Document downloaded from:

http://hdl.handle.net/10251/145980
This paper must be cited as:

Alonso-Jorda, P.; Catalan, S.; Herrero, JR.; Quintana-Orti, ES.; Rodriguez-Sanchez, R. (12-
2). Two-sided orthogonal reductions to condensed forms on asymmetric multicore
processors. Parallel Computing. 78:85-100. https://doi.org/10.1016/j.parco.2018.03.005

The final publication is available at

https://doi.org/10.1016/j.parco.2018.03.005

Copyright E|sevier

Additional Information

Two-sided Orthogonal Reductions to Condensed Forms on
Asymmetric Multicore Processors

Pedro Alonso?, Sandra CatalanP, José R. Herrero®,
Enrique S. Quintana-Orti®, Rafael Rodriguez-Sanchez"*

“Dept. de Sistemas Informaticos y Computacion, Univ. Politécnica de Valéncia, Spain
bDept. Ingenieria y Ciencia de Computadores, Universidad Jaume I, Castellén, Spain
“Dept. d’Arquitectura de Computadors, Universitat Politécnica de Catalunya, Spain

Abstract

We investigate how to leverage the heterogeneous resources of an Asym-
metric Multicore Processor (AMP) in order to deliver high performance in
the reduction to condensed forms for the solution of dense eigenvalue and
singular-value problems. The routines that realize this type of two-sided
orthogonal reductions (TSOR) in LAPACK are especially challenging, since
a significant fraction of their floating-point operations are cast in terms
of memory-bound kernels while the remaining part corresponds to efficient
compute-bound kernels. To deal with this scenario: 1) we leverage imple-
mentations of memory-bound and compute-bound kernels specifically tuned
for AMPs; 2) we select the algorithmic block size for the TSOR procedures
via a practical model; and 3) we adjust the type and number of cores to use
at each step of the reduction. Our experiments validate the model and assess
the performance of our asymmetry-aware TSOR routines, using an ARMv7
big. LITTLE AMP, for three key operations: the reduction to tridiagonal
form for symmetric eigenvalue problems, the reduction to Hessenberg form
for general eigenvalue problems, and the reduction to bidiagonal form for
singular-value problems.

Keywords: Dense linear algebra, condensed forms, eigenvalue problems,
singular-value problems, asymmetric multicore processors, heterogeneous
computing, multi-threading, workload balancing

*Corresponding author
Email addresses: palonso@upv.es (Pedro Alonso), catalans@uji.es
(Sandra Catalén), josepr@ac.upc.edu (José R. Herrero), quintana@uji.es
(Enrique S. Quintana-Ort{), rarodrig@uji.es (Rafael Rodriguez-Sanchez)

Preprint submitted to Journal of Parallel Computing September 1, 2017

1. Introduction

We target the two-sided orthogonal reduction (TSOR) of a dense matrix
to a condensed form (namely tridiagonal, Hessenberg or bidiagonal) as an
initial step for the solution of dense eigenvalue or singular-value problems [1]
on multi-threaded Asymmetric Multicore Processors (AMPs). Our interest
in these architectures is motivated by the growing role of energy-efficient
multicore systems-on-chip (SoC) on the road to exascale systems, and the
challenge that represents how to exploit efficiently the heterogeneous types
of cores in these architectures for dense linear algebra operations. An asym-
metric big. LITTLE architecture presents the appealing property of being
composed of two distinct types of cores, optimized for either raw perfor-
mance and low power consumption. Energy simply reflects the consump-
tion of power across a period of time. Therefore, a low-power symmetric
multicore chip cannot always provide the most energy efficient solution. In
particular, for some cases applications, a power-hungry but faster proces-
sor can provide a more energy-efficient solution while, for some others, it
is more efficient from the point of view of energy to run the application
at a lower pace (i.e., on a low-power processor). A symmetric multicore
chip cannot provide an optimal configuration for both types of scenarios.
Our motivation to target this type of heterogeneous architecture is that, in
the dense linear algebra domain, the primary objective is performance and,
therefore, it becomes crucial to exploit both types of cores present in the
ARM big.LITTLE SoC.

Figenvalue problems appear, among others, in computational quantum
chemistry, finite element modeling, multivariate statistics, and density func-
tional theory [2]. The computation of the singular values of a matrix is
relevant, for example, in signal processing, big data, genomics, statistics,
natural language text processing, etc. [1, 2].

Efficient and numerically reliable algorithms for the computation of the
eigenvalues/singular values of a dense matrix consist of two stages [I]. The
mxn input matrix A (with m = n for eigenvalue problems) is first reduced to
an m X n condensed matrix C' via a sequence of orthogonal transformations
applied from the left and right to A (two-sided transformations). This initial
stage is then followed by the application of a specific solver to accurately
compute the eigenvalues/singular values of C'.

In this paper we describe several optimizations to the procedures that
perform the TSOR stage of the matrix A to condensed form specifically de-
signed for an ARM big.LITTLE AMP. The reason for addressing the first
stage of the reduction only is that such transformations cost O(n?) floating-

point arithmetic operations (flops) while, in general, the second stage has
a minor contribution to the total cost and performance of the solver. Fur-
thermore, for simplicity, we assume that the eigenvectors/singular vectors of
the problem are not requested. Otherwise, a few operations complete their
computation as part of a third stage. This last stage is nonetheless straight-
forward to parallelize even on an AMP and, therefore, it is not discussed
further.

LAPACK (Linear Algebra PACKage) [3] provides three main routines
for TSOR to distinct condensed forms:

e SYTRD reduces a symmetric matrix to tridiagonal form via similarity
(i.e., eigenvalue-preserving) transformations;

e GEHRD reduces a general matrix to Hessenberg form via similarity
transformations; and

e GEBRD transforms a general matrix to bidiagonal form.

The former two routines are applied as an initial stage to compute the
eigenvalues of a square matrix, while the last routine is the first step for
the computation of the singular values. All three routines cast a significant
part of its flops in terms of the Level-2 BLAS (Basic Linear Algebra Sub-
programs) 4] for the matrix-vector product, while the remaining flops are
performed in terms of Level-3 BLAS [5].

In a recent work [6], we exposed the poor performance of SYTRD on an
ARM big.LITTLE AMP, even if the Level-3 BLAS kernels are optimized to
exploit the asymmetry of the architecture. The reason for this behavior is
that the memory-bound nature of the Level-2 BLAS, combined with their
limited scalability, turn these components into the factor that dominates
the efficiency of sYTRD. In [7] we reported a remarkable acceleration for
SYTRD achieved by using architecture-aware micro-kernels for the Level-2
BLAS and an asymmetry-aware dynamic schedule of these kernels. In the
present paper, we extend that work making the following contributions:

e We discuss the generalization of our techniques developed in [7] for
SYTRD to the two remaining TSOR procedures, demonstrating their
applicability in the reduction to bidiagonal form implemented in LA-
PACK routine GEBRD as well as the reduction to Hessenberg form in
LAPACK routine GEHRD.

e We propose a performance model that guides the selection of the opti-
mal algorithmic block size and core configuration for the TSOR stage.

e We perform a detailed experimental analysis to illustrate the perfor-
mance benefits of our architecture- and asymmetry-aware variants of
SYTRD, GEBRD and GEHRD on an ARMv7 big. LITTLE architecture.

Overall, we believe that the approach applied to optimize the routines for the
TSOR to condensed forms on the target ARMv7 SoC presented in this work
carries over to other asymmetric and heterogeneous architectures, including
hybrid CPU-GPU systems, as well as multisocket/multicore servers where
distinct CPUs/cores operate at different frequencies.

