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ABSTRACT 

Objective: 

To examine the capability of MRI texture analysis to differentiate the primary site of 

origin of brain metastases following a radiomics approach. 

 

Methods: 

Sixty-seven untreated brain metastases (BM) were found in 3D T1-weighted MRI of 

38 patients with cancer: 27 from lung cancer, 23 from melanoma and 17 from breast 

cancer. These lesions were segmented in 2D and 3D to compare the discriminative 

power of 2D and 3D texture features. The images were quantized using different 

number of gray-levels to test the influence of quantization. Forty-three rotation-

invariant texture features were examined. Feature selection and random forest 

classification were implemented within a nested cross-validation structure. 

Classification was evaluated with the area under receiver operating characteristic 

curve (AUC) considering two strategies: multiclass and one-versus-one. 

 

Results: 

In the multiclass approach, 3D texture features were more discriminative than 2D 

features. The best results were achieved for images quantized with 32 gray-levels 

(AUC = 0.873 ± 0.064) using the top four features provided by the feature selection 

method based on the p-value. In the one-versus-one approach, high accuracy was 

obtained when differentiating lung cancer BM from breast cancer BM (4 features, 

AUC = 0.963 ± 0.054) and melanoma BM (8 features, AUC = 0.936 ± 0.070) using 

the optimal dataset (3D features, 32 gray-levels). Classification of breast cancer and 

melanoma BM was unsatisfactory (AUC = 0.607 ± 0.180). 
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Conclusion: 

Volumetric MRI texture features can be useful to differentiate brain metastases from 

different primary cancers after quantizing the images with the proper number of gray-

levels. 
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KEY POINTS: 

• Texture analysis is a promising source of biomarkers for classifying brain 

neoplasms. 

• MRI texture features of brain metastases could help identifying the primary 

cancer. 

• Volumetric texture features are more discriminative than traditional 2D texture 

features. 

• The number of gray-levels used to quantize images influence the results. 

• Radiomics analyses merits further research in cancer studies to reduce 

invasive procedures. 
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ABBREVIATIONS AND ACRONIMS: 

ANOVA = Analysis of variance 

AUC = Area under receiver operating characteristics curve 

BM = Brain metastases 

CM = Confusion matrix 

CV = Cross-validation 

GLCM = Gray-level co-occurrence matrix 

GLRLM = Gray-level run-length matrix 

GLSZM = Gray-level size zone matrix 

LGOCV = Leave-group-out cross-validation 

NGL = Number of gray-levels 

NGTDM = Neighborhood gray-tone difference matrix 

RF = Random forest 

TA = Texture analysis 
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INTRODUCTION 

Brain metastases (BM) are the most common neoplasms of the central 

nervous system in adults. The prognosis of patients diagnosed with these lesions is 

poor: their median survival is limited to months even for patients under treatment [1–

4]. The incidence of BM is unavailable although some studies reported that they 

occur in 9–17% of patients with cancer [1, 5]. However, these rates are currently 

increasing due to improved imaging techniques for diagnosis and prolonged survival 

from primary cancers, among other reasons [5]. 

The primary tumors that metastasize more frequently to the brain are those 

originated in lung (≥50%), breast (15–25%) and skin (melanoma) (5–20%) [3]. 

However, some studies indicate that there is a percentage of patients (2–14%) 

presenting BM as the first manifestation of an unknown primary tumor [5]. These 

patients are subjected to invasive neuropathological procedures and imaging 

evaluations, and sometimes the origin of the BM remains undiagnosed at the time of 

death [6–10]. Therefore, there is a clear need to detect the primary tumor in a fast, 

reliable and non-invasive way, as even neuropathological strategies can offer 

contradictory results [10]. 

