

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/146202

González-Usach, R.; Pradilla-Cerón, JV.; Esteve Domingo, M.; Palau Salvador, CE. (2016).
Hybrid Delay-Based Congestion Control for Multipath TCP. 1-6.
https://doi.org/10.1109/MELCON.2016.7495389

https://doi.org/10.1109/MELCON.2016.7495389

Abstract—Current algorithms for MPTCP (as LIA, OLIA,

BALIA, or wVegas) present loss-based congestion control on the

exception of wVegas. Delay-based congestion control allows a

preventive action against congestion, capable to avoid loss up to

some extent, unlike loss-based congestion control. Additionally

delay-based congestion control induces lower delay and presents

higher fairness, but poor performance interoperating with loss-

based flows, as get a poor share of the available bandwidth. We

propose DAIMD, a hybrid congestion control for Multipath TCP,

based on the delay-based AIMD scheme, which benefits from

better, preventive detection of congestion, a more responsive use

of queues and consequently low induced delay, as well as the

capability to coexist in fair conditions with loss-based flows in

shared links. Our system presents its own analysis criteria for

detecting incipient congestion that differs from other delay-based

schemes on which it is based, such as CDG, delay-based AIMD

and Vegas..

Keywords—Delay-based congestion control, Multipath TCP,

low delay, loss avoidance, hybrid congestion control, low

queueing delay .

I. INTRODUCTION

Multipath TCP [1][3][4][5] is a new transmission protocol

that allows the use of multiple paths simultaneously on the

network between two end hosts for a single data transmission.

Unlike what is the case with conventional, single TCP, data

transmission is not constrained to a single path. This MPTCP

feature provides several considerable benefits in performance,

reliability, resilience, congestion avoidance, among others

aspects, compared with single-path TCP. MPTCP aims to be

TCP-friendly by responsively taking a fair share instead of all

the potentially available bandwidth on the whole set of paths

[2][5][6][8]. A MPTCP connection is composed of several

single TCP connections, which we called 'sub-connections' or

'subflows', across different paths, called „subpaths‟, between

the end-hosts. In upper layers, the whole set of MPTCP sub-

connections behaves as a single TCP connection, with a unique

data transmission end-to-end.

 One main function of TCP is congestion control, which

allows TCP connections to maintain an appropriate data

transmission rate, not underutilizing the available capacity,

without triggering collapse in the network. MPTCP congestion

control [5][3] is more complex and requires an additional

function: appropriate data load balancing among all sub-

connections on the different paths. Typically TCP congestion

control is loss-based: periodical data packet loss is necessary to

regulate transmission rate; preventive action against

congestion and loss is impossible [7]. On the other hand, TCP

delay-based congestion control allows a more precise

congestion detection which allows a quicker, preventive action

against congestion before loss occurs, which is costly in

performance, and a fine-grained rate regulation. Among

current congestion control algorithms for MPTCP (LIA[5][6],

OLIA, BALIA, wVegas[9]..) only wVegas [9], applies delay-

based congestion control [9][10]. Not only spares the cost of

loss in performance as far as possible, presents a more

effective preventive action against congestion, and induces

lower delay [9]; a finer transmission rate regulation can allow

for a better, more accurate and fairer load balance among

subflows. However classic delay-based congestion control [11]

like Vegas [11] or wVegas [9] presents the downside of a very

poor performance sharing links with loss-based background

traffic, as loss-based congestion control is more aggressive

hogging bandwidth.

Hybrid congestion control [12] combines aspects of both

loss-based and delay-based congestion control, allowing the

benefits of an early detection of incipient congestion, before

loss occurs, and an appropriate performance interoperating

with loss-based implementations.