The rest of the paper is organized as follows. In Section [2] we introduce
the reduction to condensed forms for the solution of dense eigenvalue and
singular-value problems. Section [3] presents the target AMP and the imple-
mentation of Level-2 and Level-3 BLAS on the AMP. Section [describes
the keys towards performance optimization of TSOR routines. Section
presents a performance model that is leveraged to determine the optimal
algorithmic block size. Finally, we present the experimental results in Sec-
tion [6] and we draw some conclusions in Section [7]

2. Reduction to Condensed Forms

Given a square matrix A, of order n, the associated eigenvalue problem
is formally defined by
AX = XA, (1)

where the n xn diagonal matrix A = diag(A1, A2, ..., A,) contains the eigen-
values of A, and the columns of the nxn matrix X contain the corresponding
eigenvectors [I]. The singular value decomposition (SVD) of an m xn matrix
A is defined as

A=UxvT, (2)

where ¥ = diag(oy,09,...,0,) is a square matrix of order » = min(m,n)
that contains the singular values of A in decreasing order of magnitude
(i.e., 0y > 0i+1); and U, VT of respective dimensions m x r and r X n, are
orthogonal and their columns comprise the left and right singular vectors of
the matrix.

The routines in LAPACK for the solution of (symmetric and general)
eigenproblems as well as the computation of the singular values tackle dense
instances of these problems by first reducing A to a condensed matrixlﬂ C, of
dimension m x n (with m = n for eigenproblems), via a collection of House-
holder (orthogonal) reflectors [I]. For performance reasons, at each iteration

IThere exists a multi-stage approach that performs the TSOR in two or more steps, by
first reducing A to a band matrix and then successively refining this to the sought-after
condensed form [8]. Nevertheless, we will not consider this alternative approach as it often
requires a higher number of flops.

of these TSOR procedures, several orthogonal reflectors are aggregated into
a single block reflector, which is then applied via calls to efficient Level-3
BLAS. We next describe this process in some detail.

Let us denote the algorithmic block size as b and, for simplicity, assume
hereafter that m,n are both integer multiples of b. Consider that we have
progressed up to an iteration j € {1,2,...,min(m,n)/b}, applying the nec-
essary transformations (from the left and right) to the matrix in order to
obtain:

Coo | Co1 | 0/Co2
A = Cro | A1 | Arz ;
0 | A21 | A2

where Cpp is (j — 1)b x (7 — 1)b; Ay is b x b; and the blocks Cyg, Cho, Co1
(and Cpa), contain the corresponding entries of the sought-after condensed
form C. The following operations are then computed during the current
iteration of the TSOR routines SYTRD, GEHRD and GEBRD:

(a) PANEL FACTORIZATION (PF): The “current” column-panel < ﬁll >
21

and row-panel (Aj; | Aj2) are reduced to the target condensed form
using a sequence of orthogonal transformations. Simultaneously, these
transformations are aggregated in the form of matrices V', X, both of
dimension m — jb x b, and U, Y, both of size n — jb x b, such that the
application of these transformations yields

Coo | Cot 0/Co2

CIO Cu 012 9
0 [Co | Ao — VYT — XUT

implying that, upon completion of this operation, the computation of
the condensed form has progressed by b columns/rows.

(b) TRAILING UPDATE (TU): The submatrix Age is updated as Ags :=
Ay — VYT — XUT,

This generic TSOR. procedure implements a blocked algorithm that pro-
cesses the m x n matrix A, from top-left to bottom-right, in blocks of b-
column/row panels starting at columns/rows j = (j — 1)b = 0, b, 20b,....
The bulk of the computation in PF corresponds to the formation of matrices
X,Y (U, V are obtained as part of the panel factorization). In particular,
for each reduced column in the panel, this may require several matrix-vector
multiplications.

This generic TSOR procedure requires some specialization depending on
the type of condensed form to be computed:

e For SYTRD, m = n, A is symmetric, X =Y, U = V and, in order to
exploit the symmetry, only the lower (or upper) half of Ags is updated
in TU. Taking into account these considerations, the computation
in PF involves several small general matrix-vector products (GEMV)
and a large symmetric matrix-vector product (symv). Furthermore,
the update in TU can be performed via a single call to the Level-3
BLAS kernel for the symmetric rank-2k update (SYR2K). The overall
cost of routine SYTRD is 4n3/3 ﬂopﬂ7 with 2n3/3 flops performed via
calls to SYR2K, and the rest corresponding to the Level-2 BLAS GEMV
and SYMV.

e The reduction to bidiagonal form via GEBRD can be re-organized to
reduce the computational cost in case m > n (or vice-versa), but the
previous procedure is the preferred choice if m ~ n. We will focus
hereafter in the “squarish” case. For GEBRD, the effect of the Level-
2 BLAS is more prominent. The total cost of this reduction, 8n3/3
flops, is split into 2n3/3 flops performed in terms of the Level-3 BLAS
for the general matrix-matrix multiplication (GEMM) and 2n3 flops as
calls to GEMV.

e The reduction to Hessenberg form via GEHRD slightly differs from the
generic TSOR procedure in the specific blocks that are updated (and
annihilated) at each iteration [9]. The cost of this reduction is 10n3/3
flops, with 20% cast as different types of Level-2 BLAS matrix-vector
products and the remaining 80% in efficient Level-3 BLAS [9].

3. Asymmetry-Aware BLAS for AMPs

In this section, we first describe the target AMP, and then we briefly
review the implementation of the Level-3 and Level-2 BLAS tuned for this
type of architectures [0} [7].

3.1. Target architecture

All the experimentation was carried out using the heterogeneous mul-
tiprocessing device ODROID-XU4 furnished with a Samsung Exynos 5422
SoC. This AMP comprises an ARM Cortex-A15 quad-core processing cluster

2In general, we neglect the lower order terms in the cost expressions. Furthermore, we
assume real arithmetic.

Exynos 5422 System-on-Chip
Cortex-A15 quad CPU Cortex-A7 quad CPU

Cortex-A15 | | Cortex-A15

32+32KB L1 32+32KB L1

Cortex-A15 | | Cortex-A15
32+32KB L1 32+32KB L1

Figure 1: Exynos 5422 block diagram.

(big) plus an ARM Cortex-A7 quad-core processing cluster (LITTLE), both
implementing the ARMv7 micro-architecture. Each Cortex core has its own
private 32-Kbyte L1 (data) cache. The four ARM Cortex-A15 cores share
a 2-Mbyte L2 cache, and the four ARM Cortex-A7 cores share a smaller
512-Kbyte L2 cache; see Figure In addition, the two clusters access a
common 2-Gbyte DDR3 RAM. The experiments were performed with the
Cortex-A7 cores operating at 1.4 GHz and the Cortex-A15 at 1.5 GHz, using
real single-precision IEEE arithmetic. The following analysis and results can
be easily adapted to other AMPs, datatypes, and precision.

All our experiments employ the sequential Level-1 kernels from BLIS
(version 0.1.8), in combination with the multi-threaded asymmetry-aware
instances of the Level-3 and Level-2 kernels introduced in [6} [7].

