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Abstract 

We study the electric conductivity of compounds formed by graphene multilayer in 

polypropylene. Our study makes a comparative analysis between experimental and 

computational results. To make an experimental measurement of the electronic properties, 

we deposited Multilayer Graphene (MLG) nanoparticles over a polypropylene matrix. The 

deposition was made in several stages, in which, we added to the polymer matrix different 

percentages of MLG nanoparticles using the melt compounding technique and we studied 

the conductivities of the nanocomposites by mean of electrochemical impedance 

spectroscopy (EIS). The second part consists of computational calculations, in which we 

studied the electronic properties of a graphene sheet under one polypropylene molecule with 

different degrees of polymerization. In both analysis, there is a strong percolation 

phenomenon with a percolation threshold around 18% of MLG nanoparticles. Before the 

percolation threshold, the charge carriers are constrained in the polypropylene molecule, 

making the system an insulating material and a p-type doping. After the percolation 

threshold, the charge carriers are constrained in the graphene, making the system a conductor 

material and n-type doping with conductivity values around 20 S/m. This phenomenon is a 

consequence of a change in the mechanism of charge transfer in the interface between 

polypropylene molecule and graphene sheet. In order to describe the charge transfer 

mechanism is necessary to consider the quantum effect. The incorporation of the quantum 

effects and the percolation phenomenon make possible for the theoretical conductivity to be 

close to the conductivity measured experimentally. 

 

Keywords: Multilayer graphene; polypropylene; composite; conductivity; percolation. 
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1. Introduction 

Polypropylene is one of the most popular thermoplastic polymers, and it has many industrial 

applications. It is often used in the automobiles, textile, medical, and laboratory industry [1], 

due to its low density, rigidity, opacity and good stability at high temperatures. Propylene 

alone is an insulate material, but researchers have proven that polymers with a small number 

of nanoparticles as fillers enhance the physical properties of the material, like the thermal or 

electrical conductivity [2], the soundproofing ability and some mechanical properties [3]. 

Usually, the nanofillers chosen are multiwall carbon nanotubes [4], multilayer graphene, 

carbon nanofibers, and exfoliated graphite nanoplatelets [5]. The fact that the polymer 

changes its physical properties as the number of nanoparticles increases, obeys the 

percolation phenomenon, and there is a percolation threshold in the amount of nanoparticles 

in which the physical behavior changes drastically. It is well known that the geometric 

parameter called aspect ratio of the fillers is very important because the parameter determines 

the percolation threshold and the behavior of the interface between the polymer matrix and 

the fillers [6]. It has been observed that the percolation threshold is small in comparison with 

the number of nanofillers introduced in the system in polymers. 

On the other hand, graphene has an extremely high conductivity, arriving to ballistic 

transition due to the high mobility of its charge carriers [7]. It has been seen that ballistic 

transport in graphene presents huge mean free paths for electrons, e.g., a graphene sheet 

grown by Chemical Vapor Deposition (CVD) technique presents a mean free path of 28 mm 

[8]. Evidently, the electrons in graphene behave as Dirac-fermions without mass, according 

to the previously reported [9], making graphene the most convenient filler to improve the 
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electrical properties of composites. There are previous works with graphene as fillers in 

different types of polymers (epoxy, polystyrene, polyethylene, etc.) [10, 11]. These graphene 

fillers enhanced the physical properties at very low concentration of graphene nanoparticles 

in the polymer matrix. 

According to previous studies, the percolation phenomenon has been seen from the 

experimental point of view and theoretically described with the Monte Carlo method. The 

classical point of view has predominated [12-14] in the description of the percolation, but we 

think that it is necessary to consider the quantum effects to represent correctly the interface. 

In the classical description of the percolation, it is usually assumed that the small percolation 

threshold of the graphene nanoparticles over a polymer matrix is a direct consequence of the 

hopping of the charge carriers [15], but there is much more to study about it.  

