider that it can extend
up to 4Hz [33]. However, some studies focus only on the
FWH, restricting the bandwidth between 0.34 and 1Hz to
minimize breathing and cardiac interference [30]. It has also
been shown that EHG burst spectral content shifts to higher
frequencies, in the range of 0.34 to 1 Hz as labor approaches
[34]. Furthermore, considering the nonlinear nature of the
underlying mechanisms of the biological systems, parameters
such as sample entropy, spectral entropy, and Lempel-Ziv
have also been proposed to characterize EHG signals [33, 35].

Therefore, in the present work, 21 temporal, spectral, and
complexity parameters were computed from each EHG burst
(see Table 2). Peak-to-peak amplitude was computed from
the temporal series associated with uterine contractions.
The following parameters were extracted from the power
spectral density distribution estimated by the periodogram
method: dominant frequency in the range of 0.2-1Hz (DF),
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TaBLE 2: Summary of the extracted parameters that will be used to design the classifiers.

EHG temporal parameters EHG spectral parameters

EHG complexity parameters

Obstetric parameters

DF, H/L ratio, Deciles

Peak to peak amplitude [D1-D9], Teager energy

SampEn, LZ, SpEn, FuzzEn,
SD1, SD2, SDRR, SD1/SD2

Maternal age, body mass index (BMI), gestations,
parity, abortions, Bishop, fetal weight

ratio between the energy contents in high (0.34-1 Hz) and
low (0.2-0.34 Hz) frequency bands (H/L ratio), and deciles
(D1, D2, ..., D9), which correspond to frequencies below in
which 10, 20, ..., 90%, respectively, of the total energy in
the range 0.2-1Hz are contained [36]. The Teager energy
operator was computed to measure the energy of the EHG
burst. This measure takes into account not only the ampli-
tude but also the frequency of the signal [37].

As previously mentioned, due to the nonlinear nature of
the underlying physiological mechanism of the biological
systems, a set of 8 nonlinear parameters was computed for
each EHG burst, where some of them were already used to
characterize EHG signals: sample entropy (SampEn) has
been used to discriminate between preterm and term labor
and to assess the progress of labor [33], and the Lempel-Ziv
(LZ) parameter has been used to distinguish between patients
who give birth in less/more than 7 days [38]. We also com-
puted some complexity parameters that have been used in
other applications. Fuzzy entropy (FuzzEn) has been shown
to be efficient at measuring the regularity of time series in
surface EMG signals [39]. Spectral entropy (SpEn) has also
given good results in monitoring the depth of anesthesia
[40] and predicting epileptic seizures [41]. Poincare parame-
ters (SD1, SD2, SDRR, and SD1/SD2) have been widely used
for heart rate variability analysis [42] and have been claimed
to be valuable for their ability to extract the nonlinear charac-
teristics of time series [43].

In a previous work, to analyze the evolution of the EHG
burst parameters in response to labor induction drugs,
we first computed the median values of each parameter
associated with the EHG bursts present in nonoverlapping
intervals of 30 minutes [15, 16]. Results showed that for
successful inductions, statistically significant and sustained
increases with respect to the basal period were obtained
after 60 minutes and 120 minutes in patients induced with
misoprostol and dinoprostone, respectively [15, 16]. This
is the reason why, in the present work, in order to use
only the significant intervals for both drugs, for each
parameter, we analyzed 5 intervals of 30 minutes (basal
period—before drug administration: 120, 150", 180, and
210"), giving rise to a total of 21 x 5= 105 EHG features.

Additionally, we considered the following obstetric
parameters that have been used in the literature [5-9]: mater-
nal age, body mass index (BMI), number of gestations, parity,
number of abortions, Bishop before drug administration, and
fetal weight.

Then, for the inputs to the different labor induction suc-
cess predictor systems developed, the parameters were
grouped into three sets: Set_l—containing only obstetrical
features, Set_2—containing only EHG features, and Set_
3—containing both EHG and obstetrical features.

2.3. Data Balancing. The disadvantage of imbalanced data-
sets is that classification learning algorithms are often biased
towards the majority class, so that there is a higher misclassi-
fication rate for the minority class instances. The synthetic
minority oversampling technique (SMOTE) was used in this
study to deal with the unbalanced data problem. SMOTE is
an oversampling approach proposed by Chawla et al. [44]
and consists of increasing the number of observations of
the minority class in the original dataset by creating new syn-
thetic observations. SMOTE is an accepted technique for
dealing with the unbalanced problem and has been used in
several studies (e.g. [12, 45],).