3.2. Level-3 BLAS for AMPs

All Level-3 BLIS, including GEMM and SYR2K, follow the path pioneered
by GotoBLAS to organize the routine as three nested loops around two pack-
ing routines and a macro-kernel; see Loops 1-3 in Figure 2] corresponding to
the BLIS implementation of the GEMM C+= A . B, with é, A and B of
dimensions m xn, m x k and k xn, respectively. BLIS internally decomposes
the macro-kernel into two additional loops around a micro-kernel that, in
turn, is implemented as a loop around a rank-1 update (Loops 4-5 in Fig-
ure . The micro-kernel is usually encoded in assembly, or in C enhanced
with vector intrinsics, and is responsible for the actual computations. The
packing routines orchestrate the data transfers between consecutive levels
of the cache memory hierarchy. In most architectures, m,, n, are in the
range 4-16; m., k. are in the order of a few hundreds; and n. can be up

Loop1 for j.=0,...,n—1 in steps of n.

Loop 2 for p. = 0,...,k— 1 in steps of k.
B(pC:quchfl,jC:ijranl)~>BC // Pack into B,
Loop 3 for ic = 0,...,m — 1 in steps of m,
Alic sie+me —1,pe i pe+ ke —1) = Ac // Pack into A.
Loop 4 for j, =0,...,n. — 1 in steps of n, // Macro-kernel
Loop 5 for i, =0,...,mc — 1 in steps of m,
Celiy i tp +mp —1,4r t jr +np — 1) // Micro-kernel

+= Ac(ir iir+mpy —1,0: ke — 1)
Be(0: ke — 1,57 : jr +np — 1)

endfor
endfor
endfor
endfor
endfor

Figure 2: High performance implementation of GEMM in BLIS. In the code, C. = C’(zc :
tetme—1,jc 1 je+ne—1) is just a notation artifact, introduced to ease the presentation of
the algorithm, while A., B. correspond to actual buffers that are involved in data copies.

| [[0 [me | ke | me]
ARM Cortex-A15 || 4 | 4 | 400 | 368 | 4,096
ARM Cortex-A7 || 4 | 4 | 88 | 368 | 4,09

Table 1: Parameters for optimal performance of the Level-3 kernels in BLIS on the ARMv7
big.LITTLE embedded in the Exynos 5422 SoC using real single-precision IEEE arithmetic.

to a few thousands [10, [11]. The parameters that optimize performance for
the ARM Cortex-A15 and Cortex-A7 are displayed in Table[l] These values
were determined experimentally, as part of a separate study. A couple of
observations are worth to be pointed out. First, the same value of k. op-
timizes performance for both types of ARMv7 cores. Second, for this SoC
with no L3 cache, close-to-optimal performance was attained using smaller
values for n. (in the range of 1,000-2,000).

An asymmetry-aware parallelization of the Level-3 BLAS was presented
in [6]. That work leverages dynamic scheduling in order to distribute the
iteration space of Loop 3 between the two types of clusters proportionally
to their performance. Internally, a static schedule is applied to partition the
iteration space of Loop 4 among the homogeneous cores of the same cluster;
see [0] for details.

3.3. Level-2 BLAS for AMPs

The implementation of the Level-2 BLIS kernels follows a general struc-
ture that we illustrate in this subsection. For this purpose, we will leverage

Loop1 fori.=0,...,m—1in steps of m.

Y(ic tic +me —1) = ye // Pack into y.
Loop 2 for j. =0,...,n— 1 in steps of n.
Z(Je : je+ne—1) = z¢ // Pack z into z.
Loop 3 for j, = je,...,jc + nc — 1 in steps of n, // Macro-kernel
Yo += M(ic:tc+me— 1,50 Gr +np — 1) // Micro-kernel
Te(fr — Je : jr — je +np — 1)
endfor
endfor
Ye — y(lc Yl +Mme — 1) // Unpack Ye
endfor

Figure 3: High performance implementation of the GEMV kernel in BLIS. In the code,
Z¢,ye are buffers involved in data copies in case x,y are stored with a nonunit stride.
Otherwise, they simply refer to the corresponding entries of the original vectors.

the general matrix-vector product GEMV y + = M - x, with the matrix M
of dimension m x n, and y, x vectors with m, n entries, respectively. This
kernel is implemented in BLIS as two loops (see Loops 1 and 2 in Figure [3))
around two packing routines and a macro-kernel. The GEMV macro-kernel
contains an additional loop (Loop 3 in Figure |3) around a micro-kernel that
casts each update as a fused vector-vector multiply-add [10]. The fusion
factor is 4 and depends on the width of the SIMD NEON intrinsics. The
packing routines in the GEMV kernel copy the contents of y, x into contigu-
ous buffers y., x., and unpack y. into the result vector y (if these vectors
were stored with a nonunit stride). No packing is performed on M since
there is no reuse in the BLIS implementation of the general matrix-vector
product.

In [7] we developed micro-kernels for the ARM Cortex-A7 and Cortex-
A15 cores that exploit the NEON units in these architectures, employing
software prefetching and SIMD instructions. There, we also proposed a so-
lution to parallelize both kernels, on the AMP targeted in our work, that
extracts the concurrency from Loop 1 via an OpenMP construct that dy-
namically distributes its iteration space among the threads/cores.

One important theoretical advantage of selecting a dynamic schedule is
that the workload is automatically adjusted to the performance capabilities
of the two different types of cores in the ARM big. LITTLE AMP. Further-
more, by using distinct cache-aware values of m,. for the Cortex-A15 and the
Cortex-A7, the kernels can take advantage of the cache memory hierarchy
specific to each type of core; see [7] for details. The parameters that opti-
mize performance for the ARM Cortex-A15 and Cortex-A7 are displayed in
Table 2

ARM Cortex-Al15 || 4 | 832 | 2,560
ARM Cortex-A7 4 | 144 | 2,560

Table 2: Parameters for optimal performance of the Level-2 kernels in BLIS on the ARMv7
big.LITTLE embedded in the Exynos 5422 SoC using real single-precision IEEE arithmetic.

An important issue that explains the poor scalability of the Level-2 BLAS
is the low ratio between the number of flops and memory accesses, which
turns this type of operations into memory-bound kernels that, on current
architectures, proceed at the speed dictated by the bandwidth of the memory
layer where M 1is stored. As a consequence, the performance that can be
achieved by any Level-2 BLAS greatly depends on the memory bandwidth
of the target platform. An important insight gained from the experimental
evaluation in [7] is that the Level-2 BLAS kenels hardly scale when increasing
the number of big cores, but they do scale for the LITTLE cores. The reason
is that a single big core almost saturates the memory bandwidth of the
Cortex-A15 cluster so that minor performance increments can be expected
by adding more cores of this type. In contrast, the memory bandwidth for
the LITTLE cluster is enough to feed all four LITTLE cores.

4. General Optimization of the TSOR Routines

There are four optimization keys that have to be addressed to ensure high
performance for the execution of the TSOR routines on the target AMP:

e Development of tuned micro-kernels for the Level-2 and Level-3 BLAS
and each type of core.

e Asymmetry-aware parallelization of the Level-2 and Level-3 BLAS.

e Selection of the algorithmic block size for the TSOR procedure.

e Configuration of the number and type of cores to utilize for each type of
Level-2 and Level-3 BLAS kernel invoked from the TSOR procedures.

The first two factors were briefly discussed in Section [3] and in more
detail in the references therein. This section offers a general evaluation of
the impact of the last two on performance.