We designed DAIMD, a novel, hybrid congestion control

for Multipath TCP. DAIMD allows a more effective,

preventive action against congestion than loss-based MPTCP

implementations, and an appropriate performance with loss-

based background traffic. DAIMD is based on delay-based

AIMD [12] but presents a different criterion for triggering rate

decrease. We implemented our congestion control approach on

Linux kernel and evaluated its performance on simulations

using real network stack instead of models. We investigated if

DAIMD presents the expected benefits of hybrid congestion

control, and performs as a functional MPTCP implementation,

fulfilling the MPTCP congestion control goals [6][13].

Hybrid Delay-Based Congestion Control for

Multipath TCP

Regel Gonzalez, Juan Pradilla, Manuel Esteve, Carlos E. Palau

Universitat Politècnica de València (UPV)

Valencia, Spain

regonus@doctor.upv.es, juaprace@teleco.upv.es, mesteve@dcom.upv.es, cpalau@dcom.upv.es

User
Text Box

 This paper is structured as follows: Section II gives an

overview of the congestion control goals of MPTCP, delay-

based congestion control and the algorithms delay-based

AIMD and LIA. Section III describes our proposed algorithm

and implementation challenges. In Section IV we describe our

simulation environment and setup, present simulation results,

and evaluate our algorithm. Section V summarizes our results

and gives an outlook on possible further approaches on

congestion control for MPTCP and practical applications of

MPTCP with our own hybrid congestion control approach in

different utilization cases and environments.

II. CONGESTION CONTROL

Multipath TCP congestion control is more complex than

classic, single-path TCP congestion control, as it requires

additional functionality for appropriate traffic load balance

among paths, which should guarantee fairness to TCP.

Congestion control for Multipath TCP is based on three design

goals [5][6]:

1) Improving connection throughput - A MPTCP

connection should take up at least the same bandwidth as a

single TCP connection would take up instead on the best path.

Ideally, the fairest situation to TCP means to take up exactly

the same amount of bandwidth. In any case, this share should

not be excessively larger than what TCP would get. MPTCP

aims to be fair to TCP, and therefore to take a fair share of the

available capacity in the network. As an exception, on idle

paths is appropriate and convenient to take up the whole

available bandwidth.

2) Not harming other TCP connections – A MPTCP

subflow should not take more bandwidth than a single TCP

flow performing on the same path.

3) Load balance – MPTCP should utilize more the best,

least congested paths and take traffic off from the worst, more

congested paths.

Multipath TCP is based on the fairness goals of the

Resource Pooling Principle [8] , which aims to increase

fairness, efficiency and resource distribution, and to reduce

congestion through the network, by rmaking a set of

connections behave conjointly as a single one [8][3] in a

responsable way in terms of traffic balance and fairness to

other connections.

Multipath TCP has a global action against congestion by

moving traffic off the worst, most congested paths to the best,

least congested paths alleviates congestion in the network [6].

This way not only the MPTCP connection does achieve higher

efficiency, a better distribution of resources and congestion

avoidance. Besides the other flows sharing links with MPTCP

subflows benefit from this action, as the overall congestion is

reduced by redirecting traffic off the most congested links.

MPTCP indirectly leads to a better network resource

distribution among MPTCP and flows sharing links with

MPTCP, and less overall congestion in the network [6].

Traditional loss-based congestion control, like Reno,

follows the AIMD scheme [7]. The congestion window

(CWND) which controls the number of packets sent in a

round-trip time has an additive increase until packet loss is

detected. Then the congestion window shrinks abruptly

(multiplicative decrease) as loss is an indicative of an

excessive transmission rate, to continue growing in further

transmissions with additive increase.

Delay-based AIMD [12] is a hybrid congestion control

algorithm. It follows the AIMD scheme, but the multiplicative

decrease is triggered by a delay-based estimation of

congestion, instead of loss. Due to its additive increase it is

able to interoperate with loss-based flows, unlike classic delay-

based congestion control.

