
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/146183

Ribes-Llop, S.; Fuentes López, A.; Talens Oliag, P.; Barat Baviera, JM. (15-0). Combination
of different antifungal agents in oil-in-water emulsions to control strawberry jam spoilage.
Food Chemistry. 239:704-711. https://doi.org/10.1016/j.foodchem.2017.07.002

https://doi.org/10.1016/j.foodchem.2017.07.002

Elsevier



  

1 

 

Combination of different antifungal agents in oil-in-water emulsions to control 

strawberry jam spoilage  

Susana Ribes*, Ana Fuentes, Pau Talens, Jose Manuel Barat 

Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 

46022 Valencia, Spain 

 

 

 

 

 

 

 

 

 

 

 

*Corresponding author at Departamento de Tecnología de Alimentos, Universitat Politècnica 

de València, Camino de Vera s/n, 46022 Valencia, Spain. Tel.: +34 963877000; Ext.: 83612. 

E-mail address: surillo@upv.es 

 

 



  

2 

 

Abstract 

The combination of antifungal agents (cinnamon bark oil, zinc gluconate and trans-ferulic 

acid) in oil-in-water emulsions to control the fungal spoilage of strawberry jams, minimising 

essential oil’s sensory impact, was evaluated in this work. The in vitro assays of free 

antifungal agents were performed against five fungal strains; meanwhile, the emulsions assays 

were conducted against Aspergillus niger given its strong resistance and its relevance in 

strawberry products. The emulsion formulated with 0.08 mg/g of essential oil was able to 

inhibit mould growth after the incubation period. The incorporation of zinc gluconate or trans-

ferulic acid, independently of the concentration used, allowed to reduce a 25% the amount of 

essential oil needed to inhibit the microbial growth. The combination of antifungal agents in 

the emulsions has demonstrated to be an effective alternative to reduce the amount of essential 

oil employed, maintaining the hygienic quality and sensory profile of the strawberry jam. 
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1. Introduction 

Numerous techniques, including heat treatment, acidification, drying, incorporation of 

additives, or their combinations, have been used by the food industry to prevent fungal growth 

and spoilage (Davidson and Taylor, 2007). Using synthetic additives to control fungi is the 

most effective method, but negative consumer perception has forced the food industry to find 

other natural alternatives (Ribes, Fuentes, Talens, & Barat, 2016).  

In the last few years, plant essential oils (EOs) have attracted interest in both academia 

and food industry fields thanks to their antifungal properties (Manso, Cacho-Nerin, Becerril, & 

Nerín, 2013). However, the use of plant EOs for preserving food commodities has some 

limitations due to their intensive aroma, difficult dispersion in the food matrix and possible 

interactions with other ingredients. Some authors have proposed the use of oil-in-water (O/W) 

emulsions to overcome these problems (Chang, McLandsborough, & McClements, 2012). 

Combining EOs with other antifungal agents could help to reduce the amount of EOs needed 

to prevent fungi from growing.  

Cinnamon bark EO has demonstrated a strong antimicrobial activity against foodborne 

pathogens but few reports show the behaviour against moulds and yeasts (Manso et al., 2013). 

The main constituent of this EO is trans-cinnamaldehyde (Ribes, Fuentes, Talens, & Barat, 

2017a). Indeed, cinnamon is broadly employed as a natural preservative and flavouring 

substance by the food industry to extend the shelf life of foods. Recently, cinnamon bark 

emulsions have been used to control mould growth in strawberry jams, being Aspergillus niger 

the most resistant microorganism after 28 days of analysis (Ribes et al., 2017a). 

Zinc (Zn) is an important essential mineral for humans given its activity in the metabolism 

of nutrients that form part of enzyme systems (Hess & Brown, 2009). This mineral is also used 

in the food industry given its ability to form green colour complexes with chlorophyll 

derivates, especially at high temperature (Ngo & Zhao, 2007). Recently, zinc salts have been 
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used as antifungals in table olives to reduce yeast growth (Bautista-Gallego, Arroyo-López, 

Garrido-Fernández, García-García, López-López, & Rodríguez-Gómez, 2010), and also in 

cracked table olives where presence of zinc salts, e.g., ZnCl2, more markedly reduced the yeast 

population during shelf life than other traditional preservatives (Bautista-Gallego, Arroyo-

López, Romero-Gil, Rodríguez-Gómez, & Garrido-Fernández, 2011). Among the different 

zinc salts available, the use of zinc gluconate (ZG) is authorised in the EU to fortify food 

products (Directive 2002/46/CE), and the Food and Drug Administration (FDA) has 

recognised zinc gluconate as being safe (GRAS) in Code 21 of Federal Regulations, part 

182.8988 (CFR, 2015).  