Previous experiments with Multiwall carbon nanotubes (MWCNT) [4] and multilayer 

graphene (MLG) nanoparticles have been performed over a polypropylene matrix; 

microwave heating has been used to estimate the effects of the filler in the polymer 

matrix[16], taking advantage of the fact that the polymer matrix exhibits a low dielectric loss 

in the GHz region [17]. Carbon nanotubes are more susceptible to microwave radiation than 

graphene multilayers, proving that graphene multilayers could be a better filler than the 

carbon nanotubes [18]. In this work, we are studying the electrical conductivity from an 

experimental and a theoretical point of view. For the experimental point of view, a percentage 

of 0.5%, 1%, 3%, 5%, 10%, 15%, 20%, 25% and 30% of  MGL nanoparticles were 

incorporated to the polypropylene matrix and then the conductivity was measured by 

electrochemical impedance spectroscopy (EIS).  
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Regarding the theoretical descriptions in this work, we are using the previous description 

made by Weng et al.[15] but incorporating quantum effects into the aspect ratio. In particular, 

the quantum effects using electronic structure calculations to describe the ion transport 

phenomenon are being explored, and then these results are being used in a conductivity 

approach and compared with the experimental values. The electronic structure calculations 

were studied with the Density Functional Theory (DFT) and Quantum Espresso 

computational package. 

2. Methods 

2.1. Sample preparation 

Multilayer graphene (MLG) was purchased from XGScience. Grade M with a diameter of 5 

µm was selected for the trials, which is claimed to have high thermal and electrical properties. 

Homopolymer polypropylene (PP) was selected for the polymer matrix. Polypropylene was 

selected because it has a non-polar behavior, and thus; we can study the behavior of graphene 

nanoparticles in the polymer. The grade employed was PP DUCOR 1101S from DUCOR 

Petrochemicals. This material has an MFR (230ºC/2.16 kg) of 25g/10min, a tensile modulus 

of 1500 MPa, and a melting point of 163 oC. 

Nanocomposites with different percentages of MLG (PP+%MLG) were obtained in a co-

rotative twin screw extruder COPERION W&P ZSK25. The extruder has a diameter of 25 

mm and an L/D ratio of 40. MLG nanocomposites were obtained with 0.5%, 1%, 3%, 5%, 

10% , 15%, 20%, 25% and 30% of filler loading. All the nanocomposites were produced with 

the same processing conditions. The fillers were incorporated via masterbatch produced in a 

previous process where MLG loading of 15% were produced under the following optimized 

conditions [16]: highly dispersive screw configuration, 600 rpm and temperature profile 260 
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oC / 220 oC / 220 oC /210 oC / 200 oC / 190 oC. Masterbatch dilutions were processed with 

the same temperature profile with a screw speed of 800 rpm and using a highly dispersive 

screw. Samples were obtained by compression molding in a hot press (COLLIN model 

P200E) at 200 oC/15 bars during 15 min. Samples with dimensions of (10 x 1 x 0.4) cm were 

used to obtain the electrical conductivity using impedance spectroscopy electrochemical 

(ISE) studies [16].  

2.2  Dielectric properties 

The complex conductivity and permittivity of the compounds was measured by 

impedance spectroscopy at several temperatures within the 293 K (20ºC)–333 K (60ºC) range 

and frequency window 10-1 <f< 107 Hz using a Novocontrol Broadband Dielectric 

Spectrometer (Hundsangen, Germany) integrated with an SR 830 lock-in amplifier with an 

Alpha dielectric interface. The experiments were performed with 100 mV amplitude. The 

samples PP+%MLG were placed between two gold electrodes. During the conductivity 

measurements, temperature was kept isothermally or changed stepwise within the entire 

temperature range controlled by a nitrogen jet (QUATRO from Novocontrol) with a 

temperature error of 0.1 K during every single sweep in frequency.  

