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Abstract—Current algorithms for MPTCP (as LIA, OLIA, 

BALIA, or wVegas) present loss-based congestion control on the 

exception of wVegas. Delay-based congestion control allows a 

preventive action against congestion, capable to avoid loss up to 

some extent, unlike loss-based congestion control. Additionally 

delay-based congestion control induces lower delay and presents 

higher fairness, but poor performance interoperating with loss-

based flows, as get a poor share of the available bandwidth. We 

propose DAIMD, a hybrid congestion control for Multipath TCP, 

based on the delay-based AIMD scheme, which benefits from 

better, preventive detection of congestion, a more responsive use 

of queues and consequently low induced delay, as well as the 

capability to coexist in fair conditions with loss-based flows in 

shared links. Our system presents its own analysis criteria for 

detecting incipient congestion that differs from other delay-based 

schemes on which it is based, such as CDG, delay-based AIMD 

and Vegas..  

Keywords—Delay-based congestion control, Multipath TCP, 

low delay, loss avoidance, hybrid congestion control, low 

queueing delay . 

I. INTRODUCTION 

Multipath TCP [1][3][4][5] is a new transmission protocol 

that allows the use of multiple paths simultaneously on the 

network between two end hosts for a single data transmission. 

Unlike what is the case with conventional, single TCP, data 

transmission is not constrained to a single path. This MPTCP 

feature provides several considerable benefits in performance, 

reliability, resilience, congestion avoidance, among others 

aspects, compared with single-path TCP. MPTCP aims to be 

TCP-friendly by responsively taking a fair share instead of all 

the potentially available bandwidth on the whole set of paths 

[2][5][6][8]. A MPTCP connection is composed of several 

single TCP connections, which we called 'sub-connections' or 

'subflows', across different paths, called „subpaths‟, between 

the end-hosts. In upper layers, the whole set of MPTCP sub-

connections behaves as a single TCP connection, with a unique 

data transmission end-to-end.   

 One main function of TCP is congestion control, which 

allows TCP connections to maintain an appropriate data 

transmission rate, not underutilizing the available capacity, 

without triggering collapse in the network. MPTCP congestion 

control [5][3] is more complex and requires an additional 

function: appropriate data load balancing among all sub-

connections on the different paths. Typically TCP congestion 

control is loss-based: periodical data packet loss is necessary to 

regulate transmission rate; preventive action against 

congestion and loss is impossible [7]. On the other hand, TCP 

delay-based congestion control allows a more precise 

congestion detection which allows a quicker, preventive action 

against congestion before loss occurs, which is costly in 

performance, and a fine-grained rate regulation. Among 

current congestion control algorithms for MPTCP (LIA[5][6], 

OLIA, BALIA, wVegas[9]..) only  wVegas [9], applies delay-

based congestion control [9][10]. Not only spares the cost of 

loss in performance as far as possible, presents a more 

effective preventive action against congestion, and induces 

lower delay [9]; a finer transmission rate regulation can allow 

for a better, more accurate and fairer load balance among 

subflows. However classic delay-based congestion control [11] 

like Vegas [11] or wVegas [9] presents the downside of a very 

poor performance sharing links with loss-based background 

traffic, as loss-based congestion control is more aggressive 

hogging bandwidth.  

Hybrid congestion control [12] combines aspects of both 

loss-based and delay-based congestion control, allowing the 

benefits of an early detection of incipient congestion, before 

loss occurs, and an appropriate performance interoperating 

with loss-based implementations.  

We designed DAIMD, a novel, hybrid congestion control 

for Multipath TCP. DAIMD allows a more effective, 

preventive action against congestion than loss-based MPTCP 

implementations, and an appropriate performance with loss-

based background traffic. DAIMD is based on delay-based 

AIMD [12] but presents a different criterion for triggering rate 

decrease. We implemented our congestion control approach on 

Linux kernel and evaluated its performance on simulations 

using real network stack instead of models. We investigated if 

DAIMD presents the expected benefits of hybrid congestion 

control, and performs as a functional MPTCP implementation, 

fulfilling the MPTCP congestion control goals [6][13].   
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 This paper is structured as follows: Section II gives an 

overview of the congestion control goals of MPTCP, delay-

based congestion control and the algorithms delay-based 

AIMD and LIA. Section III describes our proposed algorithm 

and implementation challenges. In Section IV we describe our 

simulation environment and setup, present simulation results, 

and evaluate our algorithm. Section V summarizes our results 

and gives an outlook on possible further approaches on 

congestion control for MPTCP and practical applications of 

MPTCP with our own hybrid congestion control approach in 

different utilization cases and environments. 