Ferulic acid (FA) is a phenolic compound present in fruits and vegetables. FA exhibits 

strong antioxidant activity, and acts as a scavenger against hydroxyl and peroxyl radicals 

(Kansi, Aksenova, Stoyanova, & Butterfield, 2002). It also acts as an inhibitor of fungal 

enzymes (Daglia, 2012), and many authors have reported its in vivo and in vitro antifungal 

activity (Daglia 2012; Ferrochio, Cendoya, Farnochi, Massad, & Ramirez, 2013). Other FA 

effects on human metabolism have been explored, e.g., anti-inflammatory, anti-thrombosis, 

UV-protector and anticancer properties (Lima, Flores, Santana-Cruz, Leyva-Gómez, & 

Krötzsch, 2013). As a result of its antioxidant and antimicrobial activity, and also of its health 

benefits and low toxicity, FA is used as a food additive in food commodities, beverages and 

cosmetics in Japan (Lima et al., 2013). Nevertheless, its solubility in aqueous solutions is low 

(Mota, Queimada, Pinho, & Macedo, 2008), and it is susceptible to light exposure. 

Nonetheless, all these drawbacks could be solved by incorporating it into O/W emulsions. 

The main objectives of this work were to: i) evaluate the in vitro antifungal activity of 

cinnamon bark essential oil, zinc gluconate and trans-ferulic acid against Aspergillus flavus, 

Aspergillus niger, Penicillium expansum, Zygosaccharomyces rouxii and Zygosaccharomyces 

bailii; ii) investigate the combination of these compounds in O/W emulsions to control the 
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spoilage of strawberry jams against Aspergillus niger due to its frequent isolation in 

strawberry product; iii) evaluate the effect of emulsion incorporation on the sensory 

acceptance of strawberry jam.  

2. Material and Methods 

2.1 Strains, media and chemicals 

Strains Aspergillus flavus (CECT 20156), Aspergillus niger (CECT 20156), Penicillium 

expansum (CECT 20140), Zygosaccharomyces rouxii (CECT 1229) and Zygosaccharomyces 

bailii (CECT 12001) were supplied by the Spanish Type Culture Collection (CECT, Burjassot, 

Spain). Potato Dextrose Agar (PDA), Yeast Peptone Dextrose broth (YPDB), agar and n-

hexane were purchased from Scharlab (Barcelona, Spain). In emulsion preparation, cinnamon 

bark essential oil (>60%) (CBEO) (Ernesto Ventós S.A., Barcelona, Spain), xanthan gum (XG) 

(Cargill, Barcelona, Spain), zinc gluconate (ZG) (Solubility in water at 20 ºC, 8 g/100 mL) 

(Guinama, Valencia, Spain) and trans-ferulic acid (FA), and Tween 80 (Sigma-Aldrich, 

Madrid, Spain) were used. Trans-cinnamaldehyde (99%) was supplied by Sigma-Aldrich 

(Madrid, Spain). 

 

2.2 Antifungal properties of CBEO, ZG and FA: in vitro conditions 

CBEO, ZG and FA activity against A. flavus, A. niger and P. expansum was examined 

according to Ribes et al. (2016). Moulds were inoculated on PDA and incubated at 25 ºC for 7 

days, and the spores were counted in a haemocytometer to achieve an inoculum density of 106 

CFU/mL. Next 100 µL of the fungal suspension were spread on the surface of a PDA plates. 

An agar plug of this dish (7 mm diameter) was transferred to the centre of 15 g PDA’s Petri 

dish with different antifungal concentrations: 0, 0.02, 0.04 and 0.06 mg/g for CBEO, 0, 1, 2, 3, 

4, 5, 6 and 7 mg/g for ZG, and 0, 1, 2, 3, and 4 mg/g for FA. The antifungal agents were added 
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to the culture medium, containing 10 mg/g of Tween 80 to ensure their dispersion, at 50 °C. 

The control sets, with no natural agents, were prepared by the same procedure. Each plate was 

incubated at 25 °C for 7 days. Growth inhibition of treatment against the control samples was 

calculated with Equation 1 (Ribes, Fuentes, Talens, Barat, Ferrari, & Donsì, 2017b): 

Mycelial growth inhibition (%) = (C-T/C) x 100                                                             (1) 

where C and T represent diameter of the mycelial growth (mm) in the control and treated 

plates, respectively. 

The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration 

(MFC) of CBEO, ZG, and FA were evaluated by observing the revival or growth of the 

inhibited mycelial disc transferred to PDA for 7 days. The dishes that showed no visual growth 

were taken as the MFC value, whereas those with mycelial growth indicated the MIC value.  

The antifungal effectiveness of natural preservatives (CBEO, ZG, and FA) against Z. 

rouxii and Z. bailii was evaluated by the methodology adapted from Ribes et al. (2016). The 

tested CBEO, ZG, and FA concentrations were the same as those previously described. A 

suspension of yeast strains, 100 µL of 10
6
 CFU/mL counted by a haemocytometer, grown in 

50 mL of YPD broth at 25 °C for 48 h, was spread on 15 g of YPD agar that contained the 

natural preservatives and Tween 80 (10 mg/g). The control Petri dishes, with no antifungal 

agents, were prepared following the same procedure. Plates were incubated at 25 °C for 48 h. 