4.1. The practical role of the algorithmic block size

The algorithmic block size b selected for the TSOR routines has an im-
portant performance effect that has to be put into perspective. In order to

10

illustrate this, the next experiment shows the impact of the block size on the
global performance, measured in GFLOPS (billions of flops per second). For
simplicity, we run this experiment using a single Cortex-A15 core. Figure
reports a performance gap between the lowest and highest GFLOPS rates
of about 0.5 GFLOPS for the smallest problem size on the three routines.
As the problem dimension is increased, the fluctuation narrows and, for the
largest problem, it is around 0.25 GFLOPS for SYTRD and 0.17 GFLOPS
for GEBRD. However, on GEHRD the performance gap increases with the
problem dimension for small block sizes. This is due to the higher percent-
age of Level-3 BLAS invoked from this routine which favors the use of larger
block sizes. The main conclusion from this preliminary experiment is that
the block size exerts a relevant and consistent impact on performance along
the problem size range.

To better understand the role of the block size b, Figure [5| profiles the in-
fluence of this parameter on the distinct building blocks (i.e., BLAS kernels)
appearing in the TSOR routines, exposing some important details:

e SYTRD: The symmetric matrix-vector product (SYMv, green lines in
the figure) accounts for a major part of the global execution time,
with this fraction of the practical cost growing with the problem size.
This implies that an optimization of this particular kernel, via either
an architecture-aware implementation or an asymmetry-aware paral-
lelization, can be expected to yield important gains on the performance
of the reduction routine. In addition, the execution time of SYMV is
basically independent of the block size. Therefore, the optimization of
this parameter for SYTRD can be pursued by taking into account only
the other two components of the reduction, namely GEMV and SYR2K.

The execution time of the general matrix-vector products (carried out
via GEMV, dark blue lines) grows with the block size, while that of
the symmetric rank-2k update (SYR2K, red lines) has the opposite be-
havior. The reason for these opposite trends lies in that an increase
of the block size shifts part of the computational cost of the reduc-
tion (in the order of n?b flops) from the symmetric rank-2k update to
the general matrix-vector product. This has a minor impact on the
theoretical cost/execution time of the SYR2K kernel, as the volume of
computations performed in terms of this type of operations is 2n3/3
flops; indeed, the reduction in the execution time of this component is
basically due to the use of a larger block size, which delivers a higher
GFLOPS rate. However, increasing the amount of flops that are cast
in terms of GEMV has a major effect on the practical cost of GEMV,

11

SYTRD on a single Cortex-A15 core within the Exynos 5422 SoC

w
a
S
'
o
1r nb= 32 —— nb =160 nb =288 —— |4
nb= 64 —— nb=192 —— nb =320 ——
05 nb= 96 —*— nb=224 —e— nb=352 — |[]
nb =128 nb = 256 ——
0 T T T T T T
1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension n
GEBRD on a single Cortex-Al5 core within the Exynos 5422 SoC
3 T T T T T T
w
o
o
)
w
o -
1# - nb= 32 —— nb=160 nb = 288 -~ B
nb = 64 % nb =192 nb =320 ——
0.5 [l nb= 96 —*— nb =224 —e— nb=352 —~]
nb =128 —=— nb =256 ——
0 T T T T T T
1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension m = n
GEHRD on a single Cortex-Al5 core within the Exynos 5422 SoC
"
a
S
'
(L)
15
nb= 32 —— nb =160 nb =288 ——
1r nb= 64 —<— nb=192 —— nb =320 —— |
05 nb= 96 = nb =224 —— nb=352 —~
nb =128 nb = 256 ——
0 I T I I I I

1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension n

Figure 4: Performance of SYTRD (top), GEBRD (middle) and GEHRD (bottom) on a single
Cortex-A15 core within the ARM big.LITTLE AMP embedded in the Exynos 5422 SoC
using different algorithmic block sizes.

12

Profile of SYTRD on a single ARM Cortex-A15

200 T T T T T T
SYMV (nb = 64) ——
SYMV (nb =352) —=&—
150 GEMV (nb = 64)
GEMV (nb = 352)
@ SYR2K (nb = 64)
E 100 SYR2K (nb = 352)
=
50
0 == 1
1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension n
Profile of GEBRD on a single ARM Cortex-A15
600 Ft pveevees mvy T T
GEMV (nb = 64) ——
500 GEMV (nb = 352) —&— i
GEMM (nb = 64)
400 GEMM (nb = 352) i
g
CU -
g 300
=
200 -
100 -
0 | 1 1 \ 1
1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension m = n
Profile of GEHRD on a single ARM Cortex-A15
T T T T T T]
300 GEMV (nb = 64) ——
550 || GEMV (nb = 352) —e— /
BLAS3 (nb = 64)
200 BLAS3 (nb = 352)
g
[-
£ 150
=
100 B
50 4
0 - 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000

Figure 5:

Problem dimension n

Profile of execution time spent by SYTRD (top), GEBRD (middle) and GEHRD

(bottom) on a single ARM Cortex-A15 core embedded in the Exynos 5422 SoC. This
experiment sets the block size to 64 and 352, respectively, for comparison.

13

as this is a memory-bound operation that proceeds at a much lower
GFLOPS rate. In other words, although increasing b produces a small
raise in the amount of flops that are cast in terms of GEMV (when
compared to the total flops of the reduction routine) the practical cost
(i.e., execution time) becomes much larger due to the low performance
of this kernel.

e GEBRD: The execution time is clearly split into two components: the
general matrix-vector products basically found in PF (GEMV, dark
blue lines), and (two) general matrix-matrix multiplications for TU
(GEMM, light blue lines). Increasing the block size here shifts part of
the flops from TU to PF, with an effect on performance similar to that
already discussed for SYTRD at the end of the previous item.

e GEHRD: Again, the execution time is mainly split into two components,
namely that of GEMV and that of the Level-3 BLAS issued (GEMM and
TRMM). The execution time of GEMV (dark blue lines) grows with the
block size, while the Level-3 BLAS (light blue lines) has the opposite
behaviour. However, since about 80% of the flops are executed in
the Level-3 BLAS calls, for this TSOR procedure the execution time
corresponding only to the GEMV amounts to about 50% of the total.
This favors the use of larger block sizes as the loss in GEMV due to
the adoption of a larger block size (dark blue lines) is outweighted by
the gains obtained in the Level-3 BLAS when using a larger block size
(light blue lines).

4.2. Selection of the core configuration

A complementary factor that dictates the performance of the TSOR
procedures, when executed on an AMP, is the number/type of cores (con-
figuration) that are employed for the execution of each building block.

The two plots in the top row of Figure [f] report the performance rate
attained by GEMV, using matrix operands of two practical shapes encoun-
tered in the TSOR routines. These two graphs reveal that the threshold
dimension from which it is more convenient to use a Cortex-A15 core plus
the full Cortex-A7 cluster depends on the iteration step (m-dimension) and
the algorithmic block size (n-dimension). For small block sizes, large val-
ues in the m-dimension favour the use of the Cortex-A15 core plus the full
Cortex-A7 cluster. In contrast, for large block sizes, small values in the
m-dimension are to be preferred. In addition, the block size dictates the
highest sustainable performance observed for GEMV. For small block sizes,

14

this kernel attains 2.5 GFLOPS due to data re-use in the caches, but this
value decreases to only 2 GFLOPS for large block sizes.

The four plots in the bottom two rows of Figure [6] show the results for
an analogous experiment using the Level-3 BLAS routines and two matrix
shapes that appear during the TSOR routines. The conclusions inferred
from this analysis of the Level-3 BLAS is similar to that presented for GEMV.
In summary, the point from which it is more beneficial to use the entire SoC
or the Cortex-A15 cluster only depends on the iteration step and the block
size. However, for the Level-3 BLAS, large block sizes tend to render higher
performance, as they allow to select closer-to-optimal loop strides while
extracting an ampler level of concurrency within the kernels [7].