II. CONGESTION CONTROL

Multipath TCP congestion control is more complex than 

classic, single-path TCP congestion control, as it requires 

additional functionality for appropriate traffic load balance 

among paths, which should guarantee fairness to TCP. 

Congestion control for Multipath TCP is based on three design 

goals [5][6]: 

1) Improving connection throughput - A MPTCP

connection should take up at least the same bandwidth as a 

single TCP connection would take up instead on the best path. 

Ideally, the fairest situation to TCP means to take up exactly 

the same amount of bandwidth. In any case, this share should 

not be excessively larger than what TCP would get. MPTCP 

aims to be fair to TCP, and therefore to take a fair share of the 

available capacity in the network. As an exception, on idle 

paths is appropriate and convenient to take up the whole 

available bandwidth.  

2) Not harming other TCP connections – A MPTCP

subflow  should not take more bandwidth than a single TCP 

flow performing on the same path.  

3) Load balance – MPTCP should utilize more the best,

least congested paths and take traffic off from the worst, more 

congested paths. 

Multipath TCP is based on the fairness goals of the 

Resource Pooling Principle [8] , which aims to increase 

fairness, efficiency and resource distribution, and to reduce 

congestion through the network, by rmaking a set of 

connections behave conjointly as a single one [8][3] in a 

responsable way in terms of traffic balance and fairness to 

other connections. 

Multipath TCP has a global action against congestion by 

moving traffic off the worst, most congested paths to the best, 

least congested paths alleviates congestion in the network [6]. 

This way not only the MPTCP connection does achieve higher 

efficiency, a better distribution of resources and congestion 

avoidance. Besides the other flows sharing links with MPTCP 

subflows benefit from this action, as the overall congestion is 

reduced by redirecting traffic off the most congested links. 

MPTCP indirectly leads to a better network resource 

distribution among MPTCP and flows sharing links with 

MPTCP, and less overall congestion in the network [6].  

Traditional loss-based congestion control, like Reno, 

follows the AIMD scheme [7]. The congestion window 

(CWND) which controls the number of packets sent in a 

round-trip time has an additive increase until packet loss is 

detected. Then the congestion window shrinks abruptly 

(multiplicative decrease) as loss is an indicative of an 

excessive transmission rate, to continue growing in further 

transmissions with additive increase.  

Delay-based AIMD [12] is a hybrid congestion control 

algorithm. It follows the AIMD scheme, but the multiplicative 

decrease is triggered by a delay-based estimation of 

congestion, instead of loss. Due to its additive increase it is 

able to interoperate with loss-based flows, unlike classic delay-

based congestion control. 

III. DAIMD DESIGN AND IMPLEMENTATION

A. DAIMD Algorithm Design 

We implemented the hybrid delay-based AIMD scheme on 

MPTCP, with some changes on the decision criterion that 

triggers the multiplicative decrease. Our DAIMD algorithm 

follows a delay-based criterion for the multiplicative decrease, 

whereas presents the additive increase, coupling and general 

behaviour of LIA [5], the first algorithm proposed by the IETF 

for Multipath TCP.  

We developed our own criterion for triggering the 

multiplicative decrease, after being inspired on the criteria 

aspects of several delay-based algorithms. This is described in 

(1). In case of loss multiplicative decrease is also triggered. 

DAIMD follows the LIA rule for loss. 

The backoff factor is chosen to make DAIMD performance 

similar to LIA, despite DAIMD earlier congestion detection. 

DAIMD detects the need of a multiplicative decrease before 

loss occurs, therefore gets a lower top value of the congestion 

window than LIA under the same conditions. DAIMD should 

have a less aggressive backoff, as the preventive action against 

congestion prevents as well the attaining of a higher 

congestion window size. 