In the past years, radiomics analysis has been proved to be a valuable 

methodology to increase precision in diagnosis or to predict treatment response in 

cancer research [11–13]. Radiomics is defined as the analysis of a large amount of 

data extracted from medical images to increase the power of decision support tools 

[11, 12]. Radiomics involves processes like image acquisition, image segmentation 

or data mining, but the focus of radiomics is the extraction of features that describe 

quantitatively the image [14]. To this end, texture analysis (TA) has been proved to 

be an excellent source of imaging biomarkers. Texture analysis refers to the 
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application of mathematical methods to evaluate the gray-level patterns and pixel 

interrelationships within an image [15]. The main reason behind using TA to 

characterize tissues in medical images is that TA quantifies the intrinsic 

heterogeneous properties that are usually imperceptible to the human eye. Some TA 

methods have been successfully applied in neurologic disorders studies, including 

brain lesions like BM [16–22], using MRI as the main imaging technique. Particularly, 

contrast-enhanced T1-weigted MRI was the main sequence in these studies as it is 

employed for initial brain tumor detection and contains abundant diagnostic 

information [22, 23].  

Some considerations have to be taken before performing TA. Preprocessing of 

the image region should be analyzed to minimize the effects of MRI acquisition 

protocols. Interpolation, normalization or quantization are preprocessing techniques 

commonly used to improve texture discrimination [24]. In particular, the quantization 

process has been demonstrated to have a substantial impact on the texture profile of 

medical images [25, 26], so it is recommended to optimize the number of gray-levels. 

Also, 3D TA should be considered instead of traditional 2D TA because volumetric 

TA allows to capture tissue heterogeneity more accurately [27]. 

The purpose of this work was to identify the primary site of origin of BM using 

MRI texture features in combination with a random forest (RF) classifier based on the 

radiomics practice. Our hypothesis was that TA could help to find differences 

between BM from different primary sites of origin, considering that it is not possible to 

distinguish the primary tumor by only examining the T1-weighted image of the BM. 
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MATERIALS AND METHODS 

Patients 

This retrospective, single-center study was approved by the Institutional 

Review Board and all subjects provided written informed consent. 

Patients showing single or multiple BM were consecutive reviewed by an 

expert neuroradiologist (20 years-experience). Inclusion criteria comprised: (1) 

pathologically confirmed lung cancer, breast cancer or melanoma and only one 

single primary tumor; (2) no previous treatment, biopsy or surgical resection on BM; 

(3) all BM confirmed by imaging and clinical follow-up and (4) no clear qualitative 

and/or systematic differences on T1-weighted images of the BM to identify the 

primary cancer (ie, hyperintense in every melanoma case). Exclusion criteria were as 

follows (1) small metastases (longest diameter < 9 mm) as TA cannot capture texture 

information properly in small regions [24]; (2) more than 3 BM per patient; (3) multiple 

BM were situated in different brain areas. 

The first thirty-eight patients (22 men and 16 women, mean age 60.05 years, 

age range 24–74 years) who complied with inclusion criterion 

and not with exclusion criteria were selected between December 2013 and April 2016 

were included. Sixty-seven baseline BM were found in these patients: 27 derived 

from lung cancer, 23 from melanoma and 17 from breast cancer. Figure 1 shows an 

example of these types of BM. 

 

Imaging Protocol 

Imaging was performed using a 1.5T MRI scanner (Optima MR450w; GE 

Medical Systems, Milwaukee, WI, USA). The MRI protocol included three-

dimensional inversion recovery fast-spoiled gradient-echo (IR-SPGR, BRAVO) T1-
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weighted brain images, according to standardized protocol [28]. Images were 

acquired without magnetization transfer, after intravenous administration of a single-

dose of gadobenate dimeglumine (0.1 mmol/kg, MultiHance, Bracco; Milan, Italy) 

with a 6 minutes delay. All the BM were scanned using the same imaging parameters 

since changing these parameters may lead to differences in TA performance [29, 30]: 

repetition time/echo time (TR/TE) of 8.5/2.2 ms; flip angle of 12º; matrix size of 