Nine databases (3 scenarios x 3 feature sets) were gener-
ated (see Table 3) using SMOTE to balance the number of
observations of each class in every database.

2.4. Feature Selection. In order to use only relevant data and
avoid redundant information, particle swarm optimization
(PSO) was used for feature selection. PSO is a population-
based stochastic optimization technique that is based on the
social behavior of flocking birds or schooling fish developed
by Eberhart and Kennedy [46]. PSO is an iterative algorithm
that consists of a number of particles (the swarm) moving
around in the search space in order to achieve the best solu-
tion. A particle representing a candidate solution moves to
the optimal position by updating its position and velocity.

PSO was adapted for feature selection as shown in
Figure 3. The algorithm starts from a training set to select a
subset of relevant features with PSO (the winning particle).
A reduced training set and a reduced validation set are
obtained by removing the features that are not selected. An
artificial neural network for classification is trained with the
reduced training set and then applied to the reduced valida-
tion set to obtain the final validation classification accuracy.
The algorithm is run iteratively k times from k=1 to k=
number of original features (7 for Set_1, 21 for Set_2, and
28 for Set_3). Then, the subset of k features with the lowest
accuracy error is chosen. The algorithm was computed for
each database to reduce the dimensionality.

2.5. Classifiers. Artificial neural networks (ANN) have been
used to classify term and preterm deliveries [12, 17]. In the
present study, we used the multilayer perceptron network
which is a unidirectional network with one input layer, one
output layer, and a certain number of hidden layers. The
hyperbolic tangent function was used as the transfer function
of each neuron. After selecting the optimal structure, for each
scenario and set of features, we obtained a total of nine
predictor systems (PS) based on ANN (PSqcpnario st
PS1_1,PS1_2, ..., PS3_3). For each PSqrpnario_ser the cor-
responding DB¢pnario_ser database was used for training
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TaBLE 3: Databases used to build the different predictor systems for each scenario (SMOTE balanced) and each feature set.

Test data
reduced

Set_1 Set_2 Set_3
(7 Obst. features) (21EHG features) (7 Obst. 21 EHG features)
Scenario 1
(164 observations) DBI_1 DB1_2 DB1_5
Scenario 2
(196 observations) DB2_1 DB2_2 DB2_3
Scenario 3
(164 observations) DB3_1 DB3_2 DB3_3
I
i Training \ PSO for feature
! set } selection
i i
| 1 Selected
| | features
| |
| |
e ] RN A ‘
i Training i
! data !
Classification Classification | reduced |
accuracy algorithm : :
| |
| |
| |
| |
| |
| |

FIGURE 3: Diagram of the particle swarm optimization method for feature selection.

and validation (five-fold cross-validation). Figure 4 shows the
scheme of each of the predictor systems.

In order to choose the optimal structure for each predic-
tor system, we performed a grid search to select the number
of hidden layers and hidden neurons. The rules in the grid
search were as follows: maximum 2 hidden layers and maxi-
mum 10 hidden neurons in the first hidden layer. In addition,
the number of neurons in the second hidden layer must not
exceed the number of neurons of the first hidden layer, thus
yielding a pyramidal structure with 2 hidden layers, which
ensures optimal learning for multilayer networks [47]. In
each scenario, we trained 165 ANN (55 ANN x 3 feature sets
). The best structure was selected from the 55 ANN of each
case, measuring the average performance of each ANN from
the validation set in a five-fold cross-validation. The imple-
mentation of the proposed algorithms to obtain the nine opti-
mal predictor systems is shown in Figure 5.

Considering that vaginal delivery (Scenario 3) is a 2-step
process, a fourth classifier was generated by cascading the
predictor systems of Scenario 1 and Scenario 2 (PS1_gpp-
PS2_¢pp). The first system (PS1_g.p) separates patients who
achieve APL from those who fail to do so (non-APL) when
using a particular set of features. Women classified as non-
APL are directly classified as cesarean deliveries, while those
who achieve APL are subclassified by a second system trained
with the same set of features (PS2_gpr). To evaluate this
2-step predictor system, the same validation partitions of
the corresponding one-step predictor systems (DB3_gpp)
were used to compare the results between both approaches;

i.e., validation partitions from DB3_1 were used to evaluate
PS1_1-PS2_1, from DB3_2 to evaluate PS1_2-PS2_2, and
from DB3_3 to evaluate PS1_3-PS2_3.