The lowest CBEO, ZG or FA concentration that achieved the visual inhibition of yeast 

growth was the MIC, and all the tests were run in triplicate. 
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2.3 O/W emulsions 

2.3.1 Preparation  

The O/W emulsions were prepared mixing the natural agents, Tween 80 and XG during 15 

minutes by using a magnetic stirrer, followed by one single pass at 40 MPa by a high pressure 

homogenisation (HPH) system (Panda Plus 2000, Gea Niro Soavi S.p.A., Parma, Italy). The 

concentrations of each antifungal agent tested in emulsion preparation were: 0.02, 0.04, 0.06 

and 0.08 mg/g of CBEO; 1, 2, 4 and 6 mg/g of ZG and; 1, 2.5 and 4 mg/g of FA.  10 mg/g of 

Tween 80 and 5 mg/g of XG were used in all the emulsions. These concentrations were 

defined taking into consideration previous works (Ribes et al., 2016; Salvia-Trujillo, Rojas-

Graü, Soliva-Fortuny, & Martín-Belloso, 2013). Small molecule surfactants, e.g. Tween 80, 

are used in food grade emulsions as they can stabilise the emulsion by reducing the O/W 

interfacial tension. Indeed, the XG is used as stabiliser to enlarge the long-term stability of 

emulsions by viscosity modification. 

2.3.2 Determination of CBEO losses by gas chromatography-mass spectrometry analysis 

Determination of CBEO losses after preparing emulsions, which were subjected to HPH 

fluid dynamic stresses, was conducted by GC-MS. These losses are referred to as trans-

cinnamaldehyde, which is the main CBEO compound (Ribes et al., 2017a). To this end, 5 

mg/g of XG were dispersed in distilled water, and stirred overnight at room temperature. Next 

CBEO was incorporated to achieve a final concentration of 0.50 mg/g. CBEO was extracted by 

incorporating 15 mL of n-hexane into 2 g of the emulsion, followed by 2-minute vortex 

agitations. The mixture was filtered through filter paper and n-hexane was evaporated at 40 °C 

in a rota-vapour. The resulting extracts were incorporated into 2 mL of n-hexane and analysed 

in a 6890/5975 inert GC/MS (Agilent Technologies, USA), equipped with an HP-5 fused silica 
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capillary column (30 m x 0.25 mm x 0.25 µm). The methodology followed was that described 

by Ribes et al. (2016). The analysis was repeated 3 times for each sample. 

2.3.3 Antifungal properties of the O/W emulsions against Aspergillus niger: in vitro conditions 

The study of the in vitro antifungal activity of the CBEO, ZG, and FA emulsions was 

conducted by considering the results obtained above. A. niger was selected as the target 

microorganism for both its resistance in vitro and its prevalence in the post-harvest storage life 

of strawberry products (Farzaneh, Kiani, Sharifi, Reisi, & Hadian, 2015; Jensen et al., 2013).  

2.3.3.1 Antifungal properties of the CBEO emulsions  

The antifungal properties of the O/W emulsions formulated with CBEO were evaluated 

according to Ribes et al. (2016), with minor modifications. Moulds were inoculated and 

incubated on PDA at 25 ºC for 7 days. Next, the spores were counted in a haemocytometer to 

obtain an inoculum density of 10
6
 CFU/mL. The CBEO content in the emulsions formulation 

was 0.06 and 0.08 mg/g. Each emulsion (0.50 g) was added to media (49.5 g of PDA) at 50 °C. 

Then a PDA disc, spread previously with 100 µL of the spore solution (10
6
 CFU/mL), was 

placed in the centre of each plate. Positive controls were prepared with a dispersion of distilled 

water, Tween 80 and XG. Plates were incubated at 25 °C for 7 days. Growth inhibition was 

calculated as described in Section 2.2 and, the MIC and MFC of the emulsions were evaluated 

as previously described. Each assay was conducted in triplicate.  

2.3.3.2 The O/W emulsions formulated by combining CBEO, ZG, and FA  

Emulsions were formulated using the CBEO combined with ZG and/or FA. The method 

followed to test their antifungal activity is defined in Section 2.3.3.1. For the combination with 

ZG, the used amounts of CBEO were 0.02, 0.04, 0.06 and 0.08 mg/g, and the employed ZG 

concentrations were 1, 2, 4 and 6 mg/g. For the combination with FA, the employed CBEO 

concentrations were 0.02, 0.04 and 0.06 mg/g, and the concentrations of tested FA were 1, 2.5 
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and 4 mg/g. These concentrations were established by considering the results of the in vitro 

antifungal effect of: i) free FA and ii) the O/W emulsions formulated with CBEO and ZG. For 

the triple combination, 0.06 mg/g of CBEO, 1 mg/g of ZG and 1 mg/g of FA were used. Each 

assay was conducted in triplicate.  