III. DAIMD DESIGN AND IMPLEMENTATION

A. DAIMD Algorithm Design

We implemented the hybrid delay-based AIMD scheme on

MPTCP, with some changes on the decision criterion that

triggers the multiplicative decrease. Our DAIMD algorithm

follows a delay-based criterion for the multiplicative decrease,

whereas presents the additive increase, coupling and general

behaviour of LIA [5], the first algorithm proposed by the IETF

for Multipath TCP.

We developed our own criterion for triggering the

multiplicative decrease, after being inspired on the criteria

aspects of several delay-based algorithms. This is described in

(1). In case of loss multiplicative decrease is also triggered.

DAIMD follows the LIA rule for loss.

The backoff factor is chosen to make DAIMD performance

similar to LIA, despite DAIMD earlier congestion detection.

DAIMD detects the need of a multiplicative decrease before

loss occurs, therefore gets a lower top value of the congestion

window than LIA under the same conditions. DAIMD should

have a less aggressive backoff, as the preventive action against

congestion prevents as well the attaining of a higher

congestion window size.

DAIMD scheme – Rules for each subflow r:

 Increase on each ACK of subflow r

cwndr←cwndr +min(1/cwndr ,α /cwndtotal)

 Decrease

0.7 rr cwndcwnd on delay congestion detection

0.5 rr cwndcwnd on every loss of subflow r
2

/max 

























i

i

2

j

j

rtt

cwnd

rtt

cwnd
=α

cwnd
total

=∑cwnd
i ,

:rr cwnd,rtt round-trip time & CWND on path r

Delay Congestion Detection
 If D>=D0 & cwnd>W0 & delay values that activate the

first condition hold during T time (hysteresis)

D = packet delay; D0 = delay that triggers delay-based backoff;

W0 = CWND threshold that activates delay-based action

(1)

B. Implementation

We implemented our new approach in Linux, a real

operating system. We implemented our congestion control as a

new Linux kernel module. For the sake of simplificity we did

not implement the MPTCP operations nor the TCP protocol

extension but only the coupled congestion control. This

approach is sufficient to evaluate our congestion control

approach, as the overhead signaling has no influence on

congestion control behaviour.

IV. RESULTS AND EVALUATION

A. Simulation Setup

For the simulation we use the NS-3 simulator, the most

widely used in the scientific community. We include real

network stack from the kernel code into NS3. Unlike the use of

models for simulation, the use of real network stack provides

extremely precise results, which are considered equivalent to

those obtained in real networks.

We used simple traffic scenarios to pursue a basic

evaluation of our algorithm. As Fig. 1 shows there are two

paths across the network between the two end-hosts that

maintain an MPTCP connection. Each path is an ideal link

with its queue sized by its bandwidth-delay-product. All

MPTCP subconnections of the same host belong to the same

MPTCP connection. Delay and capacity characteristics of each

subpath, as well as the presence or not of additional loss-based

background traffic (Reno) vary on each individual simulation.

Specifications of the traffic scenario are indicated on the

results. Sources are greedy generators which start at the same

time.

Fig. 1 - Traffic scenario

B. Results

Fig. 2 – DAIMD and LIA on identical idle scenarios with paths of different capacities.

Fig. 3 – DAIMD and LIA on identical idle scenarios with paths of different delay.

TABLE I – AVERAGE THROUGHPUT OF EACH FLOW (in Mbps)