2.6. Performance Measures. We validated the performance
of each classifier by five-fold cross-validation. The follow-
ing measures were calculated to evaluate classification per-
formance:

TP+ TN

A - , 1
Y = TP T TN + FP + EN 1)

TP
.t. . =__ 2
Sensitivity TP T EN (2)
N
Specificity = — . 3
pecificity TN T FP (3)

where TP represents the true positives, TN represents the
true negatives, FP represents the false positives, and FN
represents the false negatives. The area under the ROC
curves (AUC) was computed for each PSgpnario_ser

3. Results

A total of 115 women with singleton pregnancies took part in
the study. Their obstetric characteristics and labor induction
outcome are summarized in Table 1. 98 women reached the
active phase of labor, and 82 reached vaginal delivery. 33
ended up with a C-section: those who did not reach APL
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FIGURE 5: Diagram of the proposed algorithm to obtain the optimal predictor systems.

and some who did but were given a caesarian due to labor
progression complications.

The mean and 95% confidence interval (CI) of the perfor-
mance measures of the training and validation subsets when
predicting APL (Scenario 1) are shown in Table 4. The pre-
dictor system using EHG features (PS1_2) outperformed that
of obstetrical features (PS1_1). The highest performance
measures were obtained when combining obstetrical and
EHG features (PS1_3). The accuracy achieved in PS1_3 was
93.5% (CI 92.6-95.6%) for training subsets and 84.6% (CI
83.4-86.6%) for validation subsets. ROC curves of the three
systems in Scenario 1 are depicted in Figure 6(a). The AUC

was greater for PS1_3 with an AUC of 0.96, while PS1_2
and PS1_1 yielded an AUC of 0.94 and 0.89, respectively.
The performance of the predictor systems in Scenario 2,
which is aimed at distinguishing between APL-vaginal and
APL-cesarean, is shown in Table 5. The best performance
measures were reached for PS2_3, yielding an accuracy value
of 95.2% (CI 94.4-96.1%) in the training subset and 86.5%
(CI 85.3-87.8%) in the validation subset. The performance
measures of this scenario were slightly better than those in
Scenario 1 in Set_2 and Set_3. The ROC curves of the three
classifiers in Scenario 2 are depicted in Figure 6(b). The
AUC was 0.98 for PS2_3, 0.95 for PS2_2, and 0.84 for PS2_1.
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TABLE 4: Mean and 95% confidence interval of performance measures of predictor systems of Scenario 1 (PS1, APL vs. non-APL). T: train; V:

validation. PS1_1 uses DB1_1, PS1_2 uses DB1_2, and PS1_3 uses DB1_3.

PS1_1 PS1_2 PS1_3
N %) T 84.5 (83.4-85.6) 91.4 (89.8-92.9) 93.5 (92.6-95.6)
ccurac
YR \ 75.9 (74.5-77.3) 81.4 (79.9-82.8) 84.6 (83.4-86.6)
Sensitivity (%) T 83.1 (82.0-84.4) 90.0 (88.2-91.9) 91.8 (90.7-94.6)
ensitivi
YR \% 73.1 (71.2-75.1) 76.5 (74.4-78.5) 78.9 (78.2-82.6)
Specificity (%) T 85.8 (84.5-87.2) 92.7 (91.3-94.1) 95.1 (94.4-96.8)
ecifici
P YR % 78.7 (76.8-80.6) 86.3 (84.7-88.0) 90.4 (88.0-91.5)
1 1 :
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FIGURe 6: ROC curves of predictor systems for each scenario: (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3 (1-step).
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TABLE 5: Mean and 95% confidence interval of performance measures of predictor systems of Scenario 2 (APL-vaginal vs. APL-cesarean). T:
train; V: validation. PS2_1 uses DB2_1, PS2_2 uses DB2_2, and PS2_3 uses DB2_3.