2.3  Computational Method 

To effectively describe the compounds proposed in this work, electronic structure 

calculations are being used. Graphene layer was designed as a 6x6 supercell, with a C-C bond 

length of 1.42 Å. The graphene layer is embedded in the x-y plane, meanwhile the dimension 

of the supercell in the z-axis is large enough to neglect the effects between layers (30 Å).  A 

degree of polymerization (PP) of the graphene sheet is made, i.e., over a graphene sheet, a 

polypropylene molecule with N slabs (N=1, 5, and 10) is added. The initial distance between 



7 
 

the polypropylene molecule and the graphene sheet, at least between the hydrogen atoms, is 

3 Å. Ground-state structure, adsorption energy and density of states (DOS) have been carried 

out with the Quantum-Espresso Computational Package [19], using a plane-wave set and 

pseudopotentials. Density Functional Theory (DFT) [20] was used with the generalized 

gradient approximation (GGA) and the Perdew-Burke-Ernzerhof parameterization (PBE) 

[21]. Kohn-Sham orbitals were expanded in a plane-wave basis-set up to a kinetic energy 

cutoff of 40 Ry. The convergence criterion for the self-consistent calculation was of 10-6 Ry, 

the Brillouin-zone integrations were carried out with the Methfessel-Paxton smearing 

technique [22], the smearing parameter was of 0.05 Ry. The Monksort-Pack approach [23] 

is being used to select the k-point mesh, with -centered at 4x4x1. The pseudopotentials for 

C, H, and O were chosen from the quantum espresso website [24]. All the pseudopotentials 

used the Vanderbilt approach [25]. The adsorption energy (Eads) has been calculated 

according to the formula 

   𝐸𝑎𝑑𝑠 = 𝐸𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒+𝑚𝑜𝑙 − (𝐸𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒 + 𝐸𝑚𝑜𝑙).                            ( 1 ) 

The Eads is a measurement of the thermodynamic stability of the system. In equation 1,  

𝐸𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒+𝑚𝑜𝑙 represents the total energy of the system formed by the molecule adsorbed 

into the graphene sheet, Egraphene is the total energy of the graphene sheet, and Emol is the 

energy of the polypropylene molecule in gas phase. If Eads< 0, the adsorption process is 

exothermic, otherwise it is endothermic. 

3. Results 

Electrochemical impedance spectroscopy (EIS) measurements were carried out for all the 

samples of PP+%MLG at different temperatures, (20ºC to 60ºC), to obtain information on 

the samples conductivity. Data for the real part of the conductivity was analyzed in terms of 
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the corresponding Bode diagrams, where variations of the conductivity with the frequency 

for all the composites of PP+%MLG at different graphene concentrations ( %= 0.5, 1, 3, 5, 

10,15,20, 25 and 30) are shown in figure 1. In this plot, we can see the double logarithmic 

plot of the conductivity in S/cm versus frequency in (Hz) at 50ºC of temperature. Similar 

behavior was obtained for other temperatures, showing that composite samples are thermally 

inactive in all the range of temperatures studied, showing practically the same values of the 

conductivity for each one of temperatures. A close inspection of this figure shows that the 

real part of the conductivity for the samples in the range of 20 to 30% of MLG is constant 

for all range of frequencies. This behavior is the typical demeanor as a conductor material. 

However the conductivity is a function of the amount of fillers that we have incorporated in 

the nanocomposite. On the other hand, for PP+15%MLG nanocomposite we observe that 

conductivity is practically constant in all the range of frequencies, only at frequencies higher 

than 106 Hz the behavior of the sample shown a cut-off frequency where it starts increasing 

with the frequency. Similar observations we can see for the sample of PP+10%MLG 

where  the real part of the conductivity is also constant at the low frequencies region until a 

cut-off frequency where it starts increasing with the frequency, as if the sample were a 

capacitor. Finally, for the other samples with lower content of graphene oxide the plateau is 

not observed, presumably, because it is at very low frequencies, outside the range of 

measurement for our experiments, showing a dielectric behavior for the samples. The value 

of  constant means that the impedance has only a resistive contribution and its value 

represents the electrical conductivity of the sample. On the other hand, we have observe that 

the conductivity of the samples is practically independent of the temperature. The value of 

the conductivity of each one of nanocomposites can be obtained from the intercept in the 
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OY-axis, (i.e. from the intersection of the extrapolated frequency-independent plateau line). 