2.3.4 Characterisation of the O/W emulsions  

The final characterised formulations are described in Table 1. The pH of the emulsions was 

measured by a Crison Basic 20+ pH meter (Crison S.A. Barcelona, Spain). Particle size was 

determined by a laser diffractometer (Mastersizer 2000, Malvern Instruments, Worcestershire, 

UK), as described by Ribes et al. (2016), by applying the Mie theory (refractive index of 1.50, 

absorption index of 0.01). The ζ-potential was carried out according to Ribes et al. (2016) 

using a Zetasizer Nano-Z (Malvern Instruments, Worcestershire, UK), and the Smoluchowsky 

mathematical model was employed to transform the electrophoretic mobility measures into ζ-

potential values. Each measurement was taken in triplicate. 

2.4 Effect of using O/W emulsions on strawberry jam  

2.4.1 Jam preparation 

Strawberry jam was prepared by mixing fruit and sugar in a ratio of 65:35, and cooked at 

100 °C for 30 min to reach a 60 °Brix in the product as described in the Spanish quality 

regulation for fruit jam (BOE, 2003) (Ribes et al., 2016). The CBEO-ZG, CBEO-FA and 

CBEO-ZG-FA emulsions were added to jam after cooling at 25 °C, and then homogenised. 

The amount of emulsions incorporated into the strawberry jam was defined to achieve a 

concentration of 1 g of the O/W emulsion in 100 g of jam in the final product.  
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2.4.2 Strawberry jam spoilage by A. niger 

Fifteen grams of strawberry jam with the O/W emulsions were inoculated with 100 µL of 

the A. niger solution (10
6
 CFU/ mL). Plates were incubated at 25 °C for 28 days. Ten grams of 

each sample were placed in sterile plastic bags containing 90 mL of tryptone phosphate water 

and homogenised for 1 min in a Stomacher blender (Masticator IUL, S.A. Instruments, 

Germany). Serial dilutions were prepared and 0.1 mL was spread on the surface of the PDA 

plates.  

Three Petri dishes were prepared per formulation and analysis day, plus the control samples 

(n=60). Mould counts were made on PDA plates after 72 h of incubation at 25 °C (Pascual & 

Calderón, 2000). All the assays were conducted in triplicate. 

2.4.3 Sensory evaluation 

To test the sensory acceptance of the strawberry jam with different O/W emulsions, a semi-

trained panel composed of 13 men and 17 women, whose ages ranged between 22 and 50 

years, made a sensory evaluation. Tests were run on a 5-point hedonic scale (1=dislike very 

much, 5=like very much) (UNE-ISO 4121:2003). The following sensory parameters were 

evaluated: visual aspect, aroma, taste, unctuousness, mouth texture and overall acceptance. 

Each sample was given to panelists at room temperature in a transparent plastic glass, and was 

coded with three arbitrary numbers. 

2.5 Statistical analysis 

The results of the in vitro antifungal evaluation of the natural agents and CBEO emulsions, 

the physico-chemical analysis of the O/W emulsions, and the effect of incorporating the O/W 

emulsion into strawberry jam on the sensory attributes of the samples were evaluated by a one-

way ANOVA. The results obtained in the in vitro antifungal activity of the CBEO-ZG 

emulsions and the CBEO-FA emulsions and the in vivo antifungal activity of the O/W 
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emulsions were analysed by a multifactor analysis of variance (multifactor ANOVA). The 

least significance procedure (LSD) was used to test for any differences between averages at the 

5% level of significance. Data were statistically processed by Statgraphics Centurion XVI. 

3. Results and discussion 

3.1 Antifungal properties of CBEO, ZG and FA: in vitro conditions 

The CBEO mycelial growth inhibition (%) of A. flavus, A. niger, and P. expansum, 

compared with the control samples, after 7 days of incubation is summarised in Figure 1A. 

Incorporation of the CBEO into the media reduced mycelial growth in a dose-dependent 

manner. The lowest tested CBEO concentration achieved mycelial growth inhibitions of 26%, 

29% and 37% for A. flavus, A. niger and P. expansum, respectively. Fungal development was 

inhibited when the CBEO concentration was above 0.04 mg/g. The MFC values of CBEO 

against the three tested moulds were always of 0.06 mg/g.  

The MIC of the CBEO was 0.04 and 0.06 mg/g for Z. rouxii and Z. bailii, respectively (data 

not shown). Previous studies have reported the antifungal effectiveness of CBEO against the 

Zygosaccharomyces genus. Monu, Techathuvanan, Wallis, Critzer, and Davidson (2016) 

reported the in vitro effectiveness of CBEO and its main compound, trans-cinnamaldehyde, 

against Z. bailii, which gave a MIC value of 50 mg/L.  