PS2_1

PS2_2

PS2_3

79.1 (77.7-80.5)

Accuracy (%) 72.2 (70.6-73.9)

92.1 (91.2-93.1)
82.7 (81.4-84.1)

95.2 (94.4-96.1)
86.5 (85.3-87.8)

78.7 (77.1-80.2)

Sensitivity (%) 70.9 (68.8-73.0)

91.1 (90.0-92.3)
79.4 (77.4-81.4

94.4 (93.1-95.3)
83.8 (81.1-84.6)

Specificity (%)

< H|<Hd|< 4

79.6 (77.9-81.3)
73.9 (71.6-76.3)

) (
93.4 (92.4-94.4) 96.3 (95.7-97.3)
87.0 (85.2-88.8) 89.9 (87.4-91.0)

The results of the 1-step predictor systems which are
aimed at distinguishing between vaginal and cesarean deliv-
eries (Scenario 3) are shown in Table 6. Accuracy values are
around 80% for the training subset and 70% for the valida-
tion. The table shows that the best performance measures
in the training and validation subsets were obtained for
PS3_3 but were quite close to those of PS3_2. PS3_3 gave
an accuracy of 70.4% (CI 67.7-70.5%), a sensitivity of
67.4% (CI 65.3-69.3%), and a specificity of 74.2% (CI 71.2—-
75.7%) in the validation subset. However, these figures are
only slightly higher (around 2% in training, around 0.5% in
validation) than using only EHG features (PS3_2). The
ROC curves of the three systems are depicted in
Figure 6(c). The highest AUC was found for system PS3_3
(AUC=0.87). A slightly lower AUC was found for PS3_2
(AUC = 0.85), while the lowest AUC was found for PS3_1
(AUC=0.81).

The results of the vaginal vs. cesarean predictor system
with a 2-step approach are shown in Table 7. Performance
values were calculated for the same validation partitions of
the database used in the 1-step predictor system in Scenario
3. The best performance measures were obtained by the
two-step system, which combines obstetrical and EHG fea-
tures (PS1_3-PS2_3). The accuracy reached for the 2-step
prediction system using Set_1 (PS1_1-PS2_1) was 71.9 (CL:
70.8-73.0%). A great improvement was noted when cascad-
ing PS1_2-PS2_2 for Set_2, with an accuracy of 79.9% (CI
78.8-81.0), and slightly higher for PS1_3-PS2_3 for Set_3,
with an accuracy 81.4% (CI 80.3-82.5). This latter also
achieved a better balance between sensitivity and specificity:
80.3% (CI 78.8-81.8) and 82.8% (CI 81.2-84.8), respectively.
The best 2-step predictor system (PS1_3-PS2_3) also gave a
much better performance than the best 1-step predictor sys-
tem—PS3_3: average accuracy 81.4% vs 70.4%, sensitivity
80.3% vs 67.4%, and specificity 82.8% vs 74.2%.

4. Discussion

Predicting the success of labor induction has always been a
challenge for obstetricians, and a reliable technique would
be an invaluable aid that would help to minimize long waits,
maternal-fetal exhaustion and suffering, and the medical
costs. Although several attempts have already been made to
predict labor induction success from obstetrical information
[6-9], these studies have shown poor predictive performance.

In this study, we therefore opted to assess the potential role of
EHG for this task.

In the active phase of labor, a necessary step before deliv-
ery, the electrical properties of the uterine myocytes undergo
changes that generate increased uterine activity. The aim of
pharmacologically induced labor is to promote uterine con-
tractions and cervical ripening to achieve vaginal delivery.
The reliable prediction of whether an induction agent could
trigger APL or not would help clinicians to reduce unneces-
sary waits and decide whether or not to perform a cesarean
section. Benalcazar et al. found a significantly different
response between the EHG characteristics of patients that
succeeded in achieving APL and those that did not [15, 16].
In the present work, we performed APL predictor systems
(Scenario 1) with different sets of features: obstetrical (PS1_
1), EHG (PS1_2), and a combination of both (PS1_3). The
best performance measures were obtained in PS1_3, which
yielded an accuracy of 84.6% in the validation subset and
0.96 for the predictor system AUC.