256×256; pixel size of 0.98×0.98 mm2; and slice thickness of 1.3 mm. Partial bias 

field correction in raw data was performed via the on-scanner “pre-scan normalize” 

option. No on-scanner gradient distortion correction was applied. As no diffusion 

weighted-sequences were used in this work, post processing bias field correction 

was not applied 

 
Regions of Interest 

Segmentation of the BM in 2D and 3D was performed using a software tool 

developed specifically for this study in MATLAB (R2015b; The MathWorks Inc., 

Natick, MA, USA). To segment each BM in 2D, the axial slice of the 3D T1-weighted 

image showing the most solid lesion component was manually segmented by an 

expert neuroradiologist (20 years-experience). To segment each BM in 3D, all the 

axial slices of the 3D T1-weighted image showing tissue of the same lesion were 

segmented using a semiautomatic method based on the Chan-Vese algorithm [31] 

that takes the manually segmented 2D lesion as the initial contour. Each 3D 

segmented lesion was revised by the expert. The longest diameters of the volumetric 

lesions were normally distributed without statistical differences (One-way ANOVA F-

test, p>0.05, p=0.314) between the three classes, with mean ± standard deviation of 

24.22 ± 10.67 mm (lung cancer BM), 19.92 ± 7.93 mm (melanoma BM) and 22.08 ± 

10.92 mm (breast cancer BM). 
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Image Preprocessing 

 Prior to feature extraction, some preprocessing techniques were applied to 

improve texture discrimination. Firstly, the MRI regions were normalized using the μ ± 

3σ method to enhance the differences between classes [32]. 

 Gray-level quantization (reduction of the levels of gray used to represent the 

image) was also applied to reduce the computational time and to improve the signal-

to-noise ratio of the texture outcome [33]. In particular, different numbers of gray-

levels (NGL) were tested (8, 16, 32, 64 and 128) to study the influence of the 

quantization process in the discriminative power of the features. 

Finally, volumetric regions were isotropically resampled to the in-plane 

resolution (voxel size = 0.98×0.98×0.98 mm3) using cubic interpolation to ensure the 

conservation of scales and directions when extracting the 3D features [27]. 

 

Feature Extraction 

Feature extraction was performed using the Radiomics MATLAB package [34]. 

Forty-three texture-based features derived from five statistical methods were 

computed. Three features were extracted from the intensity histogram (first-order 

statistics) and the other 40 features were extracted from the following higher-order 

statistical methods: gray-level co-occurrence matrix (GLCM), gray-level run-length 

matrix (GLRLM), gray-level size-zone matrix (GLSZM) and neighborhood gray-tone 

difference matrix (NGTDM). Table 1 summarizes the features described in [34]. 

The proposed features met the criterion of rotation invariance to achieve 

texture parameters that are not dependent on the orientation of the brain in the 

images. To this end, only one GLCM, GLRLM, GLSZM and NGTDM per lesion was 

computed. For 2D TA, the neighboring properties of pixels in the 4 directions of the 
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2D space (0°, 45°, 90°, 135°) were averaged equally. For 3D TA, the neighboring 

properties of voxels in the 13 directions of the 3D space were averaged differently to 

take into account discretization length differences [34]. 

Finally, 10 different datasets of texture features were obtained: five datasets, 

one per NGL, extracted from the 2D regions and five datasets, one per NGL, from 

the 3D regions. All features were standardized to zero mean and unit variance to 

avoid model building being affected by the differences in the feature scales [35]. A 

summary of the procedure followed to obtain the datasets is illustrated in Figure 1.  

 

Strategies for Multiclass Classification 

As mentioned before, three classes of BM were considered according to the 

primary site of origin (lung cancer, breast cancer and melanoma). Random forest 

(RF) is a well-known ensemble learning method of the decision trees family that 

usually provides excellent classification results, especially when dealing with 

multiclass problems [36, 37]. Therefore, the RF classifier was chosen as the 

predictive model to evaluate the discriminative power of features. The number of 

trees in the RF model was set to 250 and the number of random variables used as 

candidates at each split (mtry) was chosen from mtry ∈ {2, 3, 4, ..., 14, 15} in the 

parameter tuning process. 