DAIMD scheme – Rules for each subflow r: 

 Increase      on each ACK of subflow r  

cwndr←cwndr +min(1/cwndr ,α /cwndtotal)
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(1) 

B.   Implementation 

We implemented our new approach in Linux, a real 

operating system. We implemented our congestion control as a 

new Linux kernel module. For the sake of simplificity we did 

not implement the MPTCP operations nor the TCP protocol 

extension but only the coupled congestion control. This 

approach is sufficient to evaluate our congestion control 

approach, as the overhead signaling has no influence on 

congestion control behaviour.  

IV. RESULTS AND EVALUATION 

A.   Simulation Setup 

For the simulation we use the NS-3 simulator, the most 

widely used in the scientific community. We include real 

network stack from the kernel code into NS3. Unlike the use of 

models for simulation, the use of real network stack provides 

extremely precise results, which are considered equivalent to 

those obtained in real networks. 

We used simple traffic scenarios to pursue a basic 

evaluation of our algorithm. As Fig. 1 shows there are two 

paths across the network between the two end-hosts that 

maintain an MPTCP connection. Each path is an ideal link 

with its queue sized by its bandwidth-delay-product. All 

MPTCP subconnections of the same host belong to the same 

MPTCP connection. Delay and capacity characteristics of each 

subpath, as well as the presence or not of additional loss-based 

background traffic (Reno) vary on each individual simulation. 

Specifications of the traffic scenario are indicated on the 

results. Sources are greedy generators which start at the same 

time.  

 
Fig. 1 -  Traffic scenario

B.   Results 

 

 
Fig. 2  – DAIMD and LIA on identical idle scenarios with paths of different capacities. 

 

 
Fig. 3 – DAIMD and LIA on identical idle scenarios with paths of different delay. 

TABLE I – AVERAGE THROUGHPUT OF EACH FLOW (in Mbps) 

DAIMD 
Different capacity, same base delay 

Path A – 10Mbps  OWD 50ms 

Path B –   5Mbps  OWD 50ms 

Different base delay, same capacity 
Path A – 5Mbps  OWD 25ms 

Path B -  5Mbps  OWD 50ms 

 Path A 9.4 4.5 

 Path B 4.2 4.6 

Total MPTCP throughput 13.6 9.1 



1)   Simulation on idle paths 

In Fig. 2 and 3 is possible to appreciate the bare behaviour 

of the algorithm on idle paths, without the influence of other 

flows. The idle scenarios have different characteristics of delay 

and capacity, specified on the results. In order to compare 

DAIMD congestion control with its equivalent loss-based 

approach, also LIA performance on identical scenarios is 

displayed. It can be seen that DAIMD performance is very 

similar to LIA, but with a smaller peak-to-peak oscillation, 

more irregular and with higher frequency. Maximum 

congestion window size on the same path conditions is slightly 

lower for DAIMD than for LIA, as DAIMD stops the increase 

of the CWND before LIA does, due to an earlier detection of 

congestion. Each early congestion detection, before loss 

occurs, is marked on the images with a circle. Peaks without a 

circle represent loss events. No loss occurs in the DAIMD 

transmissions after the slow-start phase, proving a high 

effectiveness of the delay-based congestion control. The delay-

based congestion control should act against congestion by 

reducing the rate early enough to avoid loss, but not too soon 

to end up underutilizing the available capacity. An 

inappropriate, imprecise trigger may lead to bandwidth 

underutilization and inability to compete with other flows for a 

fair share of the link. DAIMD is able to maintain an adequate 

throughput on each subpath (see Table I). Therefore DAIMD 

accomplishes the MPTCP congestion control design goal for 

idle paths and behaves as a functional congestion control for 

MPTCP with an effective, preventive action against loss. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4  - DAIMD and LIA on identical scenarios with paths with different capacity and Reno cross-traffic. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5  -  DAIMD and LIA on identical scenarios with paths with different delay and Reno cross-traffic. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6  - DAIMD AND LIA on identical scenarios with identical paths and Reno cross-traffic. 