To complete the analysis of the main building blocks present in the TSOR
routines, Figure [7] shows the performance of the SYMV routine. In contrast
with the previous kernels, an optimal configuration of this building block
always exploits a Cortex-A15 core plus the full Cortex-A7 cluster.

In summary, the routines for the basic building blocks identify indepen-
dent work units (blocks of loop iterations) that will be then scheduled to the
distinct types of cores by the OpenMP runtime using a dynamic scheduling
strategy. At this point we remark that i) a dynamic scheduling scheme in-
troduces higher overhead than a static scheduling since the work units are
generated at runtime and this overhead is more visible for small problem
dimensions; and i) dynamic scheduling requires a medium to large number
of work items to deliver a fair workload balance especially when the work
items are of different size and the cores present distinct computational per-
formances. In addition, the algorithmic block size directly affects the shapes
of the matrix operands passed to the BLAS kernels invoked from the TSOR
procedures. Furthermore, the experiments in this section illustrate that the
block size changes the threshold from which it is more beneficial to use a
certain configuration for the execution of a certain building block (kernel).
Therefore, the effect of the block size has to be analyzed simultaneously with
the core configuration.

5. Modeling the Performance of the TSOR Routines

In [7] we selected the optimal block size for SYTRD and the core configu-
ration for the three building blocks appearing in this reduction (i.e., SYMV,
GEMV and SYR2K) by conducting an exhaustive experimental analysis of all
possible combinations during the execution of SYTRD. While this is doable,
we next propose a more methodical approach to model performance; see
also [12], 13} (14, 15]. Here we select the optimal block size for the TSOR

15

GEMV on Exynos 5422 SoC GEMV on Exynos 5422 SoC
4 . 4 , ,

4x A7 —— 4xA7 ——
35 1xA15 35 1xA15
1xA15+4 x A7 —=— ‘ 1xA15+4x A7 —=—
3 3
w 25 e » 25 A
5 oo S /H(R, i SRROS NN
2 2 P
0o /Hf\ff ° s
Y a 4 S A T
/f PN PGS S S S s nane L
0.5 oottt 0.5
0 0
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension m (n=64) Problem dimension m (n=352)
GEMM on Exynos 5422 SoC GEMM on Exynos 5422 SoC
32 32
28 28 //\/'\/_.))\‘/\/_V
24 24
e
» 20 » 20
o o
S 16 S 16
[L
O 12 ‘ Y.y g— S 12 ‘ GXAT
4xA15 4xA15
8 1 4xA7 +4xA15 —— 8 1 4xA7 +4xA15 ——
4 Yo SN SR —— P B o e
0 0
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension m = n (k=64) Problem dimension m = n (k=352)
SYR2K on Exynos 5422 SoC SYR2K on Exynos 5422 SoC
32 32 +
b AT
28 28 \‘/‘/\‘
24 24
» 20 » 20
£ £ /[
S 16 9 16 /
[w
O 12 N IXAT —— O 12 ‘ IXAT ——
/\/ ‘ 4xA15 / 4xA15
8 1 4xA7 +4x A15 —— 8 1 4xA7 +4xA15 ——
4 - 4
0 0
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension m (k=64) Problem dimension m (k=352)

Figure 6: Performance of Level-2 and Level-3 BLAS on the ARMv7 big. LITTLE embedded
in the Exynos 5422 SoC.

procedures, based on the experimental performance observed for their build-
ing blocks and the theoretical flop count for each type of building block. In
order to illustrate this, we employ the specific case of the reduction to tridi-
agonal form of a symmetric n X n matrix A via routine SYTRD. The same
method carries over to the remaining two TSOR procedures.

At this point, we remind some of the observations from [7], connecting
them to the experiments in the previous section:

16

SYMV on Exynos 5422 SoC
4 ‘ ‘ ‘
IXAT —
35 1xA15
| 1xA154+4xA7 -
3

25 b o s A PN} e ﬁ\a/a"wf\
T

2

GFLOPS

1.5

T Y Rl e e

1

0.5

0

1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension n

Figure 7: Performance of SymMv on the ARMv7 big. LITTLE embedded in the Exynos 5422
SoC.

e Consider, for simplicity, that n is an integer multiple of the block size:
n = r- b, for a given integer r. The blocked single-step reduction to
tridiagonal form processes the n xn matrix A, from top-left to bottom-
right, in a set of iterations j € {1,2,...,n/b}, in blocks of b-column
panels starting at rows/columns j = (j — 1)b =0, b, 2b,...,(r — 1)b.
In general n may not be a multiple of the block size. Then, the last
panel receives a special treatment using unblocked code.

e At iteration j, the assembly of V' requires b symmetric matrix-vector
multiplications, of decreasing dimensions n— (j+1),n—(j+2),n—(J+
3),...,n—(j+b). Overall, the reduction performs n— 2 calls to SYmV,
involving matrices of dimensions n — 1,n — 2,...,2. Thus, the block
size b has no effect on the number of flops nor the operands’ shapes of
the sequence of calls to symv. We can conclude, hence, that b should
exert no impact on the performance of SYTRD. This observation is
confirmed by the results in the top plot in Figure

e The experimental analysis in [7] revealed that a close-to-optimal con-
figuration for the parallel execution of SYMV, on the Exynos 522 SoC,
employs a single Cortex-A15 core plus the full quad-core Cortex-A7
cluster. Slightly higher performance can be attained by activating a
second Cortex-A15 core, but this will come at a non-negligible energy
cost, which may be relevant for an energy-efficient architecture. In con-
sequence, we prefer the configuration with a single Cortex-A15 core.
We use hand-coded micro-kernels for both types of core architectures,
and a dynamic distribution of the iteration space of Loop 1 among the
system cores, with cache-aware granularity m,. that depends on the

17

core type (see Tables [1| and .

e The assembly of V' at iteration j requires 6 - b general matrix-vector
multiplications of dimensions that depend on the algorithmic block
size. More specifically, the dimensions of GEMV vary (linearly in both
dimensions) from n — (j+ 1) x 1 ton — (j+b) x b. As a consequence,
the overall number of flops performed by GEMV directly depends on
the algorithmic block size of SYTRD, and we can conclude that b plays
some role on performance. This is confirmed by the experiment in the
top plot in Figure

e The experimental analysis in [7] hinted similar conclusions for GEMV to
those exposed for SYMV in the sense that close-to-optimal performance
is obtained by using a single Cortex-A15 core plus the full quad-core
Cortex-A7 cluster. However, for small problem dimensions, it is more
beneficial to use a single Cortex-A15 core.

e At the end of each iteration j, the SYTRD routine invokes the SYR2K
kernel to update the trailing submatrix in A of order n — (j +b) + 1,
using two panels of dimension n — (j+ b) + 1 x b each (Agg := Ags —
UVT — VUT). Therefore, increasing the block size b accelerates the
decay of the trailing submatrix dimensions as the iteration progresses,
but augments the number of columns in the panels. In conclusion,
we can expect that b has a certain effect on the performance of the
sequence of calls to SYR2K, because it affects the operands’ dimensions
and shapes. See again the results in the top plot in Figure

e The algorithmic block size directly affects the matrix shapes involved
in SYR2K and changes the threshold value for which it is more beneficial
to use only the Cortex-A15 cluster or the full SoC. In conclusion, we
should employ either the Cortex-A15 cluster or the full SoC when the
dimension of Ags is smaller or larger than the threshold for a given
algorithmic block size.