In the first stage of the study, the 10 datasets were analyzed separately using 

a purely multiclass approach with RF. The resulting statistical metrics derived from 

the model performance of each dataset were compared to identify the dataset of 

features that provided the best classification results. Afterwards, the optimal dataset 

was evaluated using a one-versus-one strategy to examine the capability of these 

features to differentiate between individual types of BM. 
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Model Performance 

Considering the small sample size of our datasets, we decided to evaluate the 

performance of the classifier within a nested cross-validation (CV) structure (Figure 

2). Good estimates of the model performance can be achieved using the validation 

data when the number of samples is not large [38]. The outer resampling loop of the 

nested CV structure was used to optimize the number of features and the inner 

resampling loop was used to tune the model parameter (mtry). 

Leave-group-out CV (LGOCV) was applied in the outer resampling loop. This 

resampling method randomly divides each dataset into training and test sets N times, 

forming N groups. Each group is examined independently: the samples of the training 

set of a group are used to build the model and then this model is evaluated using the 

samples of the test set of the same group. Then, the classification results provided by 

the estimates of all groups are averaged. A total of N=100 groups were used to 

reduce the variance of the CV results [38]. In each group, 25% of the samples were 

randomly selected as test set and the remaining 75% were used as training set. 

Brain metastases from the same patient were treated indistinctively in the 

resampling step to avoid selection bias. To support this decision, a Pearson 

correlation test was performed to measure the linear dependence between random 

pairs of vectors of texture features from BM of the same patient (|r| = 0.431 ± 0.296) 

and BM from different patients (|r| = 0.424 ± 0.248). No statistical difference was 

found between the two groups (Welch’s t-test: p=0.917), suggesting that BM from the 

same patient are correlated in the same way that BM of different patients can be. 

For the feature selection step, a filter method based on the p-value was 

employed to obtain a ranking of features with the most discriminative power. This 

method evaluates the statistical significance of each feature independently, without 
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analyzing the relation between features [39]. The p-values were obtained with the 

One-way Analysis of Variance (ANOVA) F-test for the multiclass strategy and the 

Welch’s t-test for the one-versus-one strategy. The RF variable importance computed 

in the training process was also tested as a feature selection method to compare the 

results obtained with this method and our proposed filter method. To avoid overfitting, 

feature selection was implemented within the model-building process, that is, a 

different ranking of features was obtained in each group using only the training 

samples of each group [40]. The ranked features were progressively added one by 

one from most to least important and then each feature subset was used to tune the 

model parameter (inner 10-fold CV loop), to train the model and to compute the 

metrics on the test samples of the same group. At the end, a total of F=43 sets of 

metrics were obtained in each group evaluation, one per each feature subset. 

Although several metrics were obtained, the relevance of the classification 

results was estimated using the area under receiver operating characteristic curve 

(AUC) averaged over groups’ estimates (mean ± standard deviation). In the 

multiclass strategy, AUC was computed by averaging the one-versus-all statistics, as 

it is a simple way to extend the AUC computation to multiple classes problems [41]. 

The model evaluation process was implemented with the Caret package [42] 

in R language, version 3.2.5 (R Development Core Team, Vienna, Austria). 

 

RESULTS 

Multiclass strategy 

In general, 3D features provided better classification accuracy than 2D 

features in the multiclass strategy, but the number of gray-levels used for 

quantization affected the model performance considerably. As it is shown in Figure 3, 
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3D features from the MRI lesions quantized with NGL of 8, 16 and 32 gray-levels 

provided better AUC than the equivalent 2D features. However, for NGL=64, the 

resulting AUC was similar for 3D and 2D features, and for NGL=128, 2D features 

were more discriminative than 3D features. Therefore, 3D features were more 

influenced by the quantization of the MRI regions than 2D features, losing 

discriminative power when increasing NGL. The exact AUC values obtained for the 

10 datasets are shown in Table 1 of the Supplementary Material. 