Notice that in case of amount of fillers of 15% or minor, then in the high frequencies region 

the tendency is to change from the resistor to a capacitor behavior. The critical frequency is 

function of the amount of MLG fillers. For amounts of MLG below of 10% our results show 

straight lines with slope c.a. -1, indicating that  the nanocomposite at this concentrations are 

purely capacitors, where the values of the geometrical capacitance C, for the samples of low 

content of MLG ( %=0.5, 1, 3, 5), will be dependent of the amount of MLG incorporated into 

the matrix of polypropylene.  Figure 1 shows that by increasing the amount of the MLG 

nanoparticles to the polypropylene film, the conductivity increases. The trend shows that by 

increasing the percentage of MLG nanoparticles over 15-20%, the electrical conductivity will 

have the characteristic behavior of pure graphene [26]. 
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Figure 1.  Double logarithmic plot of the real part of the conductivity as a function of the 

frequency for all the samples of PP+MLG at 50ºC. 
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Figure 2. The experimental electrical conductivity versus the Percentage of MLG 

nanoparticles deposited in the polypropylene matrix. 

 

Figure 2 shows the relationship between the conductivity and the percentage of MLG 

nanoparticles induced into the polypropylene matrix. It is possible to observe a percolation 

threshold around 18% of MLG nanoparticles fillers. Figure 2 was made using the 

experimental conductivity and then was fitted with the Boltzmann Sigmoid, according to the 

equation: 

𝑦 =
−0.23521

1+𝑒(𝑥−18.204 1.03592⁄ ) − 0.23521,  ( 2 ) 

With an error fit of R2=0.905. 
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To accomplish a theoretical model of the conductivity of these nanocomposite materials we 

need to perform a complete study of the effects of interaction between the polypropylene 

matrix and the graphene [27]. Electronic structure calculations were carried out using a 

graphene supercell of 6x6 with adsorption of a polypropylene chain, which is formed with N 

monomers as slabs (N=1, N=5, N=10), the number of monomers included in the system 

indicates the degree of polymerization (PP). Each system was optimized according to the 

computational details to obtain the ground state structure or the optimized geometry of the 

system. Figure 3 shows the ground-state structures of the computational simulation for 

graphene-propylene N=10, graphene-propylene N=5, and graphene-propylene N=1. 

 

Figure 3.  Ground-state structures of a polypropylene molecule (C3H6)N ( N = 10, 5, and 1), 

the value of N indicates the degree of polymerization, adsorption on a graphene supercell 

(6x6), the carbons of the polypropylene molecule are shadowed in blue only for the purpose 

of distinguishing them from the carbons of the graphene sheet. 

 

From Figure 3, it is possible to see the ground-state structure for the system graphene-

polypropylene with three different degrees of polymerization. The polypropylene carbons are 
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shadowed in blue only for the purpose of distinguishing them from the carbons of the 

graphene. The initial distance between the polypropylene axis and the graphene sheet (C-C) 

was 2.8 Å. However, after the geometry optimization, the polypropylene molecule moves 

away from the surface. Table 1 shows the bond length between the polypropylene and the 

graphene, also, it shows the adsorption energies of each system.  

Table 1. Bond Length (Å) and adsorption energies (eV // kcal/mol) are presented for the 

graphene-polypropylene molecule with the degree of polymerization (PP). 

PP of Graphene-

polypropylene 

(PP) 

Bond Length (Å) Adsorption energy (eV 

// kcal/mol) 

 

|𝜀 − 𝐸𝐹|. 