To sum up, at iteration j € {1,2,...,n/b}, routine SYTRD invokes the
following Level-2 and Level-3 BLAS routines:

1. b—1 calls to SYMV, each involving a square matrix of order r — k, with
r=n—((—1band k=1,2,...,b— 1.

2. 6b calls to GEMV, each of the b involving a matrix of dimension (r —
k) x k, with k=1,2,...,b.

18

3. A single call to SYR2K to perform two updates of the form C+ = A- AT,
on a triangular part of a square result matrix C' of order s = n — jb
and A of dimension s X b.

Therefore, the total cost of the routine, 4n3/3 flops, can be distributed
among the three building blocks as follows:

1. symv: Zn/b 22;11 2(r — k)2 = 2n3/3 flops.

j=1
2. GEMV: Z?ibl 12(rb?/2 — b3/3) = 3n2b flops.
3. SYR2K: Z;ibl 252b = 2n3/3 flops.

Note that the number of calls to SYMv and the dimension of the matrix
operand for this kernel are independent of the algorithmic block size. There-
fore, this type of kernel does not play a role in the optimization of b, and
our target can be simplified to the minimization of the execution time for
GEMV and SYR2K only. This can be formulated as:

mbin {Tgemv + Tsyr2k}:

where the execution time due to the flops performed via GEMV and SYR2K
are given by

_ oy 12—k
Tgemv - Zj:l Zk:l Ggemv('f’—k,k,c) and
n/b 2s2b
TSyTQk Z]:1 Gsy'er(syb»C) ’

respectively. In the last expressions, Ggemo(p, q,C) and Gsyror(p, ¢,C) stand
for the FLOPS (flops per second) rates delivered by the corresponding rou-
tinesﬂ when operating on a problem of dimension (p,q) using a core con-
figuration C. At this point, we remind that, for GEMV, the optimal con-
figuration employs either a single Cortex-A15 core or 1 Cortex-A15 + 4
Cortex-A7 cores. In contrast, for SYR2K the optimization procedure has to
select between 4 Cortex-A15 cores or the full Exynos 5422 SoC; see Figure [0}

This optimization model guides the search for the optimal block size and
core configuration for SYTRD using the data for the experimental GFLOPS
rates observed for SYR2K and GEMV. As we are only interested in a qual-
itative comparison of the execution time for different values of b and core
configurations, we do not need to perform an exhaustive evaluation of the

3In our model we distinguish the FLOPS rates of cEmv for the transposed and non
transposed case.

19

building blocks. Instead, we can select some representative values and in-
terpolate the FLOPS for the missing performance rates. Moreover, we note
that the building blocks GEMM and GEMV appear also in the remaining two
TSOR procedures, GEHRD and GEBRD. Therefore, we can reuse most of the
experimental evaluation of the building blocks to tune the block size and
core configuration for all three TSOR routines.

Figure [§ shows the evaluation of the performance determined via the
model in comparison with the practical results obtained from an exhaustive
execution of SYTRD using different algorithmic block sizes. For each problem
dimension, the top plot in that figure reports model-driven estimates of the
time increment with respect to the execution time obtained when using the
optimal block size for that problem size. Concretely, for the problem of
dimension n = 1,000, the variation of time is normalized with respect to
the execution time using an algorithmic block size b = 32 (which corresponds
to the optimal value of b for that problem size); for n ranging from 1,250
to 2,500 the results are normalized with respect to the execution time using
b = 64; and for n > 2,500, they are normalized with respect to the execution
time using b = 96. In order to offer quantitative variations of the execution
time, the model should have also taken into account the execution time
of symv. However, as we are only interested in a qualitative detection of
the optimal algorithmic block size, we can simplify the search by neglecting
the impact of symv in the model. Overall, the model estimates that the
optimal block size is either 64 or 96, with the differences between these two
algorithmic block sizes being below 1%. In addition, the model exposes that
the execution time grows with the algorithmic block size.

The model-driven search of the optimal algorithmic block size is vali-
dated with the exhaustive evaluation of the performance of SYTRD in the
bottom plot in Figure[8 The practical results confirm that the actual algo-
rithmic block sizes yielding the highest performance are also 64 and 96, with
the performance declining when the algorithmic size exceeds the largest of
these values.

The previous experiment shows that the model can be used to perform a
search of the optimal algorithmic block size without testing the factorization
itself. However, as the model predicts performance differences below 1%
between the two close-to-optimal algorithmic block sizes, (though similar to
those observed in practice,) this search methodology may introduce small
deviations in the value selected for b. Table [3] quantifies the impact of a
suboptimal choice of b, comparing the execution time for executions that
employ the algorithmic block size predicted by the model against those with
the optimal algorithmic block size obtained from the experimentation. The

20

SYTRD predicted time on Exynos 5422 SoC

22 s —
i b=64 b=192
B bo96 — boopd —e_
T 16 Pt o128 5 B=266 -
™ 5
g 12 \\ ~uuy
: —a
E b bk‘\‘\“\‘\x\.ﬂ**‘—o\,\<
£
" ; I et
4 S 4774/(/”, =
: sl e B SR e
= S
0 s

1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension n

SYTRD on Exynos 5422 SoC

65
6 e |
5.5 == 5o
5 T et
45 e
o 4 ot
& 35 o
Z 5
T 3 Z T
S 25 //
2 1/24/
15 b=32 ——— b=160
] b= 64 b=192
05 b=96 —— b=224 —e—
s b=128 —o b=256 -

1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension n

Figure 8: Model-driven estimation of the relative execution time (top) and actual perfor-
mance (bottom).

results in the table reveal that the relative error is consistently below 2%
(except in one case), being smaller than 1% for most problem dimensions.

6. Performance of the Tuned TSOR routines

This section demonstrates the performance benefits of a tuned selection
of the block size and core configuration, (together with the integration of
architecture-aware microkernels and asymmetry-aware parallel version of the
building blocks) for the TSOR routines SYTRD, GEBRD and GEHRD.

During the execution of these routines, we dynamically adjust the num-
ber/type of cores independently for the main building blocks in order to
tune the performance depending on the dimensions of the operands that are
involved in each call to a building block. This dynamic optimzation was

21

Problem Optimal (b) Difference || Problem Optimal (b) Difference
dimension | Model Real (%) dimension | Model Real (%)
1,000 32 32 - 4,750 96 64 1.66
1,250 64 64 — 5,000 96 64 1.82
1,500 64 64 - 5,250 96 96 -
1,750 64 64 — 5,500 96 64 0.36
2,000 64 64 - 5,750 96 64 1.05
2,250 64 64 - 6,000 96 64 0.69
2,500 64 64 - 6,250 96 64 0.17
2,750 96 64 1.89 6,500 96 96 -
3,000 96 64 1.78 6,750 96 96 -
3,250 96 64 2.19 7,000 96 64 0.16
3,500 96 64 0.86 7,250 96 96 —
3,750 96 64 1.85 7,500 96 96 -
4,000 96 64 1.81 7,750 96 64 1.32
4,250 96 64 1.59 8,000 96 64 0.33
4,500 96 64 1.16 Average 0.71

Table 3: Relative differences of time for SYTRD between executions using the optimal
block size determined by the model and the real optimal value detected via exhaustive
experimental tests.

applied to GEMV, SYMV and SYR2K for SYTRD; GEMV and GEMM for GEBRD;
and GEMV, GEMM and TRMM for GEHRD.