The highest AUC was achieved using 3D features from the lesions quantized 

with NGL=32, obtaining an AUC = 0.873 ± 0.064 using only the top four features 

ranked with the p-value feature selection method. When using the RF variable 

importance in the classification of this dataset, the features were ranked similarly and 

the results were slightly worse, but comparable (AUC = 0.841 ± 0.074, with 12 

features). 

Table 2 shows that features derived from the GLCM, GLRLM and GLSZM 

topped the ranking with significant p-value (p<10-3). However, the p-value obtained 

with the ANOVA F-test indicated that there was a significant difference between at 

least two of the three classes of BM primary cancers, so additional evaluation of the 

difference between individual groups was needed. 

 

One-versus-one strategy 

 An overall confusion matrix (CM) was obtained for the dataset presenting the 

highest results in the multiclass strategy (3D features, NGL=32) by summing up all 

confusion matrices obtained in every group’s estimate (Table 3). The overall CM 

revealed that lung cancer BM were classified correctly most of the time (82%), but 

breast cancer and melanoma BM were often misclassified. 
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 The one-versus-one analysis revealed that it would be possible to differentiate 

precisely lung cancer BM from breast cancer BM (AUC = 0.963 ± 0.054) and 

melanoma BM (AUC = 0.936 ± 0.070) using few features of the optimal dataset (4 

and 8 features respectively). However, poor accuracy was achieved when 

discriminating BM from breast cancer and melanoma (AUC = 0.607 ± 0.180), thus 

indicating that these features are not suitable for classifying those types of BM. 

These results are shown in Figure 4. Additional statistical metrics were computed to 

validate the results (Table 4). 

Regarding the top ranked features, Table 5 shows that the ranking of features 

provided by the multiclass strategy mostly coincided with the rankings computed to 

classify lung cancer BM from breast cancer and melanoma BM. Furthermore, the top 

ten features of both rankings showed significant average p-values (10-8 < p < 10-2). 

However, none of the features showed significant average p-value (p>0.2) when 

classifying BM from breast cancer and melanoma. 

The ranking computed with the RF feature selection method was similar to that 

obtained with our filter method when classifying lung cancer BM from breast cancer 

and melanoma BM, especially in the top-ranked features. On the contrary the ranking 

obtained when classifying breast cancer from melanoma BM was different. When 

performing the classification analysis with this RF ranking we found that the results 

did not differ very much from those results obtained with the p-value method (lung 

cancer versus breast cancer BM: AUC = 0.966 ± 0.052 with 5 features; lung cancer 

versus melanoma BM: AUC = 0.922 ± 0.069 with 10 features; melanoma versus 

breast cancer BM: AUC = 0.608 ± 0.186 with 42 features). 
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DISCUSSION 

The radiomics approach used in this study showed that 3D texture features 

were more suitable than 2D features for classifying lung cancer BM from breast 

cancer and melanoma BM, achieving an average AUC > 0.9 in both cases. Random 

Forest provided better accuracy results when limiting the number of features. The 

results showed that, with further research, TA could help in the identification of the 

primary site of origin in patients with BM from an unknown primary cancer. Also, 

patients with two known primary tumors could benefit from this methodology to find 

which tumor has metastasize to the brain. 

This study extends and improves the preliminary results exposed in [43] and 

[44]. In [43] we analyzed the potential of 2D MRI texture features to classify lung 

cancer BM from breast cancer BM, focusing on the influence of the NGL. In [44], we 

studied the classification of lung cancer and melanoma BM by comparing the 

discrimination power of 2D and 3D MRI texture features and by testing several 

classifiers. In the present study we extended these works by studying the 

differentiation of lung cancer, breast cancer and melanoma BM all together, 

establishing a robust methodology to perform a multiclass classification applicable to 

other primary sites of origin. We also evaluated two feature selection methods, 

studied the influence of the NGL and compared more exhaustively the performance 

of 2D and 3D TA. 