N=1 4.29 (2) // 4.35 -0.057 // -1.32 0.14 

N=5 4.28(6) // 5.06 (5) -1.81 // -41.62 0.73 

N=10 4.29(7) // 4.62 (9) // 5.06 (5) -3.77 // -86.76 1.55 

 

From the fact that the polypropylene molecule moves away from the graphene sheet and that 

the adsorption energies are very small, in the physisorption range, the Van der Waals forces 

are the only forces interacting in this adsorption process. Of the optimized geometries, it can 

be observed that the polypropylene molecule does not modify the graphene surface. Initially, 

the polypropylene film was chosen as the matrix for the deposition of MLG nanoparticles, 

because the polypropylene films present a non-polar behavior and this was thought to avoid 

the influence of the film on the MLG nanoparticle. From the simulations, it was observed 

that this assumption is appropriate, since the polypropylene moves away from the surface of 

graphene, minimizing the interactions between the polymer matrix and the MLG 

nanoparticles. By comparing the bond lengths of the separated compounds before and after 

the adsorption, we see that these bond lengths remain unchanged after the adsorption 
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phenomena occurs.  Because of the way in which the adsorption phenomenon happens 

(physisorption and bond lengths unchanged), we observe that there are two places where the 

charge carriers are confined; in the p-bonds of the polypropylene molecule; and the π-bonds 

of the graphene sheets. We concluded that before the percolation threshold, the charge 

carriers are trapped in the p-bonds of the polypropylene molecule, inhibiting the transport. 

Meanwhile, after the percolation threshold, the transport of the charge carriers is aquired 

through the π bonds formed by the graphene sheet, improving transport.  

We observed that introducing the MLG nanoparticles in the polypropylene matrix enhanced 

the conductivity of the polymer, transforming the polypropylene sheet from insulate to 

conductive material. It is possible to see that filling of the MLG nanoparticles in the 

polypropylene occurs as a non-linear function of the filler concentration. In fact, the filler 

concentration occurs following a percolation threshold which is influenced by several factors 

as aspect ratio of graphene sheets, inter-sheet junction, wrinkles and folds, etc [28].   

For the sake of describing the interaction between the polypropylene matrix and the graphene 

nanoparticles, it is important to characterize the interface effects. The interface effect is a 

result of the interfacial charge carriers tunneling, enhancing the interfacial conductivity, 

which depends of the filler percentage [6, 15]. When the filler percentage increases the 

average distance between fillers decreases, causing that the extra charge carriers move across 

the interface between the MLG nanoparticles and the polypropylene matrix. The electronic 

density of states (DOS) indicates how the charge carriers find the way to move. 
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Figure 4. Electronic local density of states (LDOS) for pure graphene and graphene-

polypropylene system. 

 

The LDOS for pure graphene and graphene-polypropylene are shown in Figure 4. The grey 

line represents the LDOS of pure graphene and the blue/green/red line is the LDOS for 

graphene-polypropylene system with an N of PP ( N = 1, 5, and 10 ). It is well known that in 

weak disordered solids, the LDOS appears to be slightly different to the ideal case [29]. 

According to the adsorption energies, graphene-polypropylene systems are weak disordered 

crystals. In those systems in which the MLG nanoparticles have a predominant effect, after 

the percolation threshold, the Fermi energy (EF) of the graphene-polypropylene system ( N 

= 1, and N = 5) is located at the right of the Dirac point, considering the Dirac point as the 
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Fermi energy of pure graphene, remaining at the system as an n-type doped system. 

Following the description made by Leenaerts et al. [30], the charge transfer mechanism 

occurs from the polypropylene molecule to the graphene surface, because the localized states 

of the graphene-polypropylene system exceeds the Dirac point. Before the percolation 

threshold (graphene-polypropylene N = 10 slabs), the polypropylene has the predominant 

effect, the LDOS tends to shift to the left of the LDOS of pure graphene. Regardless of the 

type of doping, increasing the amount of polymer in the system raises the energy gap, 

inhibiting the transport of the charge carriers. The EF is on the left side to the Dirac point, 

indicating that the system is p-type doped. The charge transfers from the graphene sheet to 

the polypropylene molecule. Therefore, we conclude that before the percolation threshold, 

when the material is insulated, there is very little transfer of charge and it goes from the 

graphene to the polypropylene matrix. After the percolation threshold is reached, the charge 

transfer mechanism changes, the charge goes from the polypropylene matrix to the graphene, 

which induces improved conductivity of the material.  