The antifungal action of ZG and FA is shown in Figure 1B and 1C, respectively. ZG 

brought about mycelial growth inhibition of up to 50% at concentrations above 1 mg/g for A. 

flavus and P. expansum. Mould growth inhibition using ZG was observed at concentrations 

above 5 mg/g against A. flavus and P. expansum, whereas the highest ZG concentration 

employed only induced 31% inhibition for A. niger. These differences could be due to the 

distinct sensitivity of the moulds, being A. niger the most resistant against ZG. In the case of A. 

flavus and P. expansum, the MFC value of ZG was determined to be 6 mg/g (Figure 1 B). The 
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MIC of ZG was also determined against Z. rouxii and Z. bailii. These values were 4 and 3 

mg/g for Z. rouxii and Z. bailii, respectively (data not shown). No studies that report the 

activity or mode of action of this zinc salt against Z. rouxii and Z. bailii are encountered in the 

literature.  

In general, a higher antifungal activity of the phenolic compound, compared with ZG, was 

observed in the in vitro assays of FA against A. flavus, A. niger and P. expansum, (Figure 1C). 

Mycelial growth inhibition of up to 60% was exhibited at concentrations higher than 1 mg/g of 

FA for A. flavus and P. expansum, whereas 2 mg/g of FA were needed to accomplish 

inhibition of up to 50% in A. niger. Total inhibition was observed at 3 and 4 mg/g of FA for 

the Penicillium genus and the Aspergillus genus, respectively. Mohapatra, Pati, and Ray 

(2000) suggested that concentrations of phenols that ranged from 3 to 5 µg/mL were required 

for normal fungi metabolism, but concentrations above 5 µg/mL were inhibitory. Nesci and 

Etcheverry (2006) found that A. flavus and A. parasiticus growth and aflatoxin B1 levels 

decreased in comparison with the controls, when FA was added. 

Studying the effect of FA on Z. rouxii and Z. bailii growth revealed that high FA 

concentrations inhibited yeast growth. The MIC values were 2 and 3 mg/g for Z. bailii and Z. 

rouxii, respectively (data not shown). Pastorkova, Zakova, Landa, Novakova, Vadlejch, and 

Kokoska (2013) demonstrated that p-coumaric and FA exhibited selective inhibitory effects on 

Z. rouxii with MICs higher than or equal to 256 µg/mL. Recently, Rojo, Arroyo López, 

Lerena, Mercado, Torres, and Combina (2015) showed FA to be the most effective phenolic 

compound to prevent Z. rouxii growth in high sugar media at a low pH. In the aforementioned 

study, no data about MIC were reported by the authors because total Z. rouxii inhibition was 

not achieved at the maximal concentration of the assayed antimicrobial compound (22 mM).  
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3.3 O/W emulsions analysis 

3.3.1 Determination of CBEO losses by a GC-MS analysis  

CBEO losses, referred to as trans-cinnamaldehyde, after preparing O/W emulsions were 

7%. These losses could be due to the high fluid dynamic stress applied to the emulsions by the 

HPH treatment during the preparation procedure, which would cause the degradation of EO 

constituents. The results obtained in this work agreed with those reported by Donsì 

Annunziata, Sessa, and Ferrari (2011), who highlighted the degradation of different active 

agents, such as α-phellandrene, terpinolene, p-cymene and thujene, among others, as a result of 

the fluid dynamic stress suffered by samples during high shear homogenisation and HPH. 

3.3.2 Antifungal properties of O/W emulsions against A. niger: in vitro conditions 

3.3.2.1 CBEO emulsions 

The effectiveness of CBEO emulsions, prepared by 0.06 and 0.08 mg/g of the EO was 

tested, against A. niger at 25 °C for 7 days (data not shown). Only the samples that contained 

0.08 mg/g of the antifungal agent did not show growth, and this value corresponded to its 

MFC.  

Loss of effectiveness was observed when comparing the results obtained in this section 

with those achieved while evaluating the antifungal properties of free CBEO. The use of 0.06 

mg/g and 0.08 mg/g of CBEO as antifungal agents inhibited A. niger growth, whereas the 

emulsions that contained 0.06 mg/g of CBEO did not inhibit it. In the case of the CBEO 

emulsion, the reduction of the antifungal activity observed could be attributed to the CBEO 

losses originated during the emulsion preparation because of the mechanical stress applied to 

the samples during the homogenisation procedure. Indeed, Liang, Xu, Shoemaker, Li, Zhong, 

and Huang (2012) and, Shah, Davidson, and Zhong (2013) reported that peppermint EO 

nanoemulsions prepared with modified starch and, eugenol nanodispersed by whey protein-
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maltodextrin conjugates showed lower antimicrobial activity than non-encapsulated agents, 

respectively. This fact suggests that the use of macromolecules as emulsifiers, with which the 

EO interacts, could also reduce the antifungal effectiveness of emulsions (Donsì & Ferrari, 

2016). 

3.3.2.2 The O/W emulsions formulated with CBEO and ZG 

O/W emulsions were formulated by combining bioactive agents to lower the employed 

EO concentration and to improve the antifungal action of emulsions against A. niger.  