Vaginal delivery is not always guaranteed even after
reaching APL, e.g., in conditions of labor arrest, pelvic-fetal
disproportion or loss of maternal-fetal well-being. Knowing
that it will definitely happen would help to reduce unneces-
sary waits. We designed PS2_1, PS2_2, and PS2_3 to discrim-
inate between APL-vaginal and APL-cesarean (Scenario 2).
However, as it is necessary to wait until the APL is reached
(rarely in the first 4 hours from the onset of labor induction),
its clinical significance is lower. In this scenario, combining
obstetrical and EHG features also provided the best perfor-
mance. However, this combination did not significantly
improve the predictive performance with EHG features only
(3.2% more accuracy in Scenario 1 and 3.8% in Scenario 2),
and the EHG feature sets outperformed the results of the
obstetrical features in both scenarios, indicating that EHG
features provide more accurate information for classifying
labor induction success.

As induction success after drug administration is usually
defined as vaginal delivery, we developed vaginal delivery
predictor systems (Scenario 3) which are potentially of the
greatest clinical interest. Our first approach was a 1-step pre-
dictor system (PS3_1, PS3_2, and PS3_3). The average accu-
racy with obstetrical data only (PS3_1) was 68.9%, slightly
lower than that in Sievert et al., in which 73.9% of the subjects
were correctly classified in the validation cohort using obstet-
rical data only: gestational age, Bishop score, suspected
growth restriction, chronic hypertension, and body mass
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TABLE 6: Mean and 95% confidence interval of performance measures of 1-step predictor systems of Scenario 3 (vaginal deliveries vs.
cesarean). T: train; V: validation. PS3_1 uses DB3_1, PS3_2 uses DB3_2, and PS3_3 uses DB3_3.

PS3_1

PS3_2

PS3_3

77.1 (75.8-78.5)

Accuracy (%) 68.9 (67.4-70.4)

80.0 (78.9-81.2)
69.9 (68.6-71.3)

82.5 (80.3-83.0)
70.4 (67.7-70.5)

77.0 (75.3-78.7)

Sensitivity (%) 69.2 (66.7-71.6)

77.4 (76.0-78.8)
67.1 (65.0-69.3

80.2 (78.2-81.4)
67.4 (65.3-69.3)

77.3 (75.7-78.9)

< H|<Hd|< 4

Specificity (%)

68.7 (66.5-71.0)

(
85.3 (83.4-86.6)
(

)
83.4 (82.0-84.7)
) 74.2 (71.2-75.7)

73.6 (71.0-76.1

TaBLE 7: Mean and 95% confidence interval of performance measures of cascade predictor system of Scenario 3. V: validation partitions.

DB3_Set.

PS2_1-PS3_1 PS2_2-PS3_2 PS2_3-PS3_3
Accuracy (%) v 71.9 (70.8-73.0) 79.9 (78.8-81.0) 81.4 (80.3-82.5)
Sensitivity (%) \% 54.9 (53.1-56.7) 75.2 (73.5-76.8) 80.3 (78.8-81.8)
Specificity (%) \% 93.8 (92.8-94.7) 85.9 (84.6-87.3) 82.8 (81.2-84.4)

index [9], and the area under the receiver-operating curve
was 75%, which is lower than the 81% obtained in the present
work. The larger AUC could be due to the different methods
used to design the systems. In our case, we used neural net-
works, while Sievert et al. used multivariate logistic regres-
sion. Our results were also quite close to those obtained by
Pitarello et al [7]., in which transvaginal sonographic cervical
measurements were carried out on 190 pregnant women to
predict success (defined as vaginal deliveries). The AUC of
all the prediction ultrasound cervical parameters were
68.9% for cervical length, 71.6% for fetal head stage, and
72.0% for cervical dilatation.

Using alternative or additional EHG features slightly
improved the accuracy of the validation sets (<71%), in con-
trast to the enhanced EHG prediction achieved in the previ-
ous scenarios. This could have been due to the heterogeneous
myoelectrical response to induction drugs in the cesarean
delivery cohort, composed of subjects that succeeded in
achieving regular and intense contractile activity and APL
but could not deliver vaginally for other reasons, plus those
who did not reach the necessary contractile activity. This sit-
uation would have given rise to bad training, poor generaliza-
tion capacity, and system performance. We thus turned to a
second two-step approach for predicting successful APL
and vaginal delivery. The accuracy improved insignificantly
when using only obstetrical data, but remarkably when using
the EHG parameters (79.9% average accuracy in validation),
confirming that two-phase assessment of uterine muscle
response to the induction drug reduces class heterogeneity,
makes it easier to extract information from the EHG, and
gives more accurate predictions. It can also be seen that
adding obstetrical information to EHG features does not
significantly improve accuracy, but does help to balance
sensitivity-specificity.