Taking into account the classic descriptions made previously, conduction channels are 

induced when the nanoparticles are inserted randomly into the polymer matrix.We used one 

of these classic descriptions and incorporated quantum effects in the aspect ratio. In 

particular, we took the theoretical description made by Weng et al.[31, 32]. They modelled 

the percolation phenomenon of nanoparticles of graphene over a polymer matrix using the 

Eshelby’s tensor [33, 34]. The Eshelby’s tensor is a fourth order tensor Sijkl, which describes 

the inclusion of a finite volume over a homogeneous matrix material. If the inclusion has an 

ellipsoidal shape, the Eshelby’s tensor is reduced to a tensor of second order Sij. In this work, 

the Eshelby’s tensor is defined according to Landau and Lifshitz [35]: 
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𝑆11 = 𝑆22 =

{
 
 

 
 

𝛼

2(1−𝛼2)
3
2

[𝑐𝑜𝑠−1𝛼 − 𝛼(1 − 𝛼2)
1

2] , 𝛼 < 1;

𝛼

2(𝛼2−1)

3
2

[𝛼(𝛼2−1)1 2⁄ −arccosh 𝛼],                          𝛼>1;
 

𝑆33 = 1 − 2𝑆11. 

This definition of the Eshelby’s tensor used a geometrical parameter defined as the aspect 

ratio α, which is the thickness-diameter ratio of the fillers. With this definition of the 

Eshelby’s tensor, it is possible to calculate (c*
1) in the percolation threshold with the 

expression 

𝑐1 =
18𝑆11

3 −9𝑆11

18𝑆11
2 −3𝑆11−4

.  ( 3 ) 

Equation 3 is for low frequencies. To obtain the theoretical conductivity and the percolation 

threshold, determining how the graphene sheets are modified with the presence of the 

polypropylene molecules and the interface effects [7] is needed.  

In previous works [36, 37], the formation of propagation channels from a statistical point of 

view, using the Cauchy statistical function to describe the tunneling is considered, and the 

most common computational treatment for this system is using the Monte Carlo simulation. 

In this work, the quantum effects are also considered. The quantum effects are taken into 

account in the electronic structure calculations and in the deformation measurement, as is 

shown in Figure 5. The interaction between the graphene sheet and the polypropylene 

molecule are described following the analysis discussed in38, the coordinates of the carbon 

atoms of the graphene sheet were plotted to obtain the deformation parameters, see Figure 

5. The heights of the graphene sheet (z), are taken as the fluctuation of the z-axis, considering 
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that the graphene sheet, at the beginning, was placed in the plane z=0. The heights are shown 

in a blue-red scale. The deformation radius was taken as the distance between the maximum 

and minimum height near to the polypropylene molecule, see Figure 5. Another way to 

obtain the deformation radius is using the charge density surface (CDS). The aspect ratio was 

defined as the ratio (α) between the height (z) and the deformation radius (R), 𝛼 =
𝑧

𝑅
. 

Table 2. Deformation parameters from the graphene-polypropylene systems (height z and 

radius R), the aspect ratio α, the S11 element of the Eshelby tensor, and c*
1 in the percolation 

threshold for each system. 

PP of Graphene-polypropylene 

(N) 

z 

(Å) 

R 

(Å) 

α S11 c*1
 Percolation 

Threshold 

1 0.26 4.01 0.064 0.472 0.171 17.1% 

5 0.47 6.35 0.074 0.468 0.183 18.3% 

10 0.349 4.62 0.054 0.476 0.185 18.5% 

 

In the percolation threshold the conductivity behaves, predominantly, as graphene. The 

aspect ratio was defined as the ratio (α) between the height (l) and the deformation radius 