TABLE II  -  AVERAGE THROUGHPUT OF FLOWS (in Mbps) 

 

Paths with different capacity Paths with different delay Equal paths 

DAIMD LIA 
Reno 

(DAIMD) 
DAIMD LIA 

Reno 

(DAMID) 
DAIMD LIA 

Reno 

(DAIMD) 

Path A 3.4 3.6 5.8 1.4 1.8 2.9 1.3 1.5 3.5 

Path B 1 1.7 3.7 1.1 1.6 2.8 1.2 1.7 3.7 

Total 

MPTCP 

throughput  

4.4 5.3 

mptcp  ideal 

share: 

 5 

2.5 

 
3.4 

mptcp 

minimum 

ideal share:   

2.5 

2.5 

 
3.2 

mptcp 

minimum 

ideal share:   

2.5 

2)   Performance on shared paths 

Fig. 4 to 6 show the performance of both DAIMD and LIA 

on scenarios with background traffic. We chose Reno, the 

standard TCP implementation, as the background traffic type. 

A single Reno flow is performing on each subpath. 

Results show that DAIMD behaves similarly to LIA. We 

consider the design congestion control goals of Multipath TCP 

achieved on the simulations, but not strictly regarding the first 

goal. As can be seen in the plots and in Table II, DAIMD takes 

nearly the same bandwidth as a single TCP flow would get 

instead on the best path.  The ideal fair share, according to the 

Resource Pooling Principle, and the design fairness aims of 

Multipath TCP is exactly what a single TCP flow would get. 

On the scenario with paths with different capacities DAIMD 

gets a lower throughput than the expected fair share (5Mbps). 

However, DAIMD gets a high, acceptable utilization of this 

corresponding ideal share. We consider that even not fulfilling 

the first design goal strictly the result is sufficiently good to 

consider the MPTCP throughput goal acceptably achieved. In 

the other simulations, DAIMD throughput achieves exactly 

this ideal fair share unlike LIA under the same path conditions. 

LIA accomplishes the first goal, but exceeding the ideal fair 

share.  

The second design goal, not to get more capacity than a 

single TCP flow on a shared path is also fulfilled, as can be 

seen on Table II. In plots 4.a, 4.c, 4.d, 5.c, 5.d, and 6.a it can be 

seen that both DAIMD and LIA get more throughput than the 

Reno flow sharing the same subpath for an instant in few, 

exceptional occasions, which affects little to the average 

throughput of the flows. The average throughput results prove 

that this MPTCP goal is achieved, despite these momentary 

situations. The third design goal is the appropriate load balance 

among subflows. As well as LIA, DAIMD uses more the best 

paths, and less the worst, most congested paths. But DAIMD 

in these simulations takes off comparatively more traffic from 

the most congested paths than LIA. The utilization of the worst 

path, regarding the overall use of paths, is proportionally lower 

in DAIMD than in LIA. This fact suggests that due to its 

delay-based sensitiveness to congestion DAIMD may be able 

to move off more traffic than LIA from congested links. In that 

case DAIMD would accomplish this goal more effectively 

than LIA, and would get closer to the Resource Pooling 

Principle aims. MPTCP contributes to a fairer and more 

efficient distribution of resources among flows in the network 

(including background traffic flows), as an effect of the 

alleviation of congestion on the most congested links by 

moving off traffic, and a more efficient distribution of its 

flows, which is not only beneficial for the own MPTCP 

connection performance, also indirectly for the flows sharing 

links with MPTCP subflows. As a secondary effect flows 

sharing links with multipath TCP tend to equalize, up to some 

extent, their share. The use of our hybrid congestion control on 

MPTCP may strengthen this effect, as it improves the load 

balance. 

DAIMD presents some loss episodes on these simulations. 

The less responsible use of the queues of loss-based flows 

forces periodical queue overload, packet loss, and network 

congestion. In that type of congestion situation loss is more 

difficult to avoid for the delay-based congestion control. 