To the best of our knowledge, this is the first time that
EHG has been used to predict successful labor induction.
The results obtained show that EHG can play an important

role in labor management decisions and would help clini-
cians to avoid or reduce unnecessarily long inductions,
decrease maternal-fetal risk and suffering, and reduce hospi-
talization costs.

The study has certain methodological limitations; firstly,
it was composed of subjects administered with two different
drugs (prostaglandin E1 and prostaglandin E2), which could
have given rise to different electrophysiological responses.
However, in a clinical context, the ability to predict the
success of labor induction with an overall accuracy of 80%,
regardless of the drug used, would be a huge advantage. Fur-
thermore, the results of a randomized study would have had
greater impact, especially if it compared the effects of various
drugs. However, our aim here was to predict pharmacologi-
cal induction outcomes using EHG and obstetrical informa-
tion. In this regard, a previous study revealed no statistically
significant differences between women who received prosta-
glandin E1 and prostaglandin E2 in the obstetrical parame-
ters related to labor progress or outcomes, such as the
number of women who delivered vaginally before or after
24h of induction, the number of women who achieved
active labor period and time to reach labor, and the number
of women who underwent cesarean section, arterial pH, and
vein pH [15]. In our case, we observed the results of the
pharmacological induction and its predictive capacity. Sec-
ondly, the unbalanced database of success and failure
records in the different scenarios could have caused a bias
in favor of the majority class, as was found in [12]. For this
reason, the SMOTE data oversampling technique was used,
which adds synthetic data to alleviate the problem of class
imbalance. Other techniques such as ADASYN have been
explored to deal with the problem of imbalance and have
given similar results. The use of classification methods that
take into account unbalanced data such as the weighted
extreme learning machine [48] or weighted decision trees
[49] could also be explored. In the same context, we should
like to point out that we applied SMOTE before splitting up
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the data subsets (training/validation) as has been done in
several studies [50-52]. It was seen that when performing
cross-validation after simple oversampling, the same sam-
ples can be included to build the prediction model and eval-
uate its performance [53]. Although this is not exactly the
case when oversampling with the SMOTE technique, the
samples in the training subset can be correlated with samples
in the validation subset. It is thus advisable to oversample
after data splitting. However, our limited database, mainly
the small samples of the minority class in Scenarios 1 and
2, would yield non-extrapolatable validation performance
results, since the validation subset would contain very few
samples of the minority class in each iteration of the k-fold
cross validation (3 samples in Scenarios 1 and 2). On the
other hand, applying SMOTE to such a low minority class
would yield samples similar to the original ones and would
not solve this limitation. We thus opted to perform SMOTE
on the entire database, as has been done in numerous other
studies [50-52]. We hope to address this limitation in a
future work with a larger database. Finally, PSO is a type
of wrapped approach for feature selection that uses a lear-
ning/classification algorithm to evaluate the quality of a par-
ticular feature subset and so is computationally expensive
[54]. In a future work, we plan to evaluate other methods
with similar performance but computationally less expen-
sive, such as the embedded or hybrid approaches [55].

5. Conclusions

In this work, the use of uterine electromyography for the
prediction of the success of labor induction was evaluated
for the first time. The predictor system of three labor induc-
tion scenarios was designed using a different set of features:
obstetrical, EHG, and both. The EHG features outperformed
traditional obstetric features in all the scenarios of labor
induction outcome prediction. The combination of the
obstetrical and the EHG features resulted in greater perfor-
mance measures but close to those when using only EHG
features. Average accuracies of about 85% were obtained
when classifying APL vs. non-APL (scenario 1) and APL-
vaginal vs. APL-cesarean (scenario 2). Two approaches were
assessed and compared for the classification of vaginal vs.
cesarean deliveries (scenario 3). One-step predictor systems
resulted in a low predictive capacity (accuracy < 71%) The
2-step predictor system, cascade of the classifiers of Scenario
1 and Scenario 2, yielded accuracy values greater than 80%
when EHG features were used. These results indicate that
EHG parameters can be used to predict labor induction suc-
cess in the early stages of labor induction. Therefore, an
EHG-based labor induction success predictor system could
be implemented to assist obstetricians in the task of labor
management, improving maternal-fetal well-being, and
reducing hospitalization times and costs.
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