(R), 𝛼 =
𝑙

𝑅
= 0.0468, delivering a percolation threshold of 18.3% of MLG nanoparticle. The 

experimental measurement of c*1 in the percolation threshold is around 18% of MLG 

nanoparticles. 
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Figure 5. Optimized geometry of graphene-polypropylene molecule with N of PP ( N= 1, 5, 

and 10). It shows the deformation of the graphene sheet produced by the polypropylene 

molecule with the coordinates and with the Charge Density Surface (CDS). 
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Following previous studies about graphene conductivity [38], the theoretical conductivity of 

graphene can be estimated in terms of the elastic deformation of the graphene sheet. In our 

case, the conductivity measurement was made over the polypropylene matrix. After the 

percolation threshold the conductivity behaves as the conductivity of graphene doped with 

the polypropylene molecule. At this point, we are using the approach made by Wehling et 

al., which is:  

𝜎 ≈ (
4𝑒2

𝜋ℎ
)
𝑛𝑒

𝑛𝑖
𝑙𝑛2 |

𝐸𝐹

𝐷
|.                            ( 4 ) 

In this approach, we are considering that the scattering mechanism is the midgap states [39]. 

In the Wehling's et al. paper, they deduced this conductivity formula in terms of the Green's 

function in two dimensions. D is a parameter defined in terms of the nearest neighbor hopping 

(t),𝐷 = √√3𝜋𝑡, according to Wehling's work, it is possible to calculate D in terms of the 

graphene deformation parameters 𝐷 = ℎ𝑣𝐹 𝑅⁄ ; R is the deformation radius.  From the 

optimization of the geometry40, it is viable to estimate EF of the graphene-polypropylene 

system, and D as a function of 𝑣𝐹 = √2𝐸𝐹 𝑚𝑒⁄   (me=9.1x10-31 kg is the mass of the 

electron)[40]. ni is the number of impurities in 1 cm2; and ne is the number of charge carriers 

in 1 cm2, ne increases as the amount of MLG nanoparticles increases. The MLG nanoparticles 

are randomly deposited so at one minimum percentage of MLG (percolation threshold), 

charge carriers, and at least one conductive channel in which the charge carriers would flow 

through the polymer matrix will be found. The conductive and insulating regions will be 

combined, so that there will be thermodynamic fluctuation between each other, turning the 

insulation region into conductive areas. 
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The terms of equation 4 are determined directly from the optimization of the geometry, 

except the fraction ne/ni. The fraction ne/ni represents the fluctuation of charge carriers 

available in the system. When the system is insulated, there is no charge carriers available to 

be transported in the material, but, as soon the MLG nanoparticles are deposited in the system 

there is an exponential growth. The growth of charge carriers available to be transported is 

described by the following differential equation:  

𝑑𝑦

𝑑𝑥
= 𝛼𝑦 (1 −

𝑦

𝑘
), 

we are using  𝑦 = 𝑛𝑒 𝑛𝑖⁄ ,. The solution to this differential equation is given by the logistic 

equation 
𝑛𝑒

𝑛𝑖
=

𝑘

1+𝑒𝑑−𝛼𝑥
. Again, following Weng et al. description31, the parameters of this 

logistic equation are given by the deformation of the system; k is the asymptote value, given 

by the point of inflexion k=24; d is the percolation threshold; α is the aspect ratio defined 

below as a geometrical parameter obtained directly from the simulation (𝛼 = 0.049).   

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Table 3. Estimation of the charge impurities ratio ne/n, using the exponential growth model. 

Also, a direct comparison between the experimental conductivity and the theoretical 

conductivity is shown. 

 

 

 

 

 

 

 

 

 

In Table 3, the ne/ni parameters were calculated directly from the logistic equation. Then, 

these values were introduced into equation 4 and compared with the experimental 

conductivity. It looks like that the logistic equation is a good approach to describe the 

percolation problem with slight differences between the experimental and theoretical 

conductivity. The difference emerges before the percolation threshold, in which the 

composites behave as an insulator, because our theoretical approach is designed for 

composites with graphene. Figure 6 shows the direct comparison between the theoretical and 

the experimental sigmoid. The experimental sigmoid is being calculated in Figure 2, and 

obeys equation 2. The theoretical one is being fitted with the Boltzmann Sigmoid, according 

to the equation: 