Figure [J illustrates the performance of the three TSOR routines, using
the model-driven optimal algorithmic block size for SYTRD (top, b = 64),
GEBRD (middle, b = 96) and GEHRD (bottom, b = 128). The architecture-
aware microkernels for the Level-2 BLAS kernels and the asymmetry-aware
parallelizations of the Level-2/3 kernels correspond to the implementations
presented in [7] and [6], respectively. The plots include a configuration with
no optimizations applied to the Level-2 BLAS (labeled as “Initial”) as well
as one where all optimizations are present (labeled as “Asymmetry-aware”).
Additionally, for comparison purposes these plots include four additional
reference configurations:

e 4 x Al5: execution on the Cortex-A15 cluster only (4 threads).
e 4 x A7: execution on the Cortex-A7 cluster only (4 threads).

e l|deal - 4: theoretical performance rate obtained by adding the GFLOPS
rates of the isolated Cortex-A15 cluster and the isolated Cortex-A7
cluster.

e Ideal - 1: theoretical performance rate obtained by adding the GFLOPS
rate of a single Cortex-A15 core multiplied by 4 (number of cores in
the cluster) plus that of a single Cortex-A7 multiplied by 4.

22

SYTRD on Exynos 5422 SoC

13

12 S e A e N R

N Ideal - 4 —=—

10 Ideal -1 —=—

9 Asymmetry-aware —s—
» 8 Initial ——
a 4X AT ——
S & 4xA15
6 g

5

e =
2 L
e T

5 o P —

; -

0

1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension n
GEBRD on Exynos 5422 SoC

13

12

" o | e aldeat =4 =T

10 et Ideal - 1 —=—

9 e Asymmetry-aware —s—
» 8 Initial —e—
A 4XAT
S & 4XA15
[T
© s

4 T S

3 B SIS

> " e A o -

1 B

o F

1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension m = n
GEHRD on Exynos 5422 SoC
20
. . e s

i B

16 o

14 ,/
o 12 Ideal - 4 —=—
9 10 Ideal -1 —=—
g . Asymmetry-aware —e—

. a8

6 b AT

4 Lo)

0 | et

1000 2000 3000 4000 5000 6000 7000 8000
Problem dimension n

Figure 9: Performance of SYTRD, GEBRD and GEHRD on the ARMv7 big.LITTLE em-
bedded in the Exynos 5422 SoC. This experiment sets the block size to b = 64 for SYTRD,
b =96 for GEBRD and b = 128 for GEHRD.

23

Let us discuss in detail the results for SYTRD (top plot in Figure E[) The
use of the Cortex-A15 cluster only shows a performance rate that is almost
flat, close to 3 GFLOPS. The reason is that the Level-2 BLAS, dominates
the execution time of the routine, and adding more than one Cortex-A15
thread does not contribute any performance benefit. In contrast, the trend
observed for the line that employs the Cortex-A7 cluster only shows an
asymptotic performance that is close to that of the Cortex-Al15 cluster, as
the Level-2 BLAS do scale with the problem dimension for this type of cores.
These results can be related back to the analysis of the building blocks sSymv,
GEMV and SYR2K in Section [l

The asymmetry-aware configuration shows a consistent performance ad-
vantage over its homogeneous (i.e., symmetric or single-cluster) counterparts
as the former takes advantage of the computational power of the Cortex-A15
cores for the execution of the Level-3 BLAS sYR2K and the scalability of
Level-2 BLAS symv/GEMV on the Cortex-A7 cluster. Concretely, for the
largest problem size the speed-up of this solution grows to be above 2 with
respect to the execution using any of the two clusters in isolation. In addi-
tion, the asymmetry-aware configuration benefits from the multi-threaded
Level-2 BLAS and the optimized micro-kernels to deliver a performance
rate that is up to 6x higher than the initial configuration. Focusing on the
ideal (theoretical) configurations, our solution attains a performance rate
that lies close to that of the ldeal-4 case, showing a fair distribution of the
workload between the two clusters and no significant performance leaks. A
less pleasant scenario appears in the comparison against the ldeal-1 case.
This is explained by the actual lack of scalability of the Level-2 BLAS when
executed on the Cortex-A15, in contrast with the unrealistic assumption
of perfect scalability for the Ideal-1 line. In more detail, we note that the
line labeled as ldeal-1 corresponds to an ideallistic (and quite irreal) per-
formance rate that results from aggregating the practical performance of a
single Cortex-A15 multiplied by 4 plus the practical performance of a sin-
gle Cortex-A7 core multiplied by 4. Therefore, it is as if the 8 cores where
operating in isolation, without memory access conflicts. The main reason
that the practical performance of our parallel implementation the TSOR
routines is far from the ldeal-1 curve is that the CPU-memory bandwidth
rapidly saturates (in particular for the Cortex-A15 cores) due to the strong
memory-bound nature of the level-2 BLAS kernels included in the TSOR
routines.

The major cause for the acceleration of SYTRD, which allows to nar-
row the gap between the performances of the asymmetry-aware configura-
tion and ldeal-4, is the large amount of symmetric matrix-vector products

24

(symv) which are, in turn, large and independent of the block size. Large
matrix-vector products result in appealing opportunities to exploit a parallel
configuration. Unfortunately, this is not the case for GEBRD. The middle
plot in Figure [9] shows that, for this TSOR routine, the asymmetry-aware
configuration steadily approaches but does not reach the performance of the
Ideal-4 curve. Although there exists a large amount of calls to GEMV in
GEBRD, and the aggregated time spent on this kernel is considerably large
compared with the total execution time, only a small fraction of the GEMV
kernels involve a matrix operand that is large enough to benefit from a par-
allel configuration. This is also the case even for large problem sizes, as
the matrix operand passed to the matrix-vector multiplications decreases
in size at each iteration step. Thus, using ldeal-4 as a theoretical reference
function here is, to a certain extent, unrealistic. The bottom plot in Fig-
ure [9] presents the results obtained for GEHRD. Again, the asymmetry-aware
configuration approaches but does not reach the performance of the ldeal-4
curve for similar reasons to those commented above for GEBRD.

To close this section, we point out that employing a parallel configuration
for the execution of small-size matrix-vector products is counterproductive.
To avoid this negative effect, we designed an adaptive strategy that, accord-
ing to problem dimension and block size, selects the best core configuration
runtime. This strategy ensures that the performance of the asymmetry-
aware configuration matches that attained with the Cortex-A15 cluster for
small- to medium-size problems (for example, n < 3500 for sYTRD). Com-
pared with that, for larger problems, our asymmetry-aware algorithms add
the Cortex-A7 cluster to the computation, raising the GFLOPS rate by a
factor that is close to 30%.

7. Conclusions

We have presented architecture- and asymmetry-aware realizations of the
TSOR procedures for the solution of general and symmetric dense eigenvalue
problems as well as singular-value problems for ARM big.LITTLE multicore
architectures. Our experiments with tuned versions of these routines, specif-
ically optimized for the ARM Cortex-A15 and Cortex-A7 cores present in
the ODROID-XU4, show a significant acceleration of the execution time
compared with a simple execution of LAPACK’s legacy codes for this pur-
pose.

Our theoretical and practical analyses reveal the large impact of the
Level-2 BLAS kernels on the performance of the TSOR procedures and
the critical roles of the algorithmic block size and the core configuration.

25

Concretely, the block size has to be finely adjusted to distribute the work-
load between the Level-2 and Level-3 kernels, taking into account that the
memory-bound nature of the former often places this type of operations on
the critical path of the algorithm. In addition, an optimal execution also
depends on the number and type of cores employed for each type and dimen-
sion of the building blocks, with these two parameters determining when it
becomes convenient to add the LITTLE cores to the execution.