DAIMD
Different capacity, same base delay

Path A – 10Mbps OWD 50ms

Path B – 5Mbps OWD 50ms

Different base delay, same capacity
Path A – 5Mbps OWD 25ms

Path B - 5Mbps OWD 50ms

 Path A 9.4 4.5

 Path B 4.2 4.6

Total MPTCP throughput 13.6 9.1

1) Simulation on idle paths

In Fig. 2 and 3 is possible to appreciate the bare behaviour

of the algorithm on idle paths, without the influence of other

flows. The idle scenarios have different characteristics of delay

and capacity, specified on the results. In order to compare

DAIMD congestion control with its equivalent loss-based

approach, also LIA performance on identical scenarios is

displayed. It can be seen that DAIMD performance is very

similar to LIA, but with a smaller peak-to-peak oscillation,

more irregular and with higher frequency. Maximum

congestion window size on the same path conditions is slightly

lower for DAIMD than for LIA, as DAIMD stops the increase

of the CWND before LIA does, due to an earlier detection of

congestion. Each early congestion detection, before loss

occurs, is marked on the images with a circle. Peaks without a

circle represent loss events. No loss occurs in the DAIMD

transmissions after the slow-start phase, proving a high

effectiveness of the delay-based congestion control. The delay-

based congestion control should act against congestion by

reducing the rate early enough to avoid loss, but not too soon

to end up underutilizing the available capacity. An

inappropriate, imprecise trigger may lead to bandwidth

underutilization and inability to compete with other flows for a

fair share of the link. DAIMD is able to maintain an adequate

throughput on each subpath (see Table I). Therefore DAIMD

accomplishes the MPTCP congestion control design goal for

idle paths and behaves as a functional congestion control for

MPTCP with an effective, preventive action against loss.

(a)

(b)

(c)

(d)

Fig. 4 - DAIMD and LIA on identical scenarios with paths with different capacity and Reno cross-traffic.

(a)

(b)

(c)

(d)

Fig. 5 - DAIMD and LIA on identical scenarios with paths with different delay and Reno cross-traffic.

(a)

(b)

(c)

(d)

Fig. 6 - DAIMD AND LIA on identical scenarios with identical paths and Reno cross-traffic.

TABLE II - AVERAGE THROUGHPUT OF FLOWS (in Mbps)

Paths with different capacity Paths with different delay Equal paths

DAIMD LIA
Reno

(DAIMD)
DAIMD LIA

Reno

(DAMID)
DAIMD LIA

Reno

(DAIMD)

Path A 3.4 3.6 5.8 1.4 1.8 2.9 1.3 1.5 3.5

Path B 1 1.7 3.7 1.1 1.6 2.8 1.2 1.7 3.7

Total

MPTCP

throughput

4.4 5.3

mptcp ideal

share:

 5

2.5

3.4

mptcp

minimum

ideal share:

2.5

2.5

3.2

mptcp

minimum

ideal share:

2.5

2) Performance on shared paths

Fig. 4 to 6 show the performance of both DAIMD and LIA

on scenarios with background traffic. We chose Reno, the

standard TCP implementation, as the background traffic type.

A single Reno flow is performing on each subpath.

Results show that DAIMD behaves similarly to LIA. We

consider the design congestion control goals of Multipath TCP

achieved on the simulations, but not strictly regarding the first

goal. As can be seen in the plots and in Table II, DAIMD takes

nearly the same bandwidth as a single TCP flow would get

instead on the best path. The ideal fair share, according to the

Resource Pooling Principle, and the design fairness aims of

Multipath TCP is exactly what a single TCP flow would get.

On the scenario with paths with different capacities DAIMD

gets a lower throughput than the expected fair share (5Mbps).

However, DAIMD gets a high, acceptable utilization of this

corresponding ideal share. We consider that even not fulfilling

the first design goal strictly the result is sufficiently good to

consider the MPTCP throughput goal acceptably achieved. In

the other simulations, DAIMD throughput achieves exactly

this ideal fair share unlike LIA under the same path conditions.

LIA accomplishes the first goal, but exceeding the ideal fair

share.