Our work is not the first attempt to differentiate BM by its primary site of origin 

using texture features. Beres et al. [45] studied the statistical significance of 2D and 

3D texture features from the histogram and the GLCM to identify the differences 

between lung and breast cancer BM. Our work enhances this study by exploring 

more texture features, including melanoma patients and considering a machine 
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learning approach. With our results, we support the conclusions of Beres et al. that 

TA may help in the discrimination of BM from different primary tumors. 

We based our work on other similar studies that showed the potential of MRI 

texture features combined with machine learning techniques to classify different brain 

lesions, including BM. Larroza et al. [21] used texture features to distinguish between 

BM and radiation necrosis using a LGOCV structure and support vector machine 

classifier (AUC>0.9). Li et al. [22] used texture features to differentiate BM from 

different pathological types of lung cancers using K-nearest neighbor and back-

propagation artificial neural network classifiers in a one-versus-one approach 

(AUC≥0.9 when differentiating small cell lung carcinoma from other types of lung 

cancers). Both studies showed promising result and were very influential to our work. 

However, we tried to go beyond by including 3D texture features and taking into 

account rotation invariance. 

Several studies have addressed the problem of classifying different brain 

tumor types by analyzing the potential of 3D MRI texture features in comparison with 

2D features [17, 18, 20]. These studies showed an improvement in classification 

accuracy when using 3D TA. The conclusions in these works are clear: 3D texture 

descriptors capture more information about the lesion heterogeneity than 2D 

descriptors. In particular, the study of Fetit et al. [18] is very conclusive on this matter. 

This study mainly compares 2D and 3D texture features with several predictive 

models to classify different childhood brain tumors. All the models worked better with 

3D features: for example, the neural network classifier showed 12% improvement in 

AUC and 19% in overall accuracy when using 3D TA instead of 2D TA. Nevertheless, 

3D TA presents some drawbacks. Firstly, the 3D segmentation of the lesion can be 

more complex and time-consuming than the segmentation of a single slice. 
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Additionally, 3D TA requires MRI scans as isotropic as possible to reduce the effect 

of the image interpolation, and the acquisition process of these scans can be very 

slow. 

The influence of the NGL used in the quantization of MRI has been analyzed 

in some studies with mixed results. No difference was reported by several studies 

[34, 46] when comparing the effect of changing NGL on the texture outcome. 

However, other studies showed that the discriminative power of texture-based 

features were affected by the gray-level quantization. Chen et al. [47] found that the 

optimal results for characterizing breast lesions were achieved for NGL=32. Leite et 

al. [25] observed that quantizing with NGL=16 allowed to identify the etiology of brain 

white matter lesions more accurately. Mahmoud-Ghoneim et al. [26] analyzed the 

impact of varying NGL on GLCM features of brain white matter: they concluded that 

their classification results were influenced significantly by the NGL chosen and they 

obtained better results with NGL=128 for both 2D and 3D TA. Our results support the 

fact that the NGL should be optimized for each specific application because it can 

lead to better classification results. 

Our study showed several limitations. The main limitation was the reduced set 

of BM; more samples would be needed to build and test a final predictive model. 

Also, we only considered metastases derived from the most common primary sites of 

origin; other types of BM like those from renal or colorectal cancer should be 

considered in further analyses because it is necessary to consider all possible sites 

of origin to build a reliable final predictive model. Moreover, we only included MR 

images acquired with the same scanner and imaging parameters since TA can be 

affected by differences in scan parameters; a multicenter study on this specific 

application should be performed to evaluate this limitation. Finally, our study failed to 
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classify breast cancer and melanoma BM, so further investigation will be performed 

by exploring other texture methods like Local Binary Patterns or transform methods 

(Wavelets, Gabor filters…) or other MRI sequences that could capture differences 

between BM from different primary sites of origin. To our knowledge, a genetic or 

pathologic link between breast cancer and melanoma that could be related to these 

TA results is unclear at this point, and the study of this association goes beyond the 

objective of this work. 

In conclusion, our results show that TA on T1-weighted MRI in combination 

with a RF classifier allows differentiating accurately BM of lung cancer origin from 

those of breast cancer and melanoma origin when the proper features are chosen. 