This research opens a number of interesting questions. As part of future
work, we plan to investigate the trade-off between performance and energy
consumption, possibly sacrifizing the former in favour of attaining a lower
energy footprint. We recognize that this may be an appealing goal on an
energy-efficient architecture such as an ARM big. LITTLE. In the future, we
also plan to analyze in more detail the relationship between the performance
parameters and the architecture (cache size/levels/organization, memory
bandwidth, etc.) as well as explore the potential extension of this work
to clusters (distributed-memory architectures) consisting of heterogenous
nodes.

Acknowledgements

The researchers from Universidad Jaume I were supported by project
TIN2014-53495-R of MINECO and FEDER, and the FPU program of MECD.
The researcher from Universitat Politecnica de Valencia was supported by
the Generalitat Valenciana PROMETEOII/2014/003. The researcher from
Universitat Politecnica de Catalunya was supported by projects TIN2015-
65316-P from the Spanish Ministry of Education and 2014 SGR 1051 from
the Generalitat de Catalunya, Dep. d’Innovacié, Universitats i Empresa.

References

[1] G. H. Golub, C. F. V. Loan, Matrix Computations, 3rd Edition, The
Johns Hopkins University Press, Baltimore, 1996.

[2] R. M. Martin, Electronic Structure: Basic Theory and Practical Meth-
ods, Cambridge University Press, Cambridge, UK, 2008.

[3] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Green-
baum, S. Hammarling, A. E. McKenney, S. Ostrouchov, D. Sorensen,
LAPACK Users’ Guide, SIAM, Philadelphia, 1992.

26

[4]

[10]

[11]

J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An extended
set of FORTRAN basic linear algebra subprograms, ACM Trans. Math.
Soft. 14 (1) (1988) 1-17.

J. J. Dongarra, J. Du Croz, S. Hammarling, I. Duff, A set of level 3
basic linear algebra subprograms, ACM Trans. Math. Soft. 16 (1) (1990)
1-17.

S. Catalan, J. R. Herrero, F. D. Igual, R. Rodriguez-Sinchez,
E. S. Quintana-Orti, C. Adeniyi-Jones, Multi-threaded dense
linear algebra libraries for low-power asymmetric multi-
core processors, Journal of Computational Science (2016) -
doi:http://dx.doi.org/10.1016/j.jocs.2016.10.020.

URL http://www.sciencedirect.com/science/article/pii/
S1877750316302812

P. Alonso, S. Cataldn, J. R. Herrero, E. S. Quintana-Orti, R. Rodriguez-
Sanchez, Reduction to tridiagonal form for symmetric eigenproblems
on asymmetric multicore processors, in: Proc. 8th Int. Workshop on
Programming Models and Applications for Multicores and Manycores,
PMAM’17, ACM, New York, NY, USA, 2017, pp. 39-47.|doi:10.1145/
3026937.3026938.

URL http://doi.acm.org/10.1145/3026937.3026938

C. H. Bischof, B. Lang, X. Sun, A framework for symmetric band re-
duction, ACM Trans. Math. Soft. 26 (4) (2000) 581-601.

G. Quintana-Orti, R. van de Geijn, Improving the performance of re-
duction to Hessenberg form, ACM Trans. Math. Softw. 32 (2) (2006)
180-194. |[doi:10.1145/1141885.1141887.

URL http://doi.acm.org/10.1145/1141885.1141887

F. G. Van Zee, R. A. van de Geijn, BLIS: A framework for rapidly in-
stantiating BLAS functionality, ACM Trans. Math. Softw. 41 (3) (2015)
14:1-14:33.

F. G. V. Zee, T. M. Smith, B. Marker, T. M. Low, R. A. V. D. Geijn,
F. D. Igual, M. Smelyanskiy, X. Zhang, M. Kistler, V. Austel, J. A.
Gunnels, L. Killough, The BLIS framework: Experiments in portability,
ACM Trans. Math. Soft. 42 (2) (2016) 12:1-12:19.

27

http://www.sciencedirect.com/science/article/pii/S1877750316302812
http://www.sciencedirect.com/science/article/pii/S1877750316302812
http://www.sciencedirect.com/science/article/pii/S1877750316302812
http://dx.doi.org/http://dx.doi.org/10.1016/j.jocs.2016.10.020
http://www.sciencedirect.com/science/article/pii/S1877750316302812
http://www.sciencedirect.com/science/article/pii/S1877750316302812
http://doi.acm.org/10.1145/3026937.3026938
http://doi.acm.org/10.1145/3026937.3026938
http://dx.doi.org/10.1145/3026937.3026938
http://dx.doi.org/10.1145/3026937.3026938
http://doi.acm.org/10.1145/3026937.3026938
http://doi.acm.org/10.1145/1141885.1141887
http://doi.acm.org/10.1145/1141885.1141887
http://dx.doi.org/10.1145/1141885.1141887
http://doi.acm.org/10.1145/1141885.1141887

[12]

[14]

[15]

E. Peise, P. Bientinesi, Performance modeling for dense linear alge-
bra, in: 2012 SC Companion: High Performance Computing, Net-
working Storage and Analysis, 2012, pp. 406-416. doi:10.1109/SC.
Companion.2012.60.

P. Alonso, S. Cataldan, F. D. Igual, R. Mayo, R. Rodriguez-
Sanchez, E. S. Quintana-Orti, [Time and energy modeling
of highperformance level-3 BLAS on x86 architectures, Sim-
ulation Modelling Practice and Theory 55 (2015) 77 — 94.
doi:http://dx.doi.org/10.1016/j.simpat.2015.04.003.

URL http://www.sciencedirect.com/science/article/pii/
S51569190X15000635

E. Peise, P. Bientinesi, A Study on the Influence of Caching: Sequences
of Dense Linear Algebra Kernels, Springer International Publishing,
Cham, 2015, pp. 245-258. doi:10.1007/978-3-319-17353-5_21l.
URL http://dx.doi.org/10.1007/978-3-319-17353-5_21

E. Peise, D. Fabregat-Traver, P. Bientinesi, On the Performance Predic-
tion of BLAS-based Tensor Contractions, Springer International Pub-
lishing, Cham, 2015, pp. 193-212. doi:10.1007/978-3-319-17248-4_
10.

URL http://dx.doi.org/10.1007/978-3-319-17248-4_10

28

http://dx.doi.org/10.1109/SC.Companion.2012.60
http://dx.doi.org/10.1109/SC.Companion.2012.60
http://www.sciencedirect.com/science/article/pii/S1569190X15000635
http://www.sciencedirect.com/science/article/pii/S1569190X15000635
http://dx.doi.org/http://dx.doi.org/10.1016/j.simpat.2015.04.003
http://www.sciencedirect.com/science/article/pii/S1569190X15000635
http://www.sciencedirect.com/science/article/pii/S1569190X15000635
http://dx.doi.org/10.1007/978-3-319-17353-5_21
http://dx.doi.org/10.1007/978-3-319-17353-5_21
http://dx.doi.org/10.1007/978-3-319-17353-5_21
http://dx.doi.org/10.1007/978-3-319-17353-5_21
http://dx.doi.org/10.1007/978-3-319-17248-4_10
http://dx.doi.org/10.1007/978-3-319-17248-4_10
http://dx.doi.org/10.1007/978-3-319-17248-4_10
http://dx.doi.org/10.1007/978-3-319-17248-4_10
http://dx.doi.org/10.1007/978-3-319-17248-4_10