The second design goal, not to get more capacity than a

single TCP flow on a shared path is also fulfilled, as can be

seen on Table II. In plots 4.a, 4.c, 4.d, 5.c, 5.d, and 6.a it can be

seen that both DAIMD and LIA get more throughput than the

Reno flow sharing the same subpath for an instant in few,

exceptional occasions, which affects little to the average

throughput of the flows. The average throughput results prove

that this MPTCP goal is achieved, despite these momentary

situations. The third design goal is the appropriate load balance

among subflows. As well as LIA, DAIMD uses more the best

paths, and less the worst, most congested paths. But DAIMD

in these simulations takes off comparatively more traffic from

the most congested paths than LIA. The utilization of the worst

path, regarding the overall use of paths, is proportionally lower

in DAIMD than in LIA. This fact suggests that due to its

delay-based sensitiveness to congestion DAIMD may be able

to move off more traffic than LIA from congested links. In that

case DAIMD would accomplish this goal more effectively

than LIA, and would get closer to the Resource Pooling

Principle aims. MPTCP contributes to a fairer and more

efficient distribution of resources among flows in the network

(including background traffic flows), as an effect of the

alleviation of congestion on the most congested links by

moving off traffic, and a more efficient distribution of its

flows, which is not only beneficial for the own MPTCP

connection performance, also indirectly for the flows sharing

links with MPTCP subflows. As a secondary effect flows

sharing links with multipath TCP tend to equalize, up to some

extent, their share. The use of our hybrid congestion control on

MPTCP may strengthen this effect, as it improves the load

balance.

DAIMD presents some loss episodes on these simulations.

The less responsible use of the queues of loss-based flows

forces periodical queue overload, packet loss, and network

congestion. In that type of congestion situation loss is more

difficult to avoid for the delay-based congestion control.

DAIMD is able to prevent loss in most occasions by

anticipating the queue overload and triggering multiplicative

decrease. This spares the cost of loss and further

retransmissions to the connection performance. Compared to

loss-based congestion control DAIMD presents a more

responsible use of the queues, preventing overload and loss,

and consequently inducing less queuing delay.

V. CONCLUSIONS AND OUTLOOK

In this paper, we proposed a novel, hybrid congestion

control approach for Multipath TCP, based on delay-based

AIMD with a different mechanism for detecting incipient

congestion using delay analysis.

Following an AIMD scheme, the increase scheme is based

on LIA, the first loss-based congestion algorithm for Multipath

TCP proposed by the IETF, as well as the coupling, load

balance and general functionality. Multiplicative decrease

follows the delay-based AIMD general idea, but with a

different criterion for triggering the decrease. The backoff

factor is adjusted to compensate the effect of early congestion

detection, compared with the late loss-based action.

We developed this new algorithm, implemented it on a real

system, Linux, and tested it with NS-3 simulator using real

network stack code to evaluate its performance on different

network scenarios.

In the standard case studies tested with simulations

DAIMD proves to behave appropriately in terms of loss

avoidance, incipient congestion detection, fairness, adequate

performance on idle links as well as interoperating with loss-

based flows in shared links, Multipath TCP congestion control

goals including resource pooling, and responsive use of

queues.

DAIMD is able to achieve the expected benefits of a delay-

based scheme like loss avoidance, intra-protocol fairness,

proactive action against congestion and low delay induction.

Additionally DAIMD possesses the capability of

interoperating in fair conditions with loss-based flows, which

is impossible for classic delay-based congestion control. Only

hybrid congestion control such as Compound and delay-based

AIMD are able to achieve this desirable characteristic while

applying a responsive, preventive action against congestion by

using congestion delay-based detection. DAIMD is the first

proposed hybrid congestion control for multipath TCP. Its

proactive action against congestion prevents up to some extent

queue overload, and therefore presents a more responsive use

of queues, inducing less delay, and spares the important cost

in performance of loss to the extent that it is possible.

Simulations have shown an important loss reduction, and even

complete loss avoidance in the absence of loss-based

background traffic.

DAIMD behaves satisfactorily as a functional MPTCP

congestion algorithm, as it fulfills the MPTCP performance

and fairness goals. The first design goal demands that a whole

MPTCP connection should take at least the same bandwidth as

a TCP connection would take performing over the best path, an

aim that DAIMD achieves in general terms. In some

simulations DAIMD is closer than LIA to the ideal fair share,

exactly the same capacity a TCP flow would get on the best

path. The second goal refers to fairness to TCP on each

individual path: a MPTCP subflow must not take more

available bandwidth than any TCP flow sharing the same path,

which is a condition that DAIMD fulfills in all simulations. On

idle links it is instead convenient to fulfill the whole available

capacity, which is something DAIMD has been able to do in

these special cases. The third design goal states that the load

should be appropriately balanced among the available paths.