These results are promising but further research is expected to consolidate this 

methodology. Our results support the conclusions derived from other studies to 

encourage radiologists to use TA as a new tool to improve precision in diagnosis. 
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Table 1 

 
List of texture features used in this study 

 

Method Features Number of 
Features 

Histogram 
 

Variance, Skewness and Kurtosis 
 

3 

GLCM 
 

Energy, Contrast, Correlation, Homogeneity, Variance, Sum 
Average, Entropy and Autocorrelation 
 

9 

GLRLM 

 

Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-level 
Non-uniformity (GLN), Run-Length Non-uniformity (RLN), Run 
Percentage (RP), Low Gray-level Run Emphasis (LGRE), High 
Gray-level Run Emphasis (HGRE), Short Run Low Gray-level 
Emphasis (SRLGE), Short Run High Gray-level Emphasis 
(SRHGE), Long Run Low Gray-level Emphasis (LRLGE), Long Run 
High Gray-level Emphasis (LRHGE), Gray-level Variance (GLV) 
and Run-Length Variance (RLV) 
 

13 

GLSZM 

 

Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), Gray-
level Non-uniformity (GLN), Zone-Size Non-uniformity (ZSN), Zone 
Percentage (ZP), Low Gray-level Zone Emphasis (LGZE), High 
Gray-level Zone Emphasis (HGZE), Small Zone Low Gray-level 
Emphasis (SZLGE), Small Zone High Gray-level Emphasis 
(SZHGE), Large Zone Low Gray-level Emphasis (LZLGE), Large 
Zone High Gray-level Emphasis (LZHGE), Gray-level Variance 
(GLV) and Zone-Size Variance (ZSV) 
 

13 

NGTDM 
 

Coarseness, Contrast, Busyness, Complexity and Strength 
 

5 

 
 
GLCM Gray-level co-occurrence matrix, GLRLM Gray-level run-length matrix, 

GLSZM Gray-level size zone matrix, NGTDM Neighborhood gray-tone difference 

matrix 
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Table 2 
 
Top ten features of the dataset with the highest accuracy (3D features, NGL = 32 

gray-levels) ranked according to their average p-value computed with the ANOVA F-

test in the multiclass analysis. 

 

Method Feature Average Ranking Average p-value 

GLCM Variance 1,02 < 10-8 

GLSZM Low Gray-level Zone Emphasis 2,72 < 10-6 

GLCM Sum Average 3,02 < 10-6 

GLSZM Small Zone Low Gray-level Emphasis 3,73 < 10-6 

GLRLM Short Run Low Gray-level Emphasis 5,36 < 10-5 

GLRLM Low Gray-level Run Emphasis 6,72 < 10-5 

GLRLM High Gray-level Run Emphasis 6,86 0.00001 

GLSZM High Gray-level Zone Emphasis 7,37 0.00001 

GLCM Autocorrelation 8,52 0.00004 

GLSZM Gray-level Non-uniformity 10,32 0,00062 
 

The subset of features highlighted in bold provided the highest classification 

accuracy. 

GLCM Gray-level co-occurrence matrix, GLRLM Gray-level run-length matrix, 

GLSZM Gray-level size zone matrix, NGTDM Neighborhood gray-tone difference 

matrix 
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Table 3 
 
Overall CM extracted from the RF model performance using the dataset with the best 

results in the multiclass strategy (3D features, NGL = 32 gray-levels). 

 

 
 

Predicted Class 

Breast Cancer Lung Cancer Melanoma 

Ac
tu

al
 C

la
ss

 Breast Cancer 235 (58.75%) 44 (11%) 121 (30.25%) 

Lung Cancer 55 (9.17%) 492 (82%) 53 (8.83%) 

Melanoma 95 (19%) 66 (13.20%) 339 (67.80%) 
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Table 4 
 
Additional metrics obtained in the one-versus-one analysis using the RF model on 

the best dataset (3D features, NGL = 32 gray-levels). 