%MLG ne/ni 
teor (S/cm) exp (S/cm) 

0.5 0.00001 5.96e-12 2.1E-16 

1 0.00002 9.82E-12 2.83E-16 

3 0.00011 7.25E-11 6.5E-16 

5 0.00049 5.36E-10 1.24E-15 

10 0.02193 7.95E-8 3.39E-9 

15 0.94947 0.0112 1.23E-4 

20 17.6014 0.209 0.18 

25 28.9656 0.237 0.225 

30 29.3901 0.237 0.24 
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𝑦 =
−0.23701

1+𝑒(𝑥−17.997 0.99808⁄ ) − 0.23711, 

With an error fit of R2=0.96845. 

 

Figure 6.The theoretical conductivity versus the Percentage (%) of MLG nanoparticles 

deposited in the polypropylene matrix (black color) is shown. On the other hand, in red color 

we show the experimental results for the same percentages of graphene. The lines show the 

sigmoid fits both experimental and theoretical results. 

 

4. Conclusions 

In this paper, we studied the compounds formed by graphene surfaces and polypropylene 

membranes. This study is divided in two parts; experimental and computational analysis. 
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In both analysis, we observed that the conductivity curve can be fitted by a sigmoid curve, 

which is the main characteristic of the percolation phenomenon. The percolation 

threshold is around 18% of MLG nanoparticles. Likewise, the theoretical description of 

the percolation is based on the quantum framework, leading a more accurate description, 

very similar to the experimental results. In particular, the theoretical percolation threshold 

was calculated using the work of Weng et al.[34-36], using the fact that the percolation 

threshold depends only of a geometrical parameter (the aspect ratio α). Now, in our 

present work, the aspect ratio parameter α was calculated after considering quantum 

effects in the geometry of the system, i.e., the optimization of the geometry was made by 

considering the quantum effects and this geometry was used to calculate the aspect ratio 

parameter α, which gives us a percolation threshold very similar to the experimental 

threshold observed. With the percolation threshold, calculating the theoretical 

conductivity and comparing it with the experimental conductivity, is possible.  

Secondly, from the adsorption energies we see, immediately, that the interactions 

between graphene and the polypropylene are Van der Waals type. This characteristic 

made possible to determine that, before the percolation threshold, the charge carriers are 

trapped in the p-bonds of the polypropylene molecule, restricting the transport. After the 

percolation threshold, the charge carriers are transported through the π-bonds of the 

graphene sheet. Furthermore, we observe that the geometry of the all molecules remained 

unchained, because the interaction between them is weak. 

From the DOS, we see that increasing the number of slabs in the polypropylene molecule 

raise the energy gap making the system insulated. Also, we show that after the percolation 

threshold, the charge transfer mechanism is changed. Before the percolation threshold, 

the charge is transferred from the graphene sheet to the polypropylene molecule (this 
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mechanism is not so efficient so the charge transport is very poor) p-type doping. After 

the percolation threshold, the charge is transferred from the polypropylene molecule to 

the graphene sheet n-type doping, improving the charge transport, turning the material 

into a conductive one. 

The electrical conductivity was calculated using an approach made for pure graphene 

with resonant scattering [36]. This approach considered the quantum conductance owned 

by pure graphene and mid-gap states mechanism to describe the scattering of the charge 

carriers. The main parameters of this approach was calculated with DFT-theory in a 

geometry optimization. The number of charge carriers were determined based on the 

percolation phenomenon. When there is a high number of polypropylene molecules in 

the composite material, there are a low number of charge carriers. As soon as the MLG 

nanoparticles are introduced into the system, an exponential growth of the number of 

charge carriers in the composite material appears. This percolation phenomenon was 

introduced in the conductivity approach as the ne/ni ratio (see equation 4). The theoretical 

conductivity estimate in this work is good enough compared to the experimental 

conductivity (see Table 2), taking into account the interface between the polypropylene 

molecule and the MLG nanoparticles.  
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