Results suggest that comparatively DAIMD balances traffic

even better as LIA, as it moves more traffic off from the most

congested path and utilizes proportionally more the best path.

This can be seen in Table II.

Results suggest that DAIMD may improve on LIA fairness

to TCP in some respects, as in some cases DAIMD throughput

is closer to the ideal fair share than LIA rate and DAIMD

makes a fairer load distribution than LIA in the case studies.

In future work, in order to more thoroughly evaluate our

own algorithm, we will extend the simulation scenarios, and

make a more thorough study of its behaviour regarding queues.

The DAIMD mechanism for preventing congestion can be also

applied in other MPTCP algorithms, and we will implement

this mechanism in OLIA and BALIA. Also, we will use

DAIMD in several potential applications of MPTCP not yet

fully explored and test the benefits of the use of MPTCP in

combination with this delay-based hybrid approach that

minimizes loss and reduces delay. We will investigate its

application in special case studies of Internet of Things,

wireless mobile phone networks, and military

communications.

ACKNOWLEDGMENTS

This research has received funding from the European

Union's Horizon 2020 research and innovation programme as

part of the „Interoperability of Heterogeneous IoT Platforms‟

(INTER-IoT) project under Grant Agreement n˚ 687283.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley and O. Bonaventure, “TCP extensions
for multipath operation with multiple addresses” RFC 6824, IETF, 2013

[2] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint

routing and rate control” in Computer Communication Review 35, pp.

5–12, 2005

[3] P. Key , L. Massouli ́ L . and Towsley, D., “Combining multipath

routing and congestion control for robustness” in 40th IEEE
Conference on Information Sciences and Systems , CISS, 2006

[4] H. Han, S. Shakkottai, C.V. Hollot, R. Srikant and D. Towsley, “Multi-

path TCP: a joint congestion control and routing scheme to exploit path
diversity in the internet” in IEEE/ACM Trans. Netw. 14(6), pp. 1260–

1271, 2006

[5] C. Raiciu, M. Handly and D. Wischik, “Coupled congestion control for
multipath transport protocols” RFC 6356, IETF, 2011

[6] D. Wischik, C. Raiciu, A. Greenhalgh and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP”

in Proceedings of USENIX Conference on Networked Systems Design

and Implementation, NSDI, 2011
[7] M. Allman, V. Paxson and E. Blanton, “TCP congestion control. RFC

5681”, IETF, 2009

[8] D. Wischik, M. Handley, and M. B. Braun, "The resource pooling

principle" in ACM SIGCOMM Computer Communication Review, vol.

38, no. 5, pp. 47-52, 2008

[9] M. Xu, Y. Cao and E. Dong, “Delay-based congestion control for
multipath TCP”, draft-xu-mptcp-congestion-control-02, Internet Draft

IETF, July 2015

[10] Y. Cao, M. Xu and X. Fu, “Delay-based congestion control for multipath
TCP” in 20th IEEE International Conference on Network Protocols

(ICNP), pp. 1-10, October 2012

[11] S. H. Low, L. Peterson, and L. Wang, "Understanding TCP Vegas: a
duality model," in Proc. of ACM SIGMETRICS, pp. 226-235, 2001

[12] D. Leith, R. Shorten, G. McCullagh, J. HeFfner, L. Dunn, and F. Baker,

"Delay-based AIMD congestion control," in Proc. of PFLDNeT
Workshop, 2007

[13] R. Gonzalez and M. Kuehlewind, “Implementation and evaluation of

coupled congestion control for multipath TCP”, 18th EUNICE
Conference in Information and Communication Technologies, August

2012