The antifungal activity of the emulsions formulated at different CBEO concentrations 

(0.02, 0.04, 0.06 and 0.08 mg/g) and combined with ZG (1, 2, 4 and 6 mg/g) against A. niger is 

shown in Figure 2. The CBEO and ZG combination enhanced their antifungal action compared 

to the antifungal properties of free ZG and CBEO. Mycelial growth was inhibited when 0.06 

mg/g of CBEO was incorporated into media, even at the lowest ZG concentration (1 mg/g), 

over 7 days. These results suggest possible synergistic interactions between CBEO and ZG.  

3.3.2.3 The O/W emulsions formulated with CBEO and FA  

Figure 3 shows the antifungal activity of the emulsions prepared with CBEO and FA at 

different concentrations against A. niger. When 0.04 and 2.5 mg/g of CBEO and the FA were, 

respectively combined, 72% mycelial growth inhibition was observed. Total mycelial growth 

inhibition was achieved when 0.06 of CBEO was used, regardless of FA content. However, FA 

alone achieved only total A. niger inhibition when the 4 mg/g concentration was tested (Figure 

1C).  

3.3.2.4 The O/W emulsions formulated with CBEO, ZG and FA 

The antifungal activity of the O/W emulsions prepared with 0.06 mg/g of CBEO, 1 mg/g 

of ZG and 1 mg/g of FA was tested against A. niger. No mycelial growth was observed for the 
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tested formulation. This result highlighted that this emulsion was sufficient to inhibit A. niger 

growth for 7 days (data not shown).  

These results suggested that the synergistic activity among the different natural preservatives 

incorporated into media allowed in vitro A. niger growth inhibition. 

3.3.3 Physico-chemical characterisation 

Table 1 shows the pH, d3,2, d4,3 and the ζ-potential values for the O/W emulsions prepared 

with different antifungal compounds.  

The pH values of the different formulated emulsions varied between 6.73 and 7.15, 

showing the lowest values the CBEO and CBEO-FA emulsions. Similar results have been 

obtained by Harwansh, Mukherjee, Bahadur, and Biswas (2015) in FA-loaded nanoemulsions. 

Different factors concerning the formulation of the emulsions have an important role in 

the final mean droplet size attainable by emulsification, and specially:  i) those affecting the 

break-up phenomena, like the viscosity of the disperse and continuous phases and the 

interfacial tension, and ii) those regulating the recoalescence phenomena, as the emulsifier 

affinity for an interaction with newly formed interfaces (Donsì et al., 2011; Donsì, Annunziata, 

Sessa, & Ferrari, 2012).  

As observed, the higher the total preservative concentration in the emulsion, the bigger 

particle size becomes. The emulsions that contained only CBEO exhibited a d3,2 of 

2.149±0.043 µm, whereas an increased droplet mean diameter was noted (2.449±0.038 µm) at 

the highest final concentration of the preservatives used in the emulsion formulation (CBEO-

ZG-FA) (Table 1). The same trend occurred with the d4,3 values. The mean size values 

significantly (p<0.05) increased from 5.649±0.594 to 6.612±0.683 µm when larger amounts of 

antifungal agents were employed while preparing emulsions. Interestingly, among the 

emulsions that contained two antifungal compounds, the larger particle size values (d3,2 of 
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2.409±0.027 µm and d4,3 of 6.326±0.161 µm) were observed when CBEO and FA were used 

for emulsion preparation. This could be due to the characteristics of the dispersed phase, which 

could facilitate the droplet flocculation rate, as well as the reduction in the ratio between the 

interfacial stabilising material and the dispersed phase (McClements, 2005).  

The ζ-potential values of all the formulations are also reported in Table 1. The ζ-potential is an 

indirect measure of the electrical charge of colloidal particles, which provides an indication as 

to their stability during storage. ζ-potential values of > 30 mV or < -30 mV indicated that the 

electrostatic repulsion among droplets likely contributed to prevent their aggregation 

(Harwansh et al., 2015). The electrical charge of the lipid droplets of the emulsions was 

negative, and values were within a range from - 44.3±3.0 to -58.9±1.5 mV. This result 

indicated the excellent stability of the emulsions as a consequence of the electrostatic repulsion 

among the droplets. However, it is worth mentioning that the increment in the number of 

antifungal compounds, in the formulation of the emulsions, increased the mean particle size 

and decreased the ζ-potential of the samples. This effect could be explained by the differences 

found between the adsorption of the surface-active compounds at the oil-water interface 

(Salvia-Trujillo, Rojas-Graü, Soliva-Fortuny, & Martín-Belloso, 2015). Similar results have 

been obtained by Harwansh et al. (2015) and Salvia-Trujillo et al. (2015) in FA-loaded 

nanoemulsions-based gel and in nanoemulsions with different incorporated EOs, respectively.  