 

Primary Site of Origin Lung Cancer vs. 
Breast Cancer 

Lung Cancer vs. 
Melanoma 

Breast Cancer vs. 
Melanoma 

Number of Features 4 8 42 

Sensitivity a 0,895 ± 0,163 0,867 ± 0,153 0,600 ± 0,258 

Specificity a 0,880 ± 0,132 0,856 ± 0,153 0,496 ± 0,224 

Overall Accuracy 0,862 ± 0,091 0,861 ± 0,092 0,560 ± 0,146 

Kappa Index 0,711 ± 0,192 0,722 ± 0,185 0,097 ± 0,298 

 

Values are shown as mean ± standard deviation as a result over groups’ estimates. 

a Sensitivity and specificity were computed according to the optimal cutoff point of the 

ROC curve computed with the “closest-to-(0,1)” criterion. 
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Table 5 
 
Top ten features of the best dataset (3D features, NGL = 32 gray-levels) ranked 

according to their average p-value computed with the Welch’s t-test in the one-

versus-one analysis. 

 

Lung Cancer vs. 
Breast Cancer 

Lung Cancer vs. 
Melanoma 

Breast Cancer vs. 
Melanoma 

Feature Average 
p-value Feature Average 

p-value Feature Average 
p-value 

Variance a < 10-7 Variance a < 10-6 Autocorrelation 0,25991 

Sum Average < 10-5 
Low Gray-level 
Zone Emphasis < 10-5 Sum Average 0,27571 

Low Gray-level 
Zone Emphasis < 10-5 

Small Zone Low 
Gray-level 
Emphasis 

< 10-5 
Gray-level 
Variance b 0,30066 

Small Zone Low 
Gray-level 
Emphasis 

< 10-5 
Short Run Low 

Gray-level 
Emphasis 

< 10-5 Entropy 0,30861 

High Gray-level 
Zone Emphasis 0.00005 

Low Gray-level 
Run Emphasis 0.00001 Strength 0,32501 

Short Run Low 
Gray-level 
Emphasis 

0,00011 Sum Average 0.00003 Coarseness 0,33500 

Autocorrelation 0,00014 
High Gray-level 
Run Emphasis 0.00007 

High Gray-level 
Zone Emphasis 0,33575 

High Gray-level 
Run Emphasis 0,00016 

High Gray-level 
Zone Emphasis 0,00020 

Gray-level Non-
uniformity b 0,34701 

Low Gray-level 
Run Emphasis 0,00035 

Long Run Low 
Gray-level 
Emphasis 

0,00048 Energy 0,34283 

Gray-level Non-
uniformity b 0,00503 

Gray-level Non-
uniformity b 0,00075 

High Gray-level 
Run Emphasis 0,36704 

 

The features highlighted in bold are in accordance with those features ranked in the 

multiclass analysis. 

a These features are computed from the GLCM (Gray-level co-occurrence matrix) 

b These features are computed from the GLSZM (Gray-level size zone matrix) 
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Figure 1. Procedure for obtaining the 10 different datasets of features. Examples of 

T1-weighted MRI axial slices showing the most solid area of brain metastases from 

lung cancer origin (a), breast cancer origin (b) and melanoma origin (c) are 

presented. Images were segmented in 2D and 3D, normalized with the µ ± 3σ 

method and quantized using 5 different gray-levels. Then, features were extracted 

and standardized. 

Figure 2. Structure of the nested CV method used to evaluate the different datasets 

of features. All the samples of each dataset were randomly separated in training and 

test sets N=100 times to evaluate the RF model with the AUC, examining different 

subsets of features. 

Figure 3. Comparison between RF model performance using 2D and 3D features for 

all the number of gray-levels considered in this study. The numbers on the curves 

indicate the number of features used to achieve the maximum AUC. 

Figure 4. Average receiver operating characteristics curves obtained in the one-

versus-one analysis. The highlighted points on the curves indicate the optimal cutoff 

points that weighs both sensitivity and specificity equally computed with the “closest-

to-(0,1)” criterion.   

 

 

 