DAIMD is able to prevent loss in most occasions by 

anticipating the queue overload and triggering multiplicative 

decrease. This spares the cost of loss and further 

retransmissions to the connection performance. Compared to 

loss-based congestion control DAIMD presents a more 

responsible use of the queues, preventing overload and loss, 

and consequently inducing less queuing delay.   

V.    CONCLUSIONS AND OUTLOOK 

In this paper, we proposed a novel, hybrid congestion 

control approach for Multipath TCP, based on delay-based 

AIMD with a different mechanism for detecting incipient 

congestion using delay analysis. 

Following an AIMD scheme, the increase scheme is based 

on LIA, the first loss-based congestion algorithm for Multipath 

TCP proposed by the IETF, as well as the coupling, load 

balance and general functionality. Multiplicative decrease 

follows the delay-based AIMD general idea, but with a 

different criterion for triggering the decrease. The backoff 

factor is adjusted to compensate the effect of early congestion 

detection, compared with  the late loss-based action. 

We developed this new algorithm, implemented it on a real 

system, Linux, and tested it with NS-3 simulator using real 

network stack code to evaluate its performance on different 

network scenarios.  

In the standard case studies tested with simulations  

DAIMD proves to behave appropriately in terms of loss 

avoidance, incipient congestion detection, fairness, adequate 



performance on idle links as well as interoperating with loss-

based flows in shared links, Multipath TCP congestion control 

goals including resource pooling, and responsive use of 

queues.  

DAIMD is able to achieve the expected benefits of a delay-

based scheme like loss avoidance, intra-protocol fairness, 

proactive action against congestion and low delay induction. 

Additionally DAIMD possesses the capability of 

interoperating in fair conditions with loss-based flows, which 

is impossible for classic delay-based congestion control. Only 

hybrid congestion control such as Compound and delay-based 

AIMD are able to achieve this desirable characteristic while 

applying a responsive, preventive action against congestion by 

using congestion delay-based detection. DAIMD is the first 

proposed hybrid congestion control for multipath TCP. Its 

proactive action against congestion prevents up to some extent 

queue overload, and therefore presents a more responsive use 

of queues, inducing less delay,  and spares the important cost 

in performance of loss to the extent that it is possible. 

Simulations have shown an important loss reduction, and even 

complete loss avoidance in the absence of loss-based 

background traffic. 

DAIMD behaves satisfactorily as a functional MPTCP 

congestion algorithm, as it fulfills the MPTCP performance 

and fairness goals. The first design goal demands that a whole 

MPTCP connection should take at least the same bandwidth as 

a TCP connection would take performing over the best path, an 

aim that DAIMD achieves in general terms. In some 

simulations DAIMD is closer than LIA to the ideal fair share, 

exactly the same capacity a TCP flow would get on the best 

path. The second goal refers to fairness to TCP on each 

individual path: a MPTCP subflow must not take more 

available bandwidth than any TCP flow sharing the same path, 

which is a condition that DAIMD fulfills in all simulations. On 

idle links it is instead convenient to fulfill the whole available 

capacity, which is something DAIMD has been able to do in 

these special cases. The third design goal states that the load 

should be appropriately balanced among the available paths. 

Results suggest that comparatively DAIMD balances traffic 

even better as LIA, as it moves more traffic off from the most 

congested path and utilizes proportionally more the best path. 

This can be seen in Table II. 

Results suggest that DAIMD may improve on LIA fairness 

to TCP in some respects, as in some cases DAIMD throughput 

is closer to the ideal fair share than LIA rate and DAIMD 

makes a fairer load distribution than LIA in the case studies.  

In future work, in order to more thoroughly evaluate our 

own algorithm, we will extend the simulation scenarios, and 

make a more thorough study of its behaviour regarding queues. 

The DAIMD mechanism for preventing congestion can be also 

applied in other MPTCP algorithms, and we will implement 

this mechanism in OLIA and BALIA. Also, we will use 

DAIMD in several potential applications of MPTCP not yet 

fully explored and test the benefits of the use of MPTCP in 

combination with this delay-based hybrid approach that 

minimizes loss and reduces delay. We will investigate its 

application in special case studies of Internet of Things, 

wireless mobile phone networks, and military 

communications.  
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