The strong negative charge of the different O/W emulsions noted in the present study was 

probably influenced by XG, which is an anionic biopolymer (Ribes et al., 2016). The polymer 

was used as an emulsion stabiliser as it can absorb into the interfacial layer (Dickinson, 2009). 

In addition, the stabilisation effect of hydrocolloids was because of the viscosity modification 

in the continuous phase by lowering the rate of creaming and coalescence (Dickinson, 2009). 
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3.4 Effect of using O/W emulsions on strawberry jam 

3.4.1 Strawberry jam spoilage by A. niger 

The in vivo antifungal activity of emulsions CBEO-ZG, CBEO-FA and CBEO-ZG-FA 

against A. niger at 25 °C for 28 days is shown in Figure 4.  

Strawberry jams prepared with either the CBEO-ZG or the CBEO-FA emulsion did not 

show any fungicidal activity compared to the control samples. Ribes et al. (2017a) evaluated 

the antifungal effect of emulsions containing 0.08 and 0.10 mg/g of CBEO and, the results 

noticed that those emulsions were not sufficient to inhibit A. niger growth, resulting the main 

microorganism originating the strawberry jam spoilage.  

On the contrary, a marked fungicidal activity was observed in the sample that contained 

emulsion CBEO-ZG-FA. In this case, a reduction of 2 log-cycles after 7 days of A. niger 

inoculation took place. The fungicidal effect could be the result of the interactions between the 

main and minor EO compounds, ZG and FA. This synergistic effect allowed mould growth to 

lower to 1 log CFU/g after 28 days. The synergism activity between non-encapsulated 

phenolic and EOs compounds has been elucidated by Miyague, Macedo, Meca, Holley, and 

Luciano (2015), highlighting the potential application for the food industry due to the strong 

taste of EOs. Moreover, combination of FA with metal salts has been also studied (Kalinowska 

et al., 2014). These authors reported a higher antimicrobial activity of ferulates compared with 

FA. This biological activity was attributed to the fact that combination of both agents increases 

the compound lipophilicity what makes them easier to penetrate the lipid layers of the cell 

membrane and interact with components of the bacterial or fungal cell. Further studies are 

needed to clarify the possible synergistic effect of combining the three compounds in O/W 

emulsions.  

The limit of microbiological growth employed to determine the shelf life of samples was one 

of the most restrictive found in food products: the total count of yeast and moulds was 10
2
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CFU/g (Pascual & Calderón, 2000). However, total fungi inhibition interfere with the complex 

growth environment in food products (Omidbeygi, Barzegar, Hamidi, & Naghdibadi, 2007), 

which could protect microbial cells from antifungal products. The factors present in complex 

food commodities, like fat content, proteins, sugar, water, pH and enzymes, could reduce the 

antifungal effectiveness of EOs (Friedly, Crandall, Ricke, Roman, O'Bryan, & Chalova, 2009) 

and interfere with the fungicidal effect of these antifungal compounds.  

Finally, the emulsion prepared with 0.06 mg/g of CBEO, 1 mg/g of ZG and 1 mg/g of FA 

offered the best mould growth reduction results. This formulation was selected to carry out the 

sensory evaluation in strawberry jam.  

3.4.2 Sensory evaluation 

The sensory analysis was performed in order to evaluate the sensory acceptance of the 

strawberry jam that contained different O/W emulsions (Figure 5). Three different samples 

were tested by assessors: i) control strawberry jam; ii) strawberry jam prepared with O/W 

emulsions containing 0.08 mg/g of CBEO (MFC value); and iii) strawberry jam that contained 

the O/W emulsion with 0.06 mg/g CBEO-1 mg/g ZG- 1 mg/g FA, which showed no fungal 

development in the in vitro tests. Incorporation of the O/W emulsion containing CBEO-ZG –

FA into strawberry jam did not alter samples’ aspect, aroma, taste, unctuousness and overall 

acceptance compared with the control jam. In this case, only mouth texture was the attribute 

that exhibited a significant difference (p>0.05) compared to the control sample. These results 

indicated that incorporating the O/W emulsion with CBEO-ZG –FA into strawberry jam did 

not modify its sensory acceptance. Remarkably, the strawberry jams that contained the 

emulsion formulated with 0.08 mg/g of CBEO scored lower for the aroma, taste and overall 

acceptance attributes compared with the control samples. These outcomes are in agreement 

with those obtained in a previous work where O/W emulsions formulated exclusively with 
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0.08 and 0.10 mg/g of CBEO were incorporated to strawberry jam samples and the 

acceptability of the final product was evaluated (Ribes et al.,  2017a). 

The results achieved were especially satisfactory since the main study objective was to 

develop a new strategy to reduce the impact of EOs on the food sensory profile given their 

strong aroma and taste, maintaining the hygienic quality of the product. 

4. Conclusions 

Cinnamon bark essential oil, zinc gluconate and trans-ferulic acid exhibit antifungal 

activity against Aspergillus flavus, Penicillium expansum, Zygosaccharomyces rouxii and 

Zygosaccharomyces bailii. The physico-chemical characterisation of oil-in-water emulsions 

reveals changes in particle size and the ζ-potential values associated with the number of natural 

agents embedded. Higher final preservative content leads to larger particle sizes. The 

differences in the ζ-potential values among formulations are probably due to differences 

between the adsorption of surface-active compounds at the oil-water interface. The 

combination of cinnamon bark essential oil, zinc gluconate and trans-ferulic acid (0.06 mg/g-1 

mg/g-1 mg/g) increases the effectiveness of O/W emulsion against Aspergillus niger. 

The combination of cinnamon bark essential oil, zinc gluconate and trans-ferulic acid in 

emulsions is a new approach to control strawberry jam spoilage, and one that does not bring 

about any changes in its sensory characteristics. Nevertheless, more detailed studies should be 

conducted to achieve complete fungi growth inhibition, and to investigate antifungal 

effectiveness against moulds and yeasts in other food commodities. 
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Figure captions 

Figure 1. Mycelial growth inhibition (%) of A) cinnamon bark EO (CBEO), B) zinc gluconate 

(ZG) and C) trans-ferulic acid (FA) at different concentrations against Aspergillus flavus, 

Aspergillus niger and Penicillium expansum after 7 days of incubation at 25 °C. Mean value 

(n=3) ± SD. Different letters (a, b, c, d) indicate significant differences among the preservative 

concentrations (p<0.05). 

Figure 2. Mycelial growth inhibition (%) of cinnamon bark EO (CBEO) mixed with different 

concentrations of zinc gluconate (1, 2, 4 and 6 mg/g of ZG), against Aspergillus niger at 25 °C 

for 7 days. Mean value (n=3) ± SD. Different letters (a, b, c) indicate significant differences 

among the CBEO concentrations (p<0.05), and (A, B, C) indicate significant differences 

among the ZG concentrations (p<0.05). 

Figure 3. Mycelial growth inhibition (%) of cinnamon bark EO (CBEO) mixed with different 

concentrations of trans-ferulic acid (1, 2.5 and 4 mg/g of FA) against Aspergillus niger at 25 

°C for 7 days. Mean value (n=3) ± SD. Different letters (a, b, c) indicate significant differences 

among the CBEO concentrations (p<0.05) and (A, B, C) indicate significant differences 

among the FA concentrations (p<0.05). 

Figure 4. Effect of O/W emulsion on growth against Aspergillus niger at 25 °C for 7 days. 

Mean value (n=3) ± SD (CBEO: cinnamon bark EO; ZG: zinc gluconate; FA: trans-ferulic 

acid). 

Figure 5. Average score of the different attributes evaluated in the control strawberry jam and 

the strawberry jam with O/W emulsion samples. 0: very unpleasant and 5: very pleasant. 
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*Indicates significant differences between samples (p<0.05) (n=30). (CBEO: cinnamon bark 

EO; ZG: zinc gluconate; FA: trans-ferulic acid). 
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Table 1. Mean values (n=3) ± SD of pH, particle size (d3,2 and d4,3), and the ζ-potential of 

O/W emulsions (0.06 mg/g of CBEO: cinnamon bark EO; 1 mg/g of ZG: zinc gluconate; 1 

mg/g of FA: trans-ferulic acid). 

 

 

 

 

 

 

 

 

 

                                                                            a, b, c, d, 
Different superscripts indicate significant differences among the formulations (p<0.05). 

 

Samples pH d3,2 (µm) d4,3 (µm) ζ-potential (mV) 

CBEO 6.73 ± 0.04 a 2.149 ± 0.043 a 5.649 ± 0.594 a -58.9 ± 1.5 c 

CBEO- ZG 7.15 ± 0.05 c 2.196 ± 0.030 a 5.705 ± 0.383 a -52.1 ± 1.6 b 

CBEO- FA 6.75 ± 0.03 
a
 2.409 ± 0.027 

b
 6.326 ± 0.161 

b
 -51.3 ± 1.5 

b
 

CBEO- ZG- FA 6.93 ± 0.04 
b
 2.449 ± 0.038 

b
 6.612 ± 0.683 

c
 -44.3 ± 3.0 

a
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http://ees.elsevier.com/foodchem/download.aspx?id=2178101&guid=66030857-da50-486b-852e-15c272932fa7&scheme=1
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Figure 2 
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Figure 3 

http://ees.elsevier.com/foodchem/download.aspx?id=2178103&guid=e27073ff-c583-47af-b3cd-3891910e47dd&scheme=1
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Figure 4 
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Figure 5 
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Highlights 

� Cinnamon bark oil, zinc gluconate and trans-ferulic acid were used as antifungals 

� Innovative delivery systems formulated with different antifungal agents were studied 

� Emulsions’ impact on the sensory profile of strawberry jam was tested 

� Hygienic quality of strawberry jam was maintained using novel emulsions 

� The profile of the strawberry jam was not affected by emulsions’ addition 